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ABSTRACT

The performance limitations of an acoustic Doppler sonar system are explored and compared with anticipated
requirements for the measurement of surface wave directional/frequency spectra. To obtain measurements to
a range D requires a delay Af between pings long enough for sound to propagate out to D and back: Af(c¢/2)
> D. This defines a Nyquist frequency, wy (radians s~!). Linear dispersion relates this to a “matched wavenum-
ber,” ky = wy?/g. Waves travelling obliquely and harmonics of longer waves appearing at wy all have smaller
wavenumbers, k < ky; thus, ky defines a maximum wavenumber requirement, or (equivalently) a matched
range resolution, AR. From idealized surface wave spectra, the velocity resolution AV required to measure
spectra out to (wy, ky) can be estimated. For a given sonar “tone,” the error-product E = ARAV is a constant,
so velocity resolution and range resolution must be traded off. The error product decreases with increasing
acoustic frequency f, and number of tones. Higher frequency sound is also attenuated more rapidly, limiting
the maximum range attainable. A practical approach is to define a desired range D, find the highest frequency
which can be detected to that range, and then determine the number of tones required to achieve the target
velocity and range resolutions. If too many tones are needed, a slight retreat in range resolution yields a relaxation
in the velocity requirement as well (because of the steep spectral slope of surface wave spectra). Electronic
design and performance is neglected here, on the presumption that the physical limits discussed will eventually
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be the important ones.

1. Introduction

In a previous paper (Pinkel and Smith 1987), it was
shown that Doppler sonar systems are well suited to
the measurement of surface waves and swell in the open
ocean. Using two sonar beams oriented in different
directions along the underside of the sea surface, we
were able to estimate the three-dimensional (wave-
number and frequency) spectrum of surface wave en-
ergy, over space and time scales appropriate to swell
and near-peak frequency wind-waves. The sonars de-
scribed in the previous paper were designed to measure
lower-frequency mixed layer motion associated with
internal waves, Langmuir circulation, etc. For this, they
performed satisfactorily (Smith, Pinkel, and Weller
1987). They were not designed to measure surface
waves. The fact that they did well in this too indicates
that (i) the technique is well suited to surface waves,
as noted, and (ii) it should be possible to do better.

Here, the issues involved in designing an acoustic
Doppler system for surface wave measurement are ad-
dressed. For this purpose, it is useful to have in mind
(i) an idealized surface wave spectrum, with which to
estimate the velocity signal strength as a function of
frequency and direction; and (ii) an idealized sonar
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beam configuration simple enough to analyze yet gen-
eral enough to be useful.

' Existing model spectra of surface waves are adequate
to estimate the velocity signal levels, although there
may be an order of magnitude of variation in the spec-
tral levels found within a given measurement period
(e.g., Phillips 1977, 1985; Long and Huang 1976;
Donelan et al. 1985). We wish to measure the direc-
tional shape of the spectrum, not just the peak direc-
tional components, which requires rather more resolv-
ing power than that needed to see the directional peaks.
To observe the crosswind wave components on an
obliquely oriented sonar beam, the sensitivity required
is about 100 times that needed to see the alongwind
components of the same frequency travelling parallel
to the beam.

An attractive shape for a sonar beam arises because
of the “brightness™ of the surface (or near-surface).
Empirically, with winds over a couple meters per sec-
ond, the backscatter from the surface zone is 30 to 40
dB (102 to 10* times) Iouder than the “volume back-
scatter” from below. For acoustic frequencies over 60
kHz or so, the backscatter at grazing angles of incidence
(within 30° of parallel to the surface) appears to be
due primarily to a subsurface layer of bubbles, which
are extremely efficient scatterers of sound (Urick 1975;
Clay and Medwin 1977; McDaniel and Gorman 1982,
etc.). As a result, if any part of the beam intersects the
surface bubble-layer within a given range-bin, the
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FIG. 1. A schematic view of FLIP with the fan-shaped sonar beam
radiating out to 500 m. Because the backscatter from the near surface
layer of bubbles (shown schematically as specks) is much brighter
than that from below, the measurement can be considered to have
the same one meter depth-scale as the bubbles. The intensity of the
acoustic return is roughly proportional to the number of bubbles in
the sample volume.

backscatter (and hence the measured Doppler shift) is
completely dominated by that part. Thus, an excellent
choice is a beam which is broad in the vertical plane,
yet narrow in azimuth (see Fig. 1). The effective sensor”
location (or measurement volume) is confined verti-
cally by the scale depth of the surface bubble layer (of
order 1 m), azimuthally by the beam shape, and in
range by timing, The resulting measurements are robust
with respect to all platform motions other than spinning
~azimuthally (yaw).

For a targeted range of 500 m, a 200 kHz sonar is
indicated. With a practical range resolution of 3 or 4
m, significant advances can be expected; e.g., in esti-
mating the total energy in oppositely directed com-
ponents, thought to produce low frequency pressure
fluctuations detected at the sea floor, at over 4000 m
depth (Longuet-Higgins 1948).

2. Sonar resolution

The sonar processing scheme considered here is as
follows: (i) a sinusoidal “pulse” of duration T, is trans-
mitted (a single tone); (ii) the subsequently received
backscatter is complex-homodyned with the same fre-
quency (i.e., it is multiplied by a sine reference and
simultaneously with a cosine reference, and each
channel is low-pass filtered to form a complex “enve-
lope function” of the return); (iii) time-lagged auto-
covariances are formed by averaging over time 7T,
= NT;, where T;is the time between samples A4, of the
envelope; e.g., the lag-1 covariance is given by

A 1

N
=3 2 Asdl; and

n=1

(1)
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(iv) the Doppler shift of the return is estimated from
the autocovariance at lag-1:

¢ atan[lm(cl)] ’

U= 2eeT; " Re(C))

(2)

where c is the speed of sound and oy is the radian fre-
quency of the transmitted pulse (cf., Rummler 1968;
Miller and Rochwarger 1972). This is known as an
“incoherent scheme” since each transmission (“ping”)
is treated independently, rather than forming coherent
averages from ping to ping. For a uniform velocity over
the averaging “cell,” a lower bound on the error vari-
ance of the velocity estimate is given by

Var(V — V) = (AV)?

- (C/2¢fo)2
Ta[Tp - Ti - Ta(Tp - Ta)/(ZTp - Ta)]

(see appendix A). In practice, (3) provides an opti-
mistic but reasonable estimate of sonar performance
(within a factor of 2 or 3), provided that the pulse
length T, is shorter than the “natural” decorrelation
time arising from independent movements of the scat-
terers in the ensonified volume. For T, longer than a
few milliseconds, the scatterers can move a significant
fraction of a wavelength while ensonified; this has an
effect roughly equivalent to reducing 7, in (3).

The sound at the trailing edge of the moving pulse
coincides with sound reflected from the leading edge
at a time Y27, earlier. Thus, at any instant, the received
signal arises from a volume of length Y2¢7), in range.
Averaging this received signal over a time 7, = 7T,
= T gives rise to triangular “‘response elements” for
the velocity estimates, with a base-length of ¢7" and
with independent estimates arising at range intervals
of

(3)

AR =% cT. (4)

For fixed oo (and ¢), (3) and (4) show that reducing
T reduces AR but increases AV, and vice versa. In fact,
the ““error product” is independent of T

E = ARAV = c?/40¢% (5)

The simplest way to reduce E is to increase the sonar
frequency oo. Higher frequency sound, however, is at-
tenuated more rapidly in the ocean, so there is a tradeoff
in frequency selection between total range and the error
product E. Since a real sonar system is generally re-
stricted to operate near its ““design frequency” gy, E is
an essential constant of the system.

The error product can also be reduced by “coding”
the pulses. For example, a simple scheme is to transmit
N different tones, each of which can be isolated by
bandpass filtering. With an N-tone system, information
from each tone is independent. This results in a re-
duction of (AV)? by N~!, and so reduces E by the
factor N~'/2, For present purposes, other codes can
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be represented as an equivalent number of tones. (It
should be noted, however, that sonar systems are ul-
timately limited in the peak power transmitted, because
of the electronics, cavitation, or nonlinear propagation
effects, as discussed below. Thus, transmitting more
tones simultancously will generally reduce the total
range achievable at a given frequency.)

Given estimates of surface velocity at a large number
of ranges, it is natural to consider their spatial Fourier
transform. Both theory and experience suggest that the
velocity estimation error variance is distributed equally
among the wavenumbers (i.e., is “white noise”). Thus,
let

- /AR .
(AV)? = fo Qdkc = fo Qdk = Q(/AR), (6)

where the noise level Q is independent of k, and the
“Nyquist wavenumber” is ky = w/AR. Here, the
choice is made to represent the “transect” of real ve-
locity estimates as the real part arising from a spectrum
with only positive wavenumbers, rather than, e.g., as
conjugate pairs. This choice is made to simplify the
interpretation as amplitudes of surface waves, as should
shortly be more clear. Making use of (5) augmented
by N~!/2 as discussed above, we can write

Q = (AV)’AR/m = E*/xAR = ¢*/16xNo,’AR. (7)

The sonars make velocity measurements in each
range interval every At seconds (say), so it is natural
to consider frequency spectra of the resulting data. To
illustrate, for each along-beam wavenumber k,, the
time-series of complex coefficients can be transformed.
This yields both positive and negative frequencies, cor-
responding to waves propagating in either of the two
directions along the beam. It is conventional to rear-
range these into an array of only positive frequencies,
with (+) and (—) wavenumbers denoting the two di-
rections of propagation. (One may alternatively first
form the time-frequency transforms of the velocity data
at each range, choosing to represent the results as only
positive frequencies. The space-wavenumber trans-
forms of the frequency coefficients then yields a matrix
of frequency-wavenumber coefficients arranged as
+ and — wavenumbers with only + frequencies. These
coeflicients are a simple rearrangement of those just
described.) This rearrangement does not affect the
present noise-level analysis. Again the velocity esti-
mation noise is white, so at each k,

+wpn . -+ /At R .

Q= f Qds = f Qdo = Q(27/At), (8)
—wN —w /AL

where wy = 7/ At (or fy = 1 cycle/2At) is the Nyquist

frequency. Using (7), we obtain the (k,, w) velocity

noise density,

At

3272 Ngo?AR ° )

O = QAt)2n =
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The estimation noise level is reduced by (i) increasing
the sonar carrier frequency og, (ii) decreasing A¢, (iii)
increasing AR, or (iv) increasing N, the number of
tones. Both (i) and (ii) compete directly with the max-
imum ranges achievable, while (iii) just restates the
competition between AR and AV. Increasing N, on
the other hand, merely increases the complexity of the
design and analysis.

3. Range vs sample interval: dispersion

The finite speed of sound introduces a possible
tradeoff between the maximum wave frequency ob-
served and the maximum range. The maximum range

(ignoring attenuation) would be

D = At(c/2).. (10)
Two factors help resolve the competition between the
desire to increase D (by increasing At) or to increase
Jfw (by decreasing At). One is that attenuation of the
sound limits the maximum range achievable. Another
is that the maximum wavenumber, ky = n/AR, is as-
sociated with a specific wave frequency. The first of
these is addressed in a later section. The second factor
implies that, even if greater ranges are achievable, it
may be desirable to use a shorter At in order to “match”
the Nyquist frequency to the wavenumber resolution,
or to use a larger AR to reduce the noise level. The
linear dispersion relation for surface waves relates any
wave frequency to a wavenumber magnitude, k= |k|.
In deep water,

(11)

The sonar measures only one component of k, k,
< k. Also, at a given frequency w, contributions from
the harmonics of longer waves would have wavenum-
bers smaller than the “dispersive value.” At any given
frequency w, then, the dispersive value of k is the max-
imum we need to resolve. Thus, it is natural to associate
the Nyquist wavenumber with the Nyquist frequency
of the system via dispersion (11). This yields

At = w/(gkn)'? = (vAR/g)'/2.

w? = gk.

(12)

The ability of the sonar system to measure the full
frequency-wavenumber spectrum is one of its greatest
attractions; hence, it would be a pity to “waste” wave-
number resolution by failing to resolve the corre-
sponding frequencies. Also, reducing range require-
ments could mean less power, fewer tones, or smaller
arrays, any of which reduces the cost or clumsiness of
the system.

This “Nyquist matching” is used to define a
“matched system,” which is used as a guide in designing
the sonar system. The feasibility of reaching the desired
range can then be explored. For such matched systems,
using 10 and 12,
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D = (wAR/g)'*(¢c/2), or (13)
AR = 4gD?/nc?. (14)

The spectral noise levels Q and Q are compared with
estimates of the signal levels expected from surface
waves at the largest wavenumbers and frequencies, ky
and wy (since these are the smallest signals). This
allows estimation of a corresponding minimum range
resolution AR at which one can expect to detect the

surface waves.

4. Wavenumber spectra

First consider a wavenumber spectrum, as can be
estimated from a single ping. In the next section, a
combined frequency-wavenumber spectrum, using a
series of pings from one beam, is considered. The mean
square displacement of the sea surface can be described
by

{2 = f_ f_ Wy, ky)dkedky,  (15)
where ? is the mean-square surface displacement (ele-
vation), and ¥ is the two-dimensional wavenumber
spectrum of the surface waves. An instantaneous tran-
sect of the elevation { in the x-direction, for example,
would yield a 1-D “equilibrium spectrum,”
X(ky) = f_ Wkx, ky)dk, ~ Bk, 3, (16)
(say), for k, larger than some lower cutoff (or peak)
wavenumber kp, and where B has an observed value
of about 0.004 for x aligned with the wind (e.g., see

Phillips 1977, 1985). The along-wind slope spectrum
then takes the form

Sux(ky) = f_oo kxz\(’(km ky)dky = kxzx(kx) (17)

(for wind in the x-direction). Observations of along-
wind and cross-wind slopes indicate that the cross-wind
slopes have about half the variance of the along-wind
slopes (e.g., Long and Huang 1976). This is consistent
with an angular spread at fixed k roughly proportional
to cos®(¢/2) (as will be seen shortly). Based on this,
a simple but reasonable model for the “equilibrium
range” of the spectrum (i.e., for k > kg) is

ffjﬁk cos( )d¢dk (18)

where k = |k| = (k? + k?)7'/2, and where ¢ = ¢
— ¢, (say) is the angle of k from the wind. (A
cos?¢ spectrum is often used, but it seems reasonable
for the spectrum not to fall to zero at 90° off the wind;
the two forms are otherwise hardly distinguishable.)
An elevation transect yields a single-component wave-
number spectrum in | k|, so that
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e = fow X(| kel Y dhx

f f Bk~ coszqscos( ¢)d¢, (19)
—a Jkgcose

where the sign of oo is taken as that of cos¢. For k,
> ko, the order of integration may be reversed, yielding
an equilibrium range spectrum of the form

X(Ikxl)=/3|kx|‘3f cos’¢ cos ( ¢)d¢>—>

(497 /128)Bk, % = Bk, 3, (20)
where the limit is for a transect parallel to the wind,
¢” = 0. For a transect perpendicular to the wind (either
along the y-axis, or along x with ¢"” = 7 /2), X(k,) =
(217 /128)Bk, 3, which is roughly half (3/7) the along-
wind value. If B ~ 0.004 (Phillips 1985), then (20)
implies 8 = 0.0033.

A sonar beam provides transects of (nearly) hori-
zontal velocity in the along-beam direction. For a linear
wave field, the velocity components have the magni-
tude of the slope times phase-speed, ¢ = (g/k)'/?, so
the spectral density of the velocity signal along the x-
axis is c?k, 2y = (gk, cos¢)y. In the equilibrium range

(kx> ko):
sz(lkxl)=g6lkx|_2fw |cos®|

-7

X cos ( ¢)d¢ - (227/210)gﬁk 2 = gB%, 2,
(21)

where (again) the limit is for wind parallel to the beam,
taken as the x-axis, so ¢” = 0. Comparing (21) with
(20), B® = 0.0036. Setting ¢* = = /2 yields the cross-
wind velocity spectrum,

Vyz(lky’) = (8/21)gﬁky_2,

which is about 0.35 times the size of (21).

In order to form a directional estimate, each wave
component must be detected by two or more beams.
A wave traveling perpendicular to a sonar beam would
not be detected by that beam, because such a wave
produces no orbital motion parallel to the beam. Thus,
for the present purpose, consider a “worst-case” beam
oriented at 60° to the wave (e.g., using three beams to
cover all directions ). Suppose we wish to detect cross-
wind components (¢ = 90°) in each ping on this
“worst-case” sonar beam. From the form of (21),
the observable signal is reduced by cos?60° cos®45°
= 1/128. To detect the wave-components perpendic-
ular to the wind on this worst-case beam, then, requires
a sensitivity about 128 times greater than that at which
the downwind components would first appear in a

(22)
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downwind beam. This “directional detection require-
ment” can be written (taking x to be along the beam)

Q < (gB/128)k: 2. (23)

Setting k, = /AR and using (7), we find a lower
bound on single-beam range resolution, AR, in terms
of the error-product E:

AR, = (1287E*/gB)'"* = (2¢*/xgBN)'" fo7273,
(24)

where fo = 0o/2x is the sonar frequency in Hz. For
example, with ¢ = 1500 ms™!, g =9.8 m s}, and B8
= (.0033, a single-tone 200 kHz sonar yields AR > 14
m or so. Note that this is required for detection of
waves 90° off the wind and 60° off the sonar beam
direction. (Note also that the complications of detecting
such components in the presence of much larger
downwind components are not addressed here.) For a
beam directed parallel to the wind, dominant-direc-
tional waves should appear in data taken with resolu-
tions down to 2.7 m.

There are several possible ways to improve on this
resolution limit. For four tones (N = 4), the range
resolution can be reduced to AR, = 8.6 m; for N = 16,
5.4 m resolution is achievable. If the beam separations
are reduced to 45° (e.g., using four beams instead of
three), the tolerable velocity error is increased by
23/2_ Alternatively, if the sonar system can be steered
relative to the wind, the weak 90° components could
be aligned with a more sensitive axis of the array. For
example, putting two beams within 30° of the 90°-to-
the-wind direction increases the effective sensitivity by
33/2 without necessarily increasing the number of
beams. (A steered system also has the potential for
“quieting down” the dominant-directional waves, by
aligning them with an insensitive axis of the array. This
would effectively “prewhiten” the measurements with
respect to direction.) Finally, one can use information
from more than one “transect” (ping), forming two-
dimensional (k,, w) spectra from the data.

5. Wavenumber-frequency spectra

If the surface wavefield roughly obeys the linear dis-
persion relation, then a given frequency corresponds
also to a fixed wavenumber magnitude, k = w?/g. Us-
ing the spectral form given by (18), the mean square
value of the x-component of the surface-wave orbital
velocities (i.e., the signal power) is

(UF) = ff (U ) pk™3 cosg(% &)dkdd)
= ff 288%w 3 cos?¢ coss(% &)dwdd;. (25)

Discrete time-space transforms of the velocity data
yield estimates at discrete (w, k) locations, within Aw,
Ak, bands. On the (k, ¢) plane, these are intersections
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of circles (constant k) and lines (constant k, = k cos ¢;
see Fig. 2). The transformation of ¢ to k, (with k or
w fixed) yields

dk, = kd(cos¢) = —(w?/g) singde, or

_ & dkx

do = w?sing’

(26)
which is singular along the x-axis, ¢ = 0 (or nx). The
singularity is integrable, however, so that a finite FFT
produces finite estimates (see Fig. 2). The result is left
most conveniently in terms of frequency, w, and di-
rection, ¢ = arccos (gk,/w?):

0 K
(U = f f Vi3 (w, kx)dkedw, where (27)
—oo V-K

Vi (w, k) = 28g°w > coss( % &)) cos?¢/sing,
if |w|>w, oOr

(28)

where K = w?/g and w, corresponds to kg, the “peak
frequency” wave. For each value of w and k, there are
two possible values for k,, corresponding to +¢ (see
Fig. 2). Although both *k, contribute to V,*(w, k),
they are kept separate here, since ultimately we wish
to disentangle them using information from more than

= 0, otherwise,

k

)
e

W

+ky{ q

y N~

Ak

FIG. 2. Schematic view of the area in the (k,, k,) plane included
in a Aw — Ak, cell of a single-beam finite Fourier transform. Con-
tributions arise from both + and — k, intervals (as shown on the
left). For wave components parallel to the beam, the nonfinite trans-
form becomes singular; for the finite case, a somewhat large but finite
area is included near the k, axis (dark area shown on the right).
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one beam. Conceptually, this can be accomplished in
(27) by allowing *w in V,*(w, k), and taking k, > 0
forw> 0and k, <0 forw <0.

We now apply the same worst-case criteria as above:
let ¢ = 90°, ¢ = 60°, and w = wy = (gkn)'/? = (gn/
AR)'/? to assess the weakest velocity signal to be dis-
cerned from the Doppler estimation noise, Q:

(I}XZ)min = 2‘43“”21‘5/2g”2£‘3AR5/2. (29)
From (9) and (10), and with f, = ¢4/27,
. 2-—6 -4 .3
~ 1r—2£‘D (30)
Nfo*’AR
Requiring O < V.2 yields
3y 2.6
(AR)7>(3/167r )YD*c 31)

BN
which is useful when the sound at frequency f, is lim-
ited by attenuation in reaching D. For a matched sys-
tem, AR and D are related by (13). The resulting sim-

plified form, AR,, is directly proportional to AR, from
the 1-D case:

(AR,)* = (3'/%/8x)(c*/gBNfo”)
= (3'2/16)(AR,)>. (32)

For example, at 200 kHz, the minimal AR, is 6.5 m
(with one tone, etc., as before). Steering so two beams
are within 30° of the crosswind direction would reduce
this to about 3.75 m. The improvement in AR, over
AR, can be compared to an equivalent number of
tones: N = 16/312 ~ 9.

In practice, attenuation (etc.) can limit the maxi-
mum range attainable to something less than the
“matched value” for a single-tone system. From (31),
however, the minimal AR depends on D only as
D'/2 50 that using an “unmatched” total range D (e.g.,
increasing the sample rate in time) won’t change the
range resolution limit much from AR,, as given by
(32). In other words, AR depends more strongly on,
e.g., the acoustic frequency f, than on the sample in-
terval between pings, Af. To estimate the maximum
range attainable, (32) gives a reasonable value for AR
(and hence T'). Using the values given above for B,
¢, and g, (24) and (32) can be evaluated as

AR; =~ (46400)f,72/3
AR, =~ (22100) fo2/3. (33)

(withc=1500ms™!, g=9.8 ms~2 8 = 0.0033, and
N = 1). Note that the improvement in AR, over AR,
depends on the signal being stationary over the obser-
vation interval. In addition, a longer time series would
allow the frequency to be “overresolved” compared to
the wavenumber resolution, so that extra degrees of
freedom could be obtained by averaging. The surface
wave field evolves slowly in time, however, so that the

and
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increase in degrees of freedom must be balanced against
the less tangible errors incurred because of nonstation-
arity. '

Given the additional accuracy and range resolution
obtained by including the frequency information as
well as wavenumber from one sonar beam, it is natural
to ask what further benefit can be obtained by including
other beams to form a 3-D spectrum. Will this further
reduce the minimum advisable range resolution?
Probably not. Unlike the above spectral forms, the 3-
D spectrum is vastly underdetermined from any rea-
sonable number of sonar beams. Thus, all available
information (or degrees of freedom) may be required
to limit aliasing.

6. Maximum range versus sonar frequency

For a given sonar frequency, there is an absolute
maximum range from which a Doppler signal can be
recovered from the backscatter. This arises because (i)
the effective transmission intensity is limited either by
“cavitation” at the transducer face, or by nonlinear
propagation effects (“saturation”); (ii) the sound is
attenuated with range; and (iii) there are finite levels
of ambient noise. For frequencies greater than a few
kHz, this range limitation is significant. In the following
sections, the factors limiting total achievable range as
a function of acoustic frequency are reviewed in some
detail.

A sensible way to proceed is to select a desired max-
imum range, based on the longest waves to be resolved,
and then determine the highest acoustic frequency at
which a Doppler signal can be recovered out to that
range. In the Pacific, swell sometimes attains periods
of 18 seconds, corresponding to 500 m wavelengths.
More commonly, there is 10-12 second swell, and fully-
developed “local” seas which attain periods of 8 or 9
seconds. These have wavelengths around 100 to 200
m. Thus, it appears reasonable to set D = 500 m to
resolve even the long swell, while the more commonly
observed swell and seas can be measured with more
precision. This corresponds to a 2/3 second interval
between pings, or a Nyquist period of 4/3 seconds.
Matching the Nyquist wavenumber and frequency via
surface wave dispersion implies (from 14) that AR
= 1.4 m for D = 500 m. Can this combination be
achieved?

Note that aliasing of energy from smaller waves
(larger wavenumbers or frequencies) should not be a

problem. The inherent (triangular) spatial averaging

of the sonar systems helps filter out energy from higher
wavenumbers (and hence frequencies), which is al-
ready reduced because of the steep spectral slope as-
sociated with surface waves.

7. Beam geometry

As mentioned in the introduction, it is useful to have
an idealized beam geometry in mind. First, let the ideal
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beam be defined by two angles in polar spherical co-
ordinates, then let the pole be horizontal, so the equator
lies in the vertical plane of the “fan-shaped” beam.
The generous vertical spread of the beam is delimited
by 8, corresponding to the “longitudinal” angle along
the “equator”; the narrow horizontal spread of the
beam is delimited by ¢, spanning the equator equally
(from “latitude” —¢/2 to +¢/2). The cross-sectional
area of the beam at radius  is then

A(r) = r®0(2 sing/2) ~ r?b¢. (34)

Note that only ¢/2 need be small in the approximation;
6 may be 27 (corresponding to a cylindrical array).

A good model array is a bar, with horizontal di-
mension d, and vertical dimension d, (say). These can
be determined in terms of 8, ¢, and the acoustic fre-
quency f:

di = N(2sin(¢/2)) = N/ ¢ = ¢/ f$,
d, = N/(2sin(8/2)y ~ N6 =c/f8, (35)

where A = ¢/f is the wavelength of the sound. The
approximations are reasonable for 6 and ¢ up to about
1 radian (or 60°), and is sufficient for the present use.

and

8. Attenuation

There are two components to the attenuation of
backscattered signal with range: (i) geometric spreading
of the beam and backscatter, and (ii) absorption in the
water (primarily by MgSO, “relaxation” in the ocean,
but also by bubbles near the surface). The outgoing
beam spreads spherically, yielding an r~2 factor in the
intensity (where r is range ). The backscattered sound

also spreads spherically, making it r—*. For surface-

scattering, the backscattered intensity is proportional

-to the surface area ensonified, or to approximately
r¢AR, where ¢ is the azimuthal spreading angle of the
outgoing beam (as defined above). Thus, so far we
have

I oc Igr3s,¢AR, (36)

where, following conventional notation, I is the out-
going intensity at a nominal range of 1 m, and s is the
ratio of backscattered intensity per m? of surface (at
nominally 1 m from the centroid of the area).-to the
incident intensity. The “‘backscattering strength” s; is
a function of wind, acoustic frequency, and incident
angle, but is assumed to be roughly constant in range
(on the average). For typical oceanic conditions
(moderate winds), the total “cross section” related to
ss is small, so the “shading” of distant scatterers by
near ones is neglected in (36). Also, since the sonar
beam is incident from a few degrees below the surface,
sound reaching the farther ranges passes below the near-
surface bubble layer at the closer ranges.

Absorption (e.g., by MgSQO,) is often more important
than spreading. Absorption is well modeled by expo-
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nential decay, so that (with two-way travel over range
r):

I(r) = (IoS;pAR)r 3724, (37)

where A is the fraction of sound intensity absorbed per
unit distance in range, 7. The intensity equations are
conventionally cast in terms of dB, say L (dB) = 10
X logiol, so that (37) becomes

L(r) = Lo+ S; — 2ar — 30 log,or + 10 log,o{ AR),
(38)

where all distances are in m, Ly = 10 logoly, S; = 10
X logoss, and a = (10 logjee)A. Figure 3 shows an
empirical fit to « (in dB per meter) vs sonar frequency
in seawater under fairly typical conditions (Fisher and
Simmons 1977).

9. Backscattering strength

The backscattering strength at the surface of the
oceans varies with wind, sonar frequency, and incident
angle. Here, we need only consider angles approaching .
grazing incidence, say less than 30° (see Fig. 4). Sonar
observations using 60 kHz and higher frequencies at
near-grazing angles are consistent with scattering from
a near-surface layer of bubbles (Urick 1975; McDaniels
and Gorman 1982). Observations of near-surface
bubbles indicate an exponential decay in number of

10°
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104 |
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FIG. 3. Attenuation « (in dB m™') vs acoustic frequency f (Hz),
in seawater of 35 ppt salinity, 15°C, 1 atm pressure, and pH = 8.
(From the formulae given by Fisher and Simmons 1977).
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FIG. 4. Variation of sea-surface scattering strength at 60 kHz with angle at different wind speeds off Key West, Florida. Plotted points
show the number of pulses averaged and the wind speed (in knots) for individual determinations. Extra bold circles, near the lower left-
hand corner, flag the measurements for 5 m s™' winds (10 knots) and angles less than 30° (from Urick 1975).

bubbles with depth, with e-folding scales of order 1 m
(Thorpe 1986; Crawford and Farmer 1987; Walsh and
Mulhern 1987). Also, the number of bubbles per m?
at a fixed depth increases roughly in proportion to W3,
where W is the windspeed ( Crawford and Farmer 1987;
Walsh and Mulhearn 1987).

Bubbles are efficient scatterers because they can res-
onate by oscillating radially. The frequency-depen-
dence of the scattering intensity from bubbles thus de-
pends on the bubble spectrum. Above some cutoff fre-
quency, the scattering level should become roughly
constant, proportional to the total surface area of all
bubbles. The location of this “cutoff”’ is not well known
at present. Measurements at 60 and 119 kHz both in-
dicate a backscattering strength S, of about —40 dB
under 5 m s~! winds (see appendix B). Assuming that
the strength doesn’t vary much over 60 kHz, but re-
taining the W3 wind dependence,

S; =~ —40 dB + 30 log(W,,), (39)

where W, = W/(5 ms™"). It should be noted that S
may decrease more rapidly than indicated here as W
drops below 3 or 4 m s™!, when whitecaps are absent.

10. Source level limits

Two effects can limit the intensity of sound arriving
at some distance from the source: (1) For large pressure
fluctuations, bubbles can form spontaneously near the
transducer face (cavitation). Once this occurs, addi-
tional energy simply causes more bubbles to form
rather than increasing the sound intensity. (ii) As the
sound propagates away from the source, nonlinear ef-
fects cause the pressure variations to evolve into “shock
fronts,” which dissipate energy rapidly. Both cavitation
and saturation are strongly amplitude dependent, and
so operate preferentially on the main lobe of the beam
pattern. Either would cause side-lobe interference to
increase. It is therefore desirable to operate the sonars
with transmission amplitudes small enough to avoid
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either the formation of shock fronts or cavitation. Here,
we first investigate the cavitation limit, and then com-
pare it to the “saturation limit” as described by Shooter,
Muir, and Blackstock (1974). (Electronic limitations
are neglected here in view of their mercurial nature.)
So far we have considered intensity relative to a
source level, Ly. Ultimately, the returned intensity L(r)
will be compared to the ambient noise level, Ly, to
find the range at which the signal drops into the noise.
Both Ly and Ly must be in comparable units of inten-
sity. The standard reference intensity corresponds to
an rms pressure Pg of 1 yPa = 10~!! atmospheres
(atm). Then Lz = 10 loglx = 20 log P, so conversion
‘from P in rms atmospheres to “standard intensity” is
- given by L = 20 logP + 220 dB.

a. Cavitation

The intensity at which cavitation begins, I, oc P2,
is conveniently expressed with the rms pressure P, in
atmospheres; thus let

L. =20logoP.(atm) + 220 dBre 1 pPa. (40)

The limiting pressure P, is a function of both frequency
and depth (i.e., ambient pressure). Figure 5 shows P,
vs f at 1 atm pressure. The solid curve is given by

" P.=1+(d/10 m) + (f/36 kHz)?, . (41)

with d (depth) = 0. The hydrostatic pressure (d/10
m) is simply added to P, (Urick 1975). Near the sur-
face, and for f > 60 kHz or so, the last term of (41)
dominates, so

L,~>401logf (Hz) + 38 dBre 1 uPa. (42)
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FIG. 5. Frequency dependence of the cavitation threshold. The
data (from fresh water at 1 atm) are contained in the shaded area.
The dashed line is a subjectively estimated average (from Urick 1975).
The solid line shows the relation given in the text here (equally sub-
jective in derivation).
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For example, at 200 kHz, the last term alone yields P,
~ 31 atm. Adding 2 or 3 atm increases I, by about
10%, adding only 2 dB to L..

Note that the mixed layer of the ocean can be su-
persaturated, and is often already full of bubbles, either
of which could reduce the amplitude at the onset of
cavitation (when bubbles are present, they can grow
by a “rectified response” to the pressure variations,
which is also an effective means for absorbing sound).
The shading in Fig. 5 represents a range of rms sound
pressures over which cavitation is observed. The lower
edge of this shaded region is a factor of 4 or 5 below
the line given by (42), or 12 to 14 dB below in intensity.

The cavitation limit applies near the face of the sonar
array (neglecting focusing), whereas I~ (say) is an
equivalent intensity at 1 m range in the idealized beam.
Converting I. to I (or L, to L¢) requires a geometric
correction. Given the area of the array face, 47, and
since the total power I4 is (conceptually) conserved,
the equivalent intensity at 1 m in the idealized beam
is

Ic=1.AT/A (1 m) = LAT/(1 m)*p6
~ I(N\?/$%0%) = I.(c*/ $26%f?),

where A is in meters, cin m s™!, f in Hz, and ¢, 6 are
in radians. In dB, the cavitation limited source intensity
LC is o

(43)
(44)

L =220 + 20 log(cP./$8f)
=284 dBre 1 uPa + 20 logP,

— 20 logf — 20 log(¢f), (45)

where ¢ = 1500 m s~! was used.

b. Saturation

For finite-amplitude sound waves, nonlinear effects
can bring about the formation of shock fronts, which
also dissipate energy rapidly (Shooter et al. 1974; Clay
and Medwin 1977; see Fig. 6). As the waves spread
spherically and attenuate, these finite amplitude effects
eventually decrease in relative importance until essen-
tially “linear behavior” is restored. At a given frequency
and source strength, the tendency to form shocks can
be characterized by “r,”, the distance at which shock
waves first form, and “r;”, the distance at which the
linear and nonlinear attenuation are again equal, and
hence beyond which “linear behavior™ is restored. For
source levels less than or equal to that at which rp
= r,, the formation of shocks (and hence rapid non-
linear attenuation) is presumably avoided. A maxi-
mum recommended source amplitude (leaving the
beam pattern nearly unmodified) is thus described by
this condition. Using the equations given by Shooter
et al. (1974), and correcting for beam geometry, the
equivalent source intensity satisfying this condition is
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and Medwin, 1977.

Ls=220dBre 1 uPa + 20 logPs, (46)
where Ps is evaluated in appendix C.

The maximum practical source level is just the
smaller of the limits set by cavitation, L¢, or by satu-
ration, Lg (see Fig. 7). In the frequency range and for

the array geometries considered here, the saturation
limit dominates.

11. Ambient noise

There are several potential sources of ambient noise
in the ocean, and different sources tend to dominate
in each of several frequency bands (see Fig. 8). Near
100 kHz, there is an overall minimum between wind-
generated noise (decreasing as f > and dominating
from about 200 Hz to 100 kHz) and thermal noise
(which increases as f? and dominates above 100 kHz).
In addition, a major portion of the wind-noise is di-
rected within about 30° to 40° of vertical (downward),
so that it may be reduced by confining the beam ge-
ometry below 50° up from horizontal (for example).

The wind and thermal noises have spectral densities
of
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Hy ~ 25 — 20 logf, + 20 logW,,
Hy =~ 25+ 20 logf,, (47)

in units of dB re 1 uPa per Hz, with f, = /100 kHz,
and W, = W/5ms™" (Urick 1975; Clay and Medwin
1977). Of the total noise, only the fraction within the
viewing angle of the beam is accepted. For the present
purpose, we take this fraction to be roughly 6¢ /4~ for
both the thermal and wind components. (In fact, the
wind-noise depends on the orientation of the beam,
especially in the vertical. For a beam aimed roughly
horizontally, this approximation should be good to
within a few dB, well within the present tolerances.)
For small noise bandwidth, B < f, the combined noise
intensity can be written

L,=10logl,,
I, =~ B(¢0/4m)(10°)(f3 + Wif3?). (48)

(It is hoped that the use of B for bandwidth here will
not be confused with the spectral constant B used pre-
viously.)

What is the admitted noise bandwidth B? This fairly
complex question is addressed in appendix D. Briefly,
with covariance estimates C; formed as in (1), the
sample error variance is affected by both the input filter
bandwidth b and the averaging time of the received
signal 7. The amount of noise admitted corresponds
to a bandwidth of B = (b/T)"/2. T is found from (4)
using AR from, e.g., (33). To choose a minimal value
for b (the input filtering bandwidth), the maximum
Doppler shift must be anticipated, and added to the
signal bandwidth, 1/7. For the open ocean, values

and

where
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F1G. 7. The geometrically corrected “equivalent source intensity”
(at 1 m in the idealized beam), at the cavitation threshold (upper,
solid line) and for the “barely saturated” limit (lower, hatched line).
A 30° by %° beam is assumed.
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corresponding to velocities v™* = 1.5to 2 m s™! are

appropriate, owing to the surface wave orbital velocities
of that magnitude. Allowing + and — velocities, the
net bandwidth requirement becomes

b= T + fo(4v™*/¢). (49)

12. Maximum range

The maximum practical range vs acoustic frequency
f is found by setting L(r) — L, to a “threshold value”
for the signal-to-noise ratio (S/N) in dB. Figure 9 shows
the results for signal-to-noise cutoff ratios of 1 (0 dB)
and 10 (10 dB), using a bar producing a 30° by 25°
beam (roughily 1 ¢m by 50 cm at 200 kHz). In practice,
the 10 dB cutoff is appropriate: the covariance esti-
mation technique is nonlinear, and performance de-
teriorates rapidly when the signal to noise ratio falls
below 10 dB. Other values employed are W= 5ms™!,
v™ = 1.8 m s, and the values given in the sections
on surface wave spectra and attenuation.

‘With multiple tones, the signal-to-noise ratio of each
must be considered independently. Since the total out-
put power is limited by saturation or cavitation (or by
the electronics), this implies that when the tones are
superimposed (as, for example, in a coded pulse
scheme), the power in each tone is effectively reduced.
As a result, the total range is reduced by a correspond-
ing amount. To illustrate, with ten tones superimposed,
each is effectively reduced by (at least) 10 dB. The

resulting range limit would lie (at least) as far below
the 10 dB line in Fig. 9 as the latter lies below the 0
dB line. In contrast, a sequence of separate tones allows
each to have the limiting power level.

Finally, it is useful to compare the “matched reso-
lution,” corresponding to this maximum range via
(14), with the “practical resolution” resulting from
comparison of the signal level vs Doppler estimation
noise, embodied in (33) (see Fig. 10).

13. Summary

To summarize: (i) A lower bound for the error
product E = AVAR of the sonar system was estimated.
(ii) The magnitude of the velocity noise level Q over
k-space from a single ping (for a given AR) was de-
scribed (a white noise level). (iii) The corresponding
(white) noise spectral level Q over (w, k)-space from
a time-series of pings was evaluated in terms of acoustic
frequency f,, range resolution AR, sample interval Az,
and the number of tones N. (iv) A matching of total
range D, wave frequency resolution wy, and range res-
olution AR was introduced, arising from the finite
speed of sound, ¢, along with surface wave dispersion,
w? = gk. Use of this matched resolution allows the
expression for the 2-D noise level O to be simplified.
(v) Next, the wavenumber spectrum of surface wave
velocity, as it would appear in a single sonar ping, was
estimated using a simple model of the complete direc-
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tional spectrum. The spectral level of wave velocity
parallel to a sonar beam, V,?(k,), was compared with
the 1-D noise level Q to determine the sensitivity
needed to see the Nyquist components, V,?(ky), in
each ping. The result was cast in terms of the minimum
range resolution, AR;, for which the signal from
crosswind wave components is resolvable: AR,
oc (Nfo?)~'/3. (vi) The single-beam frequency-wave-
number spectrum, V,2(w, k), was similarly estimated
and compared with the 2-D noise level Q to assess the
requirement for detecting a crosswind wave component
with a worst-case sonar beam from a series of pings.
This yields AR, oc (D/Nfy?)?7. Using the matched
values relating D and AR yields a simplified relation
for the matched range resolution limit, AR,™: AR,
oc (Nfo?)™'3 oc AR,. Further, since D only enters as
D?*7 the actual value of AR, at a given frequency will
generally be close to AR,™. For the spectral model
used, AR, is about half the size of AR,, an improve-
ment equivalent to using more than 9 times the number
of tones. (vii) Finally, the factors limiting the total range
achievable as a function of acoustic frequency f, were
reviewed: attenuation, backscattering strength, cavi-
tation, saturation, and ambient noise level. Of these,
three emerge as the most significant over the frequency
range of interest (60 kHz to 1 MHz or so): saturation
(or nonlinear absorption), which limits the effective
source intensity of the transmitted tone; absorption,
which dominates over spherical spreading in attenua-
tion of the intensity as the sound travels; and the am-
bient noise level, into which the signal ultimately drops.
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14. Discussion and conclusions

A surface scanning Doppler sonar system of about
200 kHz center frequency appears to be most suitable
for measuring surface waves. A total range of about
500 m permits directional estimates of typical swell
and wind-generated peak waves. Resolution in range
down to a few meters is commensurate with the typical
horizontal and vertical scales of bubble clouds, which
are the most likely “targets” responsible for scattering
the sound. Balancing the Doppler estimate error vs the
surface wave spectral levels in the crosswind compo-
nents leads to a “practical” limit on range resolution:
At 200 kHz, with a single tone and with a 60° worst-
case beam orientation, this limit is about 6.5 m. A
steered system with beams aimed near the crosswind
direction would resolve the weaker crosswind com-
ponents better, allowing range resolution down to 3.75
m (using two beams each within 30° of the crosswind
direction). The practical resolution varies with the (ef-
fective) number of tones as N~!/3, so the steered system
provides an improvement equivalent to using about 5
times as many tones as the unsteered system.

For a total range of 500 m, the corresponding Ny-
quist matched range resolution would be 1.4 m. To
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FI1G. 10. Minimum range resolution from balancing estimate noise
vs spectral “signal” levels (4, plain line), and the “matched resolution”
corresponding to the maximum range vs frequency as shown in Fig,
9 (8,,; pluses: 0 dB limit; rectangles: 10 dB limit). For acoustic fre-
quencies less than about 70 kHz, the matched resolution is achievable
with the single tone system explored here. At higher frequencies,
there is a gap between the matched and practical range resolutions.
Multitone or coded systems may be able to close this gap.
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achieve 1.4 m resolution, even with a steered system,.

would require an additional improvement equivalent
to about 20 tones. In practice, the number of tones is
limited by the hardware and electronics to rather less
than 20. Coding techniques are presently being re-
searched, to evaluate whether they can usefully achieve
this resolution. In any case, with 4 (equivalent) tones
the resolution can be pushed to 2.4 m, and 8§ tones
would allow 1.9 m resolution, a noticeable improve-
ment. Also, note that the 1 m depth scale of the bubble
layer implies that interpretation becomes tricky for
surface wavelengths less than about 6 m; hence 3 m
resolution may be a sensible environmentally imposed
limit,

The system déscribed allows estimation of full di-
rectional spectra (with no 180° ambiguity ) over about
two orders of magnitude in wavenumber &, or (equiv-
alently) four orders in frequency. The total range in k
can be increased significantly with a “nested system™:
two different frequencies can be used together, with
some overlap in range vs resolution. Perhaps the one
meter depth scale of the bubble clouds poses a limit
on the small scale resolution of surface waves. Nothing
prevents using an additional lower frequency system
to increase the total range, though. We (myself and R.
Pinkel of MPL) are developing both 200 kHz and 75
kHz systems for use on the sea surface. Preliminary
results from tests at sea verify that the 200 kHz system
can achieve a range of 500 m with resolution down to
about 3 m (using a single tone), while the 75 kHz
system reachés to 1500 m with 12 m resolution. The
combined system covers nearly three orders of mag-
nitude in k.

For the systems described, the intensity of the
acoustic backscatter is a measure of the bubble popu-
lation within the sample volume. By mapping both
velocity and intensity down to the 1 or 2 m scale of
the bubble patches, it may be possible to investigate
the “life cycle” of the bubbles, from formation under
breaking waves to subduction and dissolution as the
currents advect them. Although no information is ob-
tained about the vertical distribution of the bubbles,
significant advances should be possible in the charac-
terization of horizontal variation and evolution of the
bubble clouds, and in relating these to the surface waves
and currents.

Because velocity is the primary measurement, the
mean or background currents can be estimated as well
as the surface waves. Indeed, the original motivation
for developing a Doppler acoustic system for use in
the ocean was to investigate internal waves (e.g., Pinkel
1981), and the motivation for aiming one along the
underside of the surface was to investigate mixed layer
motions such as Langmuir circulation (e.g., Smith et
al. 1987). Doppler sonar systems offer tremendous po-
tential for the investigation of interactions between
these motions and surface waves. Thus, although sur-
face waves provide a good “conceptual tool” for the
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design of a surface scanning Doppler system, as out-
lined here, it is important to consider also the time and
space scales of these other motions of interest. As de-
scribed by Smith et al. (1987), for example, Langmuir
circulation appears at all (measured) scales smaller
than about three times the mixed layer depth in the
crosswind direction, and are roughly 10 times longer
in the alongwind direction. Thus, the nested system
mentioned above can provide both the large scale in- .
formation needed to characterize the alongwind scales,
and the small scale information needed to investigate
both the initial growth (thought to occur first at the
smaller scales) and the coexistence of large and small
scale circulation (how small?) later on.
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APPENDIX A
Variance of the Doppler Estimate

The following describes a “Cramer-Rao” lower
bound on the variance of the Doppler frequency esti-
mate. It is patterned after the analysis of Theriault
(1986), modified to consider discrete sampling of a
bandpassed process (with sample interval 7;), and to
consider an averaging time 7, not necessarily equal to
the transmitted pulse length T,.

Suppose that, after transmitting a sound pulse of
duration T, the received signal + noise is bandpassed
with a filter of width b (Hz). Then a segment of du-
ration T, of this band-limited process, A(t), is described
by N = bT, discrete Fourier coefficients, 4, (say).
(Here, both A(t) and h, are complex.) Let the pass-
band be shifted to the frequency interval —b/2 to +b/
2, and the result transformed back to N complex sam-
ples, A,,. (This describes an equivalent complex homo-
dyning, filtering, and discrete sampling process.) As
described, the sample interval would be 7; = b7!, so
that T, = NT;. To preserve N intervals, let a “zero-th”
sample be included, so that the estimate is formed from
(N + 1) samples of the band-limited process. In ad-

. dition, let M be the number of sample intervals per

transmitted “pulse length,” so 7T, = MT;. (Note M
need not equal NV, but it is assumed that N < M i.e,,
the averaging interval is not greater than the pulse
length.) '

For T, smaller than the natural decorrelation time
of the scatterers, the (N + 1)-square autocovariance
matrix can be approximated by
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where j = —1!/2, ¢ is the Doppler shift of the signal,
and m, n = 1 to N + 1. This covariance arises from

the overlap between the volumes ensonified in the

sample A, versus h,,. Also, for T; = ™!, the white noise
component of the received process is independent from
one sample to another, so the “noise autocovariance”
1S just N, = el,np, where I,,,, is the identity matrix and
e is the noise variance over signal variance. (Here, both
K,., and N,,, are normalized by the signal variance, so
the total received variance is 1 + €. Also, the admitted
noise is considered to be essentially “white” across the
passband.) .
As reported by Theriault (1986), a Cramer-Rao
bound on the estimate & of the Doppler shift ¢ is pro-
vided by
var(o — o) = (As)? = 1/J(0), (A2)
where J( ) is the “Fisher information matrix.” In the
present context, J( o) is given by

J(o) = Re{% Trace[—gf * %I” , (A3)

where the N + 1 square matrix H is the “optimal filter”
for the N + 1 samples, X denotes matrix multiplication,
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ment of K and H. The optimal filter H is determined
from

(Kkm + 6Ikm)}lmn = Kin. (A4)

If K has an inverse, and for small e (large signal-to-
noise ratio), H takes the form

Hyp = I, — 6I('r_nil + 0(52)- (AS)

Since I,,,, is independent of ¢, evaluation of A3 centers
on K and K™!. For K as given by (Al), the inverse
K™!is Hermitian and nearly tri-diagonal, with the first
two rows given by

1 =l
K'= 5 M
(1+5b) —e°f 0 --o peleTiN
x | —eTi 2 —eloTi e
(A6)
where
b=1/(2M — N). (A7)

The last row of K~ is the conjugate-transpose of the
first, and the intervening rows are tridiagonal with the
same nontrivial elements as the second row. Then

dK . |m — n| jaTi(m—n)
(a")mn = jT:(m n)(l — )e’

and the 3/d¢ operation is first performed on each ele- (A8)
and
-1 0 (jT;)e 0 (JT;Nb)e/°TN ,
M = B )= -S| Gmpe™ ™ 0 —(iTyeT 0 3 (A9)
do do 2 O

The first and last diagonal elements of dK/do X 0H/
do thus take the value

0K oH
=X =] =1eTA(M—1-bN*M—N)),

do 9o/, 2

n=1 or N+1, (Al0)
and the intermediate diagonals are

dK OoH

—X—| =eTA(M—1), n=2toN. (All)
dc  dg /.

There are 2 of (A10) and (N — 1) of (A11), so that J
has the value

M~ N
J(O’) = NT,'Z[M— 1 —N(Z_ﬂ)]

T,— T,
=TaT_T'i_ a# A
[ ne (=R e

(see Fig. 11). The Doppler estimate variance (Ac)? is
just the reciprocal of this, which (notably) is indepen-
dent of e as ¢ &> 0. For T; € T, and T, = T, this
reduces to Theriault’s (1986) result; i.e.,

(Ac)2=J"' > T,2, (A13)

As noted by Theriault (1986), (A12) and (A13) should
provide reasonable but somewhat optimistic lower
bounds on the uncertainty of the Doppler estimates,
in this case for a band-pass filtered signal where inde-
pendent samples lie at intervals T; apart. Note that,
even if the process is oversampled (i.e., T; < b™!), the
total information content must still have the same
bound. Thus, T; can be replaced by b~} (the inverse
bandwidth of the system ) in (A12), as long as the sam-
ple rate is sufficient; i.e., T, < b~ . If T; > b~!, on the
other hand, information is lost and T; is the appropriate
choice. Worse, the results may be further degraded by
aliasing in this case.
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FiG. 11. The “Fisher information content” J, (the inverse of the
Doppler estimate variance) vs averaging time 7, with a fixed pulse
length, 7,. The curving line is J, vs T,; the straight line shows J,
= T, for reference. Here, J, is normalized by the value at T, = T,
and T, is normalized by T},. The slope of J, vs T, equals that of the
straight line at the two ends (7 = 0 and T = 1), but the curve drops
below the straight line for intermediate values of 7. This indicates
that as T, is decreased below 1, information is lost more quickly than
in a corresponding white noise process. The form of this curve suggests
that it is appropriate to set T, = T,,. (Of course, this conclusion may
not apply for the suboptimal covariance technique actually employed.)

It is worth reiterating that this result is independent
of the signal to noise ratio (as long as it is large). This
Doppler estimation error is often interpreted as “self
clutter,” due to finite returns from the nonoverlapping
regions of the volumes ensonified at different times.

APPENDIX B .
Bubble Scattering Near the Surface

The resonant frequency of a given bubble is very
nearly proportional to P'/?/a, where P is the pressure
and a the bubble’s radius ( Urick 1975; Clay and Med-
win 1977). At 1 atmosphere pressure and 15°C, the
resonant frequency in Hz is roughly f; ~ 3.26 ms™'/
a (Urick 1975). The scattering cross section o, of a
bubble is described by

4wa?

TSI - 1)+ 6

where f is the incident sonar frequency, and ¢ is the
damping coefficient of the resonance (6 ~ Af, where
Af is the “bandwidth” between the half-power points
of the forced oscillation; e.g., see Clay and Medwin
1977). The net backscattering strength per unit volume
is then

(B1)

Os
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l ]
s@ =g [ ata 2@ da, (@B

where p is the probability density of bubbles per unit
volume per radius-increment da. For bubbles with ra-
dius @ ~ 50 to 200 ym or so, p(a) ~ a~* (Crawford
and Farmer 1987; Johnson and Cooke 1979; Medwin
1970, 1977). Measurements made optically show a de-
crease in p(a) for a < 50 um (f, =~ 65 kHz) which
may (or may not) be due to photographic resolution
(Johnson and Cooke 1979; Walsh and Mulhern 1987).

. Acoustic measurements, on the other hand, indicate
_that the a™* dependence extends down past 40 um (f;

~ 80 kHz), perhaps even past 20 um (f; =~ 160 kHz)
in radius (Medwin 1970, 1977). The a™* dependence
cannot extend indefinitely in either direction: since the
volume of a bubble is proportional to a3, the total -
volume fraction of air depends logarithmicaily on both .
the upper and lower cutoffs of the a~* region. For p(a)
~ a~*, and for 82 small, the integral (B2) yields s,
directly proportional to f. For frequencies higher than
the cutoff of the bubble spectrum, s, becomes roughly
constant, proportional to the total surface area of all
the bubbles.

The surface-backscatter coefficient s, is four times
the vertical-integral of s, (neglecting beam-pattern
variations and absorption across the thickness of the
bubble layer, and including the mirror images due to
reflections off the surface). The data shown in Fig. 4
(from Urick 1975) indicates S; ~ —40 dB at 60 kHz
and with 5 m s™! (10 knots) of wind. Alternatively, a
vertical integral of the bubble densities and cross sec-
tions described by Crawford and Farmer (1987) for
119 kHz sound yields S; =~ —42 dB at a nominal 5 m
s~! windspeed. Since both estimates have at least a +5
dB uncertainty, these are consistent with either fre-
quency-dependence described above (s; oc f or con-
stant). If the backscatter doesn’t vary with frequency

over 60 kHz, a compromise value of S; = —40 dB at

5 m s~ is suggested, yielding

Ss =~ —40 dB + 30 log(W,), (B3)

where W, = W/(5ms™').

APPENDIX C
Saturation

For spherically spreading sound, expressions for r,
and r; are as follows (Shooter et al. 1974):
re = riel/fdn (C1)
(arp)™' = (Bekry) + In(rr/r1), (C2)

where r, is the radius of the (equivalent) spherical
source, 3 is a constant depending on the equation of
state of the water (with a value of 3.5 for water at 20°C,
or 3.3 at 10°C; e.g., see Clay and Medwin 1977), k
= 2xf/c is the wavenumber of the sound, a = 24
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= a/(20 loge) is the attenuation rate for the pres-
sure amplitude, and ¢ = P;/pc? is a measure of
the acoustic steepness at the source, where P(r;)
= P, sinwt (for example). Setting r; = r, then leads to
a “critical source level” e, for which shocks just barely
(don’t) form as linear behavior is restored:

Bke.ry = 2ary = Arg, (C3)
where r; (and hence r; also) is the solution of
Ar ) In(rp/r) = 1. (c4)

(Here, Inx is the natural logarithm.) Two more items
require discussion: 1) the “source radius” r,, and 2)
conversion of the “source pressure” P; = epc? to the
equivalent intensity (or pressure) at a nominal distance
of 1 meter from the origin of the spherical spreading.
For piston sources, Shooter et al. (1974 ) suggest a value
for r; between R/3 and 3R/4, where the “Rayleigh
distance” R is the transducer area divided by the wave-
length of the transmitted sound. Since r; as a solution
of (C4) is approximately logarithmically dependent on
r1, this uncertainty has minimal effect on the results.
The log-average value is just R/2. For spherically
spreading waves, the linear evolution equation for
pressure is

P(r) = Psrle™D), (C5)

where Pgis the rms pressure at 1 meter from the origin’

of spreading. Now P, from above is the peak pressure
amplitude, so the rms pressure at r, is just 27'/2P;,
yielding

PS = 2_”2P1r1e°‘("_1) ~ 2‘”2pczArL/ﬁkr0,

where ro = 1 m. For example, in seawater at 15°C, 35
ppt, and for 200 kHz sound with r; = 1 meter, Ps is
about 1.8 atm (i.e., using p = 1026 kg m =3, ¢ = 1500
ms ', 4=012m™, 8 =34, and k = 2nf/c = 838
m™!). Fora 1 cm by 50 cm bar, R/3 ~ 0.22 cm, and
Pswould be reduced to 1.3 atm (each example requires
solving C4).

APPENDIX D

The Admitted Noise Bandwidth

Start with the complex, discrete time series 4, as in
"Eq. (1) and appendix A. For simplicity, let T, = T,
= T, so the signal autocovariance drops to zero at an
interval equal to the averaging time. Covariance esti-
mates at the lag T; = T/M are formed as in Eq. (1).
Then C, has the expected value of the actual 51gnal
+ noise covariance at this lag: (C,) = C;° + C¥. For
the lag value 1/b, of course, (C,") = 0. Statistical
sampling error, however, causes fluctuations about C;°.
To evaluate this effect, examine
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1 M M
(G = 353 T (AdtAt4,0)
i

1 M M

~ 37 2 2 (At )AL

+(Aidf Y (AL 4)- |>+<AAJ I AV DY

M —
%|C1|2+H|Co|2+2 yYc |C1|2
' M-2
+2 e |Co)% + — |Cu-11%, (D1)

where C,, is the covariance at lag m, C(mT /M), and
the samples 4, are assumed to be normally distributed.
For pulse length 7", the signal covariance is approxi-
mately a linear ramp dropping to zero at lag T [i.e., as
in (A1)]. Letting |C,.5| =~ CoS(1 — m/M), the “signal
part” of the terms after the first one in (D1) approach
the integral of 2x> from 0 to 1 times |C,5|? for large
M, giving ¥%2|C,%|? as an approximate total. For M
= pT, the expected lag-1 noise covariance C;" would
be zero; however, for a slightly smaller sample interval

(so that C;¥ # 0 but C,;” = 0 for m > 1), we can
write

3 1
UG =~ |G 12 +3 1Co®|?

+ ()G ?+ |GV (D2)

Note that, even if M > bT (i.e., with oversampling),

‘there are only bT degrees of freedom working to reduce

the sample error [the third term in (D2)]. The last
term, |C;"|?, arises from a bias toward the center-
frequency of the pass-band. This bias can be removed
using a reasonable model of the noise and filtering,
leaving just the true lag-one covariance squared plus
the sample error variance. The total noise variance ad-
mitted through the band-pass filter is Co¥ = bH, where
H is the noise spectral level as in (62 ). The net sample
error is therefore just (b/ T)H?. This corresponds to
an effective noise bandwidth of (b/T)'/2.
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