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Extreme low and high water levels
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Abstract

A methodology for the prediction of low end and high end extremes in sustained water level is established. The

observational data base is a long-duration sequence of monthly high and low extremes. The data identifies a deterministic trend

attributable to Mean Sea Level rise and the nominal 19-year forcing in the astronomical tide. The data is pre-conditioned to

remove these trends, defining a net data series suitable for extreme value analysis. Context-specific issues in the extreme value

analysis are identified and resolved. These include probability model compatibility with elevation datums, rational estimation of

the distribution parameters, and the estimation of confidence limits. The predictions for extreme low and high water levels are

both real time and return period dependent.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A rational evaluation of marine climate at any site

would include extreme value analyses of sustained

water levels. In principle, this is classical extreme

value analysis. However, there are some unique

aspects of extreme value analysis for sustained water

level. The interaction of simultaneous storm and

astronomical tides is an important consideration.

Storm tides, defined here to include wave setup

contributions, may lead to higher than normal tides

and also lower than normal tides.

Trends in sea level are a concern over the duration

of an historical data sequence. In addition, there is an
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interest in both the upper and lower extremes of the

sustained water level. Investigations of coastal flood-

ing and design and operation of marine facilities

require estimates of the highest water level. The

lowest water level is an important parameter in the

context of navigation and cooling water intakes to

power plants.
2. Observational evidence

To a greater or lesser extent, the astronomical tide

is a significant part of any observation of sustained

water level. Fig. 1a shows the observed and predicted

tides at Pensacola FL during Hurricane Camille in

August 1969. Here, the observed water level is
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dominated by the storm. Fig. 1b shows the observed

and predicted tides at Charleston SC during Hurricane

Hugo in September 1989. In this record, the contri-

butions are comparable, and interaction becomes an

important concern. Note also in this trace that

observed water levels later in the storm fall below

the predicted astronomical tide. At sites where the tide

range is large, the observed water level is dominated

by the astronomical tide.

The tide has a deterministic origin in the mass

attraction of the Moon and the Sun on surface waters,

and the application of the statistics of extremes to tidal

observations alone is not appropriate. The determin-

istic lower and upper bounds are the Lowest

Astronomical Tide (LAT) and Highest Astronomical

Tide (HAT), respectively. However, the occurrence of

storms has a statistical flavour, so that measured storm

tides are suitable for extreme value analysis.
3. Extreme value series

The measurement of tides has been a routine

practice at many ports for almost a century. Measured

tides include the storm contribution, so that long-term

records are available at numerous sites.

While long-duration records are the expectation of

classical extreme value analysis, they are an unfa-
miliar bonus in coastal engineering. In the wave

climate context, measured records of perhaps a

decade or so are common, and analysis compromise

must be introduced. In the popular Partial Duration

Series or Peak over Threshold approach, the natural

climate-year time base is sacrificed to increase the

number of extreme value observations available. The

effective time base is dependent of the threshold

adopted. An alternative, the Triple Annual Maximum

Series approach (Sobey and Orloff, 1995), retains the

natural climate-year time base and enhances the data

fit by acknowledging annual near-extremes. While

the contribution of annual near-extremes is signifi-

cant for a short duration observational record of

order a decade, their value rapidly diminishes with

the length of the observational record. The compro-

mises and uncertainties required to accommodate

short-duration data series need not be considered

here.

It is assumed for this paper that a long-duration

observational record of about 100 years is available,

and that monthly-extremes of high and low water

can be extracted from that data set. Further

selecting the highest and lowest monthly sustained

water levels defines separate Annual Maximum

Series and Annual Minimum Series. The abbrevia-

tion AMS will be adopted where both series are

implied.
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Classical extreme value analysis is applicable, but

there are some special concerns. The context requires

consideration of

! Extremes of both maximum sustained water level

and minimum sustained water level,

! A physical lower bound on maximum sustained

water that is not zero,

! A physical upper bound on minimum sustained

water that may not be zero,

! Local trends in sea level rise or fall.

These issues are illustrated by the raw AMS series

for San Francisco (Fig. 2), with observations begin-

ning in 1898. The periodic nature of the tide will

guarantee that each annual maximum observation

must exceed at least MHHW (Mean Higher High

Water). Similarly, each annual minimum observation

must be at least below MLLW (Mean Lower Low

Water). Physical bounds of this nature must be

assigned in some extreme value models, including

Extreme Value II and III and Log Normal.

Note also that numerous annual maximum obser-

vations do not exceed Highest Astronomical Tide

(HAT) and numerous annual minimum observations

do not fall below Lowest Astronomical Tide (LAT).

This suggests that the astronomical forcing at the

period 2p/X5=18.61 years (often nominally 19 years),

identified as the relative rotation of the lunar and solar

orbits or bregression of the lunar nodesQ (Doodson,

1921; Schureman, 1940; Doodson and Warburg,
Fig. 2. Raw annual maximum data series for high and low water levels a

extremes for 9414290 San Francisco, California). Elevations to MLLW d
1941), has a significant contribution to the extreme

observations. This periodicity is somewhat masked by

the definition of contributions to the AMS series from

any month in the water year. The 18.61-year

periodicity is theoretically accommodated in tidal

predictions. Over time scales of hours, the time scale

of storm tides, it appears as a slowly varying datum

shift. A similar X5 contribution to apparent sea level

rise was identified by Töppe (1992) for the North Sea

coast of Germany, and by Flick et al. (1999) for

numerous US locations.

A definite and seemingly linear trend is also

apparent in the Fig. 2 observations, an observation

that is consistent with historical datum trends (NOAA/

NOS CO-OPS, 2003, Sea Level Trends for 9414290

San Francisco, California) at San Francisco.

Both the 2p/X5 periodicity and the apparent linear

trend are not random aspects of the observations.

They suggest that components of the form

ĝgHigh tð Þ ¼ mt þ cHigh þ a5cos V5t þ /5ð Þ

ĝgLow tð Þ ¼ mt þ cLow þ a5cos V5t þ /5ð Þ ð1Þ

respectively should be separated from the observa-

tional record. t is time, m is the slope of the linear

trend, cHigh and cLow are datum corrections, and a5 is

the amplitude and /5 the phase of the 18.61 year

periodicity. As the monthly maximum observations

and the monthly minimum observations are extracted

from the same observational record of the local

sustained water level, it is expected that m, a5, and
t San Francisco. Data from NOAA/NOS CO-OPS (2003, Monthly-

atum. MHHW is +1.78 m, HAT is +2.2 m, LAT is �0.6 m.



Fig. 3. Monthly-extremes data and trend (thick line) for San Francisco. m=0.00208 m/year, a5=0.0224 m, and /5=3.01 radians for zero time at 1

January 1950.
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/5 will be consistent among the observations. The

datum for time is arbitrary, but assigning zero time as

recent (say 1 January 1950, or 1 January 2000) is

convenient.

These trends must be separated from the observa-

tional record. A rational approach is a least-squares fit

of Eq. (1) to the raw observations, the observational

data series of monthly-extremes. Such an algorithm is

consistent with the hypothesized separation of the raw

observations into a deterministic trend, Eq. (1), and a

random residual. Least-squares is also the numerical

algorithm implicit in tidal harmonic analysis, the
Fig. 4. Net annual-extreme se
extraction of tidal constituent amplitudes and phases

from an observational record, prior to tidal prediction.

A suitable least-squares objective function is

O m; cHigh; cLow; a5;/5

� �

¼
X12N
j

grawHigh tj
� ��h

� ĝgHigh tj
� ��2

þ grawLow tj
� ��

� ĝLow tj
� ��2i ð2Þ

in which gHigh
raw (tj) are the monthly maximum obser-

vations, gLow
raw (tj) are the monthly minimum observa-
ries for San Francisco.
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tions, and tj are the times of the observations. There

are 5 unknowns and 12 N monthly observational

pairs, over N years. It is appropriate here to use the

monthly-extreme observations. Annual-extreme

observations have rather erratic time resolution over

the 18.61-year period, being selected potentially from

any month over each climate year.

The Eq. (1) fit to the monthly-extremes for San

Francisco is shown in Fig. 3. m, a5 and /5 are listed

in the caption. The computed datum trend m matches

the Mean Sea Level trend of 0.00213 m/year for the

period 1906–1999 reported by NOAA (NOAA/NOS

CO-OPS, 2003, Sea Level Trends for 9414290 San

Francisco, California)1 Subtracting this trend, without

the datum corrections, from the monthly-extremes

data series defines net monthly-extremes data series.

Extracting the extreme values over each climate year

defines the AMS series, gHigh|n and gLow|n, respec-
tively, where n identifies the climate year. For San

Francisco, the conditioned AMS series are shown in

Fig. 4. These data series are immediately suitable for

extreme value analysis.
4. Extreme value analysis for maximum values

Extreme value analysis must choose the probability

model for interpolation and extrapolation. The liter-

ature for annual maximum events is extensive.

Suitable distributions have probability density func-

tions (PDF’s) that are asymptotic to a tail at the high

end. Mostly the literature designation is blargest
valueQ, to distinguish from distributions that are

asymptotic to a tail at the low end, which are

designated bsmallest valueQ. The exception is the

Extreme Value III distribution, where the blargest
(smallest) valueQ refers to a required upper (lower)

bound.

The common two-parameter candidate distribu-

tions are listed in Table 1 (Benjamin and Cornell,

1970; Ang and Tang, 1984), for the random variable
1 The NOAA presentation identifies a datum shift down at the

time of the massive 1906 San Francisco earthquake, which

prompted their exclusion of data prior to 1906. Flick et al. (1999)

used data for the period 1855–1999, before and after the 1906

datum shift. Their Mean Sea Level trend estimate, 0.00475 ft/year

(0.00156 m/year), is accordingly biased low.
y. Also listed in the table are the normalized variable

Y, the distribution parameters, the range of the random

variable y, and distribution mean l and variance r2

for the normalized variable.

The Extreme Value II and III and Log Normal

models explicitly require that all possible values of

y be positive. For some geophysical variables,

including wave height, this is physically and

numerically appropriate. For extreme water levels,

it is neither physically nor numerically appropriate.

It is not physically consistent with tidal theory and

observations, where no entry in the annual max-

imum series will fall below at least MHHW. In

addition, typical station datums are at or near

MLLW, so that the physical lower bound on annual

maximum observations will always be finite and

positive. It would be appropriate to adopt an

analysis datum shift, from y0=0 to y0=MHHW, so

that the observations are consistent with the

mathematical expectations of the probability model.

Note that the Extreme Value I model will assign

finite probabilities to extreme high water levels

below MHHW.

The datum level, MHHW, is a physical parameter,

and quite distinct from the statistical location param-

eters u and v identified in column 4 of Table 1. There

is potential confusion in the designation bMeanQ
Higher High Water. It perhaps suggests that MHHW

is a statistical parameter, so that the Extreme Value II,

Extreme Value III and Log Normal distributions in

Table 1 should be regarded as three and not two

parameter distributions.

There are five recognized periodicities in the

Earth–Moon–Sun system, with periods of 24.8 h,

27.3 days, 365.2 days, 8.85 years and 18.6 years.

MHHW is the average of the Higher High Waters

each lunar day over the longest 18.6-year period. The

period of averaging is fixed by definition. It is an

average, but it is an average of a deterministic

variable, the astronomical tide prediction. MHHW is

a deterministic and physical parameter.

MHHW values published in Tide Tables are

defined by national tidal authorities. Even if observed,

rather than predicted, Higher High Waters were used

in the averaging process, the contribution of storm

tides to the observed HHWs would be compensatory,

some positive and some negative. More significantly,

the average will be overwhelmingly dominated by the



Table 1

Two-parameter extreme value distributions for maximum values

Probability model Normalized variable CDF PDF range Parameters mean variance

Extreme Value I (Gumblel) Y=y�v/u F( Y )=exp[�exp(�Y )] u, v

f( Y )=exp[�Y�exp(�Y )] l=0.5772
�lbyb+l r2=p2/6

Extreme Value II Y=y/u F( Y )=exp(�Y�a) u, a
f( Y )=aY�a�1exp(�Y�a) l=C(1�1/a)
yz0 E( Y2)=C(1�2/a)

Extreme Value III (Weibull) Y=y/u F( Y )=1�exp(�Y�a) u, a
f( Y )=aYa�1exp(�Ya) l=C(1+1/a)
yz0 E( Y2)=C(1+2/a)

Log Normal Y=log ( y)�a/21/2b F( Y)=1/2[1+erf( Y)] a, b
f( Y )=p�1/2exp(�Y2) l=0
yN0 r2=0.5

F( y)=F( Y), f( y)=f( Y)(dY/dy); j2=E( Y2)�l2.

R.J. Sobey / Coastal Engineering 52 (2005) 63–7768
astronomical contributions, each lunar day for the

more than 6500 lunar days over the 18.6-year

averaging period.

There is a physical synergy also in the adoption of

MHHW as a deterministic lower bound (the mean

HHW over the 18.6-year period) and in the re-

introduction on the 18.6-year periodicity as a deter-

ministic trend.

Given the selection of a probability model from

Table 1, the analysis steps are accordingly

(1) Datum shift the raw AMS series as required by

the probability model.

The Extreme Value II, Extreme Value III and

Log Normal definition for y to be positive is

accommodated by an analysis datum shift to a

data lower bound at y=y0. For annual maximum

series of water surface elevations, y0=MHHW

would be physically appropriate.

The Extreme Value I model requires no datum

shift, so that y0=0.

The net AMS series for extreme value analysis

would be y�y0.

The balance of the extreme value analysis

follows the practice for extreme wave heights

(e.g. Sobey and Orloff, 1995).

(2) Estimate the distribution parameters by max-

imizing the sample likelihood (strictly log-like-

lihood) function

L1 p1; p2ð Þ ¼ 1

N

XN
n¼1

ln f Y yn; p1; p2ð Þ½ � ð3Þ
in which p1 and p2 are the distribution param-

eters (e.g. u and v for Extreme Value I).

Maximizing L1 is a problem in nonlinear

optimization, for which appropriate algorithms

are available in scientific subroutine libraries.

Algorithms require specification of the objective

function L1 and reasonable initial estimates of

the distribution parameters; gradients are esti-

mated internally by finite differences. The initial

estimates are most conveniently provided by the

method of moments.

Of the established procedures for estimation of

distribution parameters from observational data,

only this method of maximum likelihood is

based on the PDF of the candidate probability

model. Other methods are based on the CDF, the

integrated form of the candidate probability

model. The CDF, because of its integrated

definition, is significantly less sensitive to the

observational data.
(3) Estimate the confidence limits, LP and UP, on

the probability model, such that

Pr LPbyPbUPð Þ ¼ 1� a ð4Þ
where there is a (1�a) probability that the

interval LP to UP contains the point estimate

ȳP=FY
�1(P) for ȳ at cumulative probability level

P. (FY
�1(P) denotes the inverse function, such

that FY(ȳP)=P.) A 95% confidence interval,

1�a=0.95, is the common practice.

For the long-duration data series in the present

context, pragmatic estimates are provided by the
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asymptotic normal approximation (Mood et al.,

1974) with mean ȳP and standard deviation

SFY
ȳPð Þ ¼ SP ¼

�
P 1� Pð Þ
Nf 2Y ȳPð Þ

	1=2
ð5Þ

From the Normal distribution, the lower and

upper 95% confidence limits at cumulative

probability P will be LP=ȳP�1.96SP, and

UP=ȳP+1.96SP.
(4) Estimate event magnitudes for an average

recurrence interval of Tr years.

Tr ¼
DtY

1� FY yð Þ ð6Þ
where DtY is the uniform time interval from

which the samples yn of the random variable Y

are selected; for AMS series, DtY is 1 year. Point
Fig. 5. Extreme maximum analysis—Extreme Value I model. u=0.113 m,
estimates of FY( y), and its confidence limits, are

completely defined in steps 2 and 3, respectively.
(5) Reintroduce the analysis datum shift y0.

The event magnitude corresponding to an

assigned Tr and an observational DtY will be

ȳjTr ¼ y0 þ F�1
Y 1� DtY=Trð Þ ð7Þ

For an AMS series and an average recurrence

interval of 100 years, ȳ|100=y0+FY
�1(0.99). Sim-

ilarly, the confidence bands become

LP ¼ ȳP � 1:96SP; and UP ¼ ȳP þ 1:96SP:

ð8Þ

in which ȳP=y0+FY
�1(P).

In ideal application, all four of the two-parameter

distributions in Table 1 would be attempted. Max-

imum likelihood estimates of the distribution param-
v=2.13 m, L1=0.666, ḡHigh|100=2.65 m, S100=0.11 m.
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eters, together with the 95% confidence bands would

be established. The most suitable distribution would

be adopted, with guidance from

(i) the visual goodness-of-fit of the PDF over the

entire range of the observational data,

(ii) the magnitude of likelihood function L1,

(iii) the width of the confidence bands,

(iv) the significance of any data outliers, and

(v) any overriding regulatory requirements.

In each application, model selection is a matter of

engineering judgement.

Figs. 5–8 show extreme maximum analysis results

for each of the four models listed in Table 1. The

respective distribution parameters, the sample like-

lihood function L1, the event magnitude g¯High|100 at an
average recurrence interval of 100 years and the
estimated standard deviation S100 on this event,

following Eq. (5), are listed in the captions.

These four figures collectively illustrate the

challenges of model selection, but having four

options provides the opportunity for some rational

choice. The data fit to the CDF (part b) appears

almost equally satisfactory for all four models. In

contrast, the PDF context (part a) highlights both

the data variability and the differing shapes of the

distributions. The enhanced sensitivity to the PDF

emphasizes the value of the parameter fitting by

the method of maximum likelihood. Popular alter-

native methods of parameter fitting, such as

probability plotting and the method of moments,

both adopt the CDF description of the probability

model.

Nevertheless, there is value in the probability-

plotting style of CDF presentation (part c), especially
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its visual focus on the data fits throughout the active

range. For comparative purposes, all presentations

have adopted the Extreme Value I scaling. Confidence

limits are best displayed in this format.

The Extreme Value I result, Fig. 5, is promising,

but the model appears to predict high for the more

extreme events. Extreme Value II does not appear a

viable option. Much of the data at the high end is

outside the 95% confidence limits, and the confidence

limits are especially wide at this extreme. The 100-

year event magnitude is also very high in comparison

to the other models, and well outside the expectations

from the observational data. Extreme Value III is

another promising result, but the model appears to

predict low for the more extreme events. The two

highest observed events are beyond the 95% con-

fidence limits. The Log Normal result appears the

most satisfactory for this data set. The confidence

band is relatively narrow and all the observational
Fig. 7. Extreme maximum analysis—Extreme Value III model. u=
data, especially at the high end, falls within the con-

fidence limits.

It is important to note however that these are

interpretations appropriate for the San Francisco

observational data set. Model performance and

selection will be data set and hence site dependent.
5. Trend adjustment

The final step in the prediction of extreme

maximum water level is the re-introduction of the

deterministic trend, Eq. (1). The predicted extreme

maximum water level will be

ḡ̄̄High t; Trð Þ ¼ ḡHighjTr þ mt þ a5cos V5t þ /5ð Þ ð9Þ

depending on the average recurrence level Tr and on

real time t.
3.59 m, a=0.456, L1=0.678, ḡHigh|100=2.48 m, S100=0.04 m.



Fig. 9. Trend-adjusted, Log Normal prediction of extreme maximum water level at San Francisco with average recurrence intervals of 10, 50 and

100 years.
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Table 2

Two-parameter extreme value distributions for minimum values

Probability model Normalized variable CDF PDF range Parameters mean variance

Extreme Value I Y=y�v/u F( Y)=1�exp[�exp(�Y)] u, v

f( Y)=exp[ Y�exp(�Y)] l=0.5772
�lbyb+l r2=p2/6

Extreme Value II Y=y/u F( Y)=1�exp(�Y�a) u, a
f( Y)=aY�a�1exp(�Y�a) l=�C(1�1/a)
yV0 E( Y2)=C(1�2/a)

Extreme Value III Y=y/u F( Y)=exp(�(�Y)a) u, a
f( Y)=�aYa�1exp(�(�Y)a) l=�C(1+1/a)
yV0 E( Y2)=C(1+2/a)

Log Normal Y=�log (�y)�a/21/2b F( Y)=1/2[1+erf( Y)] a, b
f( Y)=p�1/2exp(�Y2) l=0
yb0 r2=0.5

F( y)=F( Y), f( y)=f( Y)(dY/dy); j2=E( Y2)�l2.
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Adopting the Log Normal model (Fig. 8) for

extreme maximum water levels at San Francisco, the

evolution of the trend-adjusted 10-, 50- and 100-year

events are shown in Fig. 9a.
Fig. 10. Extreme minimum analysis—Extreme Value I model. u=0.08
6. Extreme value analysis for minimum values

Adopted probability models must be event-suit-

able. For annual minimum events, appropriate dis-
0 m, v=�0.613 m, L1=1.03, ḡLow|100=�0.98 m, S100=0.08 m.
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tributions must have a PDF that is asymptotic to a

tail at the low end. Each of the common two-

parameter candidate distributions for annual maxi-

mum series (Table 1) has a variation with a tail at the

low end. These models are listed in Table 2

(Benjamin and Cornell, 1970; Ang and Tang,

1984) for the random variable y. Of these, the Log

Normal model was not found in the literature,

though its definition for minimum values is straight-

forward.

With the exception of Extreme Value I, the models

in Table 2 for minimum values explicitly require that

y be negative. For extreme low water levels, an

analysis datum shift to y0=MLLW would be appro-

priate. This is often implicit because of the almost

universal adoption of a station datum identified as a

Low Water datum. This datum is commonly at or near

to MLLW. The local datum is an issue that must be

pursued and confirmed. For the San Francisco data
Fig. 11. Extreme minimum analysis—Extreme Value II model. u=7
set, y0=0. Note that the Extreme Value I model will

assign finite probabilities to extreme low water levels

above MLLW.

An additional departure from the analysis method-

ology adopted in Section 4 is the definition of average

recurrence interval. The focus now is on the low end

of the probability distributions, on cumulative (non-

exceedance) rather than exceedance probability. The

average recurrence interval becomes

Tr ¼
DtY

FY yð Þ : ð10Þ

The event magnitude corresponding to an assigned

Tr and an observational DtY will be

ȳjTr ¼ y0 þ F�1
Y DtY=Trð Þ: ð11Þ

For an AMS series and an average recurrence

interval of 100 years, ȳ|100=y0+FY
�1(0.01).
.14 m, a=0.607, L1=0.941, ḡLow|100=�1.16 m, S100=0.16 m.
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A final presentation issue is probability plotting.

For Extreme Value I scaling, the F axis transformation

is �log(�log F) for the extreme maximum analysis,

but �log(�log(1�F)) for the extreme minimum

analysis.

The five analysis steps outlined in Section 4 for

the extreme maximum analysis are otherwise

unchanged.

Figs. 10–13 show extreme minimum analysis

results for each of the four models listed in Table 2.

The respective distribution parameters, the sample

likelihood function L1, the event magnitude g¯Low|100
at an average recurrence interval of 100 years and the

estimated standard deviation S100 on this event,

following Eq. (5), are listed in the captions.

Model selection again follows the guidelines out-

lined in Section 4. The Extreme Value I result, Fig. 5,

is promising, but the model appears to predict high for

the more extreme events. Extreme Value II does not
Fig. 12. Extreme minimum analysis—Extreme Value III model. u=
appear a viable option. Much of the data at the low

end is outside the 95% confidence limits, and the

confidence limits are relatively wide at this extreme.

The 100-year event magnitude is also quite low in

comparison to the other models, and beyond the

expectations from the observational data. Extreme

Value III is another promising result, but the model

appears to predict a little high for the more extreme

events. The Log Normal result appears the most

satisfactory for this data set. All the observational

data, especially at the low end, falls within the

confidence limits.

As for the extreme maximum analysis, these are

interpretations appropriate for the San Francisco

observational data set. Model performance and

selection will be data set and hence site dependent.

In addition, the model choice for the extreme

minimum analysis need not correspond with the

choice for the extreme maximum analysis.
8.97 m, a=0.687, L1=1.09, ḡLow|100=�0.81 m, S100=0.02 m.



Fig. 13. Extreme minimum analysis—Log Normal model. a=�0.435, b=0.124, L1=1.11, ḡLow|100=�0.87 m, S100=0.04 m.
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The final extreme minimum analysis step is the

deterministic trend adjustment. The predicted extreme

maximum water level will be

ḡ̄̄Low t; Trð Þ ¼ ḡLowjTr þ mt þ a5cos V5t þ /5ð Þ ð12Þ

depending again on the average recurrence level Tr
and on real time t. Adopting the Log Normal model

(Fig. 8) for extreme minimum water levels at San

Francisco, the evolution of the trend-adjusted 10-, 50-

and 100-year events are shown in Fig. 9b.
7. Conclusions

The dynamics of storm tides can lead to

sustained increases in tide elevation and, at different

stages of the storm tide evolution, also to sustained

decreases in tide elevation. Abnormally high tides
are experienced when sustained storm-forced

increases correspond with predicted high waters in

the local astronomical tide. Similarly, abnormally

low tides are experienced when sustained storm-

forced decreases correspond with predicted low

waters in the local astronomical tide. Long-duration

historical observations of tidal elevations are avail-

able at many coastal locations, and these observa-

tions will include observations of abnormally high

and low tides.

The long-duration observational record includes

potentially significant contributions from Mean Sea

level rise and from the 18.61-year periodicity in the

tidal forcing. For the San Francisco observational

record, both are present and both are of sufficient

magnitude to demand accommodation in extreme

value analyses. These are not random influences and

should be removed from the record prior to extreme

value analysis.
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The raw observational record in a form suitable for

the prediction of extremes of both high and low water

is a record of monthly maximum and minimum water

surface elevations. Data conditioning requires the

identification of a deterministic trend, Eq. (1), its

definition by least-squares from the observational

record, and its separation from the record to establish

a net data record suitable for extreme value analysis.

This net data record is summarized as Annual

Maximum and Annual Minimum Series, by selection

of the largest (smallest) observation in consecutive

climate years.

Table 1 defines the four common two-parameter

distributions routinely adopted for extreme maximum

analysis. Given a choice of extreme value distribution,

a five-step methodology has been outlined for a

rational prediction of the extreme maximum event.

These steps progressively

(1) datum shift the raw AMS series to y0 as required

by the probability model,

(2) estimate the distribution parameters by the

method of maximum likelihood,

(3) estimate the confidence limits on the probability

model,

(4) estimate event magnitudes for an average recur-

rence interval of Tr years, and

(5) reintroduce the analysis datum shift y0.

For the Extreme Value II and III and Log Normal

models, y0 is assigned as the MHHW, a level below

which observations of annual maximum water level

will not fall.

Sample extreme maximum analyses are shown in

Figs. 5–8. A complete result, including the correction

for the datum trend, is shown in Fig. 9a.

The separate extreme minimum analysis identi-

fies those aspects that are unique to events that are

asymptotic to a tail at the low end. Issues include

the form of suitable two-parameter distributions
(Table 2), an analysis datum shift to y0=MLLW,

and the definition of average recurrence interval

(Eq. (10)).

Sample extreme minimum analyses are shown in

Figs. 10–13. A complete result, including the correc-

tion for the datum trend, is shown in Fig. 9b.

The methodology is illustrated with data at San

Francisco, but is generally applicable for any site

with long-duration tidal observations. Generaliza-

tion to three-parameter distributions is also

straightforward.
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