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Body-rock or lift-off in flow
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Conditions are investigated under which a body lying at rest or rocking on a solid
horizontal surface can be removed from the surface by hydrodynamic forces or
instead continues rocking. The investigation is motivated by recent observations on
Martian dust movement as well as other small- and large-scale applications. The
nonlinear theory of fluid–body interaction here has unsteady motion of an inviscid
fluid interacting with a moving thin body. Various shapes of body are addressed
together with a range of initial conditions. The relevant parameter space is found to
be subtle as evolution and shape play substantial roles coupled with scaled mass and
gravity effects. Lift-off of the body from the surface generally cannot occur without
fluid flow but it can occur either immediately or within a finite time once the fluid
flow starts up: parameters for this are found and comparisons are made with Martian
observations.
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1. Introduction
The effect or the use of a flow of fluid to remove a body originally stationary or

rocking on a fixed solid surface has many applications and is of interest over a range
of length and time scales. The force required to do this washing, clearance or erosion
of the original surface is also of much concern.

The applications vary from removal of debris, erosion of soil by wind, water or
raindrops, sand and pebble movement on beaches, dust loss, dust blowing, leaf-
blowers, and related geological and industrial phenomena, through cleaning and
washing processes such as with fluid knives and cameras, conveyor design, biomedical
problems, weather damage, to aircraft take-off, estimation of runway length, sports
applications such as ski-jumping, car and cycle racing, and the safety of wind-blown
buildings. See for example Bascom (1980), Witt, Carey & Nguyen (1999), Virmavirta,
Kivekas & Komi (2001) and Godone & Stanchi (2011). In geological settings this
process is known as saltation. The typical scales range from the comparatively small
sizes of various biomedical settings, dust problems and household/industrial cleaning
to the larger sizes of tornadoes and tsunamis lifting relatively large obstacles (Hunt
2005; Mikami et al. 2012), and related disasters, along with military applications, and
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even on to planetary size. Moreover, Hall, Hansom & Williams (2010) and Cox et al.
(2012) and references therein provide observational evidence that shoreline boulders
whose weight is of the order of 10 tonnes can be moved by wave motion even in
years without exceptional storm activity, and that boulders up to 78 tonnes have been
moved to 11 m above high water in significant storms, with the role of tsunamis ruled
out. A comparison between boulder transport by storm waves and tsunamis is given
in Barbano, Pirrotta & Gerardi (2010). In these geological applications, some of the
more impressive feats of wave transport occur with long, slender boulders conforming
to the assumptions of the present study. Further, shallow granular avalanches, such
as those occurring in pyroclastic flows and snow avalanches, are studied by Gray &
Ancey (2011) and Johnson & Gray (2011) where attention is drawn to the effects
of stationary granular material within evolving flows, in addition to pile collapse
behaviour and segregation rates between constituents, where large and small particles
percolate to the base or surface of an avalanche. In the human body, the lift-off due to
hydrodynamic forces in the blood flow of thromboses formed near the site of blood-
vessel injury, such as that caused by atherosclerosis, is of significant concern as the
thrombus or its resulting transported embolus can lead to stroke, myocardial infarction,
deep vein thrombosis, and other damaging conditions (Ku 1997). Haemodynamic lift-
off and transport of tumour cells from damaged vascular walls may be one of several
rate-limiting factors in cancer metastasis (Koumoutsakos, Pivkin & Milde 2013). A
dramatic example from human engineering and exploration was the loss of the space
shuttle Columbia as a result of its collision with a relatively small piece of insulating
foam separated from a fuel tank apparently by the flow past the shuttle (Gomez III
et al. 2003). We should also mention human experience and pleasure, for example in
blowing spilt salt off a table, and watching ‘dust devils’ dance across a beach or even
Mars.

Given the very broad setting above a significant point now is that in order to help
theoretically predict the numbers and frequencies of multiple bodies interacting and
clashing an appreciation is necessary of which bodies have lifted off the supporting
surface, and when, and this process of lift-off (or not) is our current focus. The
multiple-body case is itself very interesting then as regards the alternatives of multiple
lift-off or body-rock and has been studied in the current framework for other settings
but the single-body case constitutes a central puzzle concerning lift-off or body-rock
within the present setting. In addition some numerical values are of interest here,
supplementary to those in the previous paragraph. In the case of shoreline boulder
transport by ocean waves, for example, a conservative estimate of waves of phase
speed of the order of 1 m s−1 breaking on boulders of order 10 m in length yields a
Reynolds number of the order of 107. Similarly conservative estimates for aeolian flow
past the O(300 µm) grains on Mars known to saltate, when matching the assumptions
of the present work, give Reynolds numbers of the order of 102 for common mean
wind speeds and at least an order of magnitude higher for the strong wind events
which ‘do the most work, effecting the greatest changes’ (Sullivan et al. 2008). In
almost all of the examples of the previous paragraph the characteristic flow rate is
relatively large, together with the feature that the rocking or lifting-off of a single body
represents a crucial process.

The issues involved include the need for understanding of the influences of length
and time scales, the effects of the incident flow direction and velocity as well
as the effects of the detailed obstacle shape, and issues of stall, lift, impact and
drag. The roles of the Froude or Richardson, Reynolds and effective Stokes or
Womersley numbers in particular need consideration. A related issue is the question of
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whether or under what circumstances the effects are mostly dominated by momentum
considerations or not and to what extent initial values and the variability of the
incident flow exert control on the dynamics. It is important also to emphasize
that many of the applications mentioned have complex interactions which are of
multibody type, with multiple impacts and rebounds of transported bodies, as well as
of fluid–body interaction type. It may be that considering the dynamics of a single
body on its own is not immediately relevant to some of the real-world situations
but on the other hand the single-body configuration does create a clear and basic
growth point. A hope or hypothesis in principle is that this would develop fully to the
multibody arrangements.

Clearly the criteria for lift-off of the body from the surface are a central issue to be
addressed as part of the general picking-up of the body and transporting it. This is the
case for many applications, but includes in particular the matters raised in recent work
regarding dust motions, saltation and reptation or splashing of particles on or near the
surface of Mars. In particular, the first extraterrestrial measurements of sand transport
rates were given by Bridges et al. (2012a,b), and were rather surprisingly estimated
to be comparable to those on Earth, in spite of the Martian atmosphere being of the
order of 100 times less dense than the terrestrial one. These high transport rates occur
despite only rare occasions on which the surface wind stresses on Mars are observed
to exceed a supposed critical threshold (the ‘fluid threshold’) for sand transport:
Zimbelman (2000), Haberle, Murphy & Schaeffer (2003), Kok (2010a,b). It has been
hypothesized that the relatively low drag and gravity effects could keep sand in motion
for longer as it bounces and tumbles across the surface (Kok 2010a,b, 2012), to which
the present study is directly applicable. Equally, we can address here the interesting
question raised by Sullivan et al. (2008) as to whether the aerodynamic effects studied
herein contribute to the lifting of Martian sands (Wang 2012). More general work
on dust suspended in the Martian atmospheric boundary layer is also of interest here
(Taylor et al. 2007; Davy et al. 2009). We shall return to discuss the Martian matters
in some detail near the end of the present contribution. The phenomena involved in
the broad area are certainly dependent on many parameters, but are also dynamic,
evolutionary and initial-value dependent to one degree or another. The present model,
which is depicted in figure 1(a), and the ensuing working are based on considering
theoretically phenomena which are indeed dominated by momentum and pressure
forces and hence centre on essentially inviscid unsteady fluid–body interactions of
the type studied recently by Smith & Ellis (2010), Hicks & Smith (2011) and Smith
& Wilson (2011) in various contexts. These last papers find that largely due to the
actions of added mass in the interactions induced between body and fluid, interesting
real-world phenomena such as touchdown, lift-off, clashing, skimming and rebounds
emerge as part of the theory. Relatively few ingredients are necessary but the detailed
evolution does tend to play a substantial role. (Compare also interesting works on lift
forces for spherical particles, for example by Saffman (1965, and the large body of
resulting work), Zeng et al. (2009) and Lee & Balachandar (2010).)

The fluid is taken here to be Newtonian and incompressible with uniform density
ρD, say, where the subscript D refers to a dimensional quantity. The generally unsteady
motion of both the fluid and the immersed body is assumed to be two-dimensional
as a starting point for the theory even though it must be accepted that this restriction
leaves out the distinct possibility of fluid skirting around a contact point in the third
spatial dimension. The representative Reynolds number Re based on incident flow
speed and a typical body length varies from application to application above but the
typical Re value of interest is quite large and so as a first approximation an inviscid
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FIGURE 1. (a) A sketch of the flow structure showing the main two thin layers I and
II under the rocking body, the fixed centre of mass (CoM) at x = xc, the contact point
x = x0(t) at the current time t and the oncoming stream of fluid. Here in Cartesian
coordinates, x is horizontal and y is vertically upwards. The gap width is H(x, t) in the
layers I and II. (b) The four representative body under-surface shapes considered herein.
The sinusoidal body has F(x) = sin(πx); the elliptical has F(x) = √x− x2; the smooth-
cornered has F(x)=−√Xa(x)−

√
Xb(x)+

√
Xa(0)+

√
Xb(0), where Xa(x)= (x− a1)

2 + a2
2,

Xb(x) = (x− b1)
2 + b2

2 and (a1, a2, b1, b2) = (0.2, 0.1, 0.8, 0.1); and the constant curvature
has F(x)= x(1− x).

separation-free theory is applied, in keeping with the overwhelming nature of the
momentum described previously for these fluid–body interactions. Neglect of viscous
effects seems acceptable since most of the fluid–body interactions in reality are of the
turbulent kind rather than the more sensitive laminar type. Thin bodies are also of
interest in their own right because they can lead to fulsome analytical descriptions for
many configurations such as in the previous paragraph but further they shed some light
on interactions for thicker bodies such as smooth bluff cylinders or spheres wherever
thin layers of fluid lie between the body and the supporting solid surface.

The paper itself is structured as follows. Section 2 considers the model in detail
including in particular the generation of fluid–body interactions, followed by § 3 which
turns to an analysis for relatively small times and investigates the possibility of an
instant lift-off of the body from the solid surface when the oncoming fluid stream
is instigated. Numerical studies for order-one times are presented in § 4 for cases
where lift-off either is absent or possibly is delayed, with fluid-flow effects being
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suppressed. Sections 5 and 6 then include numerically and analytically the added
influences of fluid flow and the mechanism and criteria for lift-off to take place,
respectively. Certain parameter effects are found to exert an important influence at that
stage. There are indeed several parameters to take into account such as the scaled
mass, moment of inertia and gravity, along with the scaled initial conditions. The final
section (§ 7) provides further discussion.

2. The fluid–body interaction
The interaction between the body and the surrounding fluid is described as follows,

with non-dimensional variables being used throughout. Cartesian velocity components
(u, v) and pressure p are based on the horizontal incident fluid speed UD and ρDU2

D,
respectively, while the corresponding Cartesian coordinates (x, y) and time t are based
on the characteristic body length LD and travel time LD/UD in turn. The oncoming
flow is thus a uniform stream with u = 1, v = 0. The body is thin, being of typical
non-dimensional scale O(h̄), h̄� 1, in y and length unity in x, and is taken to be
of smooth shape. In the configuration diagram of figure 1(a), the stream is depicted
as moving fluid from left to right. The surface, or wall, upon which the body rests
is horizontal. The body is in contact with the wall, at least in the first instance, at
a single contact point as shown. An inviscid or quasi-inviscid theory is applied here,
with separation-free unsteady flow assumed in the two thin fluid-filled gaps labelled I
and II on either side of the contact point, whose position varies with time.

The major assumptions then include that of separation-free flow as discussed
recently by Smith & Ellis (2010) and Smith & Wilson (2011). In detail, given the
high Reynolds number range and the likelihood of predominant turbulent sublayers
on the solid surfaces, we may assume that no substantial flow separation takes place
anywhere. Relatively thin viscous sublayers are generated in the locality of the leading
edge inside a small Euler zone as described below and these are supposed to remain
broadly attached, apart from confined eddies, for some body shapes at least, before
forming the beginnings of a relatively small sublayer effect over the longer length
scale where x is of order unity. Substantial leading-edge separations can thus be
discounted, and attached flow is taken to apply throughout the thin gap flows, but also
in particular separations in the vicinity of the moving contact point are discounted; a
general point here is that a self-consistent theory for viscous effects holding close to
such a moving point has yet to be established for high Reynolds numbers. The present
overall approach which has been considered and adopted in previous not dissimilar
studies for inviscid fluids constitutes merely a first model in a sense. Moreover, when
the sublayers in question have substantial turbulence in practice attached flow is
much more likely according to Schewe (2001), Scheichl, Kluwick & Smith (2011)
and Scheichl et al. (2012). The current approach certainly acts as a foundation for
more intricate theory then to refine the current theoretical predictions. The neglect of
three-dimensional behaviour is perhaps more serious in terms of deficiency of this first
model, as the model tackles two-dimensional unsteady incompressible fluid motion. Be
that as it may the present assumptions taken together with a uniform incident stream
imply that the flow over the length scale of order unity remains irrotational to leading
order virtually everywhere in the flow field and the scaled vorticity is identically
zero. So thin-layer scalings yield the requirement that u = u(x, t) is independent of
y, forcing v through continuity to vary linearly in y from zero at zero y to a value
commensurate with the kinematic condition at the unknown position of the moving
lower surface of the thin body. Thus, in the left-hand gap I ahead of the unknown
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contact point at x= x0(t), we have in non-dimensional terms

Ht + (uH)x = 0, (2.1a)
ut + uux =−px, (2.1b)

p+ 1
2 u2 = 1

2 at x= 0, (2.1c)
u= ẋ0(t) at x= x0(t). (2.1d)

Here H(x, t) denotes the unknown scaled thickness of the thin gaps I and II on either
side of the contact point as shown in figure 1(a) and depends of course on the lower
surface shape of the body and its orientation, being defined precisely in those terms in
(2.5) below. Further, (2.1a) stems from the kinematic condition just mentioned while
(2.1b) is the dominant streamwise momentum balance, with p being independent of y
by virtue of the normal momentum across the thin gap.

Subscripts t, x denote partial derivatives, the dot denotes an ordinary derivative with
respect to time and, later, a prime indicates an ordinary derivative with respect to
x. The condition (2.1c) allows for a jump across the leading-edge Euler zone, with
the leading edge itself being at x = 0 and with inflow being supposed locally. The
fact that the quasi-steady boundary condition (2.1c) is valid in the present unsteady
flow scenario is due to the quasi-steady nature of the local Euler flow around the
leading edge just as in Smith & Ellis (2010). The attachment property (2.1d), which is
discussed in some detail later, is associated with smoothness of the local flow solution
close to the contact point. This point is first and foremost a geometrical point rather
than a material one but analysis of the flow features in its neighbourhood supports the
above property.

In the right-hand gap II downstream of the contact point we have similarly the
governing equations

Ht + (uH)x = 0, (2.2a)
ut + uux =−px, (2.2b)
p= 0 at x= 1, (2.2c)

u= ẋ0(t) at x= x0(t), (2.2d)

differing from (2.1a)–(2.1d) only in (2.2c). This condition at the effective trailing edge
x = 1 in II is appropriate to the external-flow configuration, with atmospheric pressure
being taken as zero for convenience. It is of course the Kutta condition. The local
flow in the thin gap is supposed to be outward. The condition also applies, however,
to internal flows when the gap on one side of the body (in this case, the lower side)
is small relative to that on the other side, as in Smith & Ellis (2010). The reason for
the requirement (2.2c) is that under the present assumption of a long thin body the
pressure varies typically by only a small amount of order h̄ throughout the external
flow compared with its characteristic O(1) variation within the two gaps as shown
in (2.1a)–(2.1d), (2.2a)–(2.2d). The same requirement results if the part of the body
exposed to external flow is bluff and preserves the separation-free motion.

Coupled with the fluid-flow equations above are the body-motion equations, namely

Mḧ(t)=
∫ 1

0
p(x, t) dx+ N(t)−Mg+, (2.3)

Iθ̈ (t)=
∫ 1

0
(x− xc)p(x, t) dx+ (x0 − xc)N(t). (2.4)
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Here x = xc is the prescribed x location of the centre of mass and h(t) its unknown
vertical y location, while θ(t) is the unknown angle the body chord line makes with
the horizontal; for the present thin bodies this line is typically that between the centre
of mass and the trailing edge, the most downstream point of the body. The smallness
of the angles here explains the dominance of the normal force contributions from the
pressure in (2.3) and (2.4) as opposed to longitudinal force contributions, in keeping
with earlier papers on the underlying theory. The factors M and I are scaled effects
of mass and moment of inertia, while g+ is the scaled acceleration due to gravity and
N(t) is the unknown scaled normal reaction force acting on the body due to contact
with the wall. The dimensional mass and moment of inertia are ρDL2

DM/h̄, ρDL4
DI/h̄,

respectively, in line with the balance in (2.3) and (2.4), the dimensional gravity is
h̄U2

Dg+/LD (the Froude number is thus 1/(h̄g+) while the Richardson number is h̄g+)
and the dimensional normal reaction force is ρDU2

DLDN. In formulating the body
motion (2.3) and (2.4) we have supposed that N(t) is positive; if it should ever turn
out that N becomes negative, then the body will be taken to be no longer in contact
with the wall. The marginal case N = 0 remains moot; see also §§ 6 and 7. The
integral contributions in (2.3) and (2.4) are dominated by the gap pressures for the
assumed thin body, but if the external part of the body is bluff instead, then the
external pressures also contribute. An assumption of integrability also needs to be
mentioned with regard to integration through the x0 contact point in (2.3) and (2.4). In
addition, the unknown gap shapes upstream and downstream of the contact point are
given by

H(x, t)= h(t)+ (x− xc)θ(t)− F(x), (2.5)

where F(x) is the prescribed smooth shape of the under-surface of the body. The
four main shapes considered in this paper are shown in figure 1(b). Both h and θ

are functions of t which are unknown in advance. Clearly at the contact point the
constraints

H = 0,
∂H

∂x
= 0 at x= x0(t) (2.6)

hold for the smooth shapes considered herein.
Our task in general is to solve the nonlinear system (2.1)–(2.6) for u, p, h, θ in

effect. Of interest first is the behaviour just after the motion starts at time t = 0, say.
An analysis of the fluid–body interaction then, as presented in the following section, is
found to complement the subsequent numerical work as well as to yield helpful results
concerning the physical understanding of the nonlinear interaction present.

3. Small-time properties
The body is supposed to be positioned initially with its contact point with the wall

being at some station x0 = A say when the stream is suddenly switched on at time
zero. This is equivalent to abrupt application of a fluid flow or a significant change in
the fluid flow. The body motion itself is assumed to start from rest. A first guess for
the response at small positive times is that the constant-pressure form where p = 1/2
throughout layer I, with p= 0 in layer II, might work as an initial condition with zero
initial flow in each layer, since then (2.1b), (2.1c), (2.2b) and (2.2c) are all satisfied.
The guess is then modified, however, by (2.3) and (2.4) requiring the variation in h, θ
to be of order t2, implying a variation of order t2 in the gap thickness H from (2.5),
which leads on to u being of order t via (2.1a), and hence the pressure variation is of
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order unity. As a result, we expect the small-time expansions to take the form

p= p0(x)+ tp1(x)+ t2p2(x)+ · · ·, (3.1a)
u= tu1(x)+ t2u2(x)+ · · · (3.1b)

in layer I, with the coefficients being functions of x to be determined, and similarly

P= P0(x)+ tP1(x)+ t2P2(x)+ · · ·, (3.2a)
U = tU1(x)+ t2U2(x)+ · · · (3.2b)

within layer II. The corresponding body movement has

h(t)= h0 + t2h2 + · · ·, (3.3a)
θ(t)= θ0 + t2θ2 + · · ·, (3.3b)

x0(t)= A+ tB+ t2C + · · ·, (3.3c)

where 0 < A < 1,B,C are constants, but inspection of the requirement (2.1d) for
attachment soon establishes that B= 0. Here the initial state satisfies

h0 − F(A)+ (A− xc)θ0 = 0, (3.4a)
F′(A)= θ0, (3.4b)

by virtue of the contact condition (2.6).
Substitution into (2.6) now shows at order t2 that the shape effects h2, θ2,C must be

connected by the two relations

h2 + (A− xc)θ2 = 0, (3.5a)

CF′′(A)= θ2, (3.5b)

if the smooth body remains on the wall. An interpretation of (3.5a) can be made in
terms of a combined upward and rotational movement of the body at small times.

Meanwhile, the body motion in (2.3) and (2.4) requires at leading order the balances

2Mh2 = J1 + N0 −Mg+, (3.6a)
2Iθ2 = J2 + (A− xc)N0 (3.6b)

to hold, where N0 is the leading O(1) contribution to the reaction force N, and J1, J2

are defined as

J1 =
∫ A

0
p0(x) dx+

∫ 1

A
P0(x) dx, (3.7a)

J2 =
∫ A

0
(x− xc)p0(x) dx+

∫ 1

A
(x− xc)P0(x) dx. (3.7b)

Thus, by elimination of N0 a relation between h2, θ2 is inferred, namely

α2h2 + β2θ2 = γ2, (3.8a)

with

α2 =−2M(A− xc), (3.8b)
β2 = 2I, (3.8c)

γ2 = J2 + (A− xc)(Mg+ − J1). (3.8d)

The coefficients α2, β2 are known constants, whereas γ2 clearly depends through J1, J2

on integral properties of the unknown pressure coefficients p0(x),P0(x): this represents
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an influence of added mass. We must move on to determine those pressure coefficients
in terms of h2, or θ2, or both.

In the fluid flow in layer I, from (2.1a) at the order of t we obtain an equation
controlling u1(x), given H0(x)= h0 + (x − xc)θ0 − F(x) as the known initial gap shape.
Integration in x then leads to

u1(x)H0(x)=−2
(

h2 +
(

x+ A

2
− xc

)
θ2

)
(x− A). (3.9)

A requirement of finiteness for u1 at the original contact position x = A is imposed
in order to keep the associated pressure coefficient finite at contact in line with the
fluid–body interaction structure. In fact, equation (2.1b) at leading order indicates that
the induced pressure gradient remains finite at x = A− since h2 + (x − xc)θ2 is then of
O(x − A) from (3.5a), while the gap shape H0(x) is then of O((x− A)2) in view of
(3.4). The results now yield

u1(x)=−θ2(x− A)2

H0(x)
, (3.10a)

p0(x)= θ2

∫ x

A

(x− A)2

H0(x)
dx+ p0(A−), (3.10b)

where it is noted in particular that the integral is convergent for all x. Furthermore, the
leading-edge condition (2.1c) becomes p0(0)= 1/2 here, which relates p0(A) to θ2 and
leaves us with

p0(x)= 1
2 + θ2K1, (3.11a)

where

K1(x)=
∫ x

0

(x− A)2

H0(x)
dx, (3.11b)

for 0< x< A. Exactly the same approach applies in layer II except for P0 replacing p0

and the trailing-edge condition (2.2c) replacing (2.1c). Therefore, we find

P0(x)= θ2K2, (3.12a)

where

K2(x)=
∫ x

1

(x− A)2

H0(x)
dx, (3.12b)

for A< x< 1. The functions K1,K2 are specified functions of x.
Hence, returning to (3.7) and (3.8) we have now

α2h2 + β̂2θ2 = s, (3.13)

with β̂2 = β2 − r and the constants r, s are

r =
∫ A

0
(x− xc)K1(x) dx+

∫ 1

A
(x− xc)K2(x) dx

− (A− xc)

(∫ A

0
K1(x) dx+

∫ 1

A
K2(x) dx

)
, (3.14a)

s= A(A− 2xc)

4
+ (A− xc)

(
Mg+ − A

2

)
. (3.14b)
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FIGURE 2. Numerical solutions for the small-time system (3.5a), (3.5b) and (3.13). Each
figure shows for different body shapes F(x) the scaled leading-order vertical reaction force
N0 versus the scaled body mass M for various values of the parameter A governing the initial
location. Here, I = M for definiteness, and g+ = 10. (a) Sinusoidal body F(x) = sin(πx),
x ∈ (0, 1). (b) Elliptical body F(x)=√x− x2, x ∈ (0, 1).

The main system to be tackled is therefore (3.5a) and (3.13) for h2, θ2. Afterwards
C is determined by (3.5b), and we can in addition use (3.6) to check on whether the
primary reaction-force contribution N0 is positive or negative. It is noteworthy here
that the contact-attachment requirement (2.1d) at the present level of approximation
reproduces the smooth shape condition (3.5b), since the curvature effects H′′0 and −F′′

are identical. Moreover, the solutions for p0,P0 in (3.11) and (3.12) indicate that there
is an O(1) pressure jump produced across the contact position.

We show the prime features of the small-time solutions in figures 2–4 for the
representative body shapes shown in figure 1(b). Analysis indicates that there is no
scaling parameter that would make all of the curves collapse. Some conditions are
found to yield the reaction-force contribution N0 being negative, which corresponds to
the occurrence of an immediate lift-off. For an (under-)body shape which is sinusoidal,
as in F(x) = sin(πx) between x zero and x unity, figure 2(a) shows the results for the
scaled leading-order vertical reaction force N0 versus the scaled body mass M as the
parameter A governing the initial location is varied. Here the scaled moment of inertia
I is taken to be equal to the scaled mass M for definiteness; keeping the ratio I/M
fixed is meaningful in the sense that the body shape remains fixed but the dimensional
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FIGURE 3. As for figure 2, but for two additional body shapes. (a) Smooth-cornered body
F(x) = −√Xa(x) −

√
Xb(x) +

√
Xa(0) +

√
Xb(0), where Xa(x) = (x− a1)

2 + a2
2, Xb(x) =

(x− b1)
2 + b2

2, and (a1, a2, b1, b2) = (0.2, 0.1, 0.8, 0.1), x ∈ (0, 1). (b) Constant curvature
body F(x)= x(1− x), x ∈ (0, 1).

density and relative gap width can still be varied for example. For the horizontally
symmetrical shapes investigated in this paper a value A greater than 1/2 means the
body’s leading edge is raised above the trailing-edge height. The results indicate that
for all the values A studied there is a finite range of values M(=I) for which N0

becomes negative, implying that for such values the body immediately lifts off from
the wall. On the other hand, as M becomes relatively large, the value of N0 always
becomes positive and increases linearly with M, in keeping with asymptotic behaviour
concerning the loss of fluid-flow effects then; the interval within which fluid-flow
effects do matter is actually quite small, in this instance being confined to M less than
0.1 roughly. There is in any case a critical value of scaled mass M, corresponding
dimensionally to the existence of a critical fluid speed for lift-off for a given
dimensional mass. Figure 2(b) is then for an elliptical shape such that F(x)=√x− x2

for x in (0, 1), leaving the body slope and curvature singular at the edge points,
whereas the sinusoidal body has finite slope and zero curvature at the leading and
trailing edges x = 0, 1. Here almost all values of A studied produce a range of values
of M in which lift-off can be inferred because N0 < 0. The cases A = 0.7 and A = 0.8
being the only exceptions among those presented. Similarly, figure 3(a) which is for
a smooth-cornered shape, shows ranges of negative N0 and, hence, lift-off in almost
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FIGURE 4. (a) Numerical solutions for the small-time system (3.5a), (3.5b) and (3.13),
showing the influence of the (inverse) Froude number on lift-off. Here, the body shape is
the constant curvature case of figure 3(b) with A= 0.7, but g+ is varied from 10 down to zero.
Again, I =M for definiteness. (b) As for (a) but over a wider range of values of M, I.

all cases. Here F(x) = −√Xa(x) −
√

Xb(x) +
√

Xa(0) +
√

Xb(0), where the spatially
varying contributions are given by Xa(x) = (x− a1)

2 + a2
2, Xb(x) = (x− b1)

2 + b2
2, and

the constants are (a1, a2, b1, b2) = (0.2, 0.1, 0.8, 0.1). With comparatively large M(=I)
in figures 2(b), 3(a) the asymptotes are linear as in figure 2(a). By contrast, with
comparatively small or in effect zero M associated with dominant fluid influences,
an explicit form of (3.5a) and (3.13) can be found: this predicts that for a shape of
constant curvature, for example, the critical value of A is 2/3 at zero M, a critical
value which is broadly in line with the results in figures 2, 3(a). The critical value is
also confirmed by the results of figure 3(b) which are for the shape F(x)= x(1− x) of
constant curvature.

Figure 4 indicates respectively the rather sensitive dependence of lift-off or its
absence on the body shape and on the gravity factor. Concerning the latter, although
most results given in this study take the value of g+ as 10, we may begin to explore
now the influences of the (inverse) Froude number. Figure 4 has the value of A
remaining at 0.7 but g+ is varied from 10 down to 0. The range of conditions that lead
to immediate lift-off is increased considerably with such decreasing of g+, a matter
which is pursued further in detail in Appendix and leads into the investigations in later
sections on finite-time responses.
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4. The behaviour at O(1) times with negligible fluid effects
Without significant effects from the fluid flow, the controlling balances in (2.1)–(2.6)

over the time scale of order unity reduce to

Mḧ(t)= N(t)−Mg+, (4.1)
Iθ̈ (t)= (x0 − xc)N(t), (4.2)

H(x, t)= h(t)+ (x− xc)θ(t)− F(x), (4.3)

H = 0,
∂H

∂x
= 0 at x= x0(t). (4.4)

Here the unknowns are N, x0, h, θ as functions of time t only. The coupled system
above corresponds to the relative mass and moment of inertia being large. An
assumption of rolling is also noted. Elimination of N in (4.1) and (4.2) leads to
the equation

Iθ̈ (t)=M(x0 − xc)(ḧ+ g+), (4.5)

which couples with (4.3) and (4.4) for (x0, h, θ)(t).
Applying (4.4) on the other hand yields the following successive relationships

between h, θ and x0 involving the body shape function F(x),

h(t)= F(x0)− (x0 − xc)F
′(x0), (4.6a)

ḣ(t)=−(x0 − xc)F
′′(x0)ẋ0, (4.6b)

ḧ(t)=−F′′(x0)ẋ
2
0 − (x0 − xc)(F

′′′(x0)ẋ
2
0 + F′′(x0)ẍ0), (4.6c)

θ = F′(x0), (4.7a)
θ̇ = F′′(x0)ẋ0, (4.7b)

θ̈ = F′′′(x0)ẋ
2
0 + F′′(x0)ẍ0. (4.7c)

Hence, from substitution into (4.5) we obtain a nonlinear governing equation for x0(t)
alone, which is

αẍ0 + β ẋ2
0 = zg+, (4.8a)

where

α =
(

I

M
+ z2

)
f ′′, β = I

M
f ′′′ + z(f ′′ + zf ′′′), z= (x0 − xc), f = F(x0). (4.8b)

The fluid-free cases in (4.8a) and (4.8b) can be integrated once to the energy form,
involving a constant of integration c2 which is fixed by the initial conditions(

dz

dt

)2

= 2g+
zf ′ − f + c2(

I

M
+ z2

)
f ′′2

(4.8c)

for any effective body shape f (z). Further integration to obtain z(t) and hence x0(t)
explicitly is shape-dependent, although there are interesting limiting situations such
as for the nearly cornered shapes addressed elsewhere. It can be shown also that the
reaction force N remains one-signed in all of these fluid-free cases.

Numerical solutions of (4.8a) and (4.8b), obtained using MATLAB’s R©ode45 solver,
checked by an independent solver, and subject to varying initial conditions, are
presented in figures 5 and 6 for two of the earlier prescribed shapes of interest:
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FIGURE 5. Numerical solutions for the case of order unity time and negligible fluid effects
(4.8a) and (4.8b) subject to varying initial location of the contact point, while initial contact-
point velocity is fixed at zero. In all cases, g+ = 10, xc = 0.5. (a,b) The time evolution of the
contact position x0 for varying initial conditions and body shape: (a) for a sinusoidal body
F(x)= sin(πx), x ∈ (0, 1); (b) for an elliptical body F(x)=√x− x2, x ∈ (0, 1).

the sinusoidal shape F(x) = sin(πx) and the elliptical shape F(x) = √x− x2. In both
cases, the value of g+ was taken to be 10, while the x position of the centre of
mass was fixed as xc = 0.5. The sinusoidal shape is shown in figure 5(a) for initial
conditions in which the contact-point velocity ξ0 = ẋ0(0) is kept at zero, and the initial
contact location x0(0) is varied over the values shown in the legend. In all cases except
that in which x0(0) = xc = 0.5, the solution evolves quite soon into an apparently
periodic state in which the body rocks. The cases x0(0) = 0.4 and x0(0) = 0.6 remain
near equilibrium as t increases with sinusoidal-like oscillations being observed about
x0 = 0.5 in a gentle rocking motion of the body. Values of x0(0) further away from
xc, on the other hand, provoke rapid rocking as these cases come closer to failure or
lift-off in the sense that they yield comparatively rapid behavioural changes whenever
the contact point x0 approaches either of the end points. However, the second shape,
namely the ellipse, is found to be associated with comparatively slow responses
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FIGURE 6. Comparing asymptotic predictions with numerical results in the case of negligible
flow effects, and with conditions as in figure 5. (a) The analytical limiting response (4.9) for
the sinusoidal body in scaled (left) and unscaled (right) coordinates. The dots in the right-
hand figure represent the numerical solutions. The time T0 at which x0 attains its minimum
was obtained from the numerical results in figure 5(a). (b) As for (a), but for the analytical
limiting response (4.10) for the elliptical body in scaled (left) and unscaled (right) coordinates.
Here, a single value of ε is plotted to make the left-hand figure clearer, and since in the
right-hand figure the asymptotic predictions from the three values of ε used in (a) would
coincide. Once again, dots represent numerical solutions, and the time T0 at which x0 attains
its minimum was obtained from the numerical results, as shown in figure 5(b).

whenever the contact point x0 approaches either of the end points, as indicated in
figure 5(b). Gently rocking sinusoidal-like oscillations about the equilibrium point at
0.5 again seem implied for initial conditions x0(0) = 0.4 and x0(0) = 0.6, whereas
values of x0(0) further away from xc lead to extreme rocking with relatively long
periods in which x0 remains close to zero or unity, accompanied by rather rapid
increases or decreases of x0 in between. It is worth remarking that although the
maximum values of θ(t) suggested in the results are not always small they are in
scaled form and certainly remain correct asymptotically.
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Analytical solutions are also possible for certain special shapes but it seems more
useful here to examine the limiting responses indicated by the results in figure 5(a,b)
when the contact point is near an end point. In the locally near-flat scenario of
figure 5(a) the limiting response occurs comparatively rapidly around some time t = t0,
such that time t = t0 + εT , say, where the parameter ε is small and T is strictly of
order unity, and x = εX to leading order near the leading edge. In normalized form,
the governing equation (4.8a) or (4.8c) then leads to the local behaviour of the contact
position being given by

X2 = λ

π3
(T − T0)

2 + Γ 2, (4.9)

with λ > 0, Γ > 0, T0 being the constants λ = g+xc((I/M)+ x2
c)
−1, Γ = ε−1x0, while

T0 is the a priori unknown scaled time at which x0 reaches a minimum. In the
elliptical scenario of figure 5(b), by contrast, the time scale is relatively long with
t = ε−1/4T and x = εX again to leading order for small ε, so that from (4.8a) and
(4.8c) the scaled position X is found to be given by

X = 1(
Γ −1 − λ

3
(T − T0)

2

)2 . (4.10)

Here, λ and Γ are as before, T0 is in general a different value from the sinusoidal
case, and T lies between T0 − √3/λΓ and T0 + √3/λΓ ; close to the singular points
there the growth of X matches to the behaviour in the relatively fast transition regions
in which x becomes of order unity. Similar accounts apply near the trailing edge,
where 1 − x = εX. The limiting responses just described are presented in figure 6, and
they appear to reflect well the solution properties found in figure 5 corresponding to
rapid rocking and long-time rocking, respectively.

5. Behaviour at O(1) times with fluid effects
Here we address the issue of what happens to the combined nonlinear fluid–body

interaction if it persists over the time scale of order unity with significant effects from
the fluid flow being present. Instead of (4.1) and (4.2) we have now

Mḧ(t)= i1 + N(t)−Mg+, (5.1)
Iθ̈ (t)= i2 + (x0 − xc)N(t), (5.2)

with i1, i2 being the integrals from fluid-flow pressure effects in (2.3) and (2.4),
respectively, given explicitly in (5.4b) below. Elimination of N here leads to the
equation

Iθ̈ (t)= i2 − (x0 − xc)i1 +M(x0 − xc)(ḧ+ g+), (5.3)

rather than (4.5). Further, the successive relationships (4.6a)–(4.6c) and (4.7a)–(4.7c)
between h, θ and x0 involving the function F still hold, and so the nonlinear governing
equation for x0(t) now is

αẍ0 + β ẋ2
0 = zg+ + i2 − zi1

M
(5.4a)
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in this full fluid–body interaction, where, to clarify,

i1 =
∫ 1

0
p(x, t) dx, i2 =

∫ 1

0
(x− xc)p(x, t) dx (5.4b)

are the flow-pressure contributions.
Numerical solutions of (5.4a) and (5.4b) were derived by adding the fluid effects of

(5.4b) (the added mass, as it were) in lagged style into (5.4a), then solving that for
an updated x0, feeding this latest x0 into the fluid-flow calculation applied upstream
and downstream of the x0 station to determine u from (2.1a) and (2.2a) and hence p
from (2.1b), (2.1c), (2.2b) and (2.2c), allowing the latest p to be fed into (5.4b), and
so on, iterating per time step. An interpolation was employed in the flow calculation
to handle the movement of the contact point x = x0 with time, making use of the
requirements (2.1d) and (2.2d) and enabling the quasi-mass flux to be evaluated. The
typical values of the uniform time step δt and spatial step δx used in the computations
were 0.001 and 0.005 in turn, and the effects on the solutions of varying the steps
were tested thoroughly. The major results are presented in figures 7–10 for various
prescribed shapes F and varied other conditions.

Figure 7 is for the sinusoidal shape and M = I = 0.125. Figure 7(a,b), in which
the initial conditions are of x0 being 0.33 while the contact velocity ξ0 is zero, show
details of the evolving pressures and velocities in the fluid-filled gaps over a scaled
time range of 0–10. Thus, figure 7(a) has the results for pressures p1, p2 ahead of
and behind the contact point plotted against x at integer times, and figure 7(b) gives
the respective fluid velocities u1, u2 versus x. It is interesting that the pressure curves
upstream and downstream of contact are almost straight with only a slight curvature
being apparent, the same being true for non-sinusoidal F(x). Also the vertical lines in
figure 7(a) mark the clear jumps in pressure at the moving contact position, in keeping
with the earlier remarks. The fluid velocities u1, u2 in contrast seen in figure 7(b) are
continuous through the contact position x= x0(t) as anticipated previously. Further, the
velocities are all positive at early times but eventually negative values are encountered
(smoothly) at later times as the front of the body rocks downwards squashing the fluid
there in a sense; the inferred flow closer to the leading edge is then clockwise around
the leading edge. Figure 7(c) presents the numerical results for the evolution of the
contact location x0, its velocity ξ0, its local shape response F(x0), and the reaction
force N versus t, both for the initial condition (x0, ξ0) of (0.33, 0) as above, and
for (0.28, 0) for comparison. The latter case shows a phenomenon of rapid rocking
appearing near the end points which is not dissimilar to that encountered in no-fluid
scenarios subject to different initial conditions.

In figure 8 the results for the elliptical shape are presented. Figure 8(a) with
an initial condition (x0, ξ0) of (0.25, 0) is for M = I = 0.08 and shows the contact
location, its velocity, its local shape response and the reaction force plotted against
scaled time. The findings are fairly similar to those for the no-fluid case in figure 5
but clearly the fluid effect is no longer negligible here, although an apparently periodic
rocking behaviour emerges nonetheless. Figure 8(b) has the same initial condition but
now M = I = 0.05, implying increased fluid-flow effect. Here the contact position x0 is
found to increase monotonically with time, and tends to approach the trailing edge, but
during that process the reaction force N becomes negative and so lift-off of the body is
indicated. This arises at a finite time t which in the case of figure 8(b) is at t = 1.921
and the final contact at that time is at an x0 value of 0.9096. Figure 9(a) reinforces
the point and further examines the effects of the initial conditions by showing the
results for x0,N for three different initial contact velocities ξ0 equal to −0.2, 0, 0.2,
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FIGURE 7. Numerical solutions for the behaviour at O(1) times with fluid effects. Here, the
body shape F is sinusoidal and M = I = 0.125. (a) Pressures p1, p2 respectively ahead of
and behind the contact point for the initial conditions (x0, ξ0) = (0.33, 0). The discontinuity
across the contact point is clearly visible. (b) Velocities u1, u2 respectively ahead of and
behind the contact point for the initial conditions (x0, ξ0) = (0.33, 0). The continuity and
relative smoothness at the contact point are noted. (c) Contact location x0, its velocity ξ0,
its local shape response F(x0), and the reaction force N versus t, for the initial conditions
(x0, ξ0)= (0.33, 0) (solid lines) and (0.28, 0) (dashed lines).

with the same settings as in figure 8(b) and with the responses for the first value
also being calculated with three different time steps to highlight the accuracy involved.
In every case the reaction force becomes negative within a finite scaled time. The
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FIGURE 8. Numerical solutions for the behaviour at O(1) times with fluid effects. Here,
the body shape F is elliptical. (a) Here, for the initial condition (x0, ξ0) = (0.25, 0) and for
M = I = 0.08, we show the contact location, its velocity, its local shape response and the
reaction force plotted against scaled time. (b) As for (a) but with M = I = 0.05.

evolution of the angle θ under the conditions of figure 8(a) is presented in figure 9(b)
and also supports the conclusions on nonlinear periodic rocking behaviour if lift-off
is absent, as well as agreeing with the small-time analysis of § 3. In figure 9(b)
the successive maxima in F versus time are seen to correspond to θ changing sign,
whereas the minima in F correspond to successive extrema in θ because of the
relationship between F and the contact location x0.

The smooth-cornered shape of figure 3(a) is the subject of figure 10 with fluid-flow
influences now being present. The trend observed is akin to that described in the
previous paragraph, including the monotonic response of the contact location prior to
the eventual lift-off inferred from the reaction force N becoming negative at a finite
time. The interesting numerical results generated from the lift-off time are also shown
even though they are not strictly physically meaningful.

There are a number of parameters here. The different values of the parameters M, I
are chosen to show the main solution features with sufficient clarity. Figure 8 for
example includes two M values in order to indicate their effects on the evolution of
the interaction with fluid flow active. Systematic patterns on the influence of these
parameters on the crossover from body rock to lift-off emerge from the results in
the figures combined with the work in the next two sections and in Appendix. The
influence of the parameter g+ was examined first in figures 4(a) and 4(b) and is



110 F. T. Smith and P. L. Wilson

–0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

0 1 2 3 4 5 6 7 8 9 10

–1.4

–1.0

–0.6

–0.2

0.2

0.6

1 2 3 4 5 6 7 8 9
t

0 10

(a)

(b)

FIGURE 9. (a) Numerical results for x0,N at O(1) times with fluid effects for three different
initial contact velocities ξ0 equal to −0.2, 0, 0.2, with the other settings as in figure 8(b).
Responses for the first value calculated with three different time steps are also shown
(labelled ‘coarse grid’, ‘medium grid’ and ‘fine grid’). (b) The evolution of F(x0) and θ
with time are shown for the same conditions as in figure 8(a).

re-examined in figure 11. Analysis again indicates that there is no scaling parameter
that would make all of the curves collapse. Reducing g+ from its usual value of
10 to the values 5 and then 3 is found to result in a change from periodic rocking
behaviour to finite-time lift-off as N becomes negative as in figure 11, doing so earlier
for the value 3 (at t = 0.817) than for the value 5 (at t = 3.576). The contact position
moves monotonically towards the trailing edge for the two reduced g+ values, and the
associated θ angles decrease monotonically, until lift-off is encountered. The lift-off is
perhaps the most intriguing phenomenon to explore next.

6. Lift-off of the body
The evidence from the results in figures 8–11 indicates that the interactive solution

is regular at the onset of lift-off of the body, with (to repeat) lift-off being identified



Body-rock or lift-off 111

N

F(x0)

x0

1 2 3 4 5 6 7 8 9
t

0 10
–1.0

–0.5

0

0.5

1.0

1.5

FIGURE 10. Numerical solutions for the behaviour at O(1) times with fluid effects. Here,
the body shape F is the smooth-cornered body of figure 3(a), with M = I = 0.1 and initial
conditions (x0, ξ0) = (0.25, 0). Beyond the lift-off time of t ≈ 1.616 when N first becomes
negative, the interesting numerical results are still shown although strictly they are no longer
physically meaningful.
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FIGURE 11. The influence of the gravity parameter g+ (value in parentheses in legend) on
the behaviour of the constant-curvature body of figure 3(b). Here, M = I = 0.1, and the initial
conditions are (x0, ξ0) = (0.7, 0). Note that results corresponding to values of x0 greater than
unity are not physical, but are shown here as in figure 10.

with the reaction force becoming zero after being positive beforehand. Thus the
expression for the flow and body-movement behaviour at the lift-off time tLO say
has

(h, θ, u, p, x0,N)=
∞∑

m=0

(h, θ, u, p, x0,N)(m)(tLO − t)m. (6.1)

The coefficients h(m), etc., on the right-hand side for m > 0 are independent of t but
their values depend on the evolution from the initial time, while (6.1) holds for scaled
time t tending to tLO−, the lift-off time being positive. It is noticed from figure 1(a)
and so on that the flow velocity u and pressure p are in two parts I and II on either
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side of the contact point. For the pressure in particular this facet implies there is a
moving discontinuity to be dealt with as highlighted by figure 7(a) and, hence, a little
delicacy near the terminal location x = x0(tLO) at small relative times tLO − t, but this
does not affect the response (6.1) materially.

Substitution of (6.1) into the fluid–body equations of § 2 or into the equivalent
system (5.4a) and (5.4b) can then be made and studied in detail. The principal point
however is that in (5.4a) and (5.4b) the integrated flow-pressure contributions i1 and
i2 act to counter the effect of scaled gravity on the right-hand side and thus take
the interactive solution into a part of solution space which is not attainable in the
no-fluid scenario of § 4. The action which is due to added mass and to evolution in the
fluid–body interaction allows the reaction force to become negative. The same global
type of anti-gravity action is also responsible for the changes of sign in the reaction
force at early times (§ 3) as shown in the results of figures 2–4.

The results for the ellipse in (4.10), figure 5(b) without fluid effects and
subsequently figures 8(a,b), 9(a,b) with fluid effects provide a specific example of
the above. Checking on the orders of magnitude of gap properties and flow behaviour
locally near the contact point whether close to the leading edge (x = εX) or to the
trailing edge shows dh/dt and dθ/dt to be of typical size ε−1/4 which is large. So Γ
is of the same typical size. The fluid velocity u is then of order dx0/dt, that is, ε5/4,
making q also small of order ε5/2. The local pressure response p is therefore merely
a small perturbation from the value 1/2 and, hence, has negligible influence on i1

and i2 in (5.4a) and (5.4b) as these remain overwhelmed by global contributions of
order unity. Similar reasoning applies for the sinusoidal shape of (4.9) and figures 5(a),
7(a–c) for example.

The conclusion then is there is nothing dramatic about the onset of lift-off, in line
with (6.1). In contrast such a conclusion is not necessarily so once lift-off occurs for
times t equal to tLO+: the latter is considered within the next section. As regards the
work so far the more significant question is whether lift-off occurs or not and this is
clearly reliant on the interaction parameters together with initial values. According to
the model lift-off generally cannot take place without fluid flow effects but it can with
them.

7. Comparisons and final comments
The lift-off of a body from a fixed solid surface due to fluid motion or indeed

just the washing or rocking of such a surface-mounted body clearly depends on a
significant number of parameters. The total parameter space should also include the
influences of evolution (the initial-value problem due to wash starting up or wind
changing for example) and body shape because of their importance. The present
investigation it is hoped helps to shed light on this parameter space by means of
the specific studies in §§ 3–5 on small-time responses, zero-fluid evolution and with-
fluid evolution in turn, given the model set-up in § 2 and the account of lift-off
in § 6. In addition concerning scaled gravity effects in particular at low Richardson
number two modes of lift-off can now be identified. One occurs for enhanced values
of the scaled mass and so has the gravitational force in balance with the mass-
acceleration contribution on account of a reduction in the local variation in gap width.
Typically this mode corresponds in dimensional terms to increased incident fluid speed
(including threshold speed) or increased body mass. The second mode occurs for in
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effect zero scaled gravity in the sense that the gravitational force simply has negligible
influence on the mass-acceleration balance compared with the flow forces and the
normal reaction force. Such a second mode can be associated mainly with relatively
reduced body or particle dimensions or negligible gravity in reality. The specific exact
case addressed in Appendix backs up the presence of these two modes of lift-off.

It is interesting to return now to consider the movement of sand or dust on the
surface of Mars, a matter introduced in § 1. As a broad background observations have
suggested that the flux of Martian dust or sand movement is comparable overall to that
on Earth. There are, obviously or potentially, many physical factors at work here as
is indicated also in the substantial fairly recent growth in studies: again see § 1. The
present study suggests in fact there are wide areas of parameter space where lift-off
can occur in practice.

Two attributes which might be emphasized first are that the Martian gravity gD is
∼0.38 of the Earth value whereas the density of the Martian atmosphere ρD is only
∼1/60 of Earth value. Predictions then from our results would be based on knowing
that M = MDh̄/(ρDL2

D) and g+ = gDLD/(h̄U2
D) from the non-dimensionalization, and

estimating the body mass as MD = ρDbodyL2
D × (unit distance in zD), where ρDbody is the

typical body density. As a consequence

M = ρDbody

ρD
h̄2. (7.1)

Thus, on Mars, taking the same size, shape and density of body (dust particle) as
on Earth, one should tend to find M increasing by virtue of the ρD factor in M
although readily mitigated by the gap width h̄ reducing by a factor of 1/4 say,
making M increase by ∼4. Now consider the mode mentioned earlier for lift-off
assuming M is relatively large, that is, M ∼ 1/g+ or M < 1/g+. This becomes the
requirement U2

D > (ρDbody/ρD)gDh̄LD on the threshold wind speed UD for lift-off to
occur. In numerical terms the right-hand side here as far as Mars is concerned is
approximately (60)× 0.4× 1/4× 1 relative to the Earth value in view of the estimates
above, i.e. the Mars value is ∼6 times the Earth value on the right-hand side. Hence,
the critical wind speed on Mars is predicted as ∼2–3 times that on Earth. This last
result is reasonably in line with the literature (e.g. Wang 2012); further, the current
prediction of a square-root dependence of threshold speed on particle size is not out of
keeping with figure 2 of Wang (2012).

Second, though, is the need for caution, since the above prediction and indeed
earlier predictions should be qualified heavily due to the following aspects. As we
have shown, lift-off can appear quite readily at low scaled mass or large-scaled mass
typically: see also figure 4(a). Moreover shape effects, initial conditions and gap
width all matter considerably as shown in the current study. Many areas of the total
parameter space allow lift-off to occur. A referee made an interesting remark about
stability analysis. Such analysis may indeed be useful provided that nonlinearity is
admitted and likewise a phase diagram may prove helpful later. Nevertheless the prime
feature here is clearly the detailed shape dependence of the interactive solution allied
with the dependence on the initial conditions (evolution) and the parameters as just
mentioned. The theory highlights the role of added mass due to flow which can
lead to a smooth crossover from body rock to lift-off from the supporting surface.
Again in reality the ‘typical’ body shapes vary appreciably rather than being purely
spherical or thin, while with many bodies or particles present there is a potentially
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complicated and subtle multibody factor where for example a string of bodies lies on
top of another string, creating a thin gap, and we should not forget the existence of
a laminar or turbulent boundary layer in the incident fluid motion. Finally here, as
shown in the previous section, lift-off itself is not a dramatic event in terms of the
fluid–body interaction per se: it merely happens in a smooth manner, at least in the
pre-lift-off stage (compare with the post-lift-off stage addressed below). This manner is
quite in keeping with the stated importance of the initial conditions. Parameter studies
of reptation in terms of fluid–body interaction along lines similar to those here or in
Smith & Wilson (2011) could be of much interest.

Intriguing issues remain. The influence of incident shear for example in the depths
of an oncoming atmospheric boundary layer has still to be considered. A classic
treatment of this aspect is for a uniform shear. In addition, the modelling so far
has ignored viscous effects quite generally. Other shapes or configurations of body
need to be examined such as cases with non-symmetry in the streamwise direction
or with irregular shapes or groups of bodies, in order to raise understanding for
dust piles for instance. (Appendix shows that the body curvature can act in effect
to increase the scaled mass parameter and reduce the gravity force, which leads on
again to another part of parameter space.) Further concerning future work, while the
inclusion of viscous forces has been discussed already and centres on laminar or
turbulent sublayers as in Smith & Ellis (2010) and Smith & Wilson (2011), the next
steps of perhaps more real significance are associated with including many bodies,
piles of bodies, the resulting added mass effects and any resulting flights through the
surrounding atmosphere after lift-off. A multitude of parameters is again present.

Properties arising after a lift-off are also intriguing. In cases where lift-off does
occur (negating the energy-integral result of the no-flow case) the local scales soon
after lift-off are expected to be similar to those in the current study, such as a relative
time squared scaling in the vertical coordinate. This would suggest that a local analysis
then has to deal with a substantial jump in pressure within which the local pressure
is an order-one function of distance measured from the lift-off point but scaled with
relative time. In some detail near a moving contact point prior to lift-off of a smooth
body the local gap shape is typically of the form H ∼ κ(t)x̄2 if the contact point is
at x = x0(t). Here κ(t) is an O(1) function of time which is arbitrary in the sense
of being determined by historical effects, and x̄ denotes x − x0(t). Now the response
in horizontal fluid velocity is of the form u ∼ ẋ0 + σ x̄ where the rate σ(t) is κ̇/(3κ),
implying that the pressure behaves as c2(t)+ ẍ0x̄ + (σ̇ + σ 2)x̄2/2 in the vicinity of the
contact point. However, the c2 pressure function is discontinuous across the contact
position, as is clear from the results in figure 7(a) for example and the working
in earlier sections. This reinforces the suggestion of a pressure discontinuity which,
immediately after lift-off, must be accommodated by the fluid flow through the newly
opened gap.

The study has been focused throughout on unsteady nonlinear interactions in just
two spatial dimensions. Moving the theory on to three-dimensional interactions is
called for. The three-dimensional version of the post-lift-off configuration described in
the previous paragraph for example would be of much interest. Many other extensions
naturally suggest themselves: allowing body flexibility (with applications to red blood
cell deformation and swimming microorganisms amongst others); studying the effects
of surface shape, curvature and roughness; and including the effects of a thin layer of
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a second, viscous fluid between the surface and rocking body, to study the effects of
surface tension there.
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Appendix. The constant-curvature body at small times
A constant curvature in the present setting corresponds to having the initial gap

width

H0(x)= λ(x− A)2, (A 1)

where λ is a positive constant proportional to the body curvature. Hence, evaluating
the integrals in (3.11a)–(3.14b) and in particular finding that r is (−A2+A−1/3)/(2λ)
leads to the result A2 − A+ 1

3
2λ

+ 2I + 2M

(
A− 1

2

)2

 θ2 = s (A 2)

for θ2 in terms of s which is Mg+(A− 1/2)− A2/4. The value of xc is taken as 1/2 as
a major example. Then the scaled reaction force N0 follows from (3.6b) in the form

N0 = 2Iθ2 − J2

A− 1
2

. (A 3)

Here J2 can be determined analytically from (3.7b) with (3.11a) and (3.12a) and so
this yields the explicit solution

N0 =

2I −
A2 − A+ 1

6
2λ

 θ2 − A2 − A

4

A− 1
2

(A 4)

for N0, with θ2 given explicitly by (A 2). It can be shown by working with the
quantities λM, θ2/λ, g+/λ that λ may be normalized to unity without loss of
generality.

Plots of the scaled force N0 against the scaled mass M are presented in
figure 12(a,b) for varying values of the gravity contribution g+. The curves do not
collapse under a scaling parameter. In these plots the scaled moment of inertia I is
again equated to M for reasons described earlier on and the curvature constant λ is
kept at unity while the starting location A is kept at 0.7 for comparison purposes. The
results here agree with those presented in § 3.
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FIGURE 12. The constant curvature body at small times. (a) Solutions of (A 4) for a range of
values of g+. (b) As for (a) but for a wider range of values of M = I.

The lift-off case where N0 is zero is of much interest of course. This critical case is
controlled by the relation

2µg+M2 −

µA+
A(A− 1)

(
A− 1

2

)
2

+

(
A2 − A+ 1

6

)
g+

2λ

M +

(
A− 2

3

)
A

8λ
= 0

(A 5)

between M, g+, A and λ, from (A 4) with (A 2), with µ standing for the ratio I/M.
When the gravity effect is comparatively small for instance the first two contributions
are overwhelming when M is large and the relation (A 5) leads to the explicit form

M ∼

[
2µ+ (A− 1)

(
A− 1

2

)]
A

4µg+
(first root for g+ small) (A 6)

for the dependence of the critical M value on g+ in particular. The numerator here can
be positive or negative, depending on the ratio µ and the contact position A, which
indicates a sensitivity to the precise body shape. However for the values µ = 1 and
A = 0.7 used in figure 12(a,b) the asymptotic trend (A 6) is found to agree rather
closely with the full numerical results in the figures as g+ varies and indeed the
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FIGURE 13. The constant curvature body at small times. The numerical roots of (A 4)
obtained from figure 12(a,b) (circles) compared with the asymptotic prediction of (A 6)
(solid curve).

asymptote even works well for g+ equal to unity or greater, as indicated by figure 13.
The trend (A 6) for this special category of body shapes also hints at the trend for the
general body shape, which again is found to have M proportional to the inverse of
effective gravity.

Similar considerations apply to the other root for relatively small gravity in (A 5),
giving the explicit value

M ∼

(
A− 2

3

)
A

8λ

µA+
A(A− 1)

(
A− 1

2

)
2


(second root for g+ small). (A 7)

This is associated with having identically zero gravity in (A 5) and corresponds to one
of the cases presented in figure 12. The potential reliance on A exceeding 2/3 is again
noted.
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