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Abstract. This paper is the first in a series of papers describing a fully nonlinear re-
gional wave model for the Bight of Abaco, Bahamas. It discusses this model’s hybrid rep-
resentation for nonlinear transfer and the numerical errors associated with this represen-
tation. This discussion extends a number of results previously reported by Snyder et al.
[1993], doubling both the Boltzmann integration resolution and the spectral resolution of
the resulting nonlinear-transfer estimates and evaluating the errors associated with both
resolutions. It also better resolves the structure of the negative midfrequency lobe of the
nonlinear transfer for JONSWAP input [Hasselmann et al., 1973], evaluates the errors as-
sociated with the diagnostic range of the nonlinear-transfer computation, and extends the
hybrid representation to various finite depths characteristic of the Abaco Bight. It also
extends the previous discussion of truncations of the hybrid representation, defining some
renormalized hybrid implementations of the discrete-interaction approximation [Hassel-
mann et al., 1985] and generalizing its selection algorithm to improve the accuracy of this
approximation (at some cost in efficiency). Finally, it develops a systematic scheme for re-
cursively selecting hybrid coefficients to define a family of recursively optimized renormal-
ized hybrid truncations. Because this scheme selects coefficient groups (the interactions
for which are scaled versions of one another or of mirror images of one another) rather
than individual coefficients and because it optimizes over multiple spectral inputs, the re-
sulting truncations perform well over a full range of peak frequency. The resulting trunca-
tions for a nominal spectral resolution of 16 prognostic and four diagnostic wave-number
bands and 12 angle bands include some truncations that essentially trade a factor of 10

in efficiency for a factor of 10 in accuracy (relative to the discrete-interaction approxi-
mation). Other truncations, running only 600 times slower than the discrete-interaction
approximation, give a very accurate representation of the full nonlinear transfer. These
truncations, employed in sequential fashion and extended to multiple spectral resolution,
enable a relatively accurate and efficient staged inverse modeling of the action-balance
equation. By first inverse modeling to convergence at nominal spectral resolution, then
inverse modeling to convergence at double spectral resolution (starting from the converged
results for nominal spectral resolution), it should be possible to extrapolate the results of
the inverse modeling with an error no worse than a few percent (assuming that the errors
in the results of the inverse modeling generated by errors in the nonlinear-transfer compu-
tation are no worse than these generating errors and that the impact of other numerical
errors can be similarly contained). -

1. Introduction

Recent years have witnessed the appearance of a number of
computer models of the action-balance equation governing the
evolution of the surface-gravity-wave field. Foremost among
these models is WAM, a product of many years effort on the
part of its many authors. (Originally reported by the WAM
Development and Implementation Group [WAMDIG, 1988],
this model is a principal focus of the book by Komen et al.
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[1994].) Designed primarily as an operational model to pro-
vide global wave forecasts, WAM is also variously employed
as a tool for waves research. It features a coupled model of
the atmospheric input that allows the evolving wave field to
change the character of the wind profile driving this input
[Janssen, 1991], a reasonable guess for the whitecap dissipa-
tion based on Hasselmann [1974], a highly efficient (rapidly
computed) but not very accurate discrete-interaction approx-
imation to the nonlinear transfer [Hasselmann et al., 1985],
and a diagnostic tail to allow for nonlinear interactions with
wave components outside the prognostic range of the model.
WAM also employs a semi-implicit integration scheme that
provides stability for a relatively large time step, but requires
a corresponding diagonalization of the functional derivative to
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advance the integration (which diagonalization does not, per
se, directly compromise the nonlinear-transfer computation).

It is no secret that some of the representations employed by
WAM introduce significant errors into the modeling. (Pub-
lished estimates of the nonlinear transfer for the discrete-
interaction approximation differ significantly from estimates
for EXACT-NL [Hasselmann and Hasselmann, 1981] (here-
inafter referred to as HH). Tolman [1992] finds significant
numerical dispersion associated with WAM’s propagation al-
gorithm.) These errors are tolerated because they are neces-
sary to achieve the high efficiency required by an operational
wave model, because they only partially distort the predic-
tions of this model, and because the model can be tuned to
partially compensate these distortions. But in the context
of our inverse-modeling program, where accuracy is a prime
consideration, these errors are basically unacceptable. For
this reason, we are attempting to construct a model better
suited to this inverse-modeling program. A critical element
of the resulting model, described in this paper, is its hybrid
representation for the nonlinear transfer from wave-wave in-
teractions. A second important element, to be described in
a second paper, is its discretization of the space and time
variables.

In what remains of this section, we outline the inverse-
modeling context for our model, develop a focus on the er-
ror of various source and propagation terms, introducing two
measures of this error, and preview the remaining sections of
the paper.

1.1. Context

While the Bight-of-Abaco wave model and its treatment of
nonlinear transfer have general implications for other wave-
modeling efforts, it is important to recognize that the devel-
opment of this model has been motivated and shaped primar-
ily by a specific ongoing long-term program to parameterize
the evolutionary dynamics of the surface-gravity-wave field
by comparing detailed synoptic observations of this evolu-
tion with the predictions of a fully nonlinear two-dimensional
wave model [Snyder et al., 1990] (hereinafter referred to as
SNLdV). We next summarize this parent program.

The statistics of the wave field are described by the local ac-
tion spectral density (action spectrum) A(k,®,t), a function
of vector wave number k, horizontal position @, and time t.
The evolution of A (the spectral evolution of the wave field) is
governed by the action-balance equation [Hasselmann, 1968;
Hasselmann et al., 1973], which is of the form,

0A

Ft—z—P+S=—P+I+N——D—B+--~. (1)
P denotes propagation terms other than §A/8¢, and S de-
notes source terms, including atmospheric-input terms I, non-
linear transfer from wave-wavé interactions N, dissipation
from whitecapping D, and dissipation from bottom friction
B.

The terms on the right-hand side of (1) determine the time
rate of change of the action spectral density A. If we know
how these terms depend upon A and upon other relevant ob-
servables and are given an initial state A(k,,0), an appro-
priate set of boundary conditions, and a complete record of
the observables for ¢ > 0, we can in principle use this equation
to calculate A(k,=,t) for all k,  in some domain, and ¢ > 0.

The refraction and advection terms defining P are known
functions of the gradients of A with respect to k and . The
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nonlinear-transfer term N is a known third-order functional
of A [Hassselmann, 1962]. The remaining terms, however,
have been only partially parameterized.

To investigate the parameterization of these terms, we are
attempting to exploit the expectation that a sufficiently com-
plete and precise record of the evolution of the action spec-
trum A and of those influences driving this evolution contains
the information necessary to determine this parameterization.
We need only (a) acquire such a record and (b) use the integral
predictions of (1) to discover which combination of unknown
source terms faithfully reproduces this record. To accomplish
(a), we have conducted two month-long high-density high-
resolution synoptic field experiments in the Bight of Abaco,
a semi-enclosed section of the Bahama Banks. To accomplish
(b), we will use the adjoint procedure of Thacker and Long
[1988] to optimize the fit between model prediction and ob-
servation, adjusting the coefficients in a systematic expansion
of the unknown source terms [Snyder et al., 1992] (hereinafter
referred to as SLL). Finally, we will explore the physical im-
plications of the resulting best fit source terms by comparing
these terms with existing theoretical predictions.

A necessary element to the success of this inverse-modeling
effort is an accurate, efficient, and fully nonlinear computer
model of the action-balance equation (1), specialized to the
Bight of Abaco.

1.2. Focus

The success of this inverse-modeling effort will be measured
primarily by the errors in the resulting estimates for the ex-
pansion coefficients and unknown source terms. These errors
are in turn controlled by expansion resolution (number and
type of expansion coefficients), by experiment design, and by
numerical errors in the model (and adjoint-model) computa-
tions.

Ultimately, these errors must be evaluated as an important
integral part of the inverse modeling of the field data . In the
meantime, we are attempting to anticipate elements of this
analysis in two series of papers. The first series, of which SLL
is the first paper, describes some numerical inverse-modeling
experiments that simulate the inverse modeling of the field
data and provide a preliminary assessment of the errors asso-
ciated with expansion resolution and experiment design. The
second series, of which the present paper is the first paper,
provides a preliminary assessment of the numerical errors of
the model computation.

In discussing the numerical errors of the model computa-
tion, it is important to distinguish between known saurce and
propagation terms and the unknown or partially known source
terms to be adjusted by the inverse modeling. The form of
the adjustment terms is dictated by the source expansion de-
scribed by SLL; errors in the estimates for these terms are
an output of the error analysis rather than an input to it.
It is the errors in the numerical representation of the known
source and propagation terms that contribute to these adjust-
ment errors in the unknown source terms that are the focus
of the present investigation.

These errors result from various finite choices adopted in
order not to exceed the finite computer resources available to
the inverse modeling. In the absence of this constraint (given
unlimited computer resources), these errors and the resulting
errors in the adjustment terms can in principle be made as
small as desired.

Moreover, if one wants to achieve a given level of precision
in an inverse-modeling computation, it is not necessary to
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maintain this level of precision throughout the computation.
In the early and middle stages of the computation, it is neces-
sary only to employ a level of precision sufficient to keep the
search for optimizing expansion coefficients pointed in more
or less the right direction. Thus, as a practical matter, to con-
_serve the computing resources available to the computation,
it is appropriate to tune the precision implied by the cur-
rent representation of known source and propagation terms
to be only somewhat greater than the current precision of the
unknown adjustment terms.

Our basic purpose then is to identify a hierarchy of wave
models of varying precision to be employed in a sequential
manner to refine the output of the inverse modeling, ulti-
mately converging on a representation for the unknown source
terms, the precision of which is as great as the available com-
puter resources will allow, coincidentally determining the cor-
responding error in the resulting best fit representations for
the unknown source terms.

The errors in the inversely modeled unknown source terms
that result from numerical errors of the model computation
are determined by propagating these numerical errors through
the inverse modeling. A similar computation determines the
contribution to these errors resulting from sampling errors in
the field data. In this latter case, it is not possible to short-
circuit this analysis because the inherent redundancy of the
experimental design averages out the sampling errors, sub-
stantially complicating the relationship between these sam-
pling errors and errors in the unknown source terms. The
relationship between the numerical errors in the representa-
tions for the known source and propagation terms and errors
in the unknown source terms, however, is considerably more
direct. Because they are linked by (1), the signed error in
these terms must sum to zero. Thus we can get some idea of
the resulting errors in the unknown source terms by looking
directly at numerical errors in the known source and propa-
gation terms.

To provide a standard measure of these numerical errors,
we define the proportional variances,

Ps = / 4% (S = Srer)? / / &% 52,
and @)
Paz @A Au) | [ 2,

where Sper and Apet are suitable reference spectra and where,
depending on context, this specification focuses either on a
difference of source spectra (or component thereof) or on a
difference of action spectra.

Note that this specification is only one of many possible
specifications (In particular, the integrands of (2) could be
weighted by some power of the wave number.) and that the
results of the investigation are quantitatively a weak func-
tion of this specification. Qualitatively, however, we would
expect alternative specifications to result in much the same
conclusions. The specification chosen is wave-number neutral
in that it tends to emphasize the more energetic (active) por-
tions of the spectrum (considered as a function of vector wave
number), irrespective of where they occur.

Note also that, depending on how the reference spectra are
chosen, this same specification can focus on various compo-
nents of the numerical error of the nonlinear-transfer compu-
tation (in particular, on the integration, representation, and
truncation errors discussed in Sections 2, 3, and 4).
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We generalize the specification (2) to incorporate multiple
spectral inputs by averaging this proportional variance over
these inputs.

1.3. Preview

The first two papers of this series will attempt to evaluate
the dependence of such measures of the error on various pa-
rameters associated with the nonlinear-transfer computation
(this paper), and on various parameters associated with the
discretization of the space and time variables (second paper).
A third paper will address a number of other issues of con-
cern to our model and to the success of our inverse-modeling
effort.

In the next section, we begin the discussion of the nonline-
ar-transfer computation by briefly summarizing the hybrid
scheme of Snyder et al. [1993] (hereinafter referred to as
STHHB) and presenting some recent computations of hybrid
transfer that add a diagnostic tail, double both the Boltz-
mann integration resolution and the spectral resolution of the
previous computations, and determine the errors associated
with both resolutions. This section also evaluates the errors
associated with the diagnostic tail and extends the hybrid
representation to a set of finite depths characteristic of the
Abaco Bight.

In Section 3, we evaluate the errors associated with selected
unrenormalized and renormalized truncations of hybrid trans-
fer. These truncations include some interaction-angle trun-
cations previously defined by STHHB, some hybrid imple-
mentations of the discrete-interaction approximation [Hassel-
mann et al., 1985], and some hybrid implementations of the
reduced-integration approximation recently proposed by Lin
et al. [unpublished manscript]. The hybrid coefficients for
these truncations are determined by various selection algo-
rithms that focus on bin differences between interacting wave
components.

In Section 4, we develop a systematic approach to the trun-
cation of the hybrid sum. This approach selects groups of co-
efficients (the interactions for which are scaled versions of one
another or of mirror images of one another) rather than indi-
vidual coefficients and employs a calculus that makes practi-
cal the recursive optimization of the resulting truncations. It
yields a multitude of renormalized truncations that are signif-
icantly more accurate than the discrete-interaction approxi-
mation at minimal cost in efficiency and defines a sequence
of truncations suitable for a staged implementation of the
SNLdV inverse modeling.

Finally, in Section 5, we summarize the conclusionis of the
investigation.

2. Errors of the Full Hybrid Representation

The nonlinear transfer interaction has been studied by a
number of investigators, notably by Hasselmann [1962, 1963a,
b, 1968] and by Webb [1978]. The corresponding contribution
to (1) is of the form,

N(k,z,1) = / / / dk; d%ks d%s (3)
UNIS(kl + ko — k3 — k)&(wl + ws —wz — w)H,.

where the spectral product IT is given by
II(ky, ko, k3, by, t) =
Ak, ,t)A(ks, ) (A(ks, =,t) + Ak, , t))
— (A1, 2,t) + A(kz, z,1)) Aks, 2, 8) Ak, 2, 1).
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Here w; is the depth-dependent frequency corresponding to k;,
and on(k1, k2, k3, k) is an interaction coefficient determined
by the dynamics of the nonlinear wave-wave interaction. The
delta functions express momentum and energy conservation
for this interaction.

Our model employs a hybrid representation for the nonlin-
ear transfer, previously outlined by SNLAV and described in
some detail by STHHB. This representation basically incorpo-
rates a simplification first proposed by Thacker[1982] into the
EXACT-NL scheme of HH, using a somewhat simpler set of
integration variables. The resulting scheme retains EXACT-
NL’s symmetry, precision, and two-stage structure but, by
transferring a spectrum-independent preintegration from the
second stage to the first, dramatically accelerates the result-
ing second-stage computation, enabling a relatively accurate
and relatively efficient representation for the nonlinear trans-
fer. Physically, this preintegration collects together in single
hybrid interactions multiple interactions belonging to identi-
cal spectral-band quadruplets. Thus all possible interactions
are represented, and these interactions are represented in a
uniquely efficient manner consistent with the spectral repre-
sentation.

As detailed by STHHB, the hybrid representation follows
directly from the expansion of A as a piecewise-constant func-
tion of k,

A(k: :C,t) = ZAi(z:t)Gi(k) + AR(ki z’t)'

The basis function Gj(k) is unity inside the ith spectral band
and vanishes outside this band. The mean spectral density
A; is the projection of A onto G;. AR is a residual correction
term. Similar expansions apply to P, I, N, D, and B.

Projecting (1) onto G; yields the model equations governing
the evolution of the A;,

0A;
ot

Projecting (3) onto G; yields the hybrid representation for
N;, presented here in its symmetrized spectral-product form,

:—R+I,+N,—D,—Bl+ (4)

N; = % Y T pig,. g, + NE. (5)

R; is the area of the ¢th spectral band that normalizes the pro-
jection. The outer sum is over the base interactions among
quadruplet bands of the spectral representation. T, is the
_positive spectrum-independent hybrid coefficient for the nth
‘base interaction, obtained by suitably presumming various
contributions to the kernel of the Boltzmann integral (3). The
inner sum expands these base interactions to other angle bins
of the spectral representation. The four-component vector
index gy identifies the spectral bands of the expanded inter-
‘action. The coefficient,

Hig = big, + 8igy — 8ig, — bigy,

distributes the transfer to these spectral bands. The spectral
product for the expanded interaction is defined by

g = Aq Agy(Ags + Ag,) — (Agy + Ag)Ag Ag,-

Finally, Nft is a residual correction determined by A® and
the A,‘.
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Computation of N; from (5) is subject to two kinds of error,
integration error arising from the finite resolution of the Boltz-
mann integration grid (generating errors in the hybrid coeffi-
cients T,,) and representation error arising primarily from the
finite resolution of the spectral grid (generating a nonzero
NE). The first of these errors is readily investigated by ex-
amining the convergence of the first term on the right-hand
side of (5) with increasing resolution of the integration grid.
STHHB evaluate this convergence for an integration resolu-
tion of 384 wave-number bands and 330 angle bands, with
a linear extrapolation to infinite resolution, concluding that
the resulting extrapolated integration has not yet quite con-
verged. Comparison of the resulting hybrid estimate with
that of EXACT-NL (using a piecewise-linear spectral rep-
resentation), reflecting integration errors and representation
errors in both computations, suggests that these estimates
are comparable, with some systematic differences. Both esti-
mates show a double peak in the negative midfrequency lobe
of the nonlinear transfer for Joint North Sea Wave Project
(JONSWAP) input [Hasselmann et al., 1973].

STHHB employ a spectral representation with 16 wave-
number bands and 10 angle bands. The wave-number bands
are all prognostic and are distributed logarithmically, with
bands 1 and 16 centered on .2 Hz and 1.0 Hz, respectively.
To better account for nonlinear interactions with wave com-
ponents in the spectral tail beyond 1.0 Hz and to better match
the angular resolution of the field measurements, the present
computations employ a nominal spectral representation with
16 prognostic and four diagnostic wave-number bands and 12
angle bands. The wave-number bands are again distributed
logarithmically, with bands 1 and 16 centered on .2 Hz and
1.0 Hz, respectively.

2.1. Dependence on the Resolution of the
Integration Grid

As discussed by STHHB, the convergence of the transfer
estimates tends toward linear as the resolution of the integra-
tion grid increases. Accordingly, it is possible to improve the
results of the finite-resolution hybrid computations by linearly
extrapolating these results to the case of infinite resolution.
The present extrapolation employs three finite-resolution hy-
brid coefficient files, a higher resolution file to be extrapo-
lated, a file with lower wave-number resolution, and a file
with lower angle resolution. By decreasing the number of
wave-number and angle bands in the lower resolution files
by factors of 3, it is possible to guarantee that all vector
indices represented in the two lower-resolution files_are also
represented in the higher resolution file. It follows that the
dimension of the extrapolated file is the same as that of the
unextrapolated higher resolution file and, more important,
the extrapolated coefficients are necessarily positive.

Table 1 summarizes the four higher resolution cases in-
cluded in the present convergence study for nominal spectral
resolution. The indices n; and ng are the number of wave-
number and angle bands in the integration grid. The number
of wave-number and angle bands in the corresponding lower
resolution cases required by the extrapolations are obtained
by dividing nx and ng by 3. The index ng is the resulting
number of hybrid coefficients in the higher resolution files and
in the extrapolated files. Py is the proportional variance for
an extrapolated estimate of the nonlinear transfer relative to
that of the extrapolated case-4 estimate, computed from (2)
for the JONSWAP spectrum,
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Table 1. Integration Error for Nominal Spectral Resolution

Case np ny ng Py PP P PLY PLY
1 72 72 144,523 2162 .1393 .1503 .0983 .1879
2 216 216 213,948 .0019 .0057 .0030 .0036 .0041
3 432 432 231,386 .0001 .0004 .0000 .0005 .0001
4 648 648 236386 — @— @— @—  —

Here n; and ng are the number of wave-number and angle bands
in the Boltzmann integration grid, ng is the resulting number of hy-
brid coefficients, and the Py are the proportional variances between
the extrapolated transfer and the corresponding extrapolated case-4
transfer for JONSWAP spectrum (6) with peak frequencies .25, .3,
4, .5, and .7 Hz.

1 5/ w-4 “2—12(3“’5‘1)2
Alk) = gkl 3@ Ty 2 ¥(d),  (6)
with Phillips parameter ¢ = .01, peak frequency 2 (nominally
.3 Hz), peak enhancement factor ¥ (nominally 3.3), frequency
spread factor ¢ = .07, and directional distribution,

4 )
$(9) = 365—7r cos®(3).

This table suggests a convergence of roughly 2% (Py =
.0004) for case 3 and (by implication) less than 1% (Py <
.0001) for case 4. As would be anticipated, the number of
hybrid coefficients required for a fully convergent representa-
tion of the nonlinear transfer (Ny 22 240, 000) is somewhat
larger than the corresponding number of coeflicients reported
by STHHB for a spectral representation with a smaller num-
ber of wave-number and angle bands. (In the course of the
computations reported here, we discovered a residual redun-
dancy in the results previously reported by STHHB. Removal
of this redundancy reduces the number of coefficients for a
given hybrid-coefficient file by a variable percentage that is
typically of order 30% for the larger files. This reduction sig-
nificantly improves the efficiency of the hybrid computation
but does not alter the hybrid estimates.)

The table reveals some scatter in the proportional vari-
ances for different peak frequencies. This scatter is directly
attributable to the relative phasing of the peak frequency and
the frequencies of the spectral representation.
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A comparison of the resulting angle-integrated JONSWAP
transfer for a peak frequency of .3 Hz is given in Figure 1. This
figure shows both the unextrapolated transfer (left panel) and
the extrapolated transfer (right panel). In contrast to the
hybrid computations presented in STHHB, the present com-
putations employ band-averaged rather than mid-band spec-
tral input, consistent with the interpretation of the prognostic
variables A as band averages.

Comparison of Figure 1 with Figures 4 and 8 of STHHB in-
dicates considerable agreement despite the differing spectral
representations. Missing from Figure 1, however, is any di-
rect evidence for a double peak in the negative midfrequency
lobe. In fact, this lack of evidence for a double peak is some-
what coincidental. The underlying frequency width of the
low-frequency lobe of this double peak is comparable with
the frequency resolution of the spectral representation. Thus
it is possible, with proper phasing between the peak frequency
of the input spectrum and the frequencies of the spectral rep-
resentation, to smooth out the appearance of this lobe. That
is essentially what has happened here. The band-averaged
spectral input has rendered this input less sharp (as pointed
out by STHHB, midband spectral input effectively sharpens
this input relative to (6)) and has slightly shifted the result-
ing frequency of this low-frequency lobe. These two effects
completely mask the appearance of this lobe.

2.2. Dependence on the Resolution of the
Spectral Grid

To better resolve the double peak in the negative midfre-
quency lobe for JONSWAP input and to provide a quanti-
tative measure for the representation error of the hybrid es-
timates, we have extended the convergence study of Table 1
and Figure 1 to a double-resolution spectral representation
with 32 prognostic and eight diagnostic wave-number bands
and 24 angle bands. Table 2 summarizes the convergence of
the resulting hybrid estimates with increasing resolution of
the integration grid. Figure 2 shows the corresponding unex-
trapolated (left panel) and extrapolated (right panel) angle-
integrated JONSWAP transfer.

Examination of this table and figure suggests that the con-
vergence of the double-resolution estimates is comparable to

2
1 -

[dON
T
1 | | |

Figure 1. Convergence of angle-integrated hybrid transfer for nominal spectral resolution. Computed for
JONSWAP spectrum (6) with peak frequency .3 Hz. Left panel shows covergence of unextrapolated hybrid
estimates, right panel, convergence of extrapolated estimates: triangles, case-1 estimate; diamonds, case-2
estimate; open circles, case-3 estimate; and bullets, case-4 estimate. Units are 10~¢ m? s and rad s™!.
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Table 2. Integration Error for Double Spectral Resolution

Case np ny nyg P](Vlzs) Pz(\ia) PI(\IA) PI(V‘s) PJ(\i7)
1 72 72 1,027,193 .1391 .0840 .1060 .0549 .0752
2 216 216 2,840,609 .0037 .0006 .0014 .0017 .0031
3 432 432 3,395,041 .0001 .0002 .0003 .0004 .0004
4 648 648 3,577,401 — — — — —

Here ny and ng are the number of wave-number and angle bands
in the Boltzmann integration grid, ny is the resulting number of hy-
brid coefficients, and the Py are the proportional variances between
the extrapolated transfer and the corresponding extrapolated case-4
transfer for JONSWAP spectrum (6) with peak frequencies .25, .3,
4, .5, and .7 Hz. .

that of the nominal estimates. In particular, the double-
resolution estimates appear to have converged to better than
1%. The number of hybrid coefficients has increased roughly
15 times. The double peak in the negative midfrequency lobe
+ of the angle-integrated transfer is now clearly visible, and the
low-frequency lobe of this double peak is revealed to be very
sharp.

Indeed the appearance of this double peak in Figure 2 sug-
gests that the important feature may not be the double peak
per se, but rather the sharpness of its low-frequency lobe.
There are clearly two components to the negative midfre-
quency lobe, but the separation of these components into
two distinct lobes may be less important than the differences
in their relative characteristics. One component is broadly
spread over the entire midfrequency lobe. The other compo-
nent is confined to a very narrow range of frequency at the
extreme low-frequency margin of this lobe. '

In this context, it is important to note that the .07 fre-
quency spread employed by both STHHB and the present
computations is somewhat extreme. The mean JONSWAP
spectrum has a double-sided frequency spread of .07 and .09.
Thus, even though the spectral input for the present computa-
tions is less sharp than for the STHHB computations (because
it is band-averaged), this input is still sharper than is implied
by the mean JONSWAP spectrum. In fact, we find that with
a frequency spread of .08 (not shown), the two peaks of the
negative midfrequency lobe of Figure 2 become a single very
sharp peak at the low frequency margin of the lobe which

1 | L
0 2 4 6 8
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Figure 2. Convergence of angle-integrated hybrid transfer for double spectral resolution.
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(sharply) recedes at higher frequencies to what is now more
of a plateau at the base of this peak than a separate peak.
This suggests that it is indeed the second characterization
above that is the more appropriate.

The broader issue is whether this feature, however charac-
terized, is representative of the real evolution of the wave field.
Clearly, the appearance of a double negative peak and/or
very sharp low-frequency component of this negative peak for
JONSWAP spectral input is related to the sharpness of this
input (as determined by the peak-enhancement and frequen-
cy-spread parameters). To the extent that the JONSWAP
form accurately describes the real evolution of the wave field,
one might expect this evolution to reflect this feature. On
the other hand, it is well known that the nonlinear transfer
tends to stabilize the evolution of the spectrum. It may be no
coincidence that the separation of the negative midfrequency
lobe of this transfer into two distinct peaks appears to occur
for an effective sharpness just slightly greater than that of the
mean JONSWAP spectrum.

The hybrid estimates of Figures 1 and 2 represent the aver-
age transfer in the various spectral bands of the corresponding
spectral representations. But these representations have been
configured so that each band of the nominal representation
contains exactly four bands of the double-resolution repre-
sentation. Thus, by properly summing the double-resolution
estimates, one can indirectly estimate the band averages for
nominal resolution. This improved estimate of these band
averages differs from a direct estimate only in that it is de-
rived from a double-resolution representation for the input
JONSWAP spectrum. Accordingly the proportional variance
Pn between these two estimates provides a measure of the
representation error of the nominal estimate.

Table 3 shows this proportional variance as a function of
peak frequency, and Figure 3 compares these two estimates
and the EXACT-NL estimate from Figure 8 of STHHB for a
peak frequency of .3 Hz.

As before, there is substantial agreement among the three
estimates, but there are systematic differences. Furthermore,
the differences remain pretty much as reported by STHHB.
The biggest difference is that the EXACT-NL estimate does
not descend quite as sharply from its positive low-frequency
lobe to its negative midfrequency lobe as do the hybrid es-

206000,

1 L |
0 2 4 6 8

Computed

for JONSWAP spectrum (6) with peak frequency .3 Hz. Left panel shows convergence of unextrapolated
estimates, right panel, convergence of extrapolated estimates: diamonds, case-2 estimate; open circles, case-3

estimate; and bullets, case-4 estimate. Units are 1076 m

2 s and rad s~1.
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Table 3. Representation Error for Nominal Spectral
Resolution

QD

Py

.0129
.0113
.0114
.0119
0127

. .. . i\D
ES RN

Here §2 is the peak frequency in Hz, and Py is the corresponding
proportional variance between the extrapolated nominal-resolution
case-4 estimate and the averaged extrapolated double-resolution case-
4 estimate, computed for JONSWAP spectrum (6).

timates. Because the descent of the EXACT-NL estimate is
quite similar to that of the unextrapolated lower-integration-
resolution case-1 and case-2 hybrid estimates of Figure 1, we
believe this difference is primarily the result of the incomplete
convergence of the EXACT-NL estimate. A second quali-
tative difference is that the maximum in the positive high-
frequency lobe of the EXACT-NL estimate occurs at higher
frequency. The improved hybrid estimate lowers the ampli-
tude of the high-frequency lobe of the nonlinear transfer rel-
ative to that of the direct estimate, but it does not reproduce
the dimple of the EXACT-NL estimate or appreciably shift
the frequency of the maximum. We do not presently under-
stand this difference.

Table 3 suggests that for nominal spectral resolution the
representation error of the extrapolated case-4 hybrid esti-
mates is consistently of order 11% over an entire range of
peak frequency. This error is considerably larger than the
integration error, suggesting that nominal spectral resolution
may be insufficient for the final stages of the SNLAV inverse-
modeling computation and raising the question, what spectral
resolution is sufficient for these stages? In order to provide
at least a partial answer to this question, we have pushed the
computation still one step further.

Table 4 shows the proportional variance for the JONSWAP
input (6) with peak frequency .3 Hz for eight choices of spec-
tral resolution. In each case, we have compared the unextrap-

Figure 3. Comparison of various estimates for the angle-
integrated transfer for JONSWAP spectrum (6) with peak fre-
quency .3 Hz: diamonds, EXACT-NL estimate; open circles,
extrapolated nominal-spectral-resolution case-4 estimate; and
bullets, averaged extrapolated double-spectral-resolution
case-4 estimate. Units are 10~¢ m? s and rad s™1.
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olated case-2 computation with an unextrapolated quadruple-
spectral-resolution case-2 computation with 64 prognostic and
16 diagnostic wave-number bands and 48 angle bands. All
computations are collapsed to a nominal spectral resolution of
16 prognostic and four diagnostic wave-number bands and 12
angle bands before evaluating the proportional variance. (To
simplify this computation, we have employed case-2 rather
than case-4 integration resolution. We have not extrapolated
the results of this computation. We believe that an extrap-
olated case-4 computation would have produced similar re-
sults.)

This table increases the estimate for the representation
error at nominal spectral resolution from 11% to 13% and
suggests that the representation error of a double-spectral-
resolution computation is of order 4% while the representation
error of a computation with quadruple wave-number resolu-
tion and double angle resolution is of order 2%. Clearly, it is
not possible to match the 1% case-4 integration error with-
out increasing the spectral resolution roughly fourfold (or, as
discussed below, in some way extrapolating these estimates).

Figure 4 shows the corresponding angle-integrated transfer
for nominal, double, and quadruple spectral resolution (main
diagonal of Table 4), collapsed to a nominal spectral resolu-
tion of 20 total wave-number bands and 12 angle bands (left
panel) and to a double spectral resolution of 40 total wave-
number bands and 24 angle bands (right panel).

The visual contrast between the left-hand and right-hand
panels of Figure 4 might lead one to conclude that nominal
spectral resolution is not sufficient for wave modeling in gen-
eral or for the inverse-modeling program of SNLAV in partic-
ular. We would emphasize, however, that, regardless of the
spectral resolution, the prognostic equations (4) still govern
the corresponding band averages. What is important to the
program of SNLAV is not that these averages resolve all varia-
tions in nonlinear transfer with frequency and angle, but that
the associated representation error be small enough to ensure
small errors in the estimates for the unknown source terms.
Visually, what is important in this figure is not the differ-
ence between the nonlinear transfer depicted in the left-hand
and right-hand panels, but rather the differences between
the nominal-, double-, and quadruple-spectral-resolution es-
timates of the left-hand panel. Ultimately, the question of
what spectral resolution is adequate for the inverse-modeling
program of SNLAV must be answered by explicitly evaluat-
ing the resulting errors in the inversely modeled source terms.
Such an evaluation is beyond the scope of the present paper.

Table 4. Representation Error for Extended Spectral
Resolution

T Py P&y P
16 0162 0078 0061
32 .0080 0015 0008
64 .0068 0004 —

Here the Py are the proportional variances between various res-
olution unextrapolated case-2 estimates of N and the correspond-
ing unextrapolated case-2 estimate for quadruple spectral resolution.
Computed for JONSWAP spectrum (6) with peak frequency .3 Hz
for 16, 32, and 64 prognostic wave-number bands T" and 12, 24, and
48 angle bands S. Spectra collapsed to nominal spectral resolution
before computing proportional variance. The central proportional
variance provides an estimate for the representation error for double
spectral resolution.
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Figure 4. Comparison of unextrapolated case-2 angle-integrated hybrid transfer for various-resolution
JONSWAP spectra (6) with peak frequency .3 Hz. Displayed transfer collapsed to nominal spectral resolution
(left panel) and to double spectral resolution (right panel): diamonds, nominal-spectral-resolution estimate;
open circles, double-spectral-resolution estimate; and bullets, quadruple-spectral-resolution estimate. Units

are 10~ m? s and rad s~1.

However complex the relationship between the numerical
errors of the nonlinear-transfer computation and the result-
ing errors in the inversely modeled source terms, it is impor-
tant to note that these resulting errors can be significantly
reduced by first inverse modeling at nominal spectral resolu-
tion, then inverse modeling at double spectral resolution and
extrapolating the results of the inverse modeling to the case
of infinite spectral resolution (in much the same way that the
the error of the Boltzmann integral is reduced by extrapo-
lating the Riemann approximant to this integral to the case
of infinite integration resolution). To the extent that the re-
sulting errors are comparable with the numerical errors of the
nonlinear transfer estimates, one would expect the errors of
the extrapolated results to be no greater than a few percent.

Another way of decreasing the representation error of the
hybrid computation is to extend this computation to a piece-
wise-linear spectral representation. As pointed out in ap-
pendix A of STHHB, however, a consistent application of the
piecewise-linear representation requires a deconvolution of the
resulting nonlinear-transfer estimates. In the absence of this
deconvolution, it is not clear that the representation error
of the resulting estimates or of spectral evolutions employ-
ing these estimates is significantly improved relative to the
piecewise-constant computation.

For this reason and because of the inherent simplicity of
the piecewise-constant computation (and inherent complex-
ity of a deconvolved piecewise-linear computation), increas-
ing the spectral resolution of the piecewise-constant compu-
tation may provide a more practical approach to improving
the representation error than extending this computation to
a piecewise-linear spectral representation at the same resolu-
tion. Ultimately, the relative error of these two approaches
needs to be directly evaluated by implementing a piecewise-
linear extension to the hybrid computation.

2.3. Dependence on Diagnostic Wave Components

The nonlinear character of the nonlinear transfer interac-
tion implies that interactions involving wave components ex-
ternal to the prognostic range of the wave-model computation
can contribute significantly to the nonlinear transfer within
this range. In particular, interactions involving wave compo-

nents with frequencies somewhat larger than the upper limit
frequency of the wave model can contribute significantly to
this transfer. To allow for these interactions, we have fol-
lowed the WAM prescription of attaching a number of di-
agnostic wave-number bands to the model (nominally four
such bands for nominal spectral resolution), extrapolating A
in these bands from the uppermost prognostic wave-number
band (assuming a Phillips tail) and incorporating these bands
into the nonlinear-transfer computation.

Similarly, interactions involving wave components with fre-
quencies somewhat below the lower limit frequency of the
wave model can also contribute to the modeled transfer.

In order to evaluate the dependence of the hybrid transfer
on such interactions, we have extended our nominal-spectral-
resolution computations (with extrapolation) to include var-
ious numbers of wave-number bands above and below the
prognostic range of the wave model. (Note that the im-
portant variable is not the number of bands per se but the
frequency range represented by this number of bands.) To
simplify these computations, we have employed case-2 rather
than case-4 integration resolution. Table 5 shows the result-
ing dependence of the proportional variance Py, computed
from (2) over the prognostic range of the spectrum, between
the nonlinear transfer for various numbers of upper and lower
external bands and the nonlinear transfers for a large number
(24) of upper external bands or a large number (10) of lower
external bands. These proportional variances are computed
for the JONSWAP spectrum (6) with peak frequency .25, .3,
A4, .5, and .7 Hz.

The upper section of Table 5 suggests that, at the lower
peak frequencies, four upper external diagnostic bands are
sufficient to represent the nonlinear transfer with 1% accu-
racy. At higher peak frequencies, however, the error increases
to 3-4% at .5 Hz and 13% at .7 Hz. Doubling the number
of diagnostic bands to eight extends the range over which
the error is less than or equal to 1% to a peak frequency of
.5 Hz. While a modest increase in the number of diagnostic
bands does not severely burden the computation, particularly
if implemented adaptively, the early development of the spec-
trum is nonetheless somewhat problematic for the nonlinear
transfer computation (as it is in a number of other important
respects).
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Table 5. Errors Resulting From the Finite Range of the
Spectral Representation

L U ag P{™ PP P P P
0 0 137,722 .0005 .0011 .0118 .0689 .6153
0 4 213,948 000l .0001 .0004 .0012 .0177
0 8 279,263 .0000 .0000 .0001 .0001 .0007
0 14 336979 .0000 .0000 .0000 .0000 .0000
0 24 371504 — @ — @ — — =
0 4 218421 .0006 .0000 .0000 .0000 .0000
1 4 239529 .0000 .0000 .0000 .0000 .0000

10 4 39749 — @ — - — —

Here L is the number of lower external wave-number bands, U is the
number of upper external wave-number bands (number of diagnostic
bands), ng is the resulting number of hybrid coefficients, and the Py
are the proportional variances between the extrapolated nominal-
spectral-resolution case-2 transfer and the reference transfer defined
by the final entry in each section of the table, computed for the
JONSWAP spectrum (6) with peak frequencies .25, .3, .4, .5, and .7
Hz.

The lower section of Table 5 suggests that so long as the
lower limit frequency of the model is somewhat lower than
the lowest anticipated peak frequency, there is no need for
additional lower external bands. If such a need develops, it is
probably most readily accommodated, not by attaching lower
external bands, but by simply extending the prognostic range
of the model.

2.4. Dependence on Depth

The hybrid computations reported above assume deep-wa-
ter dispersion. These computations need to be amended to
allow for the finite depth of the Abaco Bight.

At any location in the Bight the spectral range divides into
two parts, a low-wave-number (low-frequency) part that feels
the bottom and a high-wave-number (high-frequency) part
that does not. This division depends on the wave number k
relative to a threshold wave number kg determined by the lo-
cal depth H. For k < kg, the dispersion is depth-dependent;
for k > kp, this dispersion is not.

A similar division applies to the quadruplet interactions
that contribute to the hybrid sum. If all of the interact-
ing wave numbers for a given interaction are larger than kg,
then the appropriate hybrid coefficient is a deep-water coef-
ficient, estimated from a Boltzmann integration with deep-
water dispersion. If, on the other hand, any of these inter-
acting wave numbers are smaller than or equal to kg, this
coefficient must be estimated from a Boltzmann integration
with depth-dependent dispersion.

Accordingly, we may split the nonlinear-transfer computa-
tion into two parts. One part is defined by a single appropri-
ately ordered deep-water hybrid coefficient file and is summed
from a start index depending on depth to an end index de-
pending on the number of diagnostic bands. The other part
is defined by one of several finite-depth hybrid coefficient files
and is summed to an end index depending on the number of
diagnostic bands. We simplify the computation of the depth-
dependent part of this transfer by ordering the interior grid
points of the model by increasing depth. This allows neigh-
boring points to share the same hybrid coefficient files.

In fact, as will be discussed in more detail in the second
paper in this series, this depth splitting is complicated by
a second time splitting, introduced to reduce the burden of
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the nonlinear-transfer computation within the wave model.
This time splitting is related to an instability, associated with
the nonlinear transfer, that first appears in the uppermost
prognostic wave-number band. To avoid this instability, it is
necessary to employ a relatively small time step. It is not
necessary, however, to advance all nonlinear interactions at
this same time step. Interactions among low-wave-number
components can be advanced at multiples of the time step
without causing the computation to become unstable. To
take advantage of this result, we further subdivide the hybrid
coeflicient files and embed the main time-stepping loop of the
computation in one or more outer loops in which we sepa-
rately evaluate the nonlinear transfer from low-wave-number
interactions.

The computation of depth-dependent hybrid coefficients is
more consuming of computer resources than is the computa-
tion of deep-water coefficients. In particular, the evaluation
of the interaction coefficient on in the integrand of (3) is
more complex, and the integration cannot take advantage of
k scaling (as employed by Hasselmann [1963a, b], Resio and
Perrie [1991], and STHHB). Nonetheless, the dependence of
this interaction coefficient on depth is known [Hasselmann,
1962; Herterich and Hasselmann, 1980], and, because of the
depth splitting, it is possible to bypass considerable com-
putation by first checking whether a given interaction is in
fact depth-dependent before evaluating its interaction coeffi-
cient (retaining only interactions that are depth-dependent).
We have in fact succeeded in extending the deep-water com-
putation to a set of five depths characteristic of the Abaco
Bight, 2, 4, 6, 8, and 10 m, computing extrapolated case-4
hybrid coefficient files for all five depths. The correspond-
ing nominal-spectral-resolution threshold-wave-number bins
for these computations are bin 13, 10, 8, 7, and 6. The inte-
gration and representation errors for these finite-depth repre-
sentations are presumed comparable with the corresponding
errors for the deep-water representation.

2.5. Triplet Interactions

It has been suggested that in shallow water it is possible
for resonant nonlinear interactions among triplets of interact-
ing wave components to contribute to the evolution of the
wave field [Beji and Batijes, 1993]. Our treatment of non-
linear transfer does not allow for such interactions. Could
this neglect significantly impact the SNLAV inverse model-
ing? We think not. The Abaco Bight is shallow (relative to
the wavelengths present) only along its periphery. Whatever
the wind direction, this periphery divides into two parts, an
upwind periphery and a downwind periphery. Along the up-
wind periphery, kH is restricted to larger values by the small
amplitude of longer wave components at short fetch. Here
there can be no significant triplet interactions. Along the
downwind periphery, the products of the nonlinear interac-
tions, whether quadruplet or triplet, are primarily absorbed
at the boundary without crossing into deeper water. Because
the observation stations are all located in deeper water, these
products cannot significantly impact the inverse modeling.

3. Selected Truncation of the Hybrid
Representation

The rather severe computational demands of the nonlinear-
transfer computation, exacerbated by the necessity to esti-
mate this transfer at each spatial grid point and each time
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step of a wave-model integration, has prompted a number of
approximate schemes for calculating this transfer. Typically,
these schemes involve either a less-than-convergent Boltz-
mann integration, explicit truncation of the resulting Rie-
mann sum, renormalization of the resulting transfer, or some
combination of the three.

It should be noted that, in most schemes for calculating
nonlinear transfer, the accuracy of the scheme is inversely re-
lated to its efficiency. The more efficent the scheme, the less
accurate it can be and vice versa. The hybrid scheme is in
some respects an exception to this rule. In other schemes,
the number of terms in the Riemann sum increases without
limit as the integration resolution and accuracy increase. In
the hybrid scheme, this number approaches an asymptotic
limit. Because the hybrid coefficients are computed only once,
there is little reason not to employ the most convergent set
of coefficients that can practically be estimated, currently the
extrapolated case-4 set of Section 2. While the resulting full
hybrid sum may be too long for some applications, it provides
a excellent point of departure for subsequent truncation and
renormalization. In effect, the hybrid scheme eliminates inte-
gration error from the resulting estimate of nonlinear transfer,
leaving only the representation error and the error associated
with subsequent truncation and renormalization. Ultimately,
these errors are determined by the resolution of the spectral
representation and by the number and type of hybrid coeffi-
cents retained.

STHHB discuss a number of unrenormalized truncations
that are effective in reducing the dimension of the hybrid
sum without significantly degrading the resulting estimate for
the nonlinear transfer. Particularly effective among these are
the relatively input-nonspecific interaction-angle truncations
that eliminate coefficients for which the angle bins for any
two of the four interacting wave components differ by more
than some threshold value and the input-specific size-ordered
truncations that eliminate coefficients that contribute only
marginally to the nonlinear transfer specific to particular in-
put spectra. A particular combination of these two trunca-
tions, retaining only 3 to 6% of the coefficients (> and ¢ of
Figure 12 of STHHB), gives a good to excellent representa-
tion for the nonlinear transfer associated with the JONSWAP
input (6), albeit for a single specific choice of peak frequency.

Probably the most efficient approximation to the nonlin-
ear transfer is the discrete-interaction approximation [Has-
selmann et al., 1985]. Employed to represent the nonlinear
transfer in WAM, this approximation allows only two non-
linear interactions per spectral band, an efficiency roughly
equivalent to that of a hybrid sum with 2T terms, where T
is the number of wave-number bands in the spectral repre-
sentation. (An additional factor of S, the number of angle
bands in the spectral representation, is expressed as an inner
loop in the hybrid sum (5).) The strength of the discrete in-
teractions, however, must be dramatically increased to give a
(marginally) acceptable estimate for the resulting nonlinear
transfer. (It is as if the interactions that are not explicitly
included in the discrete-interaction approximation, and that
together define the bulk of the transfer, sum together to give
a contribution to this transfer much larger than but with a
shape similar to that of the allowed interactions. What is re-
markable is that so crude an approximation can be tuned to
give a reasonably good account of the evolution of several crit-
ical spectral parameters (total energy and peak frequency).

Let ki, ko, k3, and k4 be the vector wave numbers of the
wave components for a given nonlinear interaction, and let
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¥; = arg(k;) be the corresponding directions of propagation
for these wave components. Symmetrization of the Boltz-
mann integral [HH] restricts the range of these variables to
kl < k‘z, IC3 < k4, 191 < 193 < 27{'—191, and '4.92 S 194 < 27!'—192.
In this context, the discrete-interaction approximation in ef-
fect truncates the nonlinear transfer by restricting the in-
tegration space of a three-dimensional version of the HH-
symmetrized Boltzmann integration to the immediate neigh-
borhood of a single point (and its mirror image) for which
k; = ko and for which ¥3 and ¥, differ by 33.6 degrees.

Recently, R. Q. Lin et al. (unpublished manuscript, 1996)
have proposed a reduced-integration approximation to the
Boltzmann integral that restricts this integration space to a
broad neighborhood of the line defined by ks = k; (and k4 =
ks), along which the coupling coefficient on(k1, k2, k3, k4)
has an integrable singularity. (HH respond to this same sin-
gularity by stretching the EXACT-NL integration variables
to provide a greater concentration of integration points in the
neighborhood of this line.) Note, however, that the spectral
product vanishes identically for ks = ky. It follows that the
immediate neighborhood of this line does not contribute sub-
stantially to the integral. Therefore the reduced-integration
approximation requires a significantly broader neighborhood
than might otherwise be required.

Because the vector indices for the hybrid coefficients di-
rectly identify the spectral bins of the four interacting wave
components, it is relatively easy to define hybrid implemen-
tations for both the discrete-interaction approximation and
the reduced-integration approximation. One simply takes a
full set of hybrid coefficients and eliminates those with vec-
tor indices that do not in some approximate sense satisfy the
conditions for the approximations.

Note that the resulting hybrid implementations of the dis-
crete-interaction approximation and reduced-integration ap-
proximation are only roughly equivalent to the original ap-
proximations. In each case the hybrid implementation in
effect adds to the interactions of the approximation a neigh-
boring range of interactions defined by the spectral resolution.
Because of the presumming, it is not possible to eliminate the
neighboring interactions. However, the spirit of the approxi-
mation is retained, and the additional interactions should not
adversely affect either the accuracy of the truncation or its
efficiency.

We next evaluate the truncation error of a series of selected
hybrid truncations, including six renormalized implementa-
tions of the discrete-interaction approximation and general-
izations of this approximation DI1 through DI6, two imple-
mentations of the reduced-integration approximation RI1 and
RI2, with and without renormalization, and two interaction-
angle truncations AT2 and AT3, with and without renormal-
ization.

The discrete-interaction implementations attempt to match
the wave-number bins and angle bins of the hybrid coefficients
to the specifications for the discrete-interaction approxima-
tion. All of these implementations require the angle bins for
¥, ¥2, and Y4 to be identical and require the angle bin for 3
to differ by one. The low-level discrete-interaction implemen-
tations DI1 through DI3 require the wave-number bins for k;
and ky to be identical. DI4 allows the bins for k; and ks to
differ by no more than 2, DI5, by no more than 4, and DI6,
by no more than 6. DI1, DI2, and DI3 all require the bin for
k4 to be 2 larger than the bin for k;. DI1 requires the bin for
k3 to be 2 smaller than the bin for k;. DI2 requires the bin
for k3 to be no more than 2 smaller than the bin for k;, DI3,
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no more than 3 smaller. DI4, DI5, and DI6 require the bin
for k4 to be no more than 3, 5, and 7 larger than the bin for
k1 and require the bin for k3 to be no more than 3, 5, and 7
smaller than the bin for k. ‘

The reduced-integration implementation RI1 restricts the
integration space for the approximation as much as it can be
restricted within the context of the hybrid scheme. This im-
plementation requires the angle bins for ¥; and ¥3 to differ
by no more than 1 and the wave-number bins for k3 and k; to
differ by no more than 1. The reduced-integration implemen-
tation RI2, a less restrictive implementation more compatible
with the integration limits of the original approximation, re-
quires these wave-number and angle bins to differ by no more
than 4 and 2, respectively. Neither implementation allows
these differences to simultaneously vanish (because the corre-
sponding spectral product is identically zero).

The AT2 and AT3 interaction-angle truncations require the
angle bins for 4,, J2, J3, and ¥4 to differ by no more than 2
and 3, respectively.

Note that these discrete-interaction, reduced-integration,
and interaction-angle truncations are resolution-dependent.
A given truncation for nominal spectral resolution incorpo-
rates a somewhat different set of fundamental interactions
(and gives a somewhat different estimate for the nonlinear
transfer) than does the same truncation for double spectral
resolution. The results presented in this section and in Sec-
tion 4 are for nominal spectral resolution.

3.1. Renormalization

The renormalization of a given truncation or approxima-
tion can be accomplished in several ways. WAM essentially
tunes the discrete-interaction approximation to match the
corresponding evolution of total energy and peak frequency to
that predicted by EXACT-NL. We adopt two somewhat sim-
pler and more direct procedures for determining an optimum
renormalization, related to the differential and integral mea-
sures of the error defined by (2). In either case, we employ
reference spectra defined by an extrapolated case-4 compu-
tation of nonlinear transfer rather than by an EXACT-NL
computation. Adopting the JONSWAP input spectrum (6)
and minimizing the corresponding proportional variance,

/ A% (N — Neer)? / / d% N2,

gives the transfer-based minimum proportional variance Py
and minimizing renormalization factor uy,

Py=1- (/d2k NN,ef)z/(/dzlch/d% NZ))
un =/d2kNNref//d2kN2.

This result is readily generalized to incorporate multiple input
spectra (in which case Py is the minimum mean proportional
variance). In either case, Py and py are functions of the
JONSWAP parameters defining the input spectra.

Similarly, adopting a standard specification for the atmo-
spheric input and case-2 dissipation, employing a stable and
convergent time step, multiplying the hybrid coefficients by
the renormalization factor p4, integrating the homogeneous
prognostic equations from a null spectrum, and minimizing
the resulting proportional variance at some prescribed stage of
the evolution (or resulting mean proportional variance at mul-

and
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tiple prescribed stages of the evolution) gives the evolution-
based minimum proportional variance P4 and minimizing
renormalization factor 4. P4 and p,4 are (weak) functions
of the parameters defining the atmospheric input and dissi-
pation.

The integration of the model equations will be discussed
at length in the second paper of this series. Suffice to say,
the present integration of homogeneous deep-water equations
to estimate P4 for a given truncation of hybrid transfer em-
ploys an explicit forward-differencing scheme and, to main-
tain stability, a relatively small time step (12 s). Atmo-
spheric input and dissipation are defined by case 4 of SLL,
with M, = Mg = M, =1 and W = 10 m s=1. The corre-
sponding dimensionless coefficients @; (10~%), @2 (.2), and
Qs (.004), expressing the strength of the Phillips [1957] com-
ponent of the atmospheric input, Miles [1957] component of
the atmospheric input, and a second-order version of Has-
selmann [1974] dissipation, respectively, are chosen to give a
reasonable four-hour evolution of the spectrum. (Note that
Q1 is relative to a Phillips interaction that goes as the sec-
ond power of the air/water density ratio rather than as the
first power of this ratio originally incorporated into the SLL
relations.)

A detailed comparison of the resulting evolution with a
comparable real evolution is not important to the discussion.
What is important is the extent to which a given truncation
of the hybrid transfer reproduces the evolution for full hybrid
transfer.

3.2. Results

Table 6 shows the minimizing renormalization factors py
and g4 and corresponding minimum proportional variances
Py and P4 for multiple-input optimizations of an enlarged set
of truncations of hybrid transfer, including discrete-interac-
tion truncations DI1 through DI6, reduced-integration trun-
cations RI1 and RI2, and interaction-angle truncations AT?2

Table 6. Renormalization of Selected Truncations

Case ny UN Py Ha Py

DI1 32 47.8 .3655 48.7 3573
DI2 64 35.3 .3100 67.5 3653
DI3 94 36.4 .1560 26.2 2106
DI4 650 6.20 1187 6.84 .0881
DI5 1,126 4.50 .0605 4.90 .0398
DI6 1,376 3.98 .0566 4.30 0451
RI1 34,583 — 1987 — 1651
RI1 34,583 1.38 1337 1.84 .0600
RI2 91,650 — .0084 — 0733
RI2 91,650 1.03 0077 0.78 .0539
AT2 33,051 — .0034 — .0023
AT2 33,051 1.03 .0024 1.05 .0018
AT3 65,493 — .0002 — .0002
AT3 65,493 1.00 .0002 1.00 .0002

Here uy and Py are the optimum transfer-based renormalization
and mean proportional variance for JONSWAP spectrum (6) with
peak frequencies .3, 4, .5, .6, and .7 Hz, 4 and P, are the opti-
mum evolution-based renormalization and mean proportional vari-
ance for a 4-hour homogeneous evolution of the spectrum, evaluated
at hourly intervals, and ny is the number of hybrid coefficients in
the truncation. DI truncations are hybrid implementations of the
discrete-interaction approximation, RI truncations, hybrid implemen-
tations of the reduced-integration approximation, and AT trunca-
tions, interaction-angle truncations. Several truncations are unrenor-
malized.
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and AT3. The transfer-based optimization employs multi-
ple JONSWAP input spectra (6) with peak enhancement 3.3
and peak frequencies .3, .4, .5, .6, and .7 Hz. The evolution-
based optimization compares the action spectra for hours 1
through 4 of a homogeneous evolution, starting from the null
spectrum. Note the similarity of results for the two optimiza-
tions. Except in the case of the RI2 truncation, the renor-
malization factors are generally comparable, and so are the
corresponding proportional variances. Note also the relatively
high level of proportional variance for the discrete-interaction
and reduced-integration truncations.

Figures b, 6, and 7 show the corresponding angle-integrated
transfer, differential transfer, and homogeneous evolution of
the angle-integrated spectrum for full hybrid transfer and for
the AT2, DI5, and DI1 renormalized truncations of this trans-
fer.

It is clear from these figures that both the AT2 and DI5
truncations give a considerably more realistic representation
for the nonlinear transfer and for the homogeneous evolution
of the spectrum than does the discrete-interaction approxi-
mation (as represented by the DI1 truncation), without too
dramatically increasing the computation time. Of particu-
lar interest are the evolutions for the DI5 and DI1 trunca-
tions shown in Figure 7. The DI1 evolution exhibits the pre-
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mature low-frequency spreading and coincident flattening of
the angle-integrated spectrum characteristic of the discrete-
interaction approximation. The DIb evolution is considerably
more realistic. The principal failing of this evolution is that
the level of the high-frequency tail is somewhat larger than
that of the Phillips equilibrium. Coincidentally, as evidenced
by Figure 6, the angular dependence of the transfer in this
tail is qualitatively wrong.

Because it involves the same number of fundamental in-
teractions (which are, however, interactions among spectral
bands), the efficiency of the DI1 truncation is necessarily com-
parable with that of the discrete-interaction approximation.
Therefore, the DI5 truncation can be expected to be roughly
35 times slower than this approximation.

For an additional one to two order-of-magnitude increase in
computation time, it is clear that the interaction-angle trun-
cations AT2 and AT3 result in a truncation error comparable
with (smaller than) the computational errors of Section 2.
While these truncations must be handled with care (because
they depend to some extent on the angular localization of
the spectrum, as do all the truncations of Table 6), they pro-
vide a very accurate estimate of this transfer well short of the
full hybrid sum. Additionally, these truncations require only
modest renormalizations of order 1.

Figure 5. Angle-integrated transfer for various renormalized discrete-interaction truncations of Table 6.
Computed for JONSWAP spectrum (6) with peak frequency .3 Hz (bullets), .4 Hz (open circles), and .5 Hz
(diamonds). Upper left panel is full hybrid transfer. Upper right panel is AT2 truncation. Lower left panel
is DI5 truncation. Lower right panel is DI1 truncation. Units are 10~ m? s and rad s~?.
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Figure 6. Differential transfer for various renormalized discrete-interaction truncations of Table 6. Com-
puted for JONSWAP spectrum (6) with peak frequency .3 Hz. Displayed for angle bands 1 and 12 (bullets),
2 and 11 (open circles), and 3 and 10 (diamonds). Upper left panel is full hybrid transfer. Upper right panel
is AT?2 truncation. Lower left panel is DI5 truncation. Lower right panel is DI1 truncation. Units are 10~°

m? s and rad s~ 1.

The reduced-integration truncations RI1 and RI2 do not
appear to have much to recommend them. The efficiency
of the RI1 truncation is comparable with that of the AT2
truncation, but its accuracy, as measured by both Py and
Py, is not as good as that of the considerably more efficient
DI5 truncation. The RI2 truncation is more accurate than
the RI1 truncation, but is little more than half as accurate as
and three times less efficient than the AT2 truncation. This
truncation employs more than a third of the coefficients of
the full hybrid sum.

While the reduced-integration approximation would seem
to have a firm foundation in the singular structure of the in-
teraction coefficient oy appearing in the Boltzmann integral
(8), one is forced to conclude that (a) there are many inter-
actions in the neighborhood of this singularity that are not
important to the overall transfer and, conversely, (b) some
interactions that are important to this transfer lie outside of
this neighborhood. These considerations ultimately limit the
efficiency and accuracy, respectively, of this approximation.

While the efficiency of the original approximation, which
embeds the Boltzmann integration in the model integration,
can certainly be improved relative to the RI1 and RI2 hybrid
implementations by employing very coarse Boltzmann resolu-

tion, this improvement in efficiency must inevitably seriously
degrade the accuracy of the approximation. Note also that
the ratio between P4 and Py is considerably larger for the
RI2 truncation than it is for the other truncations of Table
6. This suggests that the cumulative effects of truncation er-
ror may be particularly troublesome for model integrations
employing the reduced-integration approximation.

4. Systematic Truncation of the Hybrid
Representation

The success of the hybrid generalizations of the discrete-
interaction approximation, obtained by defining new selection
algorithms generalizing the original algorithm, suggests that
there may well exist other more effective truncations of hy-
brid transfer. We next outline a method for systematically
identifying such truncations.

We start by recognizing that, if we fix the number of hy-
brid coefficients in the truncated sum, the optimum choice of
these coefficients, with minimum variance between the renor-
malized truncated estimate of the nonlinear transfer and the
full nonlinear transfer; is spectrum-dependent. The optimum
choice for one input spectrum cannot be expected to be op-
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Figure 7. Homogeneous evolution of the angle-integrated action spectrum for various renormalized discrete-
1nteract10n truncations of Table 6. Upper left panel employs full hybrid transfer. Upper right panel employs

AT2 truncation.
Piecewise-constant spectra are numerical integrations,
Phillips equilibrium spectrum. Units are m?

timium for other input spectra as well. Thus, if we seek an
accurate and efficient representation of this transfer over a full
range of input spectra, such as might represent various stages
in the SNLAV model computations, we must either adapt the
choice of coefficients to the developing spectrum or focus-this
optimization on a range of input spectra rather than on a
single input spectrum. The first of these measures promises
relatively high accuracy and efficiency, but requires some sort
of adaptive selection of hybrid coefficient file(s) integral to the
wave-model computation. Depending on its complexity, this
selection may adversely impact the efficiency of this compu-
tation. More important, the optimization of coefficients for
given spectral input (to define the coefficient files available
to this selection) is computationally problematic if the focus
is on individual coefficients rather than on groups of coeffi-
cients. Accordingly, while both measures can be accomodated
by the SNLAV inverse-modeling program and while the sec-
ond measure promises less accuracy and efficiency, we here
discuss only this second measure.

One way to focus the choice of coefficients on a range of
input spectra, suggested by STHHB, is first to determine the
optlmum coefficients specific to multiple input spectra and
then to merge these coefficients. The present scheme essen-
tially me'rg‘és these coefficients up front by identifying and
truncatmg ‘the hybrid coefficients by group. It also explicitly
incorporates multiple input spectra into the selection process.

We identify as belonging to a single group of hybrid co-
efficents all coefficients for which the bin difference between
correspondmg pairs of wave-number bins are the same and

Lower left panel employs DI5 truncation. Lower right panel employs DI1 truncation.

shown at hourly intervals. Continuous spectrum is

s? and rad s~!

for which the bin difference between corresponding pairs of
angle bins are either the same or the same but of opposite
sign (mirror images). Because the wave-number bins are geo-
metrically spaced, this specification gathers together in single
groups all interactions occupying the same or mirror-image
positions in the interaction diagram (relative to the vector
variable k = ki + ky = ks + ks). (Note that other equiva-
lent exchange interactions are already built into the computa-
tion by HH’s symmetrization of the Boltzmann integral.) In
terms of this grouping, the discrete-interaction truncations
DI1, DI2, and DI3 contain 1, 2, and 3 coefficient groups, re-
spectlvely

This grouping accomplishes two things. First it guarantees
that, if a set of groups of hybrid coefficients gives a good repre-
sentation of the nonlinear transfer for a given input spectrum,
it will give a good representation for other input spectra of
similar shape but with different peak frequency. Second it

. guarantees that, if it gives a good representation of the non-

linear transfer for a given directional distribution, it will give
a good representation for the mirror-image directional distri-
bution. Both of these characteristics are necessary in order
that the representation be appropriate to a full range of input
spectra.

4.1. Scaling Considerations

To more explicitly develop this result, we note that the
JONSWAP parameterization (6), with suitably chosen power
laws expressing the dependence of the JONSWAP parameters
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¢, £2, v, and o on dimensionless fetch, provides a good descrip-
tion of the fetch-limited spectrum that develops at various
distance from a long straight coast in response to a constant
offshore wind [Hasselmann et al., 1973]. While such a param-
eterization by no means encompasses all possible realizations
of the spectrum, it does provide a reasonable range of input
on which to base a standard choice of coefficients. Moreover,
we can significantly enlarge this range by ignoring the depen-
dence of the JONSWAP parameters on dimensionless fetch
and regarding these parameters as independently variable.

We note first that in deep water the JONSWAP relation
(6) may be written in the form,

A(k) = g* 2 %ex(y, o, £)P(Y),
where x is the dimensionless function,

9 _5,-2 ‘;}7(‘/2‘1)2

1 9 54
X(’)’,G’,K)Eﬁ& Ze” 1 76 3

and & is the dimensionless vector wave number,
k= g2 %k,

with magnitude « and direction 9.
It follows that for JONSWAP input the Boltzmann integral
(8) is of the form

N(k) = ¢*273In (v, 0,5, 9), )

where Iy is a dimensionless integral over the dimensionless
variables k1, Ko, and k3 of a dimensionless integrand derived
from the integrand of (3). This integrand is a product of a
dimensionless version of the interaction coefficient (a function
of K1, K2, K3, and k), the delta function factor,

6(r1 + K2 — k3 — k)6(\/E1 + /K2 — /K3 — V),

and the spectral product factor,

X (7, 0, 61)$(91)x (7, 0, £2)Y(J2)
(x(7, 0, k3)$(I3) + x(7, 7, K)P(V))
—(x(7,0, k1) (91) + x(7, 0, k2)¥(92))
X(‘Ya o, '63)¢(03)X(71 o, '9)1/)("9)

Suppose that for given €, v, o, and (¥ and for given peak
frequency §2 equal to one of the bin frequencies of the spec-
tral representation, a given set of hybrid coefficient groups
optimizes the fit between the resulting estimate for the renor-
malized truncated nonlinear transfer and the full transfer (7).
It follows that this set of coefficient groups also optimizes
the corresponding estimate for the dimensionless integral I.
Both estimates are a sum of renormalized contributions from
each coeflicient of each coefficient group. But not all coeffi-
cients from each coefficient group are important to the result-
ing sum. Within each group these coefficients may be ordered
by wave number (of any of the interacting wave components).
For given £2, the contribution of the coefficients within a group
is typically largest for some intermediate wave number in this
ordering and becomes progressively less important at both
lower and higher wave numbers.

Now suppose that the peak frequency of the input spec-
trum is displaced to some other bin frequency of the spectral
representation. The principal effect of this displacement is to
shift the center of gravity of the important hybrid coefficients
within each coefficent group to a different wave number. This
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shift involves exactly the same displacement of wave-number
bins that is involved in displacing the peak frequency bin and
yields the same dimensionless vector wave numbers K1, Ko,
K3, and K for the important coefficients as before. Further-
more, ignoring end effects at low and high wave number and
the slightly incomplete convergence of the estimates for the
different hybrid coefficients, the resulting contributions to the
dimensionless integral Iy of the more important coefficients
for the new peak frequency are essentially identical to the con-
tributions to this integral of the more important coefficients
for the old peak frequency. Thus the resulting estimate for
I is the same, and the resulting estimate for the renormal-
ized truncated nonlinear transfer for the new peak frequency
is again optimal or very nearly so.

What if the displacement of the peak frequency is to a fre-
quency intermediate between two bin frequencies? In this
case, the important coefficients within each coefficient group
are a combination of the important coefficients for the two
bin frequencies. While the resulting performance of the trun-
cation is more difficult to assess, we would expect this perfor-
mance to again remain optimal or very nearly so.

What about the dependence on the JONSWAP parameters
€, 7, and ¢ and on the directional distribution ()7 The
integral I does not in fact depend on the Phillips param-
eter €. Therefore, the optimum choice of coefficient groups
is independent of this parameter. This integral does depend,
however, on ¥ and o. Thus one might anticipate that this
choice might change with these parameters. JONSWAP finds
some scatter but little detectable trend in the dependence of
the parameters v and o on dimensionless fetch [Hasselmann
et al, 1973]. To the extent that these parameters may be
considered constant, it follows that the optimum choice of co-
efficient groups for the nominal spectrum (6) should provide a
reasonable standard for computing nonlinear transfer in the
fetch-limited case. In fact, as demonstrated below, we find
that this choice also gives reasonable results for values of v
that differ significantly from the nominal values characteris-
tic of the fetch-limited case. We speculate that these results
will also be relatively insensitive to the value of o and to the
choice of directional distribution %(4).

To further smooth the dependence of the optimum choice
of coefficient groups on the JONSWAP parameters, we allow
this choice to incorporate multiple input spectra, minimizing
the mean proportional variance for these inputs. While the
input spectra for the optimizations reported below have in
fact varied only the peak frequency £2, they could also have
varied v, o, and ¥(9).

It should be remembered that we are.dealing here with
rather severe and greatly amplified (renormalized) trunca-
tions of the nonlinear transfer. The reason for considering
such truncations is almost entirely practical. We need them
to jump start a computation that would otherwise be too con-
suming of computer resources. These truncations are most
probably not sufficiently accurate to carry the inverse-model-
ing program.of SNLAV through to completion, but they are
useful in getting it started. Furthermore, they grade natu-
rally into less efficient but more accurate hybrid truncations,
with renormalization factors of order 1, that should make it
possible to complete this program.

4.2. Computational Details

An important practical advantage of focusing the selection
process on groups of coefficients rather than on individual
coefficients is that the overhead of this process can be greatly
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reduced. This selection is aided by a simple transfer-based
calculus arising from the specification (2). Let NU) be the
contribution to the nonlinear transfer from the jth coefficient
group and let

Cjx E/deN(j)N(k)//dszfef

D;= /d% N(j)N,e,//dzk N2,

It follows that

and

Py =1-(3 D) /(X Cin)
J ik
and (8)

uv = (3 D5) /(3 Cin),

with a similar result for the case of optimizations that in-
corporate multiple input spectra. By precomputing the cross
products Cji and Dj, these relations allow a relatively rapid
evaluation of Py and gy for various combinations of coeffi-
cient groups.

Our scheme involves three distinct steps. (a) To limit the
computational burden of the second and third of these steps,
we start from an initial truncation of the full extrapolated
case-4 hybrid representation. In what follows we have cho-
sen two such truncations as starting points, specifically the
interaction-angle truncations AT2 and AT3. (b) To further
limit the computational burden of the third step, we next at-
tempt to eliminate all remaining coefficient groups, the con-
tribution of which is in some sense relatively small. This
initial culling of groups employs one of two criteria. With the
first criterion, groups are eliminated if Cj; < Cerig, with the
second, if |Dj| < Derit, where Ceri¢ and Deri¢ are appropriate
thresholds. This culling defines the pool of coefficient groups
available to the subsequent optimization. (c) The propor-
tional variance of various combinations of coefficient groups
remaining in this pool is explicitly evaluated from (8) and an
optimum combination of coefficient groups identified. This
optimization is performed recursively in blocks of small di-
mension, starting from either the null representation (no coef-
ficient groups) or from the discrete-interaction representation
DI3 (three coefficent groups).

This scheme is limited primarily by the possible dimension
of the recursive blocks. Let ¢ be this dimension (block size),
and let @ be the number of coefficient groups that survive the
initial culling. Then the number of possible combinations of
groups in the first recursive block of coefficient groups is given
by Q!/(¢(Q — ¢)"). It follows that the required computation
time is a strong function of both @ and ¢. In practice, an
initial culling to 153 coefficient groups (such as employed in
most of the optimizations depicted in Figure 8) restricts the
block size q to 5 or less. To enable a block size of 10, the
hybrid coefficients must be culled to something like 41 coef-
ficient groups. This level of culling significantly restricts the
pool of coefficient groups available to the optimization. (For
example, only two of the three coefficient groups defining the
DI3 truncation survive this culling.)

4.3. Results

The resulting truncation of the AT2 and AT3 coefficient
files for nominal spectral resolution, using multiple spectral
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inputs, is described by Figure 8. Shown in this figure are the
transfer-based proportional variance Py and renormalization
pn for a series of truncations (cullings and subsequent recur-
sive optimizations) of these files. These variables are shown
as functions of the number of hybrid coefficients n g surviving
the truncations. Also included in the figure are the renormal-
ized truncations of Table 6.

Two series of cullings are shown, those employing the first
threshold criterion described above and those employing the
second. In each case, the dependence of Py and ux on ng
is generated from the parent truncations AT2 and AT3 by
incrementally raising the corresponding thresholds and allow-
ing fewer and fewer coefficient groups to survive. Note that
considerable initial culling of the parent truncations is pos-
sible without appreciably degrading the resulting representa-
tion. Indeed, using the first criterion, both truncations may
be trimmed to essentially one third their original size, with
little change in Py.

Additional modest culling of both parent truncations re-
sults in an intermediate truncation with 153 coefficient groups
(4372 coefficients), with Py = .0132 and g = 1.19, where the
AT?2 and ATS3 branches of the dependence of Py and gy on
ng have coalesced. This truncation defines the coefficient
pool available to and common end point for subsequent re-
cursive optimizations with block sizes of 1, 2, 3, 4, and 5 coef-
ficient groups. Further culling of this intermediate truncation
to 119, 96, 83, and 72 coefficient groups defines suitable coef-
ficient pools for optimizations with block sizes of 6, 7, 8, and 9
coefficient groups. These optimizations define the renormal-
ized combinations of coefficient groups that provide optimum
representations for the nonlinear transfer. They start from
either the null truncation or the DI3 truncation and end with
the full intermediate truncation.

Analysis of these optimizations suggests the following. (a)
Recursive block optimization dramatically lowers the pro-
portional variance relative to hybrid implementations of the
discrete-interaction approximation DI1 through DI6 and to
culled AT2 and AT3 truncations of similar dimension. (b)
Different optimizations result in similar levels for Py and py,
with some tendency for larger block size to result in smaller
Py . (c) For small numbers of coefficients, the optimizations
starting from the null truncation are better than those start-
ing from the DI3 truncation. (d) For somewhat larger num-
bers of coefficients, the optimizations starting from the DI3
truncation are better than those starting from the null trun-
cation. (e) There is not much of a tendency for distinct op-
timizations to share the same coefficients. There are_appar-
ently many distinct combinations of coefficients that result
in improved representations for the nonlinear transfer. In
particular only one of the three coefficient groups that com-
prise the DI3 truncation is typically picked up by optimiza-
tions starting from the null group, and it is typically the last
of the DI3 groups. (f) The coefficient groups identified by
a particular optimization appear unrelated to one another.
They come, not from single localized regions of the interac-
tion diagram, but are spread throughout this diagram. The
function of additional coefficient groups appears to be to com-
plement rather than to augment. It is unlikely that one can
summarize the selection of these groups in terms of a simple
algorithm such as characterizes the discrete-interaction and
reduced-integeration approximations. (g) In contrast to the
culled AT2 and AT3 truncations, which are characterized by
modest renormalizations of order 1 to 2, these optimizations
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Figure 8. Optimum transfer-based proportional variance Py and renormalization py for various trunca-
tions of hybrid transfer as a function of the number of hybrid coefficients retained ng: large bullets, selected
truncations including the DI1-DI6, RI1, RI2, AT2, AT3, CL1, OP5, and OP9 truncations; medium bullets,
culled truncations of type 1, starting from AT2 and AT3; and small bullets, culled truncations of type 2,
starting from AT2 and AT3. Remaining curves depict recursive optimizations of block size 1, 2, 3, 4, and
5, starting from the DI3 truncation or from the null truncation. All truncations renormalized to minimize
the mean proportional variance for JONSWAP input spectrum (6) with peak frequencies .3, 4, .5, .6, and

.7 Hz.

typically require substantial renormalizations of order 7 or
more.

Because the intermediate truncation that defines the coeffi-
cient pool for a block-size-5 optimization does not contains all
coefficient groups, we cannot be absolutely certain that this
optimization identifies the very best combination of 5 coeffi-
cient groups (among all possible coefficient groups). Similarly,
because the intermediate truncation that defines the pool for
a block-size-10 optimization is considerably smaller, there is
even less justification for claiming that this optimization iden-
tifies the best combination of 10 coefficient groups. (The sec-
ond iteration of the block-size-5 computation does not identify
this combination either, because it includes only combinations
that contain the same first five coefficient groups.)

But, while it is clear that this scheme cannot practically
look at all possible combinations of coefficient groups con-
tained in the AT2 and AT3 truncations, it also seems likely
that this failing is of little consequence. What is impor-
tant is that, for the level of efficiency defined by the prod-
uct of the block size and the number of recursive iterations,

these optimizations are probably about as accurate as can
be constructed. Moreover, it makes little practical difference
whether our scheme identifies the most accurate combination
of coefficient groups or simply identifies a combination that is
almost as accurate. Indeed, our scheme identifies many such
combinations of coefficient groups.

We next focus on three particular combinations of coeffi-
cient groups defined by this optimization scheme, the trun-
cations CL1, OP5, and OP9 of Figure 8. CL1 is a culled
truncation of type 1 with 742 coefficient groups. OP5 is a re-
cursive block optimization of block size 5 with 33 coefficient
groups, selected from a culled truncation of type 1 with 153
coefficient groups, starting from the DI3 truncation. OP9 is
a single-iteration block optimization of block size 9 with nine
coefficient groups, selected from a culled truncation of type 1
with 72 coefficient groups, starting from the null truncation.

Table 7 and Figures 9 through 11 compare the transfer
estimates for these truncations with those of the full extrapo-
lated case-4 hybrid sum, computed for the JONSWAP input
spectrum (6). Table 7 shows the relative insensitivity to peak
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Table 7. Transfer-Based Truncation Error for Three
Systematic Truncations

Case ng un  P§Y PGV PGP PO PG
CL1 19,392 101 .0002 .0001 .0002 .0002 .0002
0003 .0003 .0003 .0003 .0003
OP5 942 845 .0025 .0009 .0015 .0014 .0019
0040 .0043 .0042 .0068 .0105
OP9 256 117 .0061 .0029 .0028 .0052 .0073
0122 0122 0135 .0180 .0400

Here ng is the number of hybrid coefficients in the truncation,
un is the renormalization factor, and the Py are the proportional
variances between the resulting transfer and full hybrid transfer for
JONSWAP spectrum (6) with peak frequency .3, .4, .5, .6, and .7 Hz
and peak enhancement 3.3 (upper entry) and 1.0 (lower entry).

frequency §2 and peak enhancement % of the resulting propor-
tional variance Py between the renormalized truncated esti-
mates and full transfer. This table shows some deterioration
in the representations provided by the optimized truncations
OP5H and OP9 for extreme values of the peak frequency and for
the lower choice of peak enhancement, but this deterioration
is modest. The lower value of peak enhancement (1.0) typ-
ically gives only a fourfold increase in proportional variance

1 | 1 |
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relative to the higher value (3.3), even though the choice of
coefficients employs only input spectra with the higher value.

Figures 9 and 10 show the corresponding angle-integrated
transfer for these truncations (and for the full hybrid sum) for
three values of peak frequency (.3, .4, and .5 Hz) and two val-
ues of peak enhancement (3.3 and 1.0). Figure 10 shows the
differential transfer for a single value of peak frequency (.3 Hz)
and peak enhancement (3.3). These figures should be com-
pared with corresponding figures from the previous section.
In all cases, the culled transfer CL1 is almost indistinguish-
able from full transfer and the match between the optimized
estimates OP5 and OP9 and full transfer is considerably more
realistic than that of corresponding hybrid implementations
of the discrete-interaction approximation.

Table 8 shows the corresponding mean proportional vari-
ance between the homogeneous evolution of the spectrum for
these truncations and this evolution for full hybrid trans-
fer, computed both for the renormalized coefficients of Table
7 and for these coefficients rerenormalized to minimize this
proportional variance (over the first 4 hours of this evolu-
tion). This table reveals a level of proportional variance that
is somewhat larger than that of Table 7. Rerenormalization
does little to change the level of this proportional variance.
The OP5 truncation maintains a reasonably uniform level of

Figure 9. Angle-integrated transfer for various renormalized hybrid truncations of Figure 8. Computed for
JONSWAP spectrum (6) with peak frequency .3 Hz (bullets), .4 Hz (open circles), and .5 Hz (diamonds).
Upper left panel is full hybrid transfer. Upper right panel is CL1 truncation. Lower left panel is OP5
truncation. Lower right panel is OP9 truncation. Units are 10~% m? s and rad s!.
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Figure 10. Angle-integrated transfer for various renormalized hybrid truncations of Figure 8. JONSWAP
input spectra as in Figure 9, except peak enhancement is 1.0. Upper left panel is full hybrid transfer. Upper
right panel is CL1 truncation. Lower left panel is OP5 truncation. Lower right panel is OP9 truncation.

Units are 10~® m? s and rad s™1.

proportional variance throughout the evolution. The OP9
truncation gives a proportional variance that is significantly
larger at the start of the evolution than it is at the end. The
proportional variance for the fourth hour of the OP9 evolu-
tion is significantly smaller than for the fourth hour of the
OP5 evolution. The implications of this result are not en-
tirely clear. Probably, the lack of better OP9 performance
exhibited in this figure at the start of the evolution is related
to the deterioration in OP9 performance exhibited in Table
7 at the highest peak frequency. It may be the case that in
an extended integration, where the peak frequency is mostly
at lower levels, the OP9 truncation may perform very well
indeed. It may also be the case that inclusion of the DI3
coefficient groups (as in the OP5 truncation) is necessary to
ensure a reasonably consistent performance over the multiple
stages of this evolution. On the other hand, this relative con-
sistency may simply result from the fact that this truncation
is longer.

Figure 12 shows the corresponding evolution of the angle-
integrated spectrum for these truncations (and for full hy-
brid transfer), using the renormalized coefficients of Table 7.
Clearly, the CL1 truncation is again almost indistinguishable
from, and the OP5 and OP9 evolutions bear considerable re-
semblance to, that of the full hybrid sum. These evolutions

exhibit a strong overshoot and a Phillips tail, the level of
which is much improved relative to the evolutions displayed
in the previous section for various hybrid implementations of
the discrete-interaction approximation. Coincidentally, as ev-
idenced by Figure 11, the angular dependence of the nonlinear
transfer in this tail is also much improved.

4.4. Extension to Higher Spectral Resolution

As previously remarked, the present results have been de-
veloped for a relatively coarse nominal spectral resolution of
16 prognostic and 4 diagnostic wave-number bands and 12
angle bands. While it is clear that this nominal resolution
provides a suitable starting point for the SNLAV inverse-
modeling program, it is also clear that to contain the rep-
resentation error, this program must eventually progress be-
yond nominal spectral resolution to at least double spectral
resolution. (Fortunately, as previously discussed, it also ap-
pears that double resolution ought to be sufficient to realize
an extrapolated representation error of a few percent.)

Whether in relation to this inverse modeling or in relation
to other wave-modeling applications where nominal resolution
may be too coarse, it is of interest to inquire to what extent
the recursive-optimization scheme described in this section
can be extended to higher spectral resolution. '
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Figure 11. Differential transfer for various renormalized hybrid truncations of Figure 8. Computed for
JONSWAP spectrum (6) with peak frequency .3 Hz. Displayed for angle bands 1 and 12 (bullets), 2 and 11
(open circles), and 3 and 10 (diamonds). Upper left panel is full hybrid transfer. Upper right panel is CL1
truncation. Lower left panel is OP5 truncation. Lower right panel is OP9 truncation. Units are 107% m? s

and rad s™1. ‘

The basic difficulty in going to higher spectral resolution
is that (a) the number of coefficient groups in the full hybrid
sum is a strong increasing function of this resolution, and (b)
the computer time required for the final selection of coefficient
groups is a strong increasing function of the size of the culled
pool of coefficient groups from which these coefficient groups
are selected. This implies that, for higher resolution, in order

Table 8. Evolution-Based Truncation Error for Three
Systematic Truncations

Case  ng  wa PP PO PO p®
CL1 19,392 1.01 .0002 .0003 .0001 .0001
1.00 .0002 .0002 .0001 .0001
OP5 942 8.45 0173 .0259 .0298 .0336
10.1 .0189 .0198 .0203 .0200
OP9 256 11.7 1295 .0856 .0143 .0070
9.62 1321 .0358 .0083 .0091

Here ng is the number of hybrid coefficients in the truncation, za
is the optimizing renormalization factor (upper entry) or rerenormal-
ization factor (lower entry), and the P, are the proportional variances
relative to a computation employing full hybrid transfer for hours 1,
2, 3, and 4 of the corresponding homogeneous evolution of the action
spectrum.

to contain the computer time of the final selection, one must
initially cull a larger proportion of coefficient groups and/or
one must lower the block size for this selection.

With double resolution there are initially 15 times as many
base coefficients as there are for nominal resolution. That
translates to 8 times as many coefficient groups. While this
may seem a large factor to overcome, our expectation is that
an extension of the recursive-optimization proceduréto dou-
ble spectral resolution is quite feasible and will yield some
useful truncations analogous to those for nominal spectral
resolution. Similarly, while we are less optimistic about ex-
tending these results to quadruple spectral resolution, we do
not rule out the possibility that such an extension may also
yield some useful truncations.

4.5. Possible Implications for Adaptive Modeling

One of the features of the hybrid representation for non-
linear transfer that we have not fully exploited is the open-
ended character of the hybrid coefficient files at low and high
wave number. Our modél employs fixed frequency limits, so
the only reason to extend these files is to allow for nonlinear
interactions with a fixed number of diagnostic wave compo-
nents. But instead of fixing these limits, this model could
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Figure 12. Homogeneous evolution of the angle-integrated action spectrum for various renormalized hybrid
truncations of Figure 8. Upper left panel is full hybrid transfer. Upper right panel is CL1 truncation. Lower
left panel is OP5 truncation. Lower right panel is OP9 truncation. Piecewise-constant spectra are numerical
integrations, shown at hourly intervals. Continuous spectrum is Phillips equilibrium spectrum. Units are

m? s? and rad s~!.

allow them to vary in geometric increments as functions of
space and time, with values adaptively set by the local spec-
trum. While such an adaptive model would complicate the
integration of the model equations, it might well result in a
more efficient integration. The point is that the form of the
hybrid sum would appear to be well suited to such an adap-
tive model. By extending the coefficient file to both lower and
higher wave number, it should be possible to create a single
coefficient file, contiguous subfiles of which would provide the
necessary hybrid coefficients for a variety of adaptively set
limits.

This possibility is particularly intriguing in the case of a
deep-water computation. Here it may be possible to further
exploit deep-water (k) scaling to replace this coefficient file
with a considerably shorter coefficient file that essentially col-
lapses all of the coefficients belonging to a single coefficient
group into two dimensionless coefficients. Corresponding to
this collapse, the hybrid sum (5) would gain a second in-
ner sum over the difference between the wave-number bin of
a prognostic or diagnostic wave component and the wave-
number bin of some standardizing feature such as the spec-
tral peak. It might further be possible to combine these in-
ner sums into a single vectorizable sum of large dimension,
providing an alternative to the vectorization of the nonlinear-
transfer computation on the spatial grid points of the model,
which alternative could prove advantageous on a vectorizing
platform.

5. Summary and Conclusions

In this first of a series of papers describing a fully nonlinear
regional wave model for the Bight of Abaco, we have discussed
primarily the numerical errors associated with the model’s
hybrid representation for the nonlinear transfer from wave-
wave interactions, extending a number of results previously
reported by STHHB, and we have developed several tech-
niques for accurately and efficiently truncating (and renor-
malizing) this representation. The following summary and
conclusions should be viewed in the broader contexi of the
SNLdYV inverse-modeling program that has prompted the de-
velopment of this model.

1. We have doubled the resolution of the STHHB Boltz-
mann integration to 648 wave-number bands and 648 an-
gle bands, computing the hybrid coefficients for a nominal
spectral resolution of 16 prognostic and four diagnostic wave-
number bands and 12 angle bands and for a double spectral
resolution of 32 prognostic and eight diagnostic wave-number
bands and 24 angle bands. Linear extrapolation of the re-
sults of these integrations to infinite integration resolution
suggests an integration error of less than 1% (convergence to
better than 1%) for both spectral resolutions.

2. Comparison of less highly convergent estimates for nom-
inal, double, and quadruple spectral resolution suggests a cor-
responding representation error of 13% for nominal resolution
and 4% for double resolution. We speculate, however, that
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the impact of this error on the the inverse modeling can be
reduced to the level of a few percent by extrapolating the re-
sults of the inverse modeling for nominal and double spectral
resolution to the case of infinite spectral resolution (in much
the same way that the results of the Boltzmann integration
have been extrapolated to the case of infinite integration res-
olution). While it is thus be necessary to do some inverse
modeling at double resolution to contain this error, this will
only be necessary during the later stages of the inverse mod-
eling.

3. The double-resolution hybrid computation better re-
solves the negative mid-frequency lobe of the angle-integrated
nonlinear transfer for JONSWAP input than does the nomi-
nal-resolution computation, confirming the double peak pre-
viously reported by STHHB, but suggesting that this double
peak is more appropriately characterized as a superposition
of two peaks, a very sharp peak at the low-frequency margin
of this mid-frequency lobe and a broad peak extending across
the entire lobe.

4. The use of diagnostic bands is an effective way to account
for wave-wave interactions involving high-wave-number wave
components external to the prognostic range of the spectrum.
It does not take too many diagnostic bands to reduce the error
associated with a further lack of these bands to acceptable
limits. This error depends on the peak frequency. For nominal
spectral resolution and an upper prognostic frequency of 1 Hz,
four diagnostic bands are sufficient to reduce this error to 2%
or less for peak frequencies less than or equal to .5 Hz.

5. By splitting the nonlinear-transfer computation into two
computations, the first a deep-water computation encompass-
ing interactions among wave components, the wave numbers
for which all exceed some depth-dependent threshold, and
the second a depth-dependent computation encompassing all
other interactions, it is possible to extend the hybrid scheme
to finite depth without greatly increasing the burden of the
computation. We discretize the depth in five increments and
employ a single set of deep-water coefficients and five corre-
spondingly restricted sets of finite-depth coefficients.

6. Selective truncation and renormalization of the hybrid
sum yields hybrid equivalents and generalizations for several
existing approximations to the full nonlinear transfer. In par-
ticular, we have evaluated a number of truncations with a
selection algorithm similar to that of the discrete-interaction
approximation. The simplest of these truncations, the DI1
truncation, involves the same number of base interactions as
and gives transfer estimates comparable to (but not identical
to) the discrete-interaction approximation. The remaining
discrete-interaction truncations relax the constraint that the
incoming wavenumbers k; and k; be identical, giving progres-
sively more accurate but less efficient hybrid representations
for the nonlinear transfer.

7. We have also evaluated several hybrid truncations with
selection algorithms similar to that of the reduced-integration
approximation recently proposed by R. Q. Lin et al. (unipub-
lished manuscript, 1996). These truncations are more ac-
curate than but considerably less efficient than the discrete-
interaction approximation. Their accuracy-efficiency product
is an order of magnitude smaller than that of the interaction-
angle truncations of Section 3 and more than 2 orders of mag-
nitude smaller than that of the recursively optimized trunca-
tions of Section 4. In its original form, the reduced-integration
approximation can realize greater efficiency by employing a
very coarse Boltzmann integration resolution, but this coars-
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ening can be expected to correspondingly degrade the accu-
racy of the approximation (relative to these hybrid trunca-
tions).

8. Finally, we have developed a systematic procedure for
culling and recursively optimizing truncations of the hybrid
sum and have employed this procedure to identify a sequence
of optimized hybrid truncations of increasing accuracy, suit-
able for a staged implementation of the SNLAV inverse mod-
eling of unknown action-balance source terms. This proce-
dure represents an alternative to the merging of input-specific
truncations suggested by STHHB to obtain a truncation with
good performance over a range of spectral input. It achieves
this performance up front by selecting coefficient groups (the
interactions for which are scaled versions of one another or of
mirror images of one another) rather than individual coeffi-
cients and by explicitly incorporating a range of input spectra
into the culling and optimization procedures.

9. We start from the AT2 and AT3 interaction-angle trun-
cations, culling these truncations by eliminating coefficient
groups whose contribution to the nonlinear transfer is in some
sense small. This culling defines the pool of coefficients avail-
able to the subsequent optimization. Starting from either the
null truncation or some other truncation (typically the DI3
truncation), we build the optimized truncations by recursively
adding optimizing coefficient groups in blocks of small dimen-
sion.

10. The culling and recursive-optimization stages of this
procedure both take advantage of a simple calculus that at-
tends a transfer-based specification of the error. This calcu-
lus determines the minimizing renormalization factor pn and
corresponding minimum mean proportional variance Py for
a given truncation. It further determines these variables in
terms of some basic integrals over coefficient groups and pairs
of coefficient groups that need be computed only once in or-
der to engage the recursive optimization; resulting in a very
efficient selection of successive blocks of coefficient groups.

11. The resulting truncations include a number of trun-
cations that essentially trade a factor of 10 decrease in effi-
ciency for a factor of 10 increase in accuracy (relative to the
discrete-interaction approximation). These truncations define
a reasonable starting point for the SNLAV inverse modeling of
unknown source terms and provide a reasonable alternative to
the discrete-interaction approximation currently employed in
many operational wave models. A second truncation, a culled
version of the AT3 interaction-angle truncation, requires lit-
tle or no renormalization, is almost as accurate as the full
hybrid representation, and is only 600 times slower than the
discrete-interaction approximation. While such a decrease in
efficiency may not be acceptable for operational wave mod-
els, it is probably quite acceptable for the final stages of the
SNLAV inverse modeling.

12. There is nothing truly unique about the recursive opti-
mizations. They all typically require considerable renormal-
ization. They do not show much tendency to share the same
coefficient groups. They do not show much tendency to pick
up the coefficient groups of the discrete-interaction trunca-
tions. While there are some systematic differences among
these truncations, depending on block size and starting trun-
cation, one recursive optimization of given dimension is about
as good as another. In short, there are many seemingly un-
related choices of coefficient groups that result in much the
same much-improved working representation for the nonlinear
transfer (relative to the discrete-interaction approximation).
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13. Extension of this recursive optimization procedure to
higher spectral resolution is complicated primarily by the
large increase in the number of coefficient groups that attends
the increase in resolution. Accordingly, to contain the com-
puter time required for the selection of optimizing groups, one
must initially cull a larger proportion of these groups and/or
one must lower the block size for this selection. Nonetheless,
we anticipate that the extension of this procedure to double
spectral resolution will be relatively straightforward and will
yield some useful truncations suitable for both inverse wave
modeling and operational wave modeling.
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