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Significant predictive difficulties have been encountered in the estimation of crest 
and near-surface kinematics in irregular waves. A review of existing global 
approximation leads to a recognition of the central role of the free surface 
boundary conditions in the prediction of the near-surface kinematics. Local 
approximations that focus on a somewhat smaller segment of the record generally 
place more emphasis on the free surface boundary conditions and do not com- 
promise local fidelity in the global interest. A local Fourier approximation method 
for irregular wave kinematics is introduced. The method is rational and not 
empirical, in that it seeks to exactly satisfy the free surface boundary conditions 
in a moving local window. Comparisons with predictions from steady wave theory 
and with laboratory measurements are excellent. 

1 INTRODUCTION 

The prediction of  crest kinematics in irregular waves is a 
frequent necessity in coastal and ocean hydrodynamics. 
It is pivotal in the estimation of  wave loading on offshore 
structures and marine pipelines, in the estimation of 
sediment transport under waves, in analyses of  the 
breaking-wave process and wave-induced circulation in 
the nearshore zone, and in the interpretation of  sub- 
merged pressure records. 

In many situations, analysis is based on measured or 
simulated water surface time histories at a fixed location. 
Spatial measurements of the sea state are most rare and 
the vast majority of  measured field and laboratory 
records are discrete water surface t/(t) records from wave 
staffs or accelerometer buoys at a fixed location. The 
balance of the wave kinematics (velocities, accelerations 
and pressures) at the fixed location needs to be estimated 
from the known r/(t) trace. 

A closely related problem arises in statistical simu- 
lation of  a random sea state from the linear Gaussian 
random wave model. Considerable success is achieved in 
the prediction of  the space- and time-varying water 
surface. Unfortunately, this success does not carry 
through to the estimation of  the near-surface kinematics 
where a more satisfactory methodology needs to be 
adopted. Statistical simulation can provide a spatial as 
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well as a temporal description of the sea state. At a fixed 
location, however, the problem is similar to that defined 
by a measured record. 

The complete problem is the prediction of the wave 
kinematics at a fixed (x, y, z) location (x, y horizontal, z 
vertically upwards from the mean water level) beneath a 
given but irregular water surface profile t/(t; x, y) at the 
same horizontal x, y location. Consideration in the 
present paper is restricted to a subset of  this problem 
where there is no y variation and the direction of  both the 
wave motion and any coexisting Eulerian current coin- 
cides locally with the x-axis. 

This problem has been addressed by a range of 
methodoligies. Many are essentially global approxima- 
tion techniques that focus on a complete measured wave, 
defined, say, by consecutive zero up-crossings. Others are 
more local approximations that focus on a somewhat 
smaller segment of  the record. 

A brief review of  existing global approximations leads 
to a recognition of  the central role of the free surface 
boundary conditions in the prediction of  the near-surface 
kinematics. Local approximations generally place more 
emphasis on the free surface boundary conditions and do 
not compromise local fidelity in the global interest. They 
have considerable potential in the estimation of irregular 
wave kinematics. 

The present paper introduces a moving, locally steady 
Fourier approximation method for irregular wave 
kinematics. The method is compared with existing 
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approaches and shown to have considerable potential in 
the estimation of wave kinematics, especially in near- 
surface regions. Comparisons are made with predictions 
from steady wave theory and with measurements from 
laboratory experiments. 

2 E X I S T I N G  M E T H O D O L O G I E S  F O R  
I R R E G U L A R  W A V E S  

Early approaches to the prediction of irregular wave 
kinematics closely followed the pattern adopted in classi- 
cal regular progressive wave theory. The discussion is 
facilitated by recalling the basis of the classical theory. 

Background in regular wave theory 

The mathematical formulation of regular wave theory is 
generally cited in an unsteady form, in an (x, z, t) frame 
that is fixed in space with the z datum at the mean water 
level (MWL). The water is assumed to be incompressible 
and irrotational. In primitive form, the dependent vari- 
ables are the pressure and the velocity components and 
the field equations are the Euler equations. It is generally 
more convenient to adopt the velocity potential function 
~b(x, z, t) as the dependent variable. The field equation is 
then the Laplace equation 

~2~ 024 - 0 (1) 
•x 2 + ~z 2 

where the velocity components (u, w) in the fixed frame 
are (~4~/~x, OdM~z). 

This field equation is subject to the following 
boundary conditions: 

(i) Bottom boundary condition, representing no flow 
through the horizontal bed, is 

w = 0 a t z  = - h  (2) 

where - h  is the elevation of the bed. 
(ii) Kinematic free surface boundary condition 

(KFSBC), representing no flow through the free 
surface, is 

w = ~ t  + u ~  a t z  = q(x,t) (3) 

where q(x, t) is the free surface. 
(iii) Dynamic free surface boundary condition 

(DFSBC), representing constant atmospheric 
pressure on the free surface, is 

~--7 + ½ (u2 + w2) + g,1 = 9 atz = q(x,t) 

(4) 

where g is the gravitational acceleration and B is 
the Bernoulli constant. 

(iv) Wave is periodic in space and time, such that 

~(x,  z, t) = ~(x  + 2n/k,  z, t) 

= 4~(x, z ,  t + 2n/~o) (5) 

where k is the wave number and tz~ is the wave 
frequency. 

(v) Wave maintains a stable profile shape (or per- 
manent form), requiring the wave profile to be 
symmetric in both x and t about the crest. 

Progressive waves of permanent form are steady in a 
frame of reference moving at the phase speed C = e)/k, 
with the water surface evolving as 

~ ~ _ 
c3--t + C 0x 0 (6) 

Established regular wave theories (Stokes, Cnoidal, 
Fourier approximation) generally take advantage of the 
relative simplicity of the steady formulation where the 
independent variables are reduced to x - Ct and z. Basis 
function predictors of the dependent variable (typically 
the stream function) identically satisfy both the field 
equation and the bottom boundary condition, together 
with the permanent form constraint and the periodic 
lateral boundary conditions. Compatibility conditions 
designate the wave height and the co-flowing current. 

The essential detail of the solution, however, is deter- 
mined largely by the free surface boundary conditions 
which must be satisfied along the complete water surface. 
The complexity of the gravity wave problem is mani- 
fested through these free surface boundary conditions, 
which introduce non-linearity to the problem and are 
applicable at a free surface that is itself part of the 
solution. Different orders of the same wave theory are 
distinguished by the level of approximation to the free 
surface boundary conditions, higher orders providing 
enhanced fidelity. 

A conflict is immediately identified between the predic- 
tive capabilities of regular wave theory and the nature 
of the solution field. Wave theory consistently predicts 
that peak magnitude and response extremes in velocities, 
accelerations and dynamic pressures are located along 
the free surface. Unfortunately, this region of peak 
interest in the kinematics and dynamics exactly coincides 
with the region of maximum uncertainty in the wave 
theory predictions. 

Generalization to irregular waves 

The spatial and temporal complexity of irregular waves 
would initially appear to have little in common with the 
conspicuous order of regular wave theory. Nonetheless, 
much of the problem formulation remains appropriate. 
Irregular waves are by nature unsteady, so that an 
unsteady formulation is pertinent. The field equation 
(eqn. (i)), the bottom boundary condition (eqn (2)) and 
both the free surface boundary conditions (eqns (3) and 
(4)) continue to be applicable; these constitute the bulk of 
the mathematical physics. Neither the periodic lateral 
boundary conditions, nor symmetry about the crest in x 
and t are appropriate for irregular waves. Further, 
application of the KFSBC is inconsistent with the 
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present reliance on measured water surface records at a 
fixed location, as spatial gradients of q are not available 
from the measured record. 

The crucial aspects of the mathematical physics of the 
regular wave problem are the nonlinear free surface 
boundary conditions. The close relationship between 
regular and irregular wave theory guarantees that the 
free surface boundary conditions will remain a crucial 
aspect of irregular wave theories. 

Global approximations to irregular waves 

Methodologies that seek to represent a complete irregular 
wave, from crest to following crest, from trough to fol- 
lowing trough or from zero-crossing to following zero- 
crossing, are categorized as global. 

An obvious candidate is to couple the familiar zero- 
crossing identification of a wave height and a wave 
period for an individual wave record with an appropriate 
steady wave theory prediction for the same height, 
period, water depth and current. In principle, this is the 
essence of the design wave approach. As the dominant 
length and time scales are essentially correct, there is an 
intuitive expectation that ensuing predictions of crest 
kinematics have the correct order of magnitude. There 
can be no expectation, however, that the predictive capa- 
bility will consistently exceed order-of-magnitude pre- 
cision. The water surface profile predicted by the force- 
fitted regular wave theory is unlikely to correspond with 
the irregular wave profile, so that the free surface 
boundary conditions will not be satisfied on the actual 
water surface. 

A familiar alternative is the superposition of numerous 
freely-propagating Airy waves, whose amplitudes, fre- 
quencies and phases are determined from a discrete 
Fourier transform of the irregular wave profile. 
Temporal periodicity is implicit in the discrete Fourier 
tranform and the adoption of Airy theory introduces an 
explicit assumption regarding the nature of the irregular 
sea state and the ensuing spatial and temporal evolution. 
Consistent kinematics are available from Airy wave 
theory. The horizontal velocity, for example, is 

cosh k,(h + z) 
u(x, z, t) = ~, co, cosh k,h  ~l,(x, t) (7) 

where the q, water surface components sum to r/and each 
of the n component Airy waves separately satisfy the 
linear dispersion relationship. Considerable difficulties, 
however, are encountered at elevations above the MWL, 
which is the strict upper bound of the Airy solution 
domain. The hyperbolic function quotients become 
exceptionally large for the high-frequency (and high 
wave number) components, leading to substantial high- 
frequency oscillations in the neighborhood of the crest 
and the complete failure of Airy wave superposition in 
the estimation of crest kinematics. ~ 

More considered approaches necessitate a return to 

first principles, as depited by the field equation and 
boundary conditions. There is no existing global method- 
ology that will accommodate the complete problem and 
available theories rely on significant relaxations of the 
complete formulation. 

Dean 2 focused on profile asymmetry about the crest, 
hypothesizing an asymmetric-about-the-crest wave of 
permanent form with periodic lateral boundary con- 
ditions. The permanent form is the key assumption as it 
infers the spatial x variation from a time history of a 
dependent variable at a fixed x position. In particular, it 
implies a unique wave phase speed C, such that vari- 
ations with x and t in the fixed frame can be combined as 
X = x - Ct in a steady frame, as in steady wave theory. 
It also implies a single dominant mode that alone (again 
as in steady wave theory) satisfies the dispersion relation- 
ship, all the higher harmonics being bound wave modes 
that do not satisfy the dispersion relationship. 

Dean introducd a variation on steady Fourier approxi- 
mation wave theory, assuming that the stream function 
could be represented as a truncated Fourier series of the 
form 

'e(x, z) = (cE - C)(h  + z) 

+ ~ sinhjk(h + z)[Aj c o s j k X  + Bj s in jkX]  
J 

(8) 

The profile asymmetry about the crest is introduced 
through the sine terms in the Fourier series, which do not 
appear in the related Fourier approximations steady 
wave theory. The field equation and bottom boundary 
condition remain satisfied exactly and the Fourier coef- 
ficients are determined numerically to best fit the kine- 
matic and dynamic free surface boundary conditions at the 
known water surface nodes. Dean applied this method- 
ology to a complete measured wave from trough to 
following trough. 

Lambrakos 3 introduced a variation on the Dean 
approach, assuming that the global spatial as well as 
temporal evolution can be represented in the fixed frame 
by the velocity potential function 

q~(x, z, t) = ~ cosh jk(h + z)[Ajt cos ( jkx - logt) 
j,l 

+ Bit sin ( jkx - kot)] (9) 

which introduces a combination of freely propagating 
(subscript/) and bound (subscript j )  wave modes, but 
excludes current. The specific assumption regarding the 
nature of the spatial evolution is necessary to utilize the 
unsteady form of the KFSBC (eqn 3), which includes the 
spatial gradient of the water surface. In addition, the 
nominally separate free modes are in fact prescribed by 
Lambrakos in the manner of Fourier analysis, the fun- 
damental frequency being ~ = 2rt/T, where T is the 
duration of the measured record. While this approach 
may be numerically successful, any expectation of 
physical success has been substantially compromised by 
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the pre-determination of the spatial evolution and the 
mix of free and bound modes. 

The complete numerical field solution of ForristalP 
similarly requires a specific assumption regarding the 
nature of the spatial evolution. Several strategies for the 
estimation of the ~/(x, t) surface were considered, including 
the linear Gaussian random wave model and a second- 
order correction (in the deep-water Stokes sense) to this 
linear surface, following Sharma and Dean5 Given a 
complete description of the r/(x, t) surface and an 
assumption of periodic lateral boundary conditions at 
adjacent troughs, the solution domain is completely 
defined. Forristall noted that the problem formulation 
was closed without imposition of the DFSBC, as a direct 
consequence of the specification of the q(x,  t) surface. 

A full field solution of the Laplace equation under such 
conditions is numerically straightforward but time- 
consuming. The boundary integral method would 
perhaps be more efficient, especially as interest is focused 
on the rather limited region of the solution domain near 
the crest. Forristall 5 has extended this methodology to 
two horizontal spatial dimensions with the q(x, y,  t) 
surface estimated from a directional spectral description 
provided by the Gaussian random wave model (super- 
position of free modes) with second-order (bound wave 
modes) corrections. This procedure becomes compu- 
tationally intensive (Cray + vector processing). 

Local approximations to irregular waves 

Methodologies that seek only to represent the local 
behavior of an irregular wave are categorized as local. 
Given that significant problems such as crest kinematics 
are strongly related to local errors in the free surface 
boundary conditions, there is intrinsic value in pursuing 
such an approach. Such methodologies compromise appli- 
cability in a global sense in an effort to achieve fidelity in 
a local sense. Note that this contrasts with the general 
approach of steady wave theory where local fidelity 
(especially near the wave crest) is perhaps sacrificed in the 
global interest. 

One form of local approximation, the so-called 
'stretching' method of Wheeler, 6 has found considerable 
favor as a pragmatic approach to the prediction of 
irregular wave kinematics. Recognizing that the failure 
of Airy superposition was contributed by extrapolation 
of the hyperbolic function quotients beyond the upper 
bound of the Airy solution domain, Wheeler introduced 
an empirical transformation on the local elevation such 
that it never exceeds the MWL. The horizontal velocity 
is predicted as 

cosh otk,h 
u(x, z, t) = ~ to, ~/,,(x, t) (10a) 

: sinh k ,h  

where ~ = (h + z)/(h + q), the transformation depen- 
ding upon the local water surface elevation. As a result of 
this transformation, the field equation is no longer satis- 

fled by the predictive equations for the kinematics. The 
relocation of the local water surface at the MWL. 
however, sharply reduces errors in the fi'ee surface 
boundary conditions, as Airy theory imposes the free 
surface boundary conditions at the MWL. Wheeler does 
not give estimators for the balance of the kinematics, but 
consistent estimators for the vertical velocity and the 
horizontal acceleration would be 

sinh ~k ,h  
= ~ to,, ~/,(x, t) (10b) 

/ sinh k,,h 
w(x, ~, t) 

and 

#u 
~--7 (x, z, t) 

cosh o~k,h 
= Y~ to;, ~ . (x ,  t) (10c) 

: sinh k,,h 

respectively, in which the ~/, sum to ~/, is the Hilbert 
transform of ~/. Variations on 'Wheeler stretching' have 
been introduced by Chakrabarti, 7 Gudmestad and 
Connor, 8 Lo and Dean 9 and Rodenbusch and Forristal 
(1986)) 0 

Airy wave theory has also been used with locally 
defined, rather than globally defined, parameters. Airy 
theory predicts that the water surface profile is 

q(x, t) = a c o s ( k x  - tot + O) (11) 

where 0 is the phase. At a fixed location, the local par- 
ameters are the amplitude a, the frequency ~0 and the net 
phase k x  + 0. Daemrich et al. j] contracted the familiar 
zero-up-crossing identification of a complete wave to a 
zero-up-and-down-crossing identification of consecutive 
half waves. Different amplitudes, frequencies and phases 
were assigned to each half wave, crest half waves typi- 
cally having a larger amplitude and higher frequency. 
Nielsen ~2:3 further localized the definition of amplitude, 
frequency and phase to a moving window of three con- 
secutive water surface observations, which is sufficient to 
uniquely define the local amplitude, frequency and 
phase. Even with local definitions of amplitude, fre- 
quency and phase, Airy wave theory is not especially 
successful in the prediction of crest kinematics. The 
problem is intrinsic to the theory, which is a first-order 
approximation where residual errors in the free surface 
boundary conditions are not small for finite amplitude 
waves. Nielsen couples local Airy parameters with 
vertical coordinate stretching 

Fenton ]4 has presented a local approximation method- 
ology that is theoretically attractive. The wave field is 
assumed to be locally steady with local phase speed C. 
such that variations with x and t in the fixed frame can 
be combined as X = x - Ct  in a locally steady frame, as 
in steady wave theory. The local solution is presented by 
a truncated polynomial series for the complex potential 
function 

(D(X,z) + iW(X,z) = ~ [ X +  i(h + z)] '¢t 
/ / i , 

(12) 



A local Fourier approximation method for  irregular wave kinematics 97 

where the aj polynomial coefficients are real. These basis 
functions satisfy the field equation and bottom boundary 
condition exactly. The polynomial coefficients are deter- 
mined numerically to best fit the kinematic and dynamic 
free surface boundary conditions at the known water 
surface nodes. Fenton actually considered the more com- 
plicated problem of estimating the water surface as well 
as the balance of the kinematics from a measured 
pressure time history at a submerged location. This is a 
familiar problem associated with bottom pressure wave 
recorders, for which Airy wave theory has been consist- 
ently used - -  even in shallow water. This polynomial 
procedure was shown to cope reasonably well for longer 
waves, where a polynomial variation in the vertical is also 
a feature of Cnoidal wave theory. It does not do so well 
for shorter waves, where the vertical variation tends to 
exponential and where presumably the hyperbolic sine 
variation of Stokes theory is more suitable. The reverse 
problem, that of estimating submerged kinematics from 
a measured water surface time history, is an arguably 
simpler problem, having the nature of interpolation 
rather than extrapolation. 

3 A LOCAL FOURIER APPROXIMATION 
METHOD 

Several constraints are inherent in any methodology that 
seeks to predict wave kinematics from a measured water 
surface time history at a fixed location. A major concern 
must be fidelity in the mathematical physics of surface 
gravity waves. This is assured by a predictive scheme that 
satisfies the field equation throughout the fluid domain, 
the bottom boundary condition at the bed and the free 
surface boundary conditions at the water surface. 
Fidelity in representation of the KFSBC and the DFSBC 
at the given location of the water surface is especially 
crucial. Significant errors are introduced by imposing the 
free surface boundary conditions at the MWL or along 
a regular wave profile to which the irregular wave trace 
is associated. 

It is also necessary to introduce a specific assumption 
regarding the nature of the associated spatial evolution. 
Such an assumption is required because of the spatial 
gradient term in the KFSBC. This assumption, however, 
should not be allowed to dominate the solution method- 
ology. The present methodology is a pragmatic and 
rational response to these constraints. Firstly, it is a local 
approximation method. This enhances fidelity in rep- 
resentation of the crucial free surface boundary con- 
ditions and minimizes the influence of the necessary 
spatial evolution assumption. Secondly, it is a generaliz- 
ation of the widely successful (but global) Fourier ap- 
proximation method for regular waves, which has almost 
universal applicability for both deep and shallow water 
waves and for co-flowing uniform currents. The method- 
ology is extended to complete irregular water surface 

profiles by means of a moving window of duration z, 
which is small in comparison with the local zero-crossing 
period. 

Local problem formulation 

The basis of the present method is the representation of 
the velocity potential function within each window as 

s cosh jk(h + z) 
4~(x, z, t) = CEX + E Aj 

j= 1 cosh jkh 

x s in j (kx  - tot) (13) 

This representation is familiar from global Fourier wave 
theory (e.g. Sobey~5), where CE is the spatially uniform 
Eulerian current, h is the water depth, Aj are the Fourier 
coefficients (of which there are J), k is the wave number, 

is the wave frequency and (x, z) is the spatial position 
in the fixed frame. The current and the water depth define 
the local propagation medium and must be specified. In 
Fourier wave theory, to, k and the A j, together with the 
Bernoulli constant B, constitute a defining set of par- 
ameters that have unique values. In the local Fourier 
approximation method, the defining set of parameters is 
no longer constant but may vary from window to 
window. 

Within each window, the eqn (13) basis functions 
exactly satisfy both the field equation throughout the 
fluid domain and the bottom boundary condition, 
regardless of the numerical values of the defining set of 
parameters. The defining set of parameters are deter- 
mined within each window to best satisfy the free surface 
boundary conditions at the measured elevations of the 
free surface within the window. 

For each window solution, the given information is the 
local water depth h and the local co-flowing uniform 
Eulerian current CE, together with a set of water surface 
elevations r/i , where the i = 1, 2 , . . / a r e  distributed over 
the local window of duration r. 

The specific equations defining the window solution 
are the kinematic free surface boundary condition at 
each free surface node 

K (D a/ l i  a~']i f ( , k ,  kx, Ai) = w i at Uia---x = 0 (14) 

and the dynamic free surface boundary condition at each 
free surface node 

D O )  ~ _ _  1 2  f ( , k, kx, Aj) a~, at + ~-u, + lw~ + gr/i - /~ = 0 

(15) 

in which 

-- ~, (jw)Z Aj 
at j 

cosh j k  (h + q,) cos j (kx  - tot,) 
cosh jkh 
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and the velocity components are, respectively, 

ui = u(x, r/~) = CE + ~ j k A i  c ° s h j k (h  + r/i) 
" cosh jkh  

× cosj(kx - coti) 

and 

W i 
s inhjk(h  + r/~) 

w(x, rli ) = Z jkAj  
j cosh jkh  

x sinj(kx - coti) 

The Bernoulli constant in the DFSBC is not a free 
parameter, being related to the other solution parameters 
through the exact integral relationship ~6 

= 1 2 /~ g~ + ~<ub> (16) 

where ~ is the MWL and <u 2 ) is the mean-square hori- 
zontal bed velocity. The MWL is zero from the present 
choice of vertical datum and, using eqn (13) at z = - h, 
the local Bernoulli constant becomes 

= ~C~- + ¼ ~ \~/ (17) 

The temporal and spatial gradients of  the water 
surface in the KFSBC equations remain to be specified. 
Temporal gradients can reasonably be estimated from 
the water surface time history. Cubic spline interpolation 
among the measured water surface nodes conveniently 
provides consistent and smoothly varying estimates of  
both r /and c3r//Ot, and has been routinely adopted. 

Spatial gradients are not available from the measured 
record at a single site and some assumption is necessary. 
A lowest order candidate would be to drop the nonlinear 
uOr//c3x term from the KFSBC, as in linear weave theory. 
An attractive alternative is a locally steady assumption 
that imposes eqn (6) in each local window and relates the 
spatial and temporal gradients as 

Or/ l Or/ 

?x C at 
(18) 

where C = o~/k in the local window. The steady profile 
assumption is not imposed beyond the local window and 
will not dominate the solution methodology, as it does, 
for example, in the Dean 2 and Lambrakos 3 methodologies. 

Aspects of the numerical solution 

This equation set is nonlinear and implicit. The primitive 
unknowns in the local window are ~o, k, x and the A,, of 
which there are J. The spatial phase always occurs in the 
combination kx  and experience indicated some slight 
numerical convenience in choosing the set of  3 + J 
unknowns as co, k, k x  and the A I. There are two indepen- 

dent equations potentially available at each of the r/ 
observations within the local window, of which M are 
selected for the numerical solution. The problem is 
uniquely defned for M = 3 + J and overspecified for 
M > 3 + J. In recognition of the certain existence of 
error bands about the measured water surface elevations, 
some overspecification may be advantageous. 

The numerical problem posed by the solution of such 
a set of simultaneous implicit nonlinear algebraic 
equations is categorized as nonlinear optimization. 
Suitable algorithms are available in a number of' the 
standard subroutine libraries. Algorithms HYBRJ and 
L M D E R  from the MINPACK subroutine library are 
suitable choices for the present study. These algorithms 
are mature, routinely successful and commonly available. 
The subroutine HYBRJ finds the zeros of a set of  N 
nonlinear algebraic equations in N unknowns by a modi- 
fication of the Powell hybrid method. The subroutine 
LMD ER finds a least-squares solution of M nonlinear 
algebraic equations in N unknowns (M ~> N) by a modi- 
fication of the Levenberg-Marquardt algorithm. Both 
algorithms were utilized in double precision and both 
required calculation of the Jacobian as well as the 
functions. The least-squares algorithm is in principle 
suitable for both uniquely defined and overspecified 
problems. 

Using only the measured water surface elevation, the 
choice of M largely dictates the width of the local 
window. Unfortunately, this compromises any systematic 
efforts in error control and may also degrade the local 
approximation character of the methodology. A more 
satisfactory approach is to restrain the width of  the local 
window and achieve the desired local resolution by inter- 
polation within this window. Cubic spline interpolation 
has been routinely adopted. It provides consistent esti- 
mates of both qi and c~r//?t together with a measure of 
flexibility in error control. The width tbr each local 
window is constrained at the lower end by the need to 
resolve the local curvature of the water surface. 

From a strictly numerical viewpoint, the only con- 
straint on the choice of order J and the local window 
width r is the M >/ 3 + J requirement. There is a clear 
expectation, however, that an appropriate choice of  these 
parameters will be dependent upon the physical nature of 
the water surface time history together with the local 
resolution of the measured record. It is accordingly con- 
venient to identify a particular local Fourier (LF) 
solution as LF(J: r, M).  With the cubic spline interp- 
olation of the water surface record, the time location of 
individual windows is independent of the order and the 
window width. It remains necessary however to provide 
adequate resolution to capture the temporal variation in 
the near-surface kinematics. Note that adjacent windows 
will overlap where the window width exceeds the output 
resolution. 

Given that a solution exists, these are two (and largely 
endemic) difficulties with any optimization algorithm. 
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The nature of these difficulties is well known but guaran- 
teed recipes for their resolution are not. Measures that 
are specific to the particular problem are often required. 
Such is certainly the case in the present problem. 

The first difficulty is the difference in physical dimen- 
sions and relative magnitudes of the dependent variables. 
This has been minimized by redefining the variables and 
the implicit algebraic equations in dimensionless form, in 
terms of the local zero-crossing period Tz and the gravi- 
tational acceleration. This does not influence the relation 
among the Aj Fourier components, which are expected to 
remain a monotonically decreasing sequence. 

A second difficulty is potential convergence to physi- 
cally spurious solutions, a difficulty that increases with 
the order of the problem. Spurious solutions might be 
identified by negative values for either the frequency or 
the wave number, by spatial phases that sharply diverge 
from the general trend, or by higher order Fourier coef- 
ficients that are either large or negative. Spurious 
solutions can often be avoided in unconstrained opti- 
mization by careful selection of the initial estimate and 
by enhanced numerical precision in computation of both 
the functions and the Jacobian. Enhanced numerical 
precision was a routine practice, with all computations in 
double precision and the Jacobian determined analyti- 
cally and not by difference approximation. 

Several strategies for the selection of initial solution 
estimates were investigated. Global Airy theory based on 
zero-crossing estimates of wave height H and period Tz is 
routinely successful only for wave profiles that are quite 
close to deep-water Stokes profiles. Spurious solutions 
are common for profiles with visually minor irregularities 
or for profiles with identifiable crest steepening and 
trough flattening. A global curve-fit to a higher order 
Stokes profile is only marginally more successful. The 
converged solution for the neighboring window or a 
Taylor series extrapolation of this solution might be 
expected to provide a reasonable initial estimate. Unfor- 
tunately, this approach has rather erratic success, having 
particular difficulty in regions of sharp profile curvature. 
Further, once a spurious solution is achieved, this 
strategy provides a strong bias towards spurious 
solutions in subsequent windows. 

Difficulties were most consistently avoided by a 
strategy that largely ignored the neighboring window 
solution and established initial solution estimates from 
the local profile elevation r/and gradient dtl/dt, together 
with the Airy approximations to the free surface 
boundary conditions, namely 

w - 0 a t z  = 0 
t3t 

(19) 

~--~- + g r /  = 0 a t z  = 0 

for the KFSBC and DFSBC, respectively. Using eqn (13) 
with J = 1 and solving for A1 and kx in terms of o9 and 

k gives 

A 1 = 
k tanh kh + ' 

(20) 
((~tl/t3t)/(k tanh kh) ) 

kx = tan -I \- ~ - [ ~  

The estimate of kx was adjusted by 2re as appropriate to 
maintain consistency with the neighboring window. The 
initial estimate of the wave frequency was set at 2MTz, 
with k estimated from to by the Airy dispersion relation- 
ship. Initial estimates of the higher order Fourier coef- 
ficients were A/ = A j / 1 @- 1, respectively. The success of 
this strategy was sometimes tenuous and cannot be cat- 
egorized as routine. Indeed, this was the anticipated 
nature of the separate nonlinear optimization problems 
in each local window, especially given the inevitable error 
bounds on estimates of t /and dtl/dt. 

Where the strategy failed, it was generally clear in the 
first few iterations that the algorithm was heading for a 
spurious solution. These trends were arrested by the 
definition of physically appropriate inequality con- 
straints on the solution parameters and the imposition of 
a penalty on the functions when these constraints were 
violated. 

Difficulties are almost invariably associated with 
markedly irregular profile segments. These were accom- 
modated by the introduction of local smoothing in 
various guises, the measures adopted being closely anal- 
ogous to the routine procedures in establishing smooth 
spectral estimates from a sequence of measured r/obser- 
vations. Both the raw water surface record and the 
window solutions were subjected to a moving average 
filter whose width was related to the width of the local 
windows. The half width of the filter was chosen as 
L x Nint[(r/At - 1)/2], where the function Nint ident- 
ifies the nearest non-zero integer. At is the time step of the 
data sequence, which is determined by the available r/ 
record on input but may be freely selected on output. A 
suitable choice for the filter weight L would recognize the 
precision of the available r/record; it was set typically to 
1 for laboratory and field records, but could be set to 0 
to suppress filtering. 

Some further smoothing was also implicit in the choice 
of J and M. Numerical experience rapidly showed there 
was no discernable advantage in adopting J values in 
excess of 3. With 3 as an upper bound on J, the distri- 
bution of points within each local window that is shown 
in Fig. 1 was adopted as a standard. The superscripts in 
this figure also indicate the sequence in which the 
KFSBC (marked as K i) and the DFSBC (marked as D r) 
equations were utilized. For example, at M = 5, KFSBC 
equations were utilized at local time t = - 0.5 r, 0.0 and 
0.5z and DFSBC equations at t -- - 0 . 5 z  and 0.5r. 
Local time was set to zero in the middle of each window 
with the spatial phase kx defined accordingly. The exact 
HYBRJ and least-squares L M D E R  algorithms were 
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Fig. 1. Distribution of points and free surface boundary con- 
ditions within local window. 

used sequentially, starting with HYBRJ with 
M = 3 + J and followed by L M D E R  with M = 6, 
then 7 and 8 until convergence was achieved. The M = 7 
and 8 options are contingency provisions that extend the 
width of  the local window to t = + z, introduced specifi- 
cally to accomodate profile segments with limited cur- 
vature in the trough and zero-crossing regions. The 
extended points use only the DFSBC and avoid using the 
KFSBC, which would unnecessarily extend the spatial 
extent of the locally steady assumption. With a local 
window of adequate width (typically 0.1 T.), these wider 
window options are rarely utilized. 

4 EVALUATION OF M E T H O D  

Theoretical kinematics 

Near-exact solutions for regular progressive waves 
provide an opportunity to evaluate the potential of the 
local approximation technique without the complicating 
influence of error bands on measured water surface 
profiles. 

Two relatively extreme waves have been selected for 
comparison, respectively in deep and shallow water. 
Details are listed in Table I. The kinematics were predicted 
by Fourier approximation wave theory)  s 

The input data to the local approximation code was 
the theoretical water surface profile at a discrete time step 
of 0-5s, corresponding to typical field measurement 
programs. The record segment was centered on a crest 
and extended from the previous crest to the following 
crest. The water depth and uniform current were also 
specified. The width of the local window was set at 0.1 T. 
(i.e. i s  here) and solutions were established for local 
windows extending from the profile zero-down-crossing 
immediately preceding the central crest to the profile 
zero-up-crossing immediately following the central crest. 
It is appropriate in these computations to suppress 

smoothing (setting L = 0) as the water surface elev- 
ations are known quite precisely. 

The kinematics are most extreme at the water surface 
and any theory is expected to be least satisfactory at this 
location. Attention is accordingly focused on com- 
parisons between predicted and theoretical kinematics 
along the water surface. 

Figure 2 shows a comparison of  the local Fourier 
approximation predictions with the theoretical kine- 
matics for the deep-water regular wave. These are LF(2) 
solutions, the truncation order J for these local solutions 
being 2, The solid lines are the theoretical predictions and 
the markers identify the local approximation method. 
Part (a) shows the water surface profile and the discrete 
input record for the local approximation code. Parts (b) 
and (c) show the horizontal and vertical components of 
the velocity along the water surface. Part (d) shows the 
horizontal acceleration along the water surface. Agree- 
ment throughout is excellent, the only minor blemish 
being the horizontal velocity at the trough. 

Another perspective on the utility of the local approxi- 
mation method is provided by a comparison with the 
Wheeler stretching predictions (eqn (10)) under compar- 
able conditions. These predictions are shown in Fig. 3(b) 
through (d). They were based on exactly the same input 
record segment (Fig. 3(a)) and smoothing (none) as the 
Fig. 2 predictions. Errors are systematic and reach mag- 
nitudes of order 20% on the high side for velocities and 
rather more for accelerations. Given the empirical nature 
of the stretching methodology, a better result cannot be 
expected for reasonably extreme waves. 

The shallow water wave provides an even more 
demanding test of the local Fourier methodology. The 
near-crest kinematics are relatively extreme and vary 
rapidly with time in comparison to the near-trough kine- 
matics. This wave is quite close to the limit wave for this 
water depth and current. The LF(3) predictions in Fig. 4, 
however, are again excellent, especially for the crest kine- 
matics. Minor problems in the horizontal velocity predic- 
tion at the trough and on the trough side of profile 
zero-crossings remain apparent. These errors are small 
and isolated to a few locations, but are nonetheless 
symptomatic of  the often tenuous nature of convergence 
for the separate and unrelated nonlinear optimization 
problems in each local window. 

A remarkable feature of the local Fourier approxi- 
mation methodology is the low truncation order necess- 
ary to achieve excellent precision for quite extreme 
waves. Local Fourier truncation orders of 2 in deep water 

Table 1. Characteristics of Theoretical Regular Waves 

Wave Wave height Water depth Waw~ period Un(form current Truncation order 
(m) (m) (s) (ntis) 

Deep 20 100 10 0 I 0 
Shallow 3 5 10 - 2 18 
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Fig. 2. Theoretical kinematics and LF predictions for the deep-water regular wave. 

and 3 in shallow water were sufficient to achieved com- 
parable accuracy to global Fourier truncation orders of  
10 and 18, respectively (see Table 1). This is achieved of  
course through local values for the frequency, the wave 
number, the spatial phase and the Fourier coefficients. 
This local nature of  the solution is well illustrated in 
Fig. 5 which shows the evolution of the window solution 
for the shallow water wave. 

Measured kinematics 

Further illustrations of  the utility of the LF methodology 
is provided by comparisons with laboratory measure- 
ments of  near-surface kinematics in irregular waves. It is 
necessary in these comparisons that the x locations of  the 
measured water surface trace and the near-surface kine- 
matics correspond. Evaluation of  the results would 
otherwise be distorted by the need to adopt some 
assumption regarding the nature of the spatial evoluton. 

Torum and Skjeibreia 17 obtained LDV measurements 
of  near-surface kinematics in a laboratory wave flume. In 
the record segment available for analysis, the water depth 
was 1.3 m and the waves were a random simulation of a 
mean Jonswap spectrum with a peak period of  1.8 s and 
significant wave height of 0.2 m. Simultaneous measure- 
ments were made at the same x location of the water 
surface trace ~/(t; x) and the u(t; x, z) and w(t; x, z) 
velocity components at an elevation of z = - 0 . 1 5  m. 
The sampling interval was 0.025 s. The mass flux con- 
straint imposed by the flume generates a small return 
current in the flume to compensate for the forward mass 
flux in the trough-crest region. The co-flowing Eulerian 
current was estimated as CE = --0"056m/s from the 
time average of the horizontal velocity trace. The input 
water surface trace is shown in Fig. 6(a). The markers in 
Fig. 6(b) through 6(d) show the LF(3) predictions for 
horizontal velocity, vertical velocity and horizontal 
acceleration, respectively, at z = -0 "1 5 m.  The filter 
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Fig. 3. Theoretical kinematics and Wheeler stretching predictions for the deep-water regular wave. 
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Fig. 4. Theoretical kinematics and LF predictions for the shallow-water regular wave. 

parameter  L was 1. The continuous lines are the LDV 
measurements. The agreement is generally good, though 
certainly not perfect. Acceleration was not measured. 

The second data set is unpublished data in 1984 from 
the Delft Hydraulics Delta Flume, the very large outdoor  
wave facility at the De Voorst laboratory.  In the record 
segment available for analysis, the water depth was 5.0 m 
and the waves were a random simulation of  a mean 
Jonswap spectrum with a peak period of  6.0 s and signifi- 
cant wave height of  0.8 m. Simultaneous measurements 
were made at the same x location of  the water surface 
trace q(t; x) and the u(t; x, z) and w(t; x, z) velocity 
components  at an elevations of  z = - 1 . 7 5 m  and 
z = - 3 - 5 0 m .  The sampling interval was 0-04s. The 
water surface trace was measured by a profile-following 
wave gage and the kinematics by Colnbrook velocity 

meters laterally offset by 1.75 m from the wave gage. The 
co-flowing Eulerian current was estimated as CE = 
- -0 .009m/s  from the time average of  the horizontal 
velocity traces. The input water surface trace in Fig. 7(a) 
shows a trough-to-crest height in excess of  1 m, signifi- 
cant profile asymmetry,  notable oscillation at the leading 
trough and a somewhat deeper trailing trough. The 
markers in Fig. 7(b) through 7(d) show the LF(3) predic- 
tions for horizontal velocity, vertical velocity and hori- 
zontal acceleration, respectively, at z = - 1 - 7 5 m  and 
z = - 3 . 5 0 m .  The filter parameter  L was again 1. The 
continuous lines are the velocity meter measurements. 
Once again, the agreement is generally good, especially 
for the vertical velocity traces. Agreement is less satisfac- 
tory for horizontal velocity at the wave crest. 
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Fig. 6. Measured kinematics and LF predictions for a laboratory wave of Torum and Skjelbreia. 17 

Potent ia l  error sources  

Potential sources or error in the LF methodology are 
readily apparent. Some minor numerical uncertainty was 
identified in comparisons with theoretical waves in Fig. 2 
and 4. This uncertainly must be expected to be rather 
more widespread with irregular profiles. Further, there 
are error bands on both the measured water surface 
trace, on which the LF predictions are based, and on the 
measured kinematics. The light filtering cannot compen- 
sate for all of  this. 

In addition to these largely numerical errors, potential 
physical errors much be acknowledged. It is explicitly 
assumed in the formulation that the higher order Fourier 
modes are locally bound and not free modes. Coexisting 

free modes are ignored but may contribute significantly, 
especially in the crest and trough regions if they are 
propagating in opposition to the dominant waves. In 
imposing the kinematic free surface boundary condition, 
it was necessry to assume that the profile in each window 
was locally steady. While this is certainly an error source, 
it influences only the advective term in the KFSBC, 
whose contribution would only rarely be dominant. 

As the horizontal velocity prediction seems most vul- 
nerable to error, the possibility of an unsteady propa- 
gation medium must also be recognized. Longer period 
modes in the flume may not be distinguishable in the 
water surface trace and would not be resolved in the local 
windows. They may significantly contribute, nonetheless, 
to the horizontal velocity structure. 
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No attempt is presently made to accommodate  the 
directional structure of  real sea states and current fields. 
A real sea state involves a spread of wave directions 
about an identifiable dominant  direction. More com- 
plicated sea states may be directionally bi-modal. In 
addition, the co-existing current may not coincide with 
either of  the dominant  wave directions. The present 
method is predicated on the availability of  a measured 
water surface record, which includes no directional infor- 
mation, and ignores the existence of any directional 
structure in the wave and current field. It is assumed that 
the directions of  the current and secondary wave field 
correspond with or directly oppose the primary wave 
direction. 

No at tempt is presently made to accommodate  the 
directional structure of  real sea states and current fields. 
A real sea state involves a spread of wave directions about 
an identifiable dominant  direction. More complicated 
sea states may be directionally bi-modal. In addition, the 
co-existing current may not coincide with either of  the 
dominant wave directions. The present method is predi- 
cated on the availability of  a measured water surface 
record, which includes no directional information, and 
ignores the existence of any directional structure in the 
wave and current field. It is assumed that the directions 
of  the current and secondary wave field correspond with 
or directly oppose the primary wave direction. 

Whether the LF methodology can be extended to 
directionally complex sea state remains an open 
question. In principle, such an approach may be feasible 
if the current and dominant  wave directions are known. 
Interaction terms would, however, increase the number 
of  unknowns and complicate the already tenuous 
numerical solutions. 

5 A P P L I C A T I O N S  

The particular value of  the LF methodology is the pro- 
vision of predicted surface and subsurface kinematics 
where only the water surface time history is known. Two 
classes of  problem may be identified. In the first, the 
water surface trace may be available from a field or 
laboratory measurement program. The measurement of  
water surface elevations in the field and the laboratory is 
now a relatively routine practice. The direct measure- 
ment of  kinematics is more difficult. Neither is it cost 
effective, as there is both z and t variation at a particular 
site as well as horizontal and vertical velocities, horizon- 
tal and vertical accelerations and dynamic pressure to be 
measured. 

In the second class of  problem, a water surface trace 
may be available from a simulation of  the water surface, 
for example from the Gaussian Random Wave Model. 
The G R W M  provides realistic simulations of  water 
surface time histories and of subsurface kinematics at 
elevations somewhat below the wave trough level. As 
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Fig. 8. LF predictions for a measured wave during Hurricane 
Camille (1969). 

discussed previously, however, the predictive capability 
of  the G R W M  for crest kinematics is destroyed by high 
frequency oscillations. The LF methodology will provide 
appropriate predictions of  crest-to-trough kinematics in 
this situation. 

Among the largest waves that have been measured 
were recorded during Hurricane Camille in the Gulf  of  
Mexico on 16 August 1969. Two waves towards the end 
of the record are especially extreme, one (with the higher 
crest) having a zero-crossing wave height of  22.0 m and 
the following wave (with a lower crest but a deeper 
trough) a zero-crossing wave height of  23.0m. These 
waves have become very well known among ocean 
engineers and are perhaps the highest waves that have yet 
been measured. 

The second and higher of  these two waves provides a 
worthwhile applications example. The measured water 
surface record is shown as the continuous line with 
markers in Fig. 8. The sampling interval was 0.25 s and 
the water depth was 340 ft. No current was measured and 
zero current was assumed. The markers in Fig. 8 show 
the LF(3) predictions for horizontal velocity, vertical 
velocity and horizontal acceleration at the water surface, 
where these variables will be most extreme. The filter 
parameter  L was 1. The LF prediction are visually 
plausible but there are neither measurements nor theory 
for confirmation. 

6 C O N C L U S I O N S  

The need for a predictive capability in irregular wave 
kinematics is most  imperative at the water surface where 
velocities, accelerations and dynamic pressures all reach 
their peak values. Unfortunately, predictive method- 
ologies are most vulnerable at the water surface, as a 
direct consequence of  approximations in the imposition 
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of  the nonlinear free surface boundary conditions. Any 
methodology for the prediction of irregular wave kine- 
matics that is both rational and viable must give appro- 
priate attention to the free surface boundary conditions. 

Global and local methodologies are distinguished. 
Local methods do not compromise local fidelity in the 
representation of  the free surface boundary conditions in 
the global interest. Global methods, which closely follow 
regular wave theory, are less attractive for irregular wave 
kinematices. 

A local Fourier approximation (LF) methodology is 
presented for the prediction of irregular wave kinematics 
beneath a given water surface trace in a unidirectional 
wave field. Separate solutions are established in narrow 
and sequential local windows along the water surface. 
The local solution parameters are established numeri- 
cally from the kinematic and dynamic free surface 
boundary conditions imposed at the measured water 
surface elevations within each window. The dynamic free 
surface boundary condition is imposed exactly. The kine- 
matic free surface boundary condition includes a spatial 
gradient of the water surface elevation which is not avail- 
able from a measured water surface trace at a fixed 
location. This spatial gradient is accommodated by 
assuming that the profile is locally steady within each 
narrow window, but not globally steady across the 
complete wave. The method is strictly rational in its 
reliance on the field equation and the bottom and free 
surface boundary conditions. There are no empirical 
elements. 

Comparisons with prediction from steady regular 
wave theory are excellent and comparisons with 
measured laboratory kinematics established the utility of 
the LF methodology. 

The approach is applicable to both measured and 
simulated water surface traces. An adaption of the 
method would also be appropriate to the estimation of  
the water surface trace and the balance of  the kinematics 
from a measured subsurface pressure record. 

ACKNOWLEDGEMENTS 

Measured wave and wave kinematics data were provided 
to this study from several sources. The data Figs 6, 7 and 
8 were provided by Ove Gudmestad (Statoil, Stavanger, 
Norway), Gert  Klopman (Delft Hydraulics, Emmeloord, 
The Netherlands) and Chuck Petrauskas (Chevron, La 
Habra,  California), respectively. Additional field data 
provided by Michel Olagnon ( IFREMER,  Brest, 
France) and Chuck Petrauskas were not used in the 
paper but served to establish the limitations of  the 

present approach in accomodating bi-modal sea states in 
ambient currents. The encouragement and support of  
these people is sincerely appreciated. 

REFERENCES 

1. Forristall, G.Z., Irregular wave kinematics from a kine- 
matic boundary condition fit (KBCF). Appl. Ocean Res.7 
(1985) 202-12. 

2. Dean, R.G., Stream function representation of nonlinear 
ocean waves. J. Geophys. Res., 70 (1965) 4561-72. 

3. Lambrakos, K.F., Extended velocity potential wave kine- 
matics. J. Waterway, Port, Coastal and Ocean Div., ACSE, 
107 (1981) 159-74. 

4. Sharma, J.N. & Dean, R.G., Development and 
evaluation of a procedure for simulating a random direc- 
tional second order sea surface and associated wave forces. 
Ocean Engineering Report 20, University of Delaware. 

5. Forristall, G.Z. Kinematics in the crests of storm waves. 
Proc. 20th Int. Conf. on Coastal Engineering, Taipei, ASCE, 
1 (1986) 208-222. 

6. Wheeler, J.D., Method for calculating forces produced by 
irregular waves. Proc. 1st Annual Offshore Technology Con- 
ference, Houston, 1 (1969) 71-82. 

7. Chakrabarti, S.K., Discussion on 'Dynamics of single 
point mooring in deep water'. J. Waterways, Harbors and 
Coastal Eng. Div., ASCE, 97 (1971) 588-90. 

8. Gudmestad, O.T. & Connor, J.J., Engineering approxi- 
mations to nonlinear deepwater waves. Appl. Ocean Res., 8 
(1986) 76-88. 

9. Lo, J. & Dean, R.G., Evaluation of a modified stretched 
linear wave theory. Proc. 20th Int. Conf. on Coastal En- 
gineering, ASCE, 1 (1986) 522-36. 

10. Rodenbusch, G. & Forristall, G.Z., An empirical model for 
random directional wave kinematics near the free surface. 
Proc., 18th Annual Offshore Technology Conference, 
Houston, 1 (1986) 137-46. 

11. Daemrich, K.F., Eggert, W.D. & Kohlhase, S., Investiga- 
tions on irregular waves in hydraulic models. Proc. 17th 
Int. Conf. on Coastal Engineering, Sydney, ASCE, 1 (1980) 
186-203. 

12. Nielsen, P., Local approximations: A new way of dealing 
with irregular waves. Proc. 20th Int. Conf. on Coastal En- 
gineering, Taipei, 1 (1986) 633-46. 

13. Nielsen, P., Analysis of natural waves by local 
approximations. J. Waterway, Port, Coastal and Ocean 
Engineering, 115 (1989) 384-96. 

14. Fenton, J.A., Polynomial approximation and water waves. 
Proc. 20th Int. Conf. on Coastal Engineering, Taipei, ASCE, 
1 (1986) 193-207. 

15. Sobey, R.J., Variations on Fourier wave theory. Int. J. 
Numer. Meth. in Fluids, 9 (1989) 1453-67. 

16. Longuet-Higgins, M.S., Integral properties of periodic 
gravity waves of finite amplitude. Proc. Roy. Soc. London, 
Series A, 342 (1975) 157-74. 

17. Torum, A. & Skjelbreia, J.E., Irregular water wave kine- 
matics. Proc. NATO Advance Research Workshop on 
Water Wave Kinematics, Molde, Norway, ed. A. Torum 
and O. Gudmestad, Kluwer Academic Publishers, Dor- 
drecht, The Netherlands, pp. 281-95. 


