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ABSTRACT

In this paper a series of numerical experiments is defined to explore the inverse modeling of the action-
balance equation governing the evolution of the surface gravity wave field, using the adjoint data-assimilation
model-optimization procedure of Thacker and Long. We begin by exploiting power series, functional power
series, and a variety of physical and mathematical considerations to derive a systematic expansion of the source
terms in this equation for the deep-water case. This expansion, which naturally incorporates a Thacker repre-
sentation for the nonlinear transfer from wave-wave interactions, defines a set of dimensionless expansion
coefficients to be determined by the inverse modeling and identifies the simplified cases to be investigated in
the numerical experiments.

Dimensionai analysis determines a natural scaling for each term in this expansion and suggests a general
form for the whitecap dissipation term, which includes as a special case the form proposed by Hasseimann,
determining the first-order contribution to his unknown spectrum-dependent coefficient to within a multiplicative
spectrum-independent constant. :

A general discussion of the evolution of the simplified cases reveals a striking tendency to concentrate action
in a single band when whitecap dissipation has the Hasselmann form and nonlinear transfer is ignored.

A derivation of the adjoint-model equations is included for one of the simplified cases and a general discussion
of the model-optimization procedure is given. In these equations, nonlinear transfer is mirrored by a term of
similar form, with Thacker’s nonlinear transfer coefficients replaced by a related set of adjoint coefficients and
the triple product of spectral intensities replaced by a product of two spectral intensities and a Lagrange multiplier.
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1. Introduction

The study described in this series of papers is part
of an ongoing long-range program to parameterize the
evolutionary dynamics of the surface gravity wave field
by comparing synoptic wave observations in the Bight
of Abaco with the predictions of a fully nonlinear two-
dimensional wave model (Snyder et al. 1990, hereafter
SNLdV). We begin by summarizing this program and
discussing its relation to the present study.

Let A(k, x, t) be the (local) action spectral density
for vector wavenumber k at position x and time ¢.
Then the evolution of A (the spectral evolution of the
wave field) is governed by the action-balance equation
(Hasselmann 1968; Hasselmann et al. 1973), which
we summarize in the form
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where P denotes propagation terms and
S=I+N—-D—-—B+ ++- (1.2)

denotes source terms. Here I, N, D, and B determine
the time rate of change of action spectral density from
atmospheric input, nonlinear wave-wave interactions,
whitecapping, and bottom friction, respectively. If we
know how these source terms depend on 4 and on
other relevant observables and are given an initial state
A(k, x, 0), an appropriate set of boundary conditions,
and a complete record of the observables for ¢ > 0, we
can, in principle, integrate (1.1) to.predict A(k, x, ?)
for all k, x (in some domain), and ¢ > 0.

One source term, the atmospheric input 7, has been
partially parameterized from simultaneous array ob-
servations of near-surface air pressure and surface ele-
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vation (Snyder et al. 1981). Because it is difficult to
identify intermediate observables on which to base an
estimate of the corresponding action transfer, however,
direct experimental parameterization of D and B is
problematic. Instead, one must base this estimate on
observed changes in the action spectrum itself. Such
an estimate is difficult because 1) small differences be-
tween large random variables are inherently difficult
to measure reliably and 2) all source terms are oper-
ating simuitancously, so that the observed changes
cannot be attributed to a single source term.

One way to disentangle the combined effects of the
various source terms, smooth the statistical errors, and
fix the parameterization of I, D, and B is to invert the
problem by synoptically monitoring both the wave field
and other relevant observables in an enclosed basin of
variable depth, discovering appropriate parameteriza-
tions for these terms by comparing the resulting ob-
servations with the predictions of a computer model
of the action-balance equation (1.1). It is just such a
comparison that is the object of the ongoing SNLdV
program.,

This comparison involves:

1) Conduct of a pair of high-(observational- )density
high-(directional-)resolution synoptic field experi-
ments in a semienclosed section of the Little Bahama
Bank (the Bight of Abaco) to generate an appropriate
dataset for the comparison.

2) Development of an efficient and fully nonlinear
computer model of the action-balance equation (1.1),
using a technique for calculating the nonlinear transfer
N first suggested by Thacker (1982).

3) Expansion of the source function S in terms of
A and other relevant observables, including wind ve-
locity W, wind stress 7, and depth H.

4) Development of an efficient procedure for opti-
mizing the coefficients of this expansion, minimizing
the variance between observation and model predic-
tion.

To effect an efficient optimization as in 4), SNLdV
will use the adjoint procedure of Thacker and Long
(1988). As a first step toward adapting Thacker and
Long’s procedure to optimize the wave-model expan-
sion coefficients with respect to the real comparison
dataset provided by the Bight of Abaco field experi-
ments, we are carrying out and we describe in this series
of papers a numerical experiment to investigate this
procedure for a sequence of simplified wave models,
using the models themselves to simulate comparison
datasets. Overall objectives are to prove the optimi-
zation procedure for these cases (and, by extension,
for the full model) and to uncover any problems that
might hinder the subsequent optimization of the full
model.

The base model for this numerical study is an explicit
deep-water version of the third-generation wave model
developed by SNLAV, incorporating a Thacker (1982)
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representation for the nonlinear transfer from wave~
wave interactions. In each case, we fix N from this rep-
resentation, assume some truncated expansion for the
partial source function I — D, assign nominal values
to the relevant expansion coefficients, and, for various
meteorological forcing, simulate from the model a rep-
resentative synoptic dataset. We then apply the adjoint
inverse-modeling procedure of Thacker and Long and
a conjugate-gradient search procedure to recover the
assigned values for the expansion coefficients. The sta-
bility of this recovery is studied as a function of noise
level, observation set, complexity of meteorological
forcing, and number and type of expansion coefficients.

In this paper, we provide a framework for the nu-
merical experiments by developing a systematic ex-
pansion of the source function S, defining a set of di-
mensionless expansion coefficients and identifying a
sequence of simplified cases for these experiments. In
section 2, we discuss the general considerations that
define our expansion of action-balance source terms.
In section 3, we use this expansion to transform equa-
tion (1.1) into a set of prognostic equations for the
action spectral density in the various spectral bands,
and identify four simplified cases for the numerical -
experiments. In all four cases, the atmospheric input
I and whitecap dissipation D are assumed linear and
quadratic, respectively, in 4. In case 1, each spectral
band evolves independently from the other bands. In
cases 2, 3, and 4, the evolution of the various spectral
bands is coupled through the gquadratic dependence of
D on A. In case 4, additional third-order coupling is
provided by the inclusion of the nonlinear transfer from
wave-wave interactions. In section 4, we examine the
behavior of the prognostic equations in these simplified
cases, encountering an evolutionary singularity when
whitecap dissipation has Hasselmann form and non-
linear transfer is ignored (case 2). We further discuss
this singularity in section 5. In section 6, we derive the
adjoint-model equations for case 4 [ with second-order
Hasselmann ( 1974) whitecap dissipation and nonlinear
transfer] and discuss the inverse-modeling procedure.
We draw final conclusions in section 7.

Subsequent papers in this series will describe the nu-
merical experiments, in which we attempt to recover
assigned values for the expansion coefficients by fitting
comparison datasets simulated from the model equa-
tions.

2. Source expansion

In this section we develop a general expansion of
the source function S for the action-balance equation
(1.1). We base this expansion on a number of (some-
what loose but, we believe, essentially correct) general
physical and mathematical considerations, referring
only somewhat tangentially to existing theoretical pre-
dictions for the individual source terms. We assume,
however, that 1) the general form of (1.1) is correct,
2) Eq. (1.2) correctly identifies the physical nature of
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the important interactions, and 3) the propagation
terms P are known.

To simplify the discussion, we assume a fully en-
closed deep-water basin (for which B = 0) with fully
absorbing boundaries and no current, initially at rest.
We further assume that the atmospheric input 7 is de-
termined by a single vector wind parameter, the ane-
mometer wind velocity W. Note that 1) this latter as-
sumption does not fundamentally alter the structure
of the expansion (only the number of parameters) and
2) instead of choosing W as primary wind parameter,
we could as readily have chosen the wind stress 7 (or
friction velocity W,.). ,

We also assume that all interactions are local in x
and ¢, that is, that the change in A(k, x, t) at x and ¢
depends only on the source terms evaluated at x and
t. (Note that this assumption is implicit in a classical
two-scale derivation of the action-balance equation.)
We further assume that the dependence on x and ¢ is
implicit in the dependence of the source terms on A(k,
X, ¢) and on the forcing variable W(x, ¢). It follows
that we may write (1.1) in the form

D 4k, x, 1) = S(k, W(x, 1); A(k, x, 1)),

Dr (2.1)

where

D 4

—=—++V(k):-V,.

Dt ot (k)

V = V,w(k) is the group velocity. The frequency w(k)
is given by

w(k) = (gk)'"?,

where g is the acceleration of gravity.

The dependence of the interaction source function
S on A is nonlocal in k. To make this dependence
explicit, we expand S in functional power series, ob-
taining to third order

(2.2)

S = ok, W(x, 1))

+ [ @i 0, Wes, 000, x, 0

+ [ [ dtadioryac, 10, 1o, Wex, 1)
X A(kl’ X, Z)A(kzy X, t)
+ fff d2k1 d2k2d2k35(k, k], kz, k3, W(X, t))

X A(kh X, Z)A(kb X, t)A(k3> X, t) Foeey
(2.3)

where the coefficients (kernels) «, 3, v, and é are de-
termined by the interaction physics. Consistent with
Hasselmann (1974), we argue that, although some of
this physics, in particular the physics of the whitecap-
ping interaction, is locally strong and therefore cannot
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be expanded at the dynamical level, because this phys-
ics is weak in the mean, such a functional-power-series
expansion is meaningful at the spectral level.

In principle, each term in this expansion may in-
corporate contributions from each of the physical in-
teractions I, N, and D. In fact, each term in the ex-
pansion can be identified primarily with a single
physical interaction, the fourth possibly with two in-
teractions. The reason that we can make such an
identification is that each physical interaction is char-
acterized by a leading order below which it does not
contribute and above which its contribution, resulting
from higher-order nonlinearities within the interac-
tion, is diminished. The atmospheric interaction I,
involving turbulent and wave-induced air pressure
fluctuations (Phillips 1957; Miles 1957), is intrinsi-
cally linear and thus contributes primarily to the zero
order and first order terms. The whitecap dissipation
interaction D, on the other hand, is intrinsically non-
linear; its principal contribution presumably begins
at second order. It may also contribute significantly
to third order (and above). We will allow for third-
order dissipation in this discussion, but will not in-
vestigate this type of dissipation in the numerical
computations. Similarly, because of energy and mo-
mentum conservation, the contribution of the non-
linear wave-wave interaction N begins at third order
(Hasselmann 1962). Thus, we identify the first two
terms in (2.3) primarily with I, the third term pri-
marily with D, and the fourth term primarily with N
(and D). :

The corresponding contributions to the coefficients
a, B, v, and 6 are restricted by the physics of these
interactions and by the fact that 4 must be everywhere
nonnegative. Because A could otherwise develop neg-
ative values, & must be everywhere nonnegative. In the
Phillips ( 1957) theory, this property is guaranteed by
the fact that « is proportional to the turbulent air pres-
sure spectrum. Because D is a dissipative interaction
and should therefore give nonpositive transfer for ar-
bitrary 4 = 0, the magnitude of which should be a
monotonic increasing function of all wave amplitudes,
v and the contribution of D to § must be everywhere
nonpositive. [It is possible that this interaction could
redistribute action as well as dissipate it; in this case
we would need to include additional terms for which
this assumption is not satisfied. We here consider only
purely dissipative whitecapping interactions, such as
the Hasselmann (1974) interaction.] We may also rea-
sonably assume that, whatever its precise nature, the
whitecapping interaction D is independent of the air-
flow, and, therefore, v and the contribution of D to §
are independent of W. Similarly, we may assume that
the contribution of N to é is independent of W. (These
latter two assumptions are in fact equivalent to the
truncation at zero order of subsequent expansions in
powers of the air-water density ratio s. To simplify
the notation, we present our results without a formal
development of these expansions.) Following Miles
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(1957), we further assume that the first-order contri-
bution of the atmospheric interaction I to 8 is local in
k. It follows that 8 contains a delta function

Bk, ki, W) = 8(k, W)a(k, — k).

{Note, however, that this assumption precludes inter-
action with the turbulence of the airflow.) Because A
could otherwise develop negative values (see the Ap-
pendix), v also contains a delta function

‘Y(ka kls k2, W) = —7(k= kl)a(kZ - k)’
with (K, k)= 0.

Similarly, the contribution of D to 6 also contains a
delta function. These conclusions support Hassel-
mann’s (1974) contention that the whitecap dissipation
is quasi-linear in 4. Hasselmann argues that any in-
teraction that is weak in the mean must be quasi-linear.
We argue simply that the dissipation must contain a
factor of 4 in order to guarantee that 4 remain non-
negative for an arbitrary initial state.

Also, because of energy and momentum conserva-
tion, the contribution of N to 6 contains the delta func-
tion product 5(](1 + kz - k3 - k)B(wl + wy — w3 — w)
(Hasselmann 1962). Thus, é is of the form

6(k: kla k2> k3’ W) = _6(k> ]k]a k2)6(k - k3)
+ o(k, ki, kz, k3)o(k, + k2 — k3 — k)
with 5(k, k,, k) = 0,

the first term coming from D and the second from N.
(To avoid a profusion of variable names, we use the
same names to label entire sets of related functions «,
B, v, and 6. In accordance with the common conven-
tion, we also use the variable name 6 to label the spike
or delta function. The reader is asked to distinguish
the various functions a, 8, v, and 4 by the number and
type of arguments.)
Rotational invariance implies that

alk, W) =alk, W, ¢),
B(k, W) = B(k, W, p),
v(k, ki) = v(k, ki, ¢1) = 0,
o(k, ki, ky) = 8(k, ky, ka, @1, 02) = 0,

and

0w + wy — w3 — w),

6(k9 kla k2, k}) = 6(k9 kl’ k2a k3’ L1, ©2, ¢3)5 (2'4) ‘

where
p=dw—9, ¢ =9 —19,
=09, and ¢@3=19; 9,
with
dw = arg(W), J=arg(k), ¢, =arg(k,),
¥, = arg(k,), and U;=arg(ks).
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Rotational symmetry implies that
alk, W, —¢) = a(k, W, ¢),
Bk, W, —p) = B(k, W, ¢),
vk, kv, —¢1) = v(k, ki, ¢1),
8(k, ks kyy =1, —2) = 8(k, ki, ka, @1, ¢2),
3(k, ki, ka2, k3, — @i, =2, —¢3)

= 8(k, ki, ka, k3, @1, ¢2, @3).  (2.5)

Finally, dimensional analysis implies that
alk, W, ¢) = k™*sa(a, X),
Bk, W, ¢) = wsB(a, X),
vk, ki, @) = KPoPy(xi, X1),
8k, ki, ko, @1, ¢2) = k*@*8(k1, K2, @1, 02),
and
0(k, ki, ky, ks, @1, 92, @3)

= k2w?8(ky, k2, K3, @1, @2, ¢3),  (2.6)
where
GEI‘C‘Z, XEk——‘Y=cos<p,
w k
Xy = Eﬁ = Cosgy,
kk,
and
KIE%, K2=%, and x3=%, 2.7
with

0(k1, k2, —@1, —@2) = 8(k1, K2, @1, ¥2)
and
0(k1, K2, K3, —P1, — @2, —P3)
= 0(k1, K2, K3, @1, P2, P3).

Note that we may use the dispersion relation (2.2)
to represent each of the equations (2.6) in several
equivalent ways, supressing either a dependence on k,
w, or g. We have chosen the latter representation, which
also avoids fractional powers. Note also that the rela-
tions (2.6) are derived for k space. The equivalent de-
scription for (w, ) space involves a Jacobian, which
goes as wk™2.

Strictly speaking, the dimensionless variable s should
not appear as a factor in the first two of the equations
(2.6), but should appear as an argument of the di-
mensionless functions a( e, X), 8(a, X), v(x1, X1), 6(xq,
K2, @1, ¢2)5 and 5("15 K2, K3, P15 P2, (p3)' To Simphfy
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the notation, we have in effect skipped a step and in-
corporated into (2.6) a power-series expansion of these
functions in s, in each case retaining only the leading
term. In the first two equations, this leading term is
order 1 in s (because without an atmosphere, there is
no atmospheric interaction ); in the last three equations,
it is order zero. Because s is very small, the neglect of
higher-order terms in these expansions is of little con-
sequence. Note that, as previously remarked, this trun-
cation provides a justification for the assumption that
v and ¢ are-independent of W (because without an
atmosphere, the wind speed cannot influence either
the whitecapping interaction or wave-wave interac-
tions).

We next introduce a set of dimensionless model pa-
rameters (expansion coefficients) Q,, by further ex-
panding the functions o s, X), 8(a, X), and v(k,, X;)
with respect to their dimensionless arguments. We take
as standard the truncated power-series expansions

M,

a0, X) = 2 Qo' xm,
m

My .
ﬂ(o'a X) = z Q(Mu+m)o'vm+lxpma
m

and
M.

Y
Y(k1y X1) = 2 Quataestgrmy(nk )" X, (2.8)
m
where the exponents v,, and »,, are given by
U = Va,+my = V(M +Mgtm)

O, 15032’ 1’0’3, ...,

and
Vm = V(Mm) = V(M +Mg+m)
=0,0,1,0,1,2,0, « - +.

The expansions for « and 8 are both assumed to con-
tain a factor of o, so that, for null wind, the corre-
sponding atmospheric interactions vanish.

Possible expansions are not limited to power series.
There are many alternatives, some capable of repre-
senting a full range of dependence in the limit M., M,
M, = o0, some not. Because we can obtain physically
reasonable representations using fewer terms, it is from
this latter group of alternatives that we select the rep-
resentations for the simplified models considered in
the present study. We emphasize that these choices are
illustrative, not definitive. In particular, they represent
only a first step toward defining the model expansion
for the parent SNLAV program.

To help ensure a reasonable behavior for the sim-
plified wave models, we represent « in the form

M,
a(a, X) =1 §=:1 O™, (2.9)
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where

n=9(x), for x>0,

X <0. (2.10)

This choice allows a turbulent input only if there is
wind and then only in downwind directions, and it
provides a standard directional taper (for example, n(X) .
= x/, with [ some positive integer).

Similarly, to reflect the approximate structure of
Miles (1957) theory (in the context of a single wind-
parameter model) and to allow for a convenient gen-
eralization of the results of Snyder et al. (1981), we
represent 3 in the form

and =0, for

Mg
B, X) = T Quasmt™s  (211)
where
uEk.w ~1=0x—1, for ox>1,
w
and u=0, for oX<1. (2.12)

This choice allows a wave-coherent input only for
downwind directions and only for wave components
with projected phase velocities less than the wind speed.

The above representations for « and 8 imply broad
regions in the space of the variables ¢ and X over which
these coeflicients vanish identically. Nonetheless, these
representations allow for considerable variation in the
physically important regions of this space and are
clearly more efficient than the straight power-series al-
ternative. In so far as this study is concerned, it does
not matter precisely which representation we employ.
What is important is that the simplified models reflect
various fundamental aspects of the full model and
properly exercise relevant aspects of the optimization
procedure.

What remains is to specify a representation for y
(and 6). We set these parameters in the next section
on a case-by-case basis.

3. Derivation of the prognostic equations

We discretize (2.1) with respect to the vector wave-
number k by introducing a piecewise-constant repre-
sentation for the action spectral density 4

Ak, x, 1) = 2 Ai(x, 1)Gi(k),

where the basis function G; is unity inside the ith spec-
tral band and vanishes outside this band. Multiplying
(2.1) by G}, dividing by the area of the ith band R;,
substituting from (2.3 ), and integrating over k, we ob-
tain a coupled set of simultaneous nonlinear first-order
differential equations for the prognostic variables A4;
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D;
EA:' =a; + 8:4; — (? viiA4;)A;
- (Z 5,JkAAk)A + Z 6uk1A ArAr+ » 00, (3.1)

jk ki

where
Di_9 1 f 2
Dt 3 + ( de,(k)V(k))-V

g— + V(k;)- Yy,

ai(W)E;;jfdsz,-(k)a(k, W) =~ a(k;, W),
ﬂ.(W)——fd"'kG(k)ﬁ(k W) ~ B(ki, W),

vi= [ [ kG006, 0609, 1)
y(ki, kj) = 0,
=g f f f Pk, d2H,Gs () Gy (k) Gi(ka)

X 5('(, k], kz) ~ R,-Rké(_k,-, kj, kk) = O
and

1
o= [ [ [ [ ket bodiiec, i

X Gj(k;)Gi(k2)Gi(ks)o(k, ki, ke, ks)
XB(k, +k2 —k3—l()5(w1 +w2—w3 —w)
(3.2)

(note that k;, ks, . . . denote integration variables, while
k;, kj, . . . denote spectral bands).

The simple form of the prognostic equations (3.1)
suggests a sequence of simplified models for consid-
eration in the numerical experiments. In each case,
consistent with the representations (2.9) and (2.11),
we take

M,
o; =ki*sn; 2 Omo?
m=1

and
Mg

Bi = wis 2 Q(Ma+m)#:"",
m=1

with ¢ and X defined by (2.7) and % and u defined by
(2.10)and (2.12). These parameters are averaged over
the ith spectral band and are functions of (x, ?)
(through their dependence on W). In each case, we
also ignore third-order whitecap dissipation (9, = 0)
and, except in the last case, nonlinear transfer (6;x
= 0).
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Case 1: Uncoupled second-order whitecap dissipa-
tion, no nonlinear transfer
We assume

v(k, ki) = v(k)é(k, — k), with ~y(k)=>0

and we allow y(k) to be determined from (2.6). We
can in fact satisfy this equation only if M, = 1,

(&1, X1) = Qurempe1yd (K1 — 1)6(e1),

and

(k) = v(k)

2
= k' Q(M,+Mﬁ+1)
with  Qur,+mp+1) = 0,

[since §(k; — 1)8(¢;) = k?3(k; — k)]. It follows that
v; = vib;j, where §;; is the Kronecker delta and

1
V=g f d*kG;(k)v(k) = k} 0? Qa,mp01) = 0.

The governing equations (3.1) become

2 A’. =

Dt
These equations are second-order nonlinear in the A;
and are uncoupled.

Note that the second-order uncoupled case is phys-
ically unrealistic because it implies that the total dis-
sipation of a narrow spectral peak is unreasonably sen-
sitive to the shape of this peak (K. Hasselmann, private
communication). Our object in this numerical study,
however, is not to directly model the real world, but
to explore a series of simplified numerical cases of in-
creasing physical and numerical complexity approach-
ing the real-world SNLAV case (with realistic physics
and real-data input). Our primary interest is in the
practical application of Thacker and Long’s inverse-
modeling procedure to this progression of simplified
cases. The uncoupled second-order case is a reasonable
starting point for this exploration.

a; + Bid; — vidi. (3.3)

Case 2: Second-order Hasselmann (1974) whitecap
dissipation, no nonlinear transfer.
We assume

v(k, ki) = @(k)?v(ky), with v(ki)=>0. (3.4)

The resulting dissipation has the general form proposed
by Hasseimann (1974 ), with the unknown spectrum-
dependent constant expressed as a linear functional of
A. This functional, however, is constrained by the di-
mensional analysis. Comparing Eq. (3.4) with the
middle equation (2.6), it is clear that one can simul-
taneously satisfy both equations only if M, = 1,

Y(k1, 1) = K%Q(MG+M5+1)
and
v(ky) = k%Q(Ma+Mg+l),

with Qs +a,+1) = 0,
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from which we conclude that the first-order contri-
bution to Hasselmann’s unknown constant must be of
the form

(f d*kk*A(k, x, t))Q(M,,+Mﬁ+1),

where Qr,+am,+1) 1S 2 nonnegative spectrum-inde-
pendent dimensionless constant. It follows that vy
= Cl),2 Yis with

V= f d*kG(k)y(k) =~ K}R;Qm,+myi1) = 0.

The governing equations

D;
EA,' =a; + Bid; — 0 (X viAp4i, (3.5)
‘ j

are second-order nonlinear in the A4; and are coupled.

We note that if the width of the directional bands is
uniform and the spacing of the wavenumber (fre-
quency) bands is logarithmic, R; = Ck?, where Cis a
dimensionless constant. Absorbing this constant into
the expansion coefficient Qxs, +as,+1), We obtain

Y = k}t Q(Ma+Mﬂ+1)-
We also note in passing that similar arguments ap-
plied to the third-order contribution of D to a Hassel-
mann-type dissipation also constrain the possible de-

pendence of 6(k;, k2, ¢, ¢2) on the arguments «,
and «,.

Case 3: Weakly coupled second-order whitecap dis-
sipation, no nonlinear transfer
We assume v(k, k;) to be given by (2.6), with'

M'Y
Y(k1s X1) = (2 Qaemtgenmy(y — 1)2m(X = 1)Pm) 7L
m

For Qa,+my+m) > 0, the resulting dissipative coupling
is strongest for wave components with similar vector
wavenumbers. In the limit Q s, +as,4m) = 00, for all
m # 1, we recover the uncoupled case 1 model. We
have in general
2
vi =~ ki wtsz'Y(Kij, Xii),

where

k -k
kik;

5 =
% and Xx;=

The governing equations

Kij

D;
EAi =a; +B8idi — (Z vid;))A; (3.6)

J

are second-order nonlinear in the 4; and are coupled.

! One of several possible algorithms resulting in weak coupling.
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Again, if the width of the directional bands is uni-
form and the spacing of the wavenumber (frequency)
bands is logarithmic, R; = Ck?. Absorbing C into the
expansion coefficients Q(a, +r,+m), We obtain

vy =~ ki ofklv(ky, Xy).
Case 4: Second-order whitecap dissipation, nonlinear
transfer
We assume v(k, k;) defined as in case 1, 2, or 3 and
o(k, k;, ks, k;3) defined by the Hasselmann (1962)

theory for nonlinear wave-wave interactions. It follows
that

1
R;
where R; is defined as before and the Ty, are the (hy-

brid) Thacker (1982) coefficients estimated by SNLdV
(1990) and Snyder et al. (1992). It follows that

Ot = = Tijnss

D;
EA:‘ =a; + ;4 — (? YA A;
1
+ R > TyuAdjArA,.  (3.7)
ikl

The governing equations ( 3.7) are third-order nonlin-
ear in A; and are coupled.

4. General discussion of the prognostic equations for
cases 1-4

In all cases considered in section 3, and in their ex-
tensions employing third-order dissipation, the gov-
erning prognostic equations have the important prop-
erty that, regardless of the sign of the 8;, 4;(x, ) = 0,
for all i, x, and ¢. This property is a consequence of
two conditions built into these equations (so that this
property would apply) and a third condition charac-
terizing the nonlinear transfer term. These are

1) a;(x,t) =0, forall i, x, and ¢.

2) The middle terms on the right-hand side of Eq.
(3.1) (the wave-induced contribution to the atmo-
spheric input and the second- and third-order whitecap
dissipation terms) contain a factor of A4;.

3) Because of the fundamental nature of the non-
linear quadruplet interaction, T (and thus 4;/) can
be negative only if j, k, or /is equal to i (in which case
this interaction again contains a factor of 4;).

Proof: If A4; is ever positive, it cannot subsequently be-
come negative without passing through 4; = 0. But, if
all negative terms on the right-hand side of (3.1) con-
tain the factor A4;, then, for 4; = 0,

D;
—A; =2 0.
Dt

It follows that 4; cannot become negative.
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A second property of these equations is that they
drive the system toward a (bounded) equilibrium so-
lution. This second property is a consequence of

1) the first property (whereby A; = 0, for all i, x,
and 1),

2) the dissipative and quasi-linear character of the
whitecapping interaction (whereby D;/A4; is mono-
tonic-increasing in the 4;), and

3) the conservative character of the nonlinear in-
teraction.

Proof: Putting aside nonlinear transfer, the positive
terms on the right-hand side of (3.1), which cause 4;
to grow, are at most linear in the A4;. The negative
terms are dominated by a dissipation quasi-linear in
A; with a coefficient which is monotonic increasing in
the 4;. Thus, as the 4; become larger, the balance be-
tween the positive and negative terms, initially positive,
must tend toward zero. The addition of nonlinear
transfer, which is third order in the 4; but does not
contain terms with powers of a single 4; beyond second
(which in the equation for 4; are all negative), readjusts
the details of this balance, but leaves the total action
2; A; the same.

To illustrate this second property, we consider first
the second-order homogenous uncoupled case. Here
each spectral band evolves independently and is gov-
erned by an equation of the form (3.3), with A4;(¢)
20, a;(W) =0, 8;(W), v; =0, W(t), and

D, A; = Ai(1)

Dt I i
all independent of x. Figure 1 shows the right-hand
side of this equation S;(W, 4;) as a function of 4;.
This function has two (wind-dependent) roots, one
positive (stable) and one negative (unstable)

A;

FiG. 1. Interaction source function .S; as a function of action spectral
density A4;. Uncoupled whitecap dissipation. No nonlinear transfer.
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;£ VB? + dayy;
A=ty =P ‘62’7 NYi | (4.1)
i

For constant «; and §; (constant wind velocity), the
spectral intensity A; stays entirely in the range 0 < A4;
< ,A; and tends toward . A4;. If the wind is a function
of time, , 4; changes, causing A4; to follow. In terms of
the figure, the state of the ith band (as defined by A4;
and S;) is represented by a point on the curve. This
point moves along the curve, and, if the wind is not
constant, the curve itself also moves. Starting for ex-
ample from (0, 0), following a sudden onset of wind,
the point moves with the curve to (0, «;) and then to
the right along the curve, continuing until S; = 0 at
(+A4;,0). A subsequent change in wind initiates a new
progression along the curve (in either direction, de-
pending on the sign of S;) toward the new equilibrium
(+4;, 0). If the wind dies, this progression returns the
point to the new equilibrium at (0, 0).

Let A(t) =[A4; ()] be the state vector for the system
of Egs. (3.3), (3.5), or (3.6). In the multidimensional
space of this vector, a point represents a possible state
of the system and a moving point describes a possible
evolution of this system. This evolution is determined
by the dependence of S; on W and A, in particular,
by the location of the (time-dependent) root loci (4.1).
In the uncoupled case, these root loci are hyperplanes
perpendicular to the axes, subdividing the space into
multiple (time-dependent) regions, within which the
signs of the S; are invariant. In particular, S; = 0, for
all i, throughout the region defined by _A4; < 4; < . 4;,
for all i, and in the principal operational subregion
defined by 0 < A4; < ,A4,, for all {. Furthermore, the
multiple positive-root hyperplanes 4; = | A; intersect
in a single point (A (2) = [,4;(t)] toward which the
system tends. Here S; = 0 and 4, = 0, for all i, and
the resulting equilibrium is stable with respect to all
A;. Changes in wind move the root hyperplanes along
the axes, changing A, and moving the system toward
the new equilibrium (see Fig. 1). A dying wind shrinks
the principal operational subregion to a null region at
the origin and drives the system toward the equilibrium
+A=0.

The first panel of Fig. 2 shows schematically the
evolution of a two-band uncoupled system following
the sudden onset of a constant wind. The four root
loci, A, = .4, and 4, = . A,, are in this case straight
lines perpendicular to the 4, and 4, axes, respectively,
and divide the (A4,, A,) plane into nine regions. More
importantly, the two positive-root loci divide the first
quadrant of the (A4,, A4;) plane into four regions and
intersect in a single equilibrium point, toward which
the system tends and about which the evolution is
stable.

The argument for the second-order homogeneous
coupled case is similar. Here the evolution of the bands
is governed by a set of simultaneous equations of the
form (3.6), where, as before, 4;(¢) = 0, a;(W) = 0,
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FIG. 2. Evolution of homogeneous two-band system. Upper panel is second-order uncoupled case. Lower
left panel is second-order coupled Hasselmann (1974) case. Lower right panel is second-order weakly coupled
case. Diagrams are highly schematic, with « orders of magnitude larger than in the real world.

B: (W), ~v; =0, W(t'), and A’ (¢) are independent of x.
In this case, S; (W, A) again has two roots

Bi — Z v = V(B — 2 vyd))* + dwf oy
j#i j#i

20ivi ’
but, because these roots depend on 4; other than 4;,
the corresponding hypersurfaces in the space of the
state vector A are no longer hyperplanes. Nonetheless,
several qualitative features of the uncoupled system
are retained. In particular, the positive-root hypersur-
face is everywhere to the positive side of the 4; = 0
hyperplane (. A4; = 0) and the negative-root hypersur-
face is everywhere to the negative side of this hyper-
plane (_4; < 0). Each hypersurface is single valued in
the 4;, j # i and extends to infinity in all directions.
Between the ith root hypersurfaces, S; is positive; else-
where, this derivative is negative. The multiple positive-
root hypersurfaces intersect in a single equilibrium

point toward which the system tends and about which
the evolution of the system is stable. If the wind is a
function of time, the root hypersurfaces and their in-
tersection change, moving the system toward a new
equilibrium.

The second and third panels of Fig. 2 show sche-
matically the evolution of a two-band coupled system
following the sudden onset of a constant wind. In the
second panel, v;; is chosen as in case 2, v; = w?'yj
(Hasselmann dissipation ). Here the positive-root loci
are qualitatively quite different from those of the un-
coupled case (first panel). Instead of being essentially
perpendicular to one another, these loci, over a signif-
icant portion of their range, are essentially parallel. In
consequence, the intersection of these loci defines an
equilibrium with one A; close to its uncoupled value
and the other 4; close to zero. In evolving toward this
equilibrium, starting from a null state, both bands start
off growing in more or less normal fashion. As soon
as the system crosses the closest of the nearly parallel
positive-root loci, however, the time derivative of the
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corresponding 4; becomes negative. Thereafter, this
band decays while the other band continues to grow.

Extension of this case to a full set of spectral bands
implies a similar qualitative evolution. The positive-
root hypersurfaces are again essentially parallel over a
significant portion of their ranges. The resulting equi-
librium concentrates the action in a single band (be-
longing to the outer positive-root hypersurface), with
little action in all remaining bands. The reasons for
this singular behavior and its implications are explored
further in the next section.

In the third panel of Fig. 2, v, is chosen as in case
3, and the Q s, +a1,+m) are chosen to approximate the
uncoupled case (rapid dropoff for j # i). As might be
expected, the behavior of this case is qualitatively sim-
ilar to that of the uncoupled case.

The argument for a system with second-order white-
cap dissipation and nonlinear transfer, governed by
(3.7), is less transparent. The gross picture, however,
cannot be very different from that described above.
Because the coeflicients T, can have at most two re-
peated indices (if there were a third, energy and mo-
mentum conservation would require that the fourth
index be the same, in which case the spectral product
would vanish identically), the right-hand side of (3.7)
is still only quadratic in A;. It can further be shown
that in the ith equation (3.7), those nonlinear transfer
terms which are quadratic in 4; have a negative
Thacker coefficient T;3,. Thus, the dependence of the
time derivative S; on W and A is qualitatively identical
to that of the previous case. In particular, this derivative
vanishes on two root hypersurfaces lying on opposite
sides of the A4; = 0 hyperplane. Between these hyper-
surfaces, this derivative is positive; elsewhere it is neg-
ative. The multiple positive-root hypersurfaces again
intersect in a single (time-dependent ) equilibrium point
toward which the system tends and about which the
evolution of this system is stable.

Note, however, that, for Hasselmann dissipation, the
‘resulting case 4 equilibrium would be expected to differ
significantly from the case 2 equilibrium. (It would not
be singular.)

5. Discussion of the case 2 singularity

We encountered in the previous section a singularity
in the evolution of the spectrum, when dissipation has
Hasselmann form and nonlinear transfer is ignored.
We next discuss this singularity in more detail.

To simplify the argument, we assume for the mo-
ment that the «;, which we know to be small, are in
fact vanishingly small. We ignore the question of how
such a system starts up from a null state and seek an
equilibrium solution. Setting the right-hand side of
(3.5) equal to zero gives

BiA; — w%(z Y4 A

=A;(B; — wI (2 vi4)) =0, foralli. (5.1)
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It follows that either

A;=0 or X yd;=wiB;. (5.2)
J

Because the left-hand side of this latter equation is in-
dependent of i, this equation can apply in at most one
band (say, the ith band). In the remaining bands, we
must satisfy (5.1) by setting 4; = 0. Thus for each i we
obtain the possible equilibrium solution

A = wi?yi' B,

and

Aj=0, for j?él

Only one of these possible solutions, however, is stable
(that for which w;2g; is a maximum). (Also the so-
lution 4; = 0, for all j, is unstable.) Throughout the
hyperframe equivalent of the first quadrant, where 4;
> 0, for all i, the resulting positive-root loci are seg-
ments of the hyperplanes defined by the second of
equations (5.2) and are strictly parallel.

It is important to notice that this singularity is prob-
ably not the result of the specific representation that
we have chosen for Hasselmann’s unknown constant
(i.e., a linear functional of the action spectrum). It may
in fact be a property of all such representations. To see
this we note that, analogous to (5.1), arbitrary func-
tional representation of this constant gives

Ai(B; — w,z'y(A)) =0,

where y(A) is some arbitrary function of the 4;. Once
again, we have, for all i, either 4, = 0 or

v(A) = % (5.3)

But y(A) is independent of i. Therefore, the second
condition can be applied in at most one band; in the
remaining bands we must set 4; = 0. The hypersurfaces
defined by (5.3) for various { are no longer hyperplanes,
but they are still in some sense parallel. Furthermore,
the band for which (5.3) applies is again that band
corresponding to the outermost hypersurface, that is,
that band for which w;? 8; is a maximum.

Note also that a Hasselmann-type interaction using
other powers of w; [such as investigated by Komen et
al. (1984) or by Janssen (1990)] should also exhibit
this same singularity when nonlinear transfer is ignored.

One might wonder why such a simple yet striking
effect has as yet gone unremarked. We conjecture that
the reason for this is that reported wave-model com-
putations employing the Hasselmann (1974 ) form for
whitecap dissipation (Komen et al. 1984, and numer-
ous WAM model computations) have also simulta-
neously included some form of nonlinear transfer (ei-
ther EXACT-NL or the discrete-interaction WAM ap-
proximation). Presumably this nonlinear transfer so
dominates the evolutionary dynamics (by redistribut-
ing the action away from the singular band) that any

for all i,
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tendency for dissipation to produce a singular result is
effectively lost.

It might be argued that such a juxtaposition of non-
linear interactions is only proper, that the presence of
locally strong nonlinear effects (whitecapping ) presup-
poses that the wave field has already evolved to the
point where weak nonlinear interactions must be sig-
nificant. Our response is that it is nonetheless appro-
priate to consider the behavior of systems without
nonlinear transfer, and, if the remaining physics is ac-
ceptable, the evolution of such systems should be
physically reasonable. Also, because the nonlinear in-
teractions require energy and momentum conserva-
tion, we can imagine perhaps unrealistic but not in-
conceivable circumstances under which dissipation
might operate in the absence of nonlinear transfer, even
in the real ocean. For example, suppose we are able to
create (mechanically) a sea consisting of two compar-
ably energetic bands for which there exist no allowable
nonlinear interactions (for example, two bands with
distinct wavenumbers but identical directions). Fur-
ther, suppose that the band for which w28 is largest
has been created close to its equilibrium of w2y ~!8.
Now let the system go. In the near term, the dynamics
will be dominated by wave-induced atmospheric input
and by whitecap dissipation. The band close to equi-
librium may decay somewhat initially, but will then
approach equilibrium. The other band will decay rap-
idly.

The question is whether it is physically reasonable
for the whitecap dissipation, in the absence of nonlinear
transfer, to single out a particular band, causing it to
evolve toward a reasonable equilibrium, while simul-
taneously suppressing the remaining bands.

"To answer this question, we consider first the case
of a homogeneous system with linear dissipation and
no nonlinear transfer. The prognostic equations for
such a system are of the form

—— =Si=a +(Bi —vi)4i, (54)

where the §; are functions of W and the ¥; are constant.
Each band grows or decays, depending primarily on

whether the atmospheric input coefficient 3; or the dis- -

sipation coefficient v; is greater, and each band retains
its growing or decaying character, as long as the wind
remains constant. Even though the evolution of this
system is typically unstable (has at least one unstable
band), this evolution is physically reasonable. Neigh-
boring bands behave in similar fashion. They grow or
decay depending upon whether atmospheric input or
dissipation is greater. Because both terms are strictly
linear in A4;, the character of the evolution within a
given band is independent of the 4;.

The evolution of a homogeneous second-order case
2 Hasselmann system is governed by the prognostic
equations (3.5), which are of the form (5.4), with
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Vi = 0} v(A), where Y(A) = (3 KR4 Qu.

J

For constant wind, 8; is constant; v;, however, is not
constant but increases with the A4; . If the system starts
from a null state, the A; are initially small, so that typ-
ically 8; > «v;, and atmospheric input exceeds dissi-
pation; thus, the bands grow. As the A4; get larger, so
does the dissipation coefficient v(A). Eventually, as,
one by one, the resulting dissipation coefficients y; be-
come larger than the corresponding atmospheric input
coefficients 3; and dissipation exceeds atmospheric in-
put, the character of the evolution in these bands
changes from growth to decay. This process continues
until there is only one growing band left. Unlike the
linear system, however, this system is stable and cannot
evolve indefinitely. As previously discussed, it even-
tually achieves an equilibrium in which the action is
large in the ith band (the last growing band ) and smalil
in the remaining bands. Near equilibrium, the dissi-
pation coefficient y(A) goes as 4;. The dissipation in
the ith band goes as A? and is essentially uncoupled
from the remaining bands, while the dissipation in the
remaining bands goes as 4, 4; and is strongly coupled
to the ith band.

Similar remarks apply to the more general Hassel-
mann case, where v(A) is some more general function
of the A4;.

What property of the Hasselmann interaction is ul-
timately responsible for the evolutionary singularity?
We believe this to be an interesting question to which
we do not have a definitive answer. We speculate, how-
ever, that what may be involved is the degree of dis-
sipative coupling between bands. Clearly, if there is no
coupling or the coupling is weak (as in case 1 or case
3), each band can come to its own (reasonable) equi-
librium more or less independent of the other bands.
On the other hand, if the dissipation in one band de-
pends strongly on the spectral level of another band,
then the growth of this second band may imply a dis-
sipation in the first band which cannot be matched by
the atmospheric input. Such is the case in the second-
order example above, where the dissipation coefficient
eventually becomes effectively independent of all but
one A;.

A second possibility would be that this singularity,
like Hasselmann’s theory, is somehow implied by the
patchy character of the whitecapping interaction.

In any event, we conclude that, despite its singularity,
the evolution of a system with Hasselmann dissipation
and no nonlinear transfer, discussed in terms of the
relative balance between atmospheric input and dis-
sipation, is physically reasonable. If such a system were
realized in nature, we believe it would behave as pre-
dicted. What is missing is a more definitive identifi-
cation of that property of the Hasselmann interaction
which ultimately gives rise to the singularity and, per-
haps concurrently, some intuitive explanation as to why
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nature should prefer a whitecapping mechanism which
develops this singularity.

We note that the present development, based on
some very simple general considerations, yields a gen-
eral form (2.6) for the second-, third-, and (by exten-
sion) higher-order contributions to the whitecap dis-
sipation. This general form allows a full range of dis-
sipative coupling between spectral bands, from the
uncoupled case to a variety of strongly coupled cases,
and contains the Hasselmann prediction as a special
case. More importantly, the optimization of this form,
as proposed by SNLAV, provides a systematic means
to either verify this prediction, with its implied sin-
gularity, or to find some alternative.

6. Derivation of the adjoint-model equations
for case 4

In this section, we complete the discretization of the
action-balance equation (2.1) by introducing into the
prognostic equations finite-difference representations
for the derivatives of 4 with respect to x and ¢. We
then derive the corresponding case 4 adjoint-model
equations (with case 2 dissipation) and discuss the in-
verse-modeling procedure.

The source expansion introduced in sections 2 and
3 defines a set of expansion coefficients which control
the evolution of the wave spectrum through Eq. (3.1).
The SNLAV parent program seeks to adjust these coef-
ficients to achieve a best fit between model prediction
and synoptic field observations. To determine optimal
coeflicients, we need first to define some measure of
the fit between model prediction and observation. In
specifying this cost function or variance of fit V, we
have several choices. The most intriguing of these
choices is to make this definition in terms of the pri-
mary statistical observables, that is, the cross correla-
tions between wave-array-sensor pairs or the Fourier
transforms of these cross correlations (the cross spec-
tra). Such a definition would be expected to reduce
the error of the overall computation by short circuit-
ing the intermediate directional-spectrum analysis, es-
sentially building this analysis into the optimization
(incidentally ensuring a directional spectrum that is
everywhere nonnegative ). For the purposes of this dis-
cussion, however, we assume that the directional-spec-
trum analysis is performed as part of the preliminary
data analysis and consider a second less-fundamental
but more-transparent definition of variance in terms
of the prognostic variables 4;. To simplify the notation
we ignore possible error correlations between the var-
1ous bands. We define

V(1O

Z Wirn(Ai (X7, trn, [Om]) — ai (X, trn))z,

irn

N —
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where the 4; and q; are the modeled and observed
prognostic variables representing the action spectral
density in the ith band (4, from the model equations
and g; from the directional-spectrum analysis), the Q,,
are the expansion parameters, and the w;,, are a set of
weights reflecting relative confidence limits for the ob-
served spectral estimates, or their relative dynamical
significance, or both. The sum overi=1,2, - - -, Iis
over all bands in the spectral representation, the sum
over r = 1,2, -+, R is over all wave-observation
stations, and the sum overn =1, 2, + + -+, N(r) is over
all times t,, for which an observed estimate a; (X, f,,)
is defined.

The task that we face is to minimize such a cost
function with respect to the unknown parameters Q,,.
If the cost function were quadratic in these parameters,
we could, using a conjugate-gradient search procedure
and estimating each component of the gradient (with
respect to the parameters) as a forward difference, de-
termine the minimum in at most M (M + 1) model
runs, where M is the total number of parameters. The
cost function is, however, more highly nonlinear. Thus
1) there is a possibility of more than one relative min-
imum and, more significantly, 2) minimization of the
cost function will involve an iterative search.

If the number of unknown parameters M is small
and the dynamical situation simple, the computational
demands of such a straightforward search may prove
acceptable. Using a forward difference to estimate the
components of the gradient, Monbaliu (1991) has in
fact successfully tuned a two-parameter (dissipation
and atmospheric input) version of a one-dimensional
wave model to fit the JONSWAP results of Hasselmann
et al. (1973). If, however, M is not so small and the
dynamical situation requires a two-dimensional wave
model, these demands may be prohibitive.

An effective search procedure for the case of large
M is described by Thacker and Long (1988). Their
method is an efficient implementation of the so-called
“adjoint method” initially proposed by Marchuk
(1974) and subsequently explored by a number of other
researchers (Lewis and Derber 1985; Le Dimet and
Talagrand 1986; Courtier and Talagrand 1987). De-
veloped originally to enable the assimilation of data
into several ocean circulation models, Thacker and
Long’s scheme can readily be turned to the optimiza-
tion problem at hand. In essence, this scheme provides
a recipe for estimating all A components of the gradient
of the cost function from the equivalent of two (as
compared with M + 1) model runs. It achieves this
reduction by attaching to the present wave model an
adjoint wave model that is driven by the misfit between
model computation and observation and that runs
backward in time, yielding an estimate for the full gra-
dient of the cost function. Combined with a second
procedure (preconditioning) for improving the effi-
ciency of the conjugate-gradient descent algorithm
(Hasdorff 1976), this scheme promises to greatly re-
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duce the number of model computations required to
optimize the fit.

Consider the evolution of the wave field in a closed
deep-water basin initially at rest, with second-order
Hasselmann (1974) whitecap dissipation, null current,
and fully absorbing boundaries. The prognostic equa-
tions governing this evolution are of the form (3.7),
with

vy =wiy, and ;= kiR;Qu,
where

M=M,+ M+ 1,

and, as before, R; is the area of the jth spectral band.
Let V; be the mean group velocity of the ith spectral
band, and let n(x) be the outward-pointing normal to
the boundary of the basin. Then we have, for ¢ > 0, at
all interior points and at all boundary points for which
ki*n= O,

04; Ye
_6t_ +V; -Vid; = k1—4 SN; z Qmayn
m=1

Mp
+ w;$( Z‘ Qumrmpl)Ai — 0 (X k}RiA;) OuA;
m= j

1
+ — > Tyud;iArA,,

(6.1)

R; Jjki

while, for ¢ = 0, at all points, and, for ¢ > 0, at all

boundary points for which k; +n < 0,

A; = 0. (6.2)

Letx,,r=1,2, +++,R,and ¢, = nAt,n =0, 1,

« + -, N, define the spatial and temporal grid points of

the model computation, and let the observations a; be

defined at a subset of these grid points. Then, for 4;,,

= A;(x;, &y, [Q}]) and a;;, = a;(X,, 1), V takes the
form

V= z Wirn(Aipn — aim)2s

mn

N )

where the sum over rn now runs over all model grid
points (spatial and temporal ), with w;,, = 0, for all rn
for which a;(x,, t,) is undefined.

We may now write down explicit finite-difference
representations for (6.1) and (6.2). For n > 0, and x,
an interior point, or #» > 0, and x, a boundary point
for which k; - n(x,) = 0, we have

Eim = Airn - Air(n—l)

+ X DiAistn-1y — AtFpn—1y = 0, (6.3)
5
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where

MG
= 4
Firn = ki $Nirn z Qmogn
m=1

Mg
+ wis( E Q(M,,+m)l‘1r';ln)Aim
m=1

1
- “"’t2 ( 2 kaRjAjrn)QMAim + ;{- E szklAijkmAlm-
J vkl

Here 6., 7im, and w;, are the values of o;, n;, and y;
at (X,, t,); Dis is a sparse matrix whose precise form
depends on the finite-difference representation of V, 4;.

Similarly, for n = 0, or for n > 0 and x, a boundary
point for which k; - n(x,) < 0, we have simply

Eirn = Aim = 0 (64)

Following Thacker and Long, we treat the finite-
difference equations (6.3) and (6.4) as constraints on
the minimization of V, enlarging the set of free param-
eters to include the A4;,, and a corresponding set of La-
grange multipliers A;,, and defining a Lagrange func-
tion

L([Airn]a [Airn]a [Qm]) = V+ E AirnE‘im- (65)

n

The minimum of V with respect to the parameters Q,,
corresponds to a stationary (saddle) point of the La-
grange function. To obtain this point we demand that
the derivative of this function with respect to each of
its arguments be zero. The derivative of this function
with respect to A;,, is simply

aL
= Eirn .
a>\im

Setting this derivative equal to zero recovers the model
equations (6.3) and (6.4). The derivative of the La-
grange function with respect to A4,,, is more complex
(because of the nonlinear terms) but is nonetheless
tractable. For n < N and x, an interior point, or for n
< N and x, a boundary point for which k; -n(x,) = 0,
we have

oL
aAim = wim(Airn - airn) + )\irn
= Air(n+1) + Z Disrkis(nﬂ) - AtGim,
s
where

My
Girn = w;5( E Q(M.,+m)ﬂ¥;1n)>\ir(n+l)
m=1

- w:z ( 2 ka'RjAjm) QMNr(nH)
j.
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- k12 Rt( Z wjg Ajr(n+l)Ajm)QM

J

1
+ z Tijkl >‘jr(n+ 1 )AkrnAIrn ’

ki
with
i1
T jpa = R (Tjia + Tjriar + Tja)-
j
Setting this derivative equal to zero gives the adjoint
equation
Wim(Aim - airn) + >\irn - >\ir(n+l)
+ Z Disrxis(n-H) - AtGim =0.

5

(6.6)

For n = N, or for n < N and x, a boundary point for
which k; - n(x,) < 0, we have simply

aL

aAim

Finally, the derivatives of the Lagrange function with
respect to the Q,, are

= Wirn(Airn — aim) + X = 0. (67)

oL aF‘ir(n—l)
— = AL Nn s 6.8
30, MZM T3, (68)
with
dF;
—ﬂ=ki_4 im0 i =1, A
30, SNimGim, m=1,2, » M.,
OF i
T T WS g?nAim’ m=l’2,"'3M’
Qortemy g
and
oF;,
—L = —w?(z kaRjAjm)Aim- (69)
6QM j

In (6.8) [and in (6.10) below], the sum over irn ex-
cludes all points for which # = 0 as well as boundary
points x, for which k; - n(x,) < 0. Setting these deriv-
atives equal to zero gives the corresponding equations

—4 = —
2 ki nima‘l":"rlxim - 0’ m= 15 21 c Ma’
irn

2 wi“l";lnkimAir(n—l) = 09 m = la 2, MY Mﬂ!

mn
and
2132
2 @i ki RiNimAirin-1)Ajrn-1) = 0.

ijrn

Equations (6.3), (6.4), (6.6), (6.7), and (6.10) to-
gether determine the A;,,, A, and Q,, for which the
Lagrange function is stationary and the cost function
is a minimum.

To solve this system of equations we adopt the fol-
lowing iterative procedure:

(6.10)
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1) We make a guess for the best-fit parameters Q,,.

2) Using 1), we solve the (model) equations (6.3)
and (6.4) for the A;,. Note that these equations are
independent of the \;,, and are readily solved by step-
ping forward in time, starting from n = 0.

3) Using 1) and 2), we solve the (adjoint model)
equations (6.6) and (6.7) for the A;,,. Note that these
equations are forced by the misfits w;,, (A, — @i ) and
by a rather complicated inhomogeneity involving the
parameters Q,,, the present values of the 4;,,, and the
future values of the \;,,,, and they are readily solved by
stepping backward in time, starting from #n = N.

4) Using 1), 2), and 3), we estimate the gradient of
the Lagrange function with respect to the parameters
O, from (6.8) and (6.9).

5) Employing a conjugate-gradient descent algo-
rithm, we estimate improved values for our guess for
the parameters Q,,.

Given a reasonable initial guess, repeated iteration of
steps 2) through 5) converges to the best-fit result [and
satisfies equations (6.10)].

What is important to notice is that, despite the pro-
fusion of independent variables that Thacker and
Long’s Lagrange-multiplier scheme introduces into the
computation, despite the nonlinearity of the original
model equations, and despite the budding complexity
of the source-function expansion that we have built
into the example, we are led in the end to a recipe for
determining the expansion parameters which is com-
putationally straightforward and considerably more ef-
ficient than the brute-force alternative. Furthermore,
the adjoint equations, which are the heart of the
scheme, are in principle as readily solved as the model
equations themselves. In particular, the evaluation of
nonlinear transfer in the model equations is mirrored
in the adjoint equations by the evaluation of a term of
similar form in which the Thacker coefficients 7, are
replaced by a related set of coefficients T:}k,, which like
the T, are mostly zero, and the triple product of prog-
nostic variables A;,,Ax»A;m is replaced by the triple
product Ajyn+1yA4kmAim, in which one of the prognostic
variables is replaced by a Lagrange multiplier. Note
that a formal piecewise-constant Thacker representa-
tion for the nonlinear transfer is particularly well suited
to the formulation of the adjoint problem.

7. Conclusions

1) Using power series, functional power series, di-
mensional analysis, and a variety of physical and
mathematical considerations, we derive a systematic
expansion of the action-balance source function for
the deep-water case.

2) This expansion identifies a series of simplified
cases for some numerical experiments to explore the
inverse modeling of this equation, using the adjoint
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data-assimilation technique of Thacker and Long
(1988). These experiments will be described in suc-
ceeding parts to this series.

3) The expansion also lays the foundation for the
more complete expansion of this equation required by
an ongoing program to parameterize this equation by
comparing its predictions with synoptic wave obser-
vations (Snyder et al. 1990).

4) The expansion naturally incorporates a Thacker
(1982) representation for the nonlinear transfer from
wave-wave interactions.

5) The dimensional analysis determines a natural
scaling for each term in this expansion.

6) This dimensional analysis also suggests a general
form for the whitecap dissipation that includes as a
special case the form proposed by Hasselmann (1974)
and determines the first-order contribution to his un-
known spectrum-dependent coefficient (to within a
multiplicative spectrum-independent constant).

7) We provide an alternative justification for Has-
selmann’s contention that the whitecap interaction is
quasi-linear in 4. We argue simply that this term must
contain a factor of 4 in order that 4 remain nonneg-
ative for all conceivable evolutions.

8) A general discussion of the evolution of the sim-
plified cases suggests that under quite general condi-
tions the prognostic variables A;, representing the ac-
tion densities of the various spectral bands, progress
toward a stable bounded equilibrium.

9) This discussion reveals a striking tendency of the
Hasselmann form for the whitecap dissipation to con-
centrate action in a single band. In numerical experi-
ments with this dissipation and no nonlinear transfer,
this tendency totally dominates the qualitative devel-
opment of the spectrum. This tendency has not been
remarked previously, as it is masked by the nonlinear-
transfer interaction.

10) Geometrically, this tendency results from a dis-
sipative coupling for which the loci on which the source
functions S; vanish (in the positive multidimensional
space of the prognostic variables 4; ) are roughly parallel
over a significant portion of their range.

11) Physically, this tendency may be related to the
degree of dissipative coupling between spectral bands.
Cases consistent with the dimensional analysis, for
which there is either no dissipative coupling between
bands or this coupling is weak are free of this tendency.

12) We derive the adjoint wave-model equations
for a closed deep-water basin, using a Thacker (1982)
representation for the nonlinear transfer and assuming
second-order Hasselmann (1974 ) whitecap dissipation,
null current, and fully absorbing boundaries.,

13) In these equations, nonlinear transfer is mir-
rored by a term of similar form with the Thacker coef-
ficients replaced by a related set of adjoint coefficients
and the triple product of spectral intensities replaced
by a product of two spectral intensities and a Lagrange
multiplier.
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14) The SNLAV program is well suited to investi-
gating the form of the whitecapping interaction (and
other interactions).

15) The adjoint data-assimilation model-optimi-
zation procedure of Thacker and Long provides an ap-
propriate means for carrying out this program.
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APPENDIX

Quasi Linearity of the Dissipation Source Terms

In this Appendix, we provide a justification for our
contention that the kernel y(k, k;, k,) of Eq. (2.3)
and the contribution of D to the kernel é(k, k,, k,,
k) of this same equation must contain delta functions.
(We have dropped the dependence on W.) We proceed
from the basic assumption that these coefficients must
be everywhere nonpositive (otherwise, the interaction
would not be “dissipative”) and demand that the re-
sulting dynamics not allow 4 to become negative. We
further demand this not only of the real world, but of
all physically conceivable worlds, including a simpler
homogeneous world with whitecap dissipation the only
physical interaction, evolving from an arbitrary initial
state.

Consider first the case of a single initial wave com-
ponent with arbitrary spectral amplitude 4, and vector
wavenumber k. The corresponding second-order dis-
sipation at vector wavenumber Kk is

v(k, ki, kl)A%;

v must be either negative or zero. But, for k distinct
from k;, v cannot be negative because A (k), initially
zero, would become negative. It follows that

7(k7 kl}kl)=0' (A‘l)

Next consider the case of two initial wave compo-
nents with arbitrary spectral amplitudes 4, and 4, and
vector wavenumbers k, and k,. It follows from (A.1)
that, for k distinct from k; and k;, the second-order
dissipation at vector wavenumber k is

2v(k, ki, kp)A4,4;.
Again, because 4 (k) would otherwise become negative,
v(k, k;, ky) = 0. (A.2)
We summarize (A.1) and (A.2) by concluding that,

" for arbitrary k, k;, and k», k distinct from k; and k;,

’Y(k, k|,k2) =0. (A3)

Similarly it can be shown that, for arbitrary k, k,, k,
and k3, k distinct from k,, k,, and ki,
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o(k, ki, ky, k3) = 0. (A4)
It follows that both y and 6 must contain delta func-
tions (or vanish altogether).

A less cumbersome complementary proot that these
kernels contain delta functions is provided by K. Has-
selmann (private communication ). Consider an initial
spectrum that is everywhere positive except at vector
wavenumber k, where this spectrum is zero. The ker-
nels v and é are everywhere nonpositive. Thus, if, for
any k;, k;, and k; distinct from k, either v(k, k,, k;)
or d(k, k,, k;, ki) were nonzero, the rate of change of
A(k) would be negative and A (k) would become neg-
ative. Therefore, v(k, k;, k;) can be nonzero only if
k is equal to either k; or k,, and 8(k, Kk, k;, k3) can
be nonzero only if k is equal to either k,, k,, or kj.
Consequently, these kernels must contain delta func-
tions.
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