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1. Waves without currents.

Much progress in analyzing the interaction between surface
waves and currents has come from assuming that the waves
behave locally like plane-waves. That is, the solution for waves
in still water with a flat bottom is applied, modified only to
account for uniform flow (i.e., translation in x or y). This
assumption is typically applied in two opposite limits: i)
separate regions of uniform flow and flat bottoms, connected at
a thin vertical boundary where suitable matching conditions can
be derived; and ii) flow and topography varying slowly
compared to the time and length scales of the waves, so the
errors are bounded (and quantifiably small).

In view of this, it’s worthwhile to review the plane-wave
solution for surface waves, so the quantities of interest (and the
potential shortcomings) are more or less clear.

Notation is as follows: vector locations and velocities are

x = (x,y,z) and

u = (u,v,w).

Differentiation is denoted several ways:

∂x ≡ ∂
∂x

, ∂y ≡ ∂
∂y

, ∂z ≡ ∂
∂z

∇≡ (∂x ,∂y ,∂z )

∇ 2 ≡∂x
2 +∂y

2 +∂z
2

∇ H
2 ≡∂x

2 +∂y
2 and

∇ k ≡(∂kx
,∂ky

),

where z is positive upwards, zero at the mean surface level, and
-h at the bottom. The horizontal directions are x and y.
Subscripts i or j each take the values x and y.

 1.1. Linear solution, dispersion relation.

We assume irrotational, inviscid, homogeneous water, and
use a velocity potential:

  u = ∇ φ.

In the interior we assume incompressible fluid obeying
Bernoulli’s law:

  ∇ =2 0φ ,

    
∂ φ φ ρt P gz F t+ + + =−1

2

2 1∇ ( ),

where F(t) is independent of (x,y,z), and so has no effect on the
velocities (but it may affect the overall mean pressure P). Here
we can take F(t) = constant. The boundary conditions are

    ∂ φz = 0 at   z h= − and

    ρ ζ− = − ∇1 2P T H  at   z = ζ ,

where T is surface tension over density.
Now Taylor expand from z=0 and linearize:

    ρ ζ ζ− ≈ − ∇1 2P g T H  at z=0, so

    ∂ φ ζt Hg T+ − ∇ ≈( )2 0 there.

We look for solutions of the form sin(k•x-σt+δ) ≡ sin χ (here δ
allows arbitrary phase):

    ∇ = − =2 2 2 0φ ∂ φ( )z k ,

where k ≡ |k|. This implies solutions proportional to e±kz. From
the bottom b.c.,     ∂ φz k h z= ∝ +0 sinh ( ), so let

    φ χ= +B k h zcosh ( ) sin

To relate this to the surface elevation amplitude, ζ = a cos χ at z
= 0, use the surface kinematic boundary condition

    ∂ ζ ∂ φ ∂ ζ ∂ φt x x z+ − = 0.

So, to lowest order,

    
ζ ∂ φ σ χ≈ =

=∫ z zt
t

dt B k kh
00

( ) sinh cos .

Then

    a B k kh= ( )sinhσ , or     B ac kh= csch

where c ≡ σ/k is the phase speed of the waves. Thus,

    
φ χ= +

ac
k h z

kh
cosh ( )

sinh
sin .

Finally, substituting these into the linearized surface boundary
condition yields

    σ 2 3= +( ) tanhgk Tk kh,

the dispersion relation with no mean flow. It is not
straightforward to continue the expansion of the surface
boundary condition to higher order. In deep water, only the
small parameter ak enters, and Stokes’ expansion is appropriate.
In shallow water, trouble can arise if either a/h or a/k2h3 is not
small (**REF??**). Physically, in shallow water the waves tend
to evolve steadily into “shock fronts” or “bores.” Various
methods for toying with the nonlinear surface condition have
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been devised, leading to such things as the KdV equations
describing solitons.

 1.2. Stokes' drift and Wave Momentum.

Next, consider an average over the phase of the waves:

    ( ) ( ) ( )≡ − ∫2 1
0
2π δπ

d .

Stokes pointed out that, even with u(z)=0, the waves induce
movement of water parcels (or "Lagrangian drift"). Define a
purely oscillatory displacement field, due to the waves, as a
function of the position x a particle would have in the absence
of waves [Andrews and McIntyre 1978]:

      
ξ( ) ( , )x u x≡ ∫ t

t
t dt
0

,

choosing t0 so that   ξ ≡ 0. Let the wave be travelling in the x-
direction, and let   ξ ≡ ( , , )η ζ0 . Then the Stokes’ drift as a
function of position (depth) is

      

u u u

u u u u

u u u

s

z x z x

z z z

( ) ( ) ( )

( )

x x x= + −

≈ + = −

= + =

ξ
ζ ∂ η ∂ ζ ∂ ∂ η

ζ ∂ ∂ ζ ∂ ζ

(using   ∇ • ξ = 0 and     ηu = 0). The total mass flux due to the
waves, rotating coordinates so the wave direction is arbitrary, is
then

      M u u≡ ≈− =∫ ρ ρ ζs
h zz dz( ) |

0
0

per unit area of surface. For surface waves, this also describes
the net momentum associated with the wave propagation, so
there is no confusion in referring to this also as the "wave
momentum" (but see Andrews and McIntyre [1978] for another
point of view on this). From the above solution,

      
ζ

σ
u k= +kB

k h z
2

4
2sinh ( ) and so

      

u k

k

s z
k B

k h z

u w

( ) cosh ( )= +

= +( )−

2 2

1 2 2

2
2

σ
σ

Note that in the shallow water limit, us→constant. It does not
vanish at z=-h: the ηux term dominates in this case. Also, this
solution does not take into account additional boundary layer
streaming shown to occur by [Longuet-Higgins 1953].

 1.3. Energy

The energy density of the wavetrain is the sum of kinetic and
potential energies, E ≡ K+V. The potential energy, including the
stretching potential of surface tension, is (to lowest order)

 

    

V gz dz T

g Tk kB kh

= + +( ) −










≈ +( ) =

∫ ρ ρ ζ

ρ ζ ρ

ζ
0

2
1 2

1
2

2 2 1
4

2

1 1

2

| |

sinh

/
∇

and the kinetic energy is

    

K u w dz u w dz

k B k h z dz

kB kh

h h

h

= + ≈ +( )
= +

=

− −

−

∫ ∫

∫

1
2

2 2 1
2

2 20

1
4

2 2 0

1
4

2

2

2

ρ ρ

ρ

ρ

ζ
( )

cosh ( )

sinh

so the net energy is

      
E kB kh c g Tk= = = +1

2
2 2 22ρ ρ ζsinh | | ( ) .M

1.4. Radiation stress; momentum flux.

Waves carry momentum M  along at the group velocity,

    c
g

k≡ ∇ σ . This momentum flux, together with a wave-induced
pressure term, form the “radiation stress” defined by Longuet-
Higgins and Steward, [1964]: Sij is defined as the total excess
flux of i momentum in the j direction in the presence of the
waves, compared to that their absence (here i and jtake the
values x or y, denoting horizontal components of S, etc.).

For convenience, let the waves be aligned with the x-axis.
Then there is no velocity in the y-direction, and the surface
slopes only in the x-direction, at an angle θ≡arctan(∂xζ). The
transverse (y) flux of transverse wave momentum results from
both the wave-induced pressure and surface tension acting
across an increased length of surface:

    

S p p dz T

p p dz T

yy
m

h

m
h x

≡ − + −

≈ − −

−

−

∫

∫

( ) ( sec )

( ) ( ) .

ζ

ζ

ρ θ

ρ ∂ ζ

1

1
2

2

The net flux of x-momentum in the x-direction due to the waves
includes a contribution from the horizontal velocity, while the
horizontal component of surface tension is reduced due to the
angle of the surface:

 

    

S p p u dz T

S u dz T

S u dz T

xx
m

xh

yy h

yy h x

≡ − + + −

= + + −

≈ + +

−

−

−

∫

∫

∫

( ) ( cos )

(sec cos )

( ) .

ρ ρ θ

ρ ρ θ θ

ρ ρ ∂ ζ

ζ

ζ

2

2

20 2

1

The other two components are Sxy = Syx = 0. This diagonal form
for S ij is easily rotated to accommodate arbitrary wave
directions.

The mean pressure p  is not the same as the pressure which
would exist without the waves,   p gzm ≡ ρ . On the average, the
vertical momentum flux must be just enough to hold up the
weight of water above (LHS64):

     p z w z gz p zm( ) ( ) ( )+ = ≡ρ ρ2

(at second order, the surface tension contribution averages out).
So the mean pressure contributes

 

    

( )

(sinh ).

p p dz w dz

kB kh kh

m
h h

− ≈ −

= − −
− −∫ ∫
ζ ρ

ρ

20

1
2
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Near the surface, the fluctuating part of the pressure is

 
ρ−1p(z)=−gz−∂tφ

=−gz+(g−T∇ H
2 )ζ −ζ ∂ z∂tφ+...

so, to lowest order, the fluctuating pressure and tension terms
together contribute

ρ−1 pdz
0

ζ
∫ − 1

2 T(∂xζ )2 ≈ 1
2 gζ 2 −Tζ∂ x

2ζ − 1
2 T(∂xζ )2

= 1
2(g+Tk2 )ζ 2 =1

8kB2 sinh2kh

to Syy. The resulting total simplifies to

Syy =h
Ek

sinh2kh







=h 1
2ρ u2 −w2( )( )≡hJ

(note that u2 −w2( ) stays constant with depth). The remaining
terms in Sxx reduce to (after some algebra)

    ρ ρ ∂ ζu dz T M c
h x x x

g20 2
−∫ + =( )

where cx
g ≡∂kx

σ  is the group velocity and M  is the wave
momentum, as defined above (here, both M and cg are aligned
with the x-axis). The depth distribution of the term Pic j

g  is
simply that of M; i.e., like us(z).

Rotating these results to arbitrary orientation yields

  S M c hJij i j
g

ij= + δ

where δij is the Kronecker delta function. Note that, because M
and cg are parallel for surface waves, this form is symmetric. In
deep water, the pressure-like term hJ is negligible, leaving just
the first term [Garrett and Smith 1976].

 1.5. Other solutions.

It was mentioned in the beginning that small scale changes in
the depth or current are often treated by matching at a boundary
between two uniform regions. For this matching, other solutions
of the basic equations are often required. In particular, there is a
class of solutions which are oscillatory in depth and decay
exponentially in one or both horizontal directions. Picking a set
of functions which obey the top and bottom conditions, and
which are oscillatory in one direction (y) but decay
exponentially in the direction perpendicular to the boundary (x),
one obtains an infinite set of solutions of the form [Miles 1967]

    
Ψn

n

n n
n

r xz
k

k h k h
k h z qy t e n( )

sin
cos ( )

/

=
+







+ + −( ) ±2
2 2

1 2

σ ,

where the kn are solutions of

    gk k hn ntan = −σ 2,

and

    
r k qn n= +( )2 2

1 2/
.

These are constructed to be orthonormal over the z interval 0 to
-h. Note that these modes effectively propagate up or down at
some angle on the vertical plane x = constant. These modes are
needed to match across a step [Miles 1967] or a vortex sheet
[Evans 1975, Smith 1983, Smith 1987].

The current or depth change can be such that no free wave
exists on one side of the boundary (i.e., the y wavenumber p is
too large to admit a real solution for k in the regular dispersion
relation). In this case, the appropriate primary solution in that
region is exponential in both x and z, and there is total
reflection. To my knowledge, no one has ever used the solutions
which are oscillatory in depth but exponential in both x and y.

2. The influence of currents on waves.

 2.1. Uniform flow

What changes are necessary to adapt the above to waves on a
uniform current? Since the flow is inviscid, there is no change in
(e.g.) the bottom conditions. However, such things as the
encounter frequency and the energy with waves vs. without do
change. With a uniform flow velocity U, the new quantities
(primed) can be written in terms of the old ones; e.g.,

ω≡ ′σ =σ +k⋅U, and

    ′ = + ⋅E E M U .

At this point it is convenient to introduce “wave action” A,
defined so that

E=σA and     M k= A

It is an easy matter to verify that the action is invariant:

      ′ = ′ = + ⋅ ′ = ′ + ′ ⋅E A A Aω σ σ( )k U M U .

Now, since we know the momentum M is invariant, it follows
that ′A  must be the same as A. Of course this in no way proves
that action is conserved with changes in the flow. In general, for
example, one cannot conserve both the wave momentum and
wave action. However, the conservation of action can be shown
to hold for a very wide class of problems, including most
surface wave problems [e.g., Hayes 1970, Whitham, 1974]. In
these cases, conservation of wave action is a tool which helps in
determining the exchanges of momentum and energy between
the waves and the mean flow. A rule of thumb is that action is
conserved when the phase of the waves can be changed without
changing the interaction. To violate this rule requires an
interaction which is confined in both time and space, such as a
stone dropping into a pond (which generally creates new wave
action).

Next consider the radiation stress. Let the total velocity be
′u =U+u. Then we obtain

    

S p u u dz p U U dz

S U M U M

ij i jh
m

i jh

ij i j j i

′ ≡ + ′ ′ − +

= + +
− −∫ ∫( ) ( )ρ ρζ 0

where we have assumed that the uniform mean flow U is
independent of depth. It is often more convenient to leave Sij
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split up into the intrinsic value plus the two explicit advection
terms, as in the second line above.

Finally, note that the Syy term can be written in terms of wave
action in the form

hJ =hA
∂σ
∂h

, or J =A∂hσ .

2.2. Slowly varying currents and depth.

At last we address the problem of waves propagating in a
slowly varying environment. Two classes of problems arise: i)
With no reflection, the "WKB" approximation applies. In this
case, conservation of action is sufficient to determine the
outcome. ii) When reflection can occur, information in addition
to conservation of action is required, to determine the amount of
reflection.

First, the solution should be self-consistent; this leads to
kinematic conditions. The phase function χ must be continuous,
and so

 ∇× k=0, and (2.2.1)

      ∂ ω ∂ σt tk k k U+ + ⋅ =∇ = ∇ +( ) 0, (2.2.2)

where the "intrinsic frequency" σ is a predetermined function of
(k,x,t) or, in the present case, of  (k,h,g,T).

The mean flow field must also be a self-consistent solution of
the appropriate equations, which may in general be rotational.
To make the problem tractable, we assume the mean flow to be
large scale; i.e., assume σ  is much larger than both ∇× U and
∇ Η ⋅U.

Evaluation of the effect of currents on waves is facilitated by
conservation of wave action [Bretherton and Garrett 1968,
Hayes 1970, Whitham 1974]. In the absence of generation or
dissipation, this takes the form

∂t A+∇ Η ⋅ A(U+cg )( )=0. (2.2.3)

The proof with broadest applicability is provided by Whitham
[1974], who demonstrates that action conservation holds
whenever the Lagrangian density can be described in a quadratic
form. This principle holds for unimodal incident waves; note
that, in general, the waves vary in wavenumber and frequency
over x and t. To extend this to packets of waves, with finite
spatial extent, consider a sum of components over some finite
area of the wavenumber plane, sufficiently small that the group
velocity doesn't vary significantly compared to the changes
induced by the varying medium.

It is often useful to consider the evolution of the spectral
density of action, N. Conceptually, for a “wave packet” as
alluded to above, the action density within the packet (in terms
of both k  and x) would be N(k , x , t) ∝ A/b, where b is an
element of area in k-space representing the (2-dimensional)
"bandwidth" of the packet, surrounding the center value k,
which is itself a function of (x, t). The wavenumber evolution
(2.2.2) affects both the center wavenumber k and the bandwidth
b of the packets. For an elemental change in k (to k + dk, say),
(2.2.2) yields

∂t (dk)+∇ Η dk⋅(U+cg )( )=0
(2.2.4)

This corresponds to keeping the number of waves in a given
packet constant as the total size and orientation varies. A
convenient measure of b is given by the cross product of two
such elemental displacements from k; e.g., let b be the z -
component of dkx×dky. Its then simple to show that “bandwidth
flux” is conserved along rays:

∂tb+∇ Η b(U+cg )( )=0. (2.2.5)

Again, this corresponds to keeping the number of wave crests in
the packet constant. Using N´ ∝ A/b, (2.2.3) and (2.2.5) combine
to yield

dtN ′≡ ∂t +(U+cg)⋅∇( )N ′=0 , (2.2.6)

where d t is the “ray-tracing” or “packet-following” total
derivative. The packet following action density N´ is constant
(not conserved) along rays. But note that N´ is the action density
at the varying wavenumber k(x,t) of the packet, so (2.2.6) is
Eulerian in space and time but Lagrangian in wavenumber. To
convert back to a fixed (Eulerian) wavenumber, we must
account for the variation in wavenumber along a wave ray. This
leads to a general equation for the evolution of action density,
N(k,x,t), at a fixed wavenumber k:

dt +(dtk)⋅∇ k( )N =0 . (2.2.7)

In practice, it is important to recall that the limits of integration
for this spectrum of waves now become functions of the
medium. In addition, 2.2.7 implies that the directional form also
must vary. At times this can lead to confusion.

It is appealing to put this into a more symmetric form (though
not necessarily more useful) using the “wave rays,” x(t) (let
∂τx=0 and ∂jxi=δij):

dtx≡U+cg . (2.2.8)

Then (2.2.7) can be written

∂t +(dtx)⋅∇ H +(dtk)⋅∇ k( )N =0 . (2.2.9a)

Finally, to account for growth and dissipation, one can add a
“Miles-like” growth term GN to the right side of (2.2.7), and
subtract a dissipation term of the same form (say), –DN:

∂t +(dtx)⋅∇ H +(dtk)⋅∇ k( )N =(G−D)N . (2.2.9b)

In general, D must conceal some additional dependence on N, so
that a stable equilibrium level is defined. Alternatively, the
equivalent term (G-D)A can be placed on the right hand side of
2.2.3.

3. The influence of waves on currents.

Once the waves and currents have been specified adequately
(i.e., to first order in ak for the fluctuating parts, and to second
order for the mean quantities), the net effect on the mean flow
due to the interaction with the waves may be evaluated. The
exposition roughly follows Garrett [1976], with extension to
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include finite depth and surface tension. The total vertically-
integrated momentum budget is derived, and divided into mean
and wave quantities. The wave momentum budget is deduced
from the equations for action and wavenumber conservation. By
subtracting the waves' momentum budget from the total, the net
effect of the waves on the mean (larger scale) momentum
budget is deduced.

For incompressible, inviscid flow in a non-rotating frame of
reference, the horizontal momentum equation can be written

∂t (ρui )+∂ j (ρuiuj + pδij )+∂z (ρuiw)=0 , (3.1)

where subscripts i, j refer to the two horizontal dimensions, ui is
horizontal velocity, ρ is the density of the water, and p is
pressure. The vertical components z and w are treated separately
from the horizontal ones, to facilitate vertical integration. Here
and throughout, the summation convention is used: repeated
indices are summed over the two horizontal components. The
kinematic boundary conditions at the free surface ζ and bottom -
h can be written:

∂tζ +ui∂iζ −w=0 at z=ζ , (3.2)

∂th+ui∂ih+w=0 at z=−h , (3.3)

Here, z is positive upwards as before, but -h may now be a
material fluid boundary below which the wave motion is
negligible (in deep water), or may be the actual bottom. For
example, in deep water the “wave layer” between the surface
and -h may be thin compared to other motions of interest.

Vertical integration of (3.1) results in

    

∂ ρ ∂ ρ δ

∂ ζ ∂ τ τ

ζ ζ

ζ

t ih j i j ijh

i z i z h i
s

i
b

u dz u u p dz

p p h

− −

= =−

∫ ∫



 + +





= + + +

( )
(3.4)

The terms on the right are from the boundary conditions. For
example, the surface pressure term can be regarded as supplying
input to the waves from wind. The pressure working on the
mean flow is generally subsumed into the stress terms.

Next, the flow is separated into mean and wave
components:ui =ui +ui ′ . The vertical particle displacements ζ(z)
from reference position z are defined throughout the fluid as
before (with a kinematic condition like eq. 3.2), but are also
divided into ζ  and ζ´ (the mean flow can also involve surface
displacements). The pressure is separated into a part, pm, which
would exist without the waves, and a wave-part, pw. As noted
above, pw  is not necessarily zero. Averaging 3.4 over the
waves, and dividing into the wave and mean quantities as
described, we find

    

∂ ∂ ρ δ

∂ ∂ τ

ζ
t i j i j

m
ijh

t i j ij i j
a

j i
a

i i
m

T u u p dz

M S M U M U GM

+ +



 +

+ + +( ) = +

−∫ ( )
(3.5)

where

  T u dzi ih
≡ −∫ ρζ (3.6)

is the mass transport (momentum) of the mean flow,

  M u dzi ih
≡ ′−∫ ρζ (3.7)

is the intrinsic wave momentum,

Sij ≡ (ρui ′uj ′+ pwδij )dz
−h

ζ
∫ (3.8)

is the intrinsic radiation stress (as above), and

    U M u u dzi
a

j i z jh
≡ ′ ′−

−∫
1 ρ ∂ ζζ

( ) (3.9)

is the horizontal advection velocity of the waves, defined by a
wave-weighted integral of the mean flow. This last allows us to
extend the results to mean flows which vary weakly with depth.
For many problems, the value of Ui

a  arising from either
component of uj´ and Mj is the same, as long as the component
chosen isn't zero, so that this definition of Ui

a  is unambiguous
(but see discussion below). The term G M i is the surface
pressure-working on the waves, represented here as a Miles-like
growth rate, and the term τ i

m represents the net stress (top and
bottom) exerted directly on the mean flow.

Some discussion of the dispersion relation for waves in the
presence of vertical shear should help clarify what is meant by
“advection velocity” and “intrinsic group velocity” (which is
needed for evaluation of Sij). For example, Valenzuela [1976]
has solved for wave phase velocities in opposing directions as
eigenvalues of the linearized equations for wave-like
perturbations of two-dimensional shear-flow along the air/water
interface. The average real part of the phase velocity of the two
oppositely directed wave solutions is a convenient definition of
the "advection velocity": moving with this speed, an observer
sees waves propagating in opposite directions with equal phase
speeds for equal wavelengths. Likewise, the phase-speeds (and
group velocities) seen by such an observer are defined as
"intrinsic" to waves of the given wavelength. In the small shear
limit, the intrinsic frequency approaches the classical value
given above (except we shall allow g´, the apparent gravity
including vertical acceleration by the mean flow, to replace g).
As the shear (windspeed) increases, the intrinsic frequency and
phase-speed decrease. This can be regarded as largely the result
of a "Bernoulli effect" on the pressure field: low pressures
induced over the crests and highs over the troughs act to reduce
the net restoring force due to gravity and surface tension. Both
the slowing of the intrinsic phase speeds and the value of the
advection velocity of the waves were convincingly verified in
wave-tank experiments by Plant and Wright [1980]. Over the
range of conditions covered in that experiment, the advection
velocity defined by eq. 3.9 is also found to be in agreement,
although a rigorous relationship between this and the values
derived by Valenzuela [1976] or by  Plant and Wright [1980]
has not been explored. For yet another view on this subject, see
Henyey et al. [1988]. In any case, eq. 3.9 is adopted here, and
this advection velocity is assumed to apply in the wave action
equation as well as for the momentum. In deep water, eq. 3.9
reduces to

U j
a ≈2k uj (z−ζ )e2k(z−ζ )dz

−h

ζ
∫ (3.10)
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[Stewart and Joy 1974]. Since U j
a  is a function of the

wavenumber k, the variation with k should be incorporated into
the group velocity, ci

g =∂ki
σ +k j∂ki

U j
a . Although the phase-

speeds of oppositely directed waves are equal in the intrinsic
frame (as defined here), the group velocities are different. In the
presence of vertical shear, there is no frame in which both
phase-speed and group velocities are symmetric. As noted by
Henyey, et al. [1988], resonant interactions could be sensitive to
the modification of group velocity: In the weak interaction limit,
transfer rates are proportional to (∂kcg )−1, and the modified cg

is a much flatter function of k on the gravity side of the gravity-
capillary minimum for downwind travelling waves.

Evolution of the wave momentum can be evaluated using the
identity M = Ak, as noted above. Here, we use the non-spectral
form for action, since we wish to deduce the total effect on the
mean flow. The wavenumber equation can be re-written

    ∂ ∂ ∂ ∂ σ ∂t i j
g

j
a

j i j i j
a

m ik c U k k U m+ + = − −( ) (3.11)

where the sum over variables m accounts for variations in the
medium other than advection that affect the dispersion relation,
such as depth, apparent gravity, or surface tension. Combining
this with action, the wave momentum is governed by

    

∂ ∂

∂ ∂ σ∂

t i j i j
g

j
a

i j i j
a

m i

M M c U

G D M M U A m

+ +



 =

− − −

( )

( ) (3.12)

Subtracting this from the total momentum budget, the net effect
on the mean momentum is found to be

    
∂ ∂ ρ δ τζ

t i j i j
m

ijh i
w

i
mT u u p dz F+ +



 = +−∫ ( ) (3.13)

where the "wave force" Fi
w  is given by

    

F M D M U U U M

h J A m

i
w

i j i j
a

j i
a

i
a

j j

i m i

= + −( ) −

− + +

∂ ∂ ∂

ζ ∂ ∂ σ ∂( )
(3.14)

as identified by Garrett [1976] for deep water gravity waves
(top line only). Here, use was made of the identity J=A∂hσ, and
an “m=h” term was combined with the hJ term of the radiation
stress. Additional variations in the medium (vertical
acceleration, surface tension modifications, etc.) are still
subsumed into m.

Finally, the surface kinematic condition (3.2) is Taylor-
expanded in ζ´ about ζ  and then averaged, leading to
[Hasselmann 1971]:

    ∂ ζ ∂ ζ ρ ∂t j j j ju w M+ − = − −1  at z=ζ . (3.15)

Physically, the variations in wave-induced mass-flux act as
sources and sinks of fluid at mean surface, ζ . It is worth
pointing out that for nonzero ζ , the mass source at the surface
contributes to the potential energy of the mean flow. This is the
essential point raised by Hasselmann [1971] in his refutation of
the “maser mechanism” for long-wave growth [Longuet-Higgins
1969]. This virtual mass source at the surface can be important
elsewhere as well. For waves of varying amplitude, the “forced
long wave” discussed by Longuet-Higgins and Stewart [1962,

1964] can be regarded as arising entirely from this virtual mass
source, as we shall see.

Alternatively, when this potential energy transfer is not
important, the top and bottom conditions can be combined into
an equation for conservation of total mass:

    
∂ ρ ∂ ∂ζ

t h j j j jdz T M−∫




 + + = 0 (3.16)

4.  An example: forced long waves.

Consider the problem described by Longuet-Higgins and
Stewart [1962; henceforth LHS62] concerning the mean motion
induced by groups of waves propagating into still water. The
analysis here most resembles “method 2” of that paper.

In this problem, the mean current remains irrotational, so the
term M×(∇∇∇∇ ×Ua) is zero. Also, assume that U a cg  and ζ h are
smaller than (ak)2, so all the terms in Fw involving Ua are small
compared to the “pressure stress” term, h∇ J . Line up the x-axis
with M , so that subscripts x and y  are unnecessary (e.g.,
M≡Mx≡M).

Consider first the case where the forced wave is a shallow
water wave. Then u ≡U  is uniform from ζ  to -h, which is
assumed to be constant. To lowest order in the mean flow
variations, the momentum balance becomes

∂t (hU)+∂x (hgζ )=h∂x (J ρ), (4.1)

where the mean pressure is assumed to be hydrostatic: pm =gζ .
We seek a solution propagating with the wave group velocity cg,
so ∂t  can be replaced by –cg∂x. This results in

cgU −gζ =J ρ, (4.2)

where the constant of integration has been chosen so that
U =ζ =0 when there are no waves (this is just equation 3.20 of
LHS62). The first order mass conservation equation is

  hU c Mg− = −ζ ρ , (4.3)

where the constant of integration is again zero. Combining these
equations,

    
U

g M c J

gh c

g

g
= − +

−
ρ ρ

( )2
, and (4.4)

    
ζ ρ ρ= − +

−
c M h J

gh c

g

g( )2
, (4.5)

as in LHS62.
Now consider the case where the forced wave is not a

shallow water wave. Since the length of the groups must be
somewhat longer than that of the individual waves, it seems safe
to assume in this case that the waves comprising the group are
deep-water waves. In fact, let's assume that the waves are
confined to a thin surface layer, ζ  to -h, within which the forced
wave velocity is uniform: u(−h)≈u(0)≡U . Note also that J=0
for deep water waves. Then

cgU −gζ ≈0 . (4.6)
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Integrating the mass conservation from the actual bottom at
z=–H,

    − + + = ≡−∫c H u dz M constantg
H

ζ ρζ
0 (4.7)

(again choosing the frame of reference in which u =ζ =0  when
M=0).  As in LHS62, we observe that the above admits a simple
solution if the groups force a simple harmonic long wave with
wavenumber ∆k (say). In this case, the forced motion has the
same general form as a free wave solution; i.e., u  is
proportional to cosh(z∆k). Let θ be defined so that

u dz= tanh(H ∆k)
H ∆k





−H

0
∫ UH ≡θUH , (4.8)

and we recover the equivalent of equation (3.19) or (3.29) of
LHS62 (except that 3.29 has a misplaced theta; also, the
velocity in LHS62 is given in terms of the vertical average,
u ≡θU ):

    
U

gM

gH cg
≈ −

−
ρ

θ ( )2
(4.9)

and
    
ζ ρ

θ
≈ −

−
c M

gH c

g

g( )2
. (4.10)

Note that J and indeed all of Fw is negligible here. The long
forced wave results entirely from the mass source/sink at the
surface as the waves vary in size.

Finally, consider the general case. To obtain a simple answer,
we need only assume that the vertical structure of the forced
response in u  and pm is the same (as is the case for a simple
harmonic forced wave, and indeed for any surface-wave like
potential flow response). Then define U ≡u (z=0), and define
theta such that

u dz≡θ(h+ζ )U
−h

ζ
∫ . (4.11)

Then by assumption we also have

pmdz=θ(h+ζ )gζ
−h

ζ
∫ . (4.12)

To lowest order in the mean quantities, the momentum equation
becomes

∂t (θhU)+∂x (θhgζ )=−(h ρ)∂x J (4.13)

or, using ∂t →−cg , integrating (with cg and h assumed to be
independent of x), and dividing by θ h, this becomes

cgU −gζ =J ρθ. (4.14)

(Again, integration constants are chosen so there is no motion in
the absence of waves.) Mass conservation yields

    ∂ ζ ∂ θ ρ ∂t x xhU M+ ≈ − −( ) 1 (4.15)

or   c hU Mgζ θ ρ− = . (4.16)

Combining these, we find

    
U

g M c J

gh c

g

g
= − +

−
ρ ρθ

θ ( )2
(4.17)

and
    
ζ ρ ρ

θ
= − +

−
c M h J

gh c

g

g( )2
. (4.18)

It is seen that this combines and generalizes the previous results:
for a simple harmonic forced wave, θ is given by 4.8, and J=0;
for the shallow water case, θ=1 and 4.4 and 4.5 are recovered. It
appears that this can be extended to arbitrarily shaped groups by
Fourier-expanding the forcing terms M and J, and (to lowest
order in u  and ζ ) summing the results.
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