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ABSTRACT

The energy, momentum, and mass-flux exchanges between surface waves and underlying Eulerian mean
flows are considered, and terms in addition to the classical wave “radiation stress” are identified. The
formulation is made in terms of the vertically integrated flow. The various terms are identified with other
analyses and interpreted in terms of physical mechanisms, permitting reasonable estimates of the associated
depth dependencies. One term is identified with the integrated “CL vortex force” implemented, for ex-
ample, in simulations of Langmuir circulation. However, as illustrated with a simple example of steady
refraction across a shear zone, other terms of the same order can significantly alter the results. The classic
example of long waves forced by short-wave groups is also revisited. In this case, an apparent singularity
arising in shallow water is countered by finite-amplitude dispersion corrections, these being formally of the
same order as the forced long-wave response, and becoming significant or dominant as shallow water is
approached.

1. Introduction

As waves are strained and refracted by currents, ex-
changes of mass, momentum, and energy occur be-
tween the waves and mean flow. Longuet-Higgins and
Stewart (1962, 1964) described the net “excess flux of
momentum due to the presence of waves,” and, in anal-
ogy to optics, named it the “radiation stress” (noting
a slight grammatical inconsistency but bowing to his-
torical usage). Gradients in the radiation stress (mo-
mentum flux) of the waves are reflected in changes to
the mean field, so the momentum of the combined
system is conserved. Because energy and momentum
are exchanged between the waves and mean flow,
additional analysis is needed to determine the parti-
tioning between the two. Earlier work (Longuet-
Higgins and Stewart 1960, 1961) described the wave
variations for a few cases, providing the basis to de-
scribe (e.g.) the generation of group-bound-forced long
waves. Analyses of wave variations are facilitated by
use of an adiabatic invariant, the “wave action”
(Bretherton and Garrett 1968; Whitham 1974), defined
as the intrinsic wave energy divided by the intrinsic

frequency (“intrinsic” meaning evaluated in a frame
moving with the mean flow). In the absence of the dis-
sipation or generation of waves, the net flux of wave
action is conserved.

The concept of surface wave radiation stress has
proven useful in many scenarios, including wave-
induced “set down” outside the surf zone and “setup”
inside as waves shoal and break (Longuet-Higgins and
Stewart 1964; Bowen et al. 1968); generation of long-
shore currents by obliquely incident waves (Bowen
1969; Longuet-Higgins 1970a,b); and the interaction of
freely propagating long and short surface waves
(Longuet-Higgins 1969; Hasselmann 1971; Garrett and
Smith 1976; and many others). In particular, Hassel-
mann (1971) pointed out the following two neglected
effects: 1) the “virtual mass source” resulting from con-
vergences of the wave-induced mass flux that can lead
to exchanges of potential energy, and 2) changes in
wave momentum that absorb some of the radiation
stress gradients. Garrett and Smith (1976) combined
the radiation stress and mass balance into a consistent
framework, resolving these issues. Using action conser-
vation to account for variations in the wave momentum
budget, and subtracting this from the radiation stress
divergence, Garrett (1976) derived an effective “wave
force” on the mean flow, and suggested a mechanism
for the generation of Langmuir circulation, which is a
prominent form of motion found in the wind-driven
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surface mixed layer (Langmuir 1938; Craik and Leibo-
vich 1976, hereinafter CL76; Craik 1977; Leibovich
1980; Li et al. 1995; Skyllingstad and Denbo 1995;
McWilliams et al. 1997; McWilliams and Sullivan 2000;
Phillips 2002). A key term in this force arises from re-
fraction of the waves by current shear, which had pre-
viously been neglected. As shown later (Leibovich
1980; Smith 1980), this “refraction force” is equivalent
to a vertically integrated form of the “CL vortex force”
derived by CL76 (also Craik 1977; Leibovich 1977).

This paper focuses on the physical interpretation of
the terms in the interaction equations. The interpreta-
tion emphasizes separation into Eulerian mean, wave-
mean, and interaction (mixed) terms. While much of
the analysis is a reformulation of previous work, some
new aspects here concern the 1) extension of the for-
mulation of Garrett (1976) to include finite-depth ef-
fects, 2) recognition that finite-amplitude dispersion
corrections are often of the same order as the effects of
the currents on wave propagation, and 3) educated
guesses that are made about the vertical structure as-
sociated with each forcing term, based on comparisons
with other analyses and the resulting physical intuition.
While mathematical rigor and explicit assessment of
neglected terms are parallel goals, the emphasis on
physical interpretation means that, for example, the
equations are carried through in dimensional form,
rather than forming explicit nondimensional small-
parameter expansions. An attempt is made to make
clear the assumptions employed, both explicit and im-
plicit.

The effects of waves on the Eulerian mean flow are
shown in two forms: as a correction to the use of radia-
tion stress, and as an expression for a “wave force” like
that shown for deep-water waves by Garrett (1976).
Application is illustrated with two examples: 1) the re-
fraction of waves by parallel shear, and 2) the classic
problem of long waves forced by groups of shorter
waves. In the refraction example, including only the
wave refraction force (equivalent to the vertically inte-
grated CL vortex force) without including both an ad-
ditional mass acceleration term and the Eulerian mean
flow response would lead to incorrect results. In the
forced long-wave problem, nonlinear propagation
terms are of the same order as those retained in the
wave-forcing equation, and must be considered. In the
shallow-water limit, these act to counter a singularity
that would otherwise arise. While pressure fields mea-
sured in finite depth have been found consistent with
such second-order theory (Herbers and Guza 1991;
Herbers et al. 1994), horizontal velocities measured in
the laboratory (e.g., Groeneweg and Klopman 1998;
also Kemp and Simons 1982, 1983; Swan 1990; Jiang

and Street 1991; S. G. Monismith et al. 1996, unpub-
lished manuscript, hereinafter M96) and in the field
(Smith 2006) show persistent differences from the
simple theory, indicating a need for further work and
understanding, particularly regarding the vertical struc-
ture of the response (which is not addressed rigorously
here).

2. Momentum equations for waves and currents

For many purposes the dynamics of a fluid with a free
surface can be simplified by integrating in depth and
time averaging over the higher-frequency waves and
turbulence. Care is required in averaging over the sur-
face waves to properly account for the exchanges of
mass, momentum, and energy with the mean flow. It is
also important to identify and evaluate the assumptions
employed.

Here the vertically integrated momentum budget is
examined, including both mean flow and waves. Tur-
bulence is neglected. For simplicity, the waves are con-
sidered as locally monochromatic. This “carrier wave”
is allowed to vary spatially and temporally, consistent
with (and interacting with) variations in the underlying
medium; in general, these variations will be assumed
have a larger scale in both time and space, as in
Bretherton and Garrett (1968). The budget is divided
into Eulerian mean, wave, and mixed quantities. The
wave momentum budget is evaluated to second order in
wave quantities, using dispersion, wavenumber evolu-
tion, and conservation of wave action (Bretherton and
Garrett 1968; Whitham 1974). Use is also made of the
“radiation stress” as defined and evaluated by Longuet-
Higgins and Stewart (1962, 1964). By subtracting the
waves’ momentum budget from the total, the net effect
of the waves on the mean momentum budget is de-
duced, extending the results of Garrett (1976) to finite-
depth water. The exposition parallels Smith (1990), but
with emphasis on the underlying physics.

a. Vertically integrated total momentum equations

In the following, the vertical coordinate z is treated
separately from the horizontal ones x, y to facilitate
vertical integration. Here, z is positive upward. The
corresponding velocities are w and ux,y.The indices i
and j are allowed to run through the values x, y for the
two horizontal components of a variable. The summa-
tion convention is used: repeated indices i or j are
summed over the two horizontal components. Partial
differentiation with respect to t is denoted as �t, and
with respect to x, y as either �i, �j or �x, �y.

For simplicity, we shall neglect viscosity, rotation,
compressibility, and stratification. For inviscid flow in a
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nonrotating frame of reference, the horizontal momen-
tum equation is

�t��ui� � uj�j��ui� � w�z��ui� � �i� p̂ � �gz� � 0, �2.1�

where p̂ is pressure. The first three terms are the ma-
terial derivative—the acceleration of a moving material
parcel of water results from gravity and the pressure
gradient. Conservation of mass combined with incom-
pressibility yields continuity in the form of

�iui � �zw � 0. �2.2�

Both (2.1) and (2.2) apply for �h � z � �, where the
water is assumed to extend from a stationary but hori-
zontally (slowly) varying depth �h(x, y) to a fluctuating
surface at z ��.

With uniform density and incompressibility, 	 may be
set to 1 without loss of generality, and can be dropped
from the equations. Defining the kinematic pressure
p � p̂/	 � gz and using (2.2), (2.1) can be rewritten in
the form

�tui � �j�uiuj� � �z�uiw� � �ip � 0. �2.3�

This form expresses the local change of momentum (ve-
locity) in terms of the gradients of the fluxes of the i
component of momentum (fluxes in all three direc-
tions) and the pressure. This will facilitate comparisons
with the radiation stress formulation after wave aver-
aging.

The kinematic boundary conditions at the free sur-
face � and bottom �h are

�t� � ui�i� � w � 0 at z � � and �2.4�

ui�ih � w � 0 at z � �h. �2.5�

In general, �h may be defined as any material surface
below which the wave motion is negligible. For ex-
ample, in deep water, one may conceptualize a “wave
layer” between the surface and �h that is thin com-
pared to other motions of interest, as in the long-wave
and short-wave problem (Hasselmann 1971; Garrett
and Smith 1976; Smith 1986, 1990). Near shore, placing
�h at the water–sediment boundary is a natural choice;
then, it is reasonable to assume �t h � 0 (a notable
exception would be the generation of tsunamis by un-
derwater slides).

Vertical integration of (2.3), combined with bound-
ary conditions (2.4) and (2.5), results in

�t��
�h

�

ui dz� � �j��
�h

�

uiuj dz� � �i��
�h

�

p dz�
� �p�i��z�� � �p�ih�z��h. �2.6�

The terms on the right arise from commuting the ver-
tical integral with the spatial derivative and applying

the boundary conditions. This form is adopted to con-
form to the definition of the waves’ radiation stress
(Longuet-Higgins and Stewart 1962, 1964), discussed
below.

Next, let the flow be separated into mean and wave
components ui � ui � u
i , where an averaging operator
( ) is defined to remove the waves’ oscillatory motions,
for example, u
i � 0. The first term of (2.6) becomes

�t��
�h

�

ui dz� � �t��
�h

�

ui dz� � �t��
�

�

ui dz�
� �tMi

m � �tMi
W, �2.7�

where

Mi
m � �

�h

�

ui dz �2.8�

is the mean current momentum, and, Taylor expanding
from the mean surface,

Mi
W � �

�

�

ui dz

� ���u�i �
1
2

��2�zui �
1
2

��2�zu�i � � � ��
z��

�2.9�

is the net wave momentum. In practice, this is normally
truncated to the first term, because the mean vertical
shear is assumed small, and the third term is of third
order in wave quantities. The presence of nonnegligible
vertical shear introduces several effects, including
modification of the dispersion relation (Stewart and Joy
1974; Valenzuela 1976), and requires definition of an
“effective mean advection velocity of the waves” Ua

i

(Smith 1990). Here, the mean vertical shear terms in
(2.9) (and below) will be neglected for simplicity (but it
is noted that this is an area of active research). For-
mally, this amounts to assuming that �zui � , where 
is the (radian) wave frequency.

The second term of (2.6) yields

�
�h

�

uiuj dz � �
�h

�

uiuj dz � �
�h

�

u�iu�j dz � �
�

�

uiuj dz.

�2.10�

The first term on the right is the Eulerian mean flow
momentum flux, the second is part of the mean wave-
induced momentum flux (or radiation stress), and the
third term, which was neglected by Hasselmann (1971),
may be evaluated by Taylor expansion and rendered
into the form
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�
�

�

uiuj dz � �ui���u�j �
1
2

��2�zuj�
� uj���u�i �

1
2

��2�zui� � � � ��
z��

� UiMj
W � Mi

WUj, �2.11�

where Ui is the mean velocity at the mean surface (Gar-
rett 1976). Note that a triple product of wave quantities
has apparently been neglected, which would add the
term �
u
2. This would be more appropriately included
below in (2.16) (the definition of wave radiation stress).

The mean pressure is separated into a part pm, which
would exist without the waves and a wave part pw. As
defined, pw is not zero but approximately �	w
2, as
noted by Longuet-Higgins and Stewart (1962, 1964).
Here an alternative to their explanation is provided.
The instantaneous pressure at the instantaneous sur-
face must equal the atmospheric pressure: p(�) � pa. To
evaluate the average pressure at the mean level �, the
pressure is Taylor expanded about the mean level using
the instantaneous vertical pressure gradient �zp � �(g
� �tw). This yields

p��� � pa � ���g � �tw�

� pa � �t���w�� � w��t��

� pa � w�2. �2.12�

The first term in this result fits the definition of pm, so
the second term is pw|z�� (to second order in wave
quantities). It is straightforward to show that this result

extends though depth as well. Taking into account ver-
tical acceleration, the pressure on a material surface
displaced by a wave remains constant with respect to
wave phase, taking the value that it would have in the
absence of the waves; the above argument then applies
directly. As an aside, this implies that for measurements
using pressure as a proxy for depth, such as from a
conductivity–temperature–depth (CTD) probe, the
wave deflections are removed to at least second order
in the wave slope. This mean wave pressure is in a
sense an artifice arising from averaging in an Eulerian
frame of reference: the water parcel whose average po-
sition is at depth z experiences just the appropriate
“mean pressure” pm(z) at every instant at the displaced
depth (z � �). Thus, for example, gradients of �	w
2

are not felt by any actual fluid parcel, but they do ap-
pear in the Eulerian mean equations (here they appear
as part of the radiation stress). In any case, with these
definitions, the pressure term [third term of (2.6)] be-
comes

�
�h

�

p dz � �
�h

�

pm dz � �
�h

�

pw dz � �
�

�

p dz,

�2.13�

in which the first term on the right is the unperturbed
mean pressure, the second term is part of the radiation
stress, and the last term is the potential energy of the
waves (g�
2/2), or (to lowest order) one-half of their
total energy.

Neglecting vertical shear, the total momentum equa-
tion can be written in the form

�tMi
m � �j��

�h

�

�uiuj � �ijp
m� dz�� �tMi

W � �j�Sij � UiMj
W � Mi

WUj� � kiG
W � �pm��� � w�2|���i� � pm��h��ih,

�2.14�

where

kiG
W � �pa�i��z�� �2.15�

is the assumed to provide the input to wave momentum
from the wind, and

Sij � �
�h

�

�u�iu�j � �ijp
w� dz �2.16�

is the radiation stress as defined by Longuet-Higgins
and Stewart (1962, 1964). Note that Longuet-Higgins
and Stewart (1962, 1964) evaluate Sij to second order in

wave quantities, assuming a locally flat bottom and neg-
ligible vertical shear; using their result imposes these
limits as well. In particular, note that this implies ne-
glect of the triple-product term mentioned above, �
u
2.
In practice, wave skewness can be large, and this term
may well be significant compared to UiM

W
j and MW

i Uj.
This is suggested as a topic for further research.

Equation (2.14) separates the momentum budget
into mean momentum evolution (the first two terms)
plus a variety of wave, mixed wave/current, and pres-
sure forcing terms. The wind input to surface waves via
pressure–slope correlation was recast as kiG. A corre-
sponding bottom term would arise with form drag over
a rough bottom, but it is neglected here. The mean
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wave pressure becomes negligible at z � �h, in accor-
dance with the approximation pw � �w
2 → 0. The
mean wave pressure times the mean surface slope term
(�w
2�i�) was noted by Hasselmann (1971) and as-
sumed negligible; because mean surface slopes are in
general extremely small, it is neglected hereafter as
well. The mean pressure (pm) times mean slope terms
can either be neglected or recombined on the left-hand
side to move the mean pressure gradient back inside
the integral, consistent with common practice; the
above arrangement facilitates use of Sij as evaluated by

Longuet-Higgins and Stewart (1962, 1964). Were vis-
cous stresses included, surface and bottom shear
stresses would appear on the right-hand side. For the
vertically integrated flow these can be added in an ad
hoc fashion, using (e.g.) a bulk drag formulation.

In many circumstances, wave terms other than the
radiation stress gradient �jSij can be neglected, and to
do so has become standard practice. It is therefore use-
ful to recast (2.14) in terms of forcing the mean mo-
mentum by the radiation stress gradients plus a variety
of “extra” terms,

�tMi
m � �j��

�h

�

uiuj dz� � �
�h

�

�ip
m dz � ��jSij � �j�Mi

WUj� � �j�UiMj
W� � �kiG

W � �tMi
W�. �2.17�

The first term on the right is the radiation stress gradi-
ent. The next term can be considered as a correction to
the net flux of wave momentum, modifying advection
by the group velocity concealed in Sij [see (2.21) below]
to include advection by the mean flow Uj also. The third
term embodies both straining and refraction interac-
tions between the waves and the current. The final pair
of terms represents any net imbalance between the lo-
cal input and the local rate of change of the wave mo-
mentum. Implicit also is the assumption that wave dis-
sipation (e.g., breaking) results in a transfer of wave

momentum to the mean flow. One deficiency in this
formulation is that some terms in (2.17) conceal mix-
tures of physical effects, and hence vertical structures,
and also mixtures of adiabatic and diabatic effects.

An alternative is to consider the evolution of the
total momentum MT

i � Mm
i � MW

i . To provide a direct
comparison with Phillips (1977), it is useful to 1) assume
the mean velocity is uniform over the depth H � � � h
so that the second term in (2.17) integrates to HUiUj;
and 2) define a total transport velocity UT

i � Ui �
MW

i /H. Then, (2.14) can be rearranged in the form

�tMi
T � �j�Ui

TMj
T� � �j�Sij � Mi

WMj
W�H� � �i��

�h

�

pm dz� � kiG
W � pm����i� � pm��h��ih. �2.18�

It is now noted that 1) Phillip’s definition of the “excess
momentum flux” differs from that of Longuet-Higgins
and Stewart, and is given by the two terms inside the
brackets of the third term; 2) he assumes the nonwave-
induced part of the mean pressure pm is hydrostatic;
and 3) he neglects the terms on the right-hand side; this
is the same result (see Phillips 1977, his section 3.6). It
can also be seen that once Sij is evaluated (below), the
difference in definitions of the radiation stress term is
small. This formulation shares the same deficiencies as
those of (2.17): the terms conceal mixtures of different
physical effects. Also, wave effects have to be explicitly
accounted for in comparisons with observations, be-
cause these are generally Eulerian in nature. On the
other hand, it is often simpler to evaluate, essentially
deferring most complexities to the evaluation of the
waves.

Waves also affect the surface boundary condition
(Hasselmann 1971; Garrett and Smith 1976). The sur-

face kinematic condition (2.4), Taylor expanded in �

about � and averaged, leads to (to second order in wave
quantities)

�t� � uj�j� � w � ��jMj
W at z � �, �2.19a�

or in vector form,

�t� � �u � ��� � w � �� � MW. �2.19b�

In an Eulerian framework, variations in wave-in-
duced mass flux act as sources and sinks of fluid at the
mean surface �. For � � 0, as when the large-scale flow
is also a wave, this implies a transfer of potential en-
ergy. This mass-flux condition at the height of the mean
surface was the essential point raised by Hasselmann
(1971) in his refutation of the “maser mechanism”
(Longuet-Higgins 1969) for long-wave growth. This
might also be important near shore where setup can be
significant.

Invoking nondivergence in the interior, integrating
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over depth, and including the surface and bottom
boundary conditions yields conservation of mass over
the water column,

�t� � � � Mm � �� � MW. �2.20�

Near a straight shoreline and in steady state, for ex-
ample, this mass balance implies that the alongshore-
averaged shore-normal Eulerian transport is equal and
opposite to the average shore-normal wave-induced
mass flux (or Stokes’ transport).

To evaluate the net interaction, expressions for the
wave momentum and associated radiation stress terms
are required. For most purposes, it is sufficient to
specify the wave energy, momentum, and radiation
stresses to second order, and for this it is usually suffi-
cient to specify the waves to first order (Whitham
1974). This is taken up in the next two sections (but see
also section 4d).

b. Linear dispersion and radiation stress

The linear dispersion equation for gravity waves in
finite-depth water and with negligible currents relates
the intrinsic radian frequency  and wavenumber mag-
nitude k,

	2 � gk tanh�kH� �2.21�

(Phillips 1977), where g is the local gravity, and H � h
� � is the total mean depth. This leads to the intrinsic
phase speed c � /k, and group velocity cg

i � �ki


(where ki are the components of k). The net propaga-
tion of the waves with currents is cg

i � Ui, and the
apparent frequency is Doppler shifted, as discussed be-
low.

The net excess flux of momentum resulting from the

waves, or radiation stress Sij, was evaluated by Longuet-
Higgins and Stewart (1962, 1964) for negligible vertical
mean shear and locally uniform depth. The result can
be written

Sij � Mi
Wcj

g � HJ�ij � EW�kicj
g�	� � HJ�ij, �2.22�

where EW � g�
2 is the wave energy (recall 	 � 1), and
(with the summation convention)

HJ �
1
2

H�u�2 � w�2�

� Mj
W�cj

g �
1
2

cj� � EW�kcg�	 �
1
2� �2.23�

is a finite-depth term that vanishes in deep water (the
reason for including H in the definition will be seen
shortly). This “J term” has the same form as the irro-
tational wave-induced stress term derived by Rivero
and Arcilla (1995). The J term acts dynamically like a
pressure term.

The tensor form MW
i cg

j for the radiation stress was
employed by Garrett (1976) for deep-water gravity
waves; inclusion of the J term generalizes the form to
finite depth (Smith 1990). This form is also valid includ-
ing surface tension, with appropriate evaluation of MW,
c, cg, and EW, as can be verified by detailed comparison
with section 3 of Longuet-Higgins and Stewart (1964).
However, this estimate of the radiation stress does not
include a sloping mean surface or bottom. There are
concerns regarding usage of these results in the context
of nonnegligible slopes, but these are beyond the scope
of this paper. It also neglects a term related to wave
skewness (as mentioned above).

Using these identities and definitions, (2.14) can be
rewritten in the form

�tMi
m � �j��

�h

�

uiuj dz� � �
�h

�

�ip
m dz � �tMi

W � �j�Mi
W�cj

g � Uj�� � kiG
W � �j�Mj

WUi� � �i�HJ�. �2.24�

Equation (2.24) separates the total momentum budget
into Eulerian mean flow momentum evolution (top row
of terms) and wave momentum evolution along a ray
(middle row) versus wave growth and interaction terms
(bottom row).

c. Wave momentum evolution

To close the equations, another expression for the
wave momentum evolution is needed. This is found
from conservation of wave action and wave crests. The
treatment considers a group of waves as it propagates
and varies in height, direction, and wavelength. Consis-

tent with the approximations used to derive action con-
servation, the waves in the group are assumed to act
locally like a plane wave, with the variations occurring
over time and space scales that are large compared to
those of the waves. This is fundamentally different from
a spectral density formulation; for example, as a packet
is compressed and becomes shorter, the action density
increases within the packet, but the resulting spectral
density from the packet is spread over a wider range of
wavenumbers.

Wave momentum can be written MW
i � Aki, where

A � EW/ is the “wave action,” ki is the wavenumber,
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and EW is the wave energy. Wave action is an adiabatic
invariant (Bretherton and Garrett 1968; Whitham
1974), so the action evolution equation for a wave
packet is straightforward to write as a ray equation,

�tA � �j�A�cj
g � Uj�� � GW � DW, �2.25�

where GW and DW represent the wave growth and dis-
sipation, respectively, in terms of action. The growth is
attributed to wind. For example, a Miles-style growth
term would have the form GW � �A, where � depends
on the wind (Miles 1957, 1960). Similarly, the action
dissipation term DW represents both wave breaking and
viscous decay, and the corresponding wave momentum
is transferred to the mean flow. Bottom friction, where
momentum is lost from the combined mean flow �
wave system, would introduce another term; but this is
neglected here. Note that DW must have stronger wave
amplitude dependence than GW for the waves to have a
stable equilibrium amplitude.

The propagation velocity of wave action includes
both the wave group velocity and the underlying mean
flow cg

i � Ui. In practice, typical mean flows (i.e., aside

from exceptional cases such as the alongshore flow near
shore, tidal jets from inlets, and, perhaps, western
boundary currents) are often of order (ak)2cg, which is
the same size as finite-amplitude corrections to cg. If the
effect of the flow on the waves is important to the net
interaction, finite-amplitude dispersion should prob-
ably also be considered (e.g., see section 4d).

To obtain an equation for wave momentum MW
i �

kiA, (2.25) is combined with an equation for the wave-
number ki. Conservation of wave crests yields

�tki � �i�	 � kjUj� � 0 �2.26a�

or

�tki � �cj
g � Uj��jki � �kj�iUj � �H	�iH �2.26b�

(Phillips 1977). Variations in the medium other than
depth, such as apparent gravity or surface tension, are
neglected. Note that for steady currents (and nonmov-
ing bottom) the apparent frequency � �  � kjUj is
constant over the whole domain, simplifying the evalu-
ation of the wavenumber field in that case. Combining
(2.26b) with (2.25) yields a wave momentum evolution
equation

�tMi
W � �j�Mi

W�cj
g � Uj�� � ki��tA � �j�A�cj

g � Uj��� � A��tki � �cj
g � Uj��jki� � ki�G

W � DW� � Mj
W�iUj � J�iH.

�2.27�

The last term arises from �H combined with the defi-
nitions of EW, A, and J; this term accounts for adiabatic
effects of shoaling on wave momentum. The second-to-
last term accounts for the adiabatic variations of MW

i

resulting from current gradients (both straining and re-
fraction). For steady flows (�tki � 0), all of these effects
are implicitly included in (2.17) and (2.18) via the ra-
diation stress gradient.

d. Wave forcing of mean flows

Combining (2.14), (2.22), and (2.27) leads to an equa-
tion describing the net effect of the waves on the Eu-
lerian mean flow:

�tMi
m � �j��

�h

�

uiuj dz� � �
�h

�

�ip
m dz � Fi

W, �2.28�

where the mean pressure gradient is moved back inside
the integral, and the wave force FW

i acting on the mean
flow can be written as

Fi
W � kiD

W � Mj
W��iUj � �jUi� � Ui�jMj

W � H�i J,

�2.29a�

or

FW � kDW � MW � �� � U� � U�� � MW� � H�J.

�2.29b�

The first term represents the dissipation of wave mo-
mentum (e.g., via breaking); the momentum is assumed
to be transferred directly to the mean flow. The second
term is the reaction to wave refraction: as the waves are
refracted, their momentum changes; an equal and op-
posite change must occur in the mean flow to conserve
the total. The third term represents the momentum re-
quired account for the mass source/sink at the surface:
this is introduced or removed with a momentum corre-
sponding to the mass times the mean flow speed at the
surface. The final term accounts for forcing by the “J
term” gradient less that accounted for by the wave evo-
lution [see (2.27)]. This form for the wave force acting
on the mean flow was identified by Garrett (1976) for
deep-water gravity waves. Modification for finite depth
simply adds the J term (Smith 1990).

In a typical application, a map of the wave momen-
tum is generated for an instantaneous configuration of
the depth, currents, and incident waves, and the results
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are substituted into (2.29) or (2.17) [or (2.18)] to evalu-
ate the wave field and the consequent slower evolution
of the mean flow. Which of the wave–current interac-
tion equations is simpler [(2.17), (2.18), or (2.28) and
(2.29)] depends on the problem addressed.

3. Steady shear

Steady parallel horizontal shear provides a simple yet
illustrative case (Fig. 1). For simplicity, wave input and
dissipation are negligible. Currents and statistical prop-
erties of the waves are steady and uniform in y (i.e., the
waves can be incident at an angle �W, but all mean flow
and mean wave quantities are steady and uniform in y,
so both �t, �y � 0). Currents U(x), V(x) are assumed
uniform in the vertical.

First, it is useful to define depth-mean wave transport
velocities [note the relation to the wave-related part of
the total transport velocity defined for (2.18)]

UW � Mx
W��H and

VW � My
W��H. �3.1�

Then, continuity (2.20) can be written as

�x�H�U � UW�� � 0. �3.2�

The equation for y momentum [from (2.28) and (2.29)]
becomes

�x�HUV� � �HUW�xV � V�x�HUW�. �3.3�

The first term on the right is the one associated with
refraction, the second with the spinup of the mass flux
lost from the waves to velocity V. The term on the left
can be separated into the two parts, HU�xV � V�x(HU).
Then, combining the second of these with the last term

on the right, and applying continuity (3.2), the above
reduces to

HU�xV � �HUW�xV. �3.4�

If the shear and depth are nonzero anywhere, this con-
strains the mean transport to counter the wave trans-
port U � �UW at that point. Then, because of conti-
nuity, they must cancel everywhere. There is no con-
straint on V(x) beyond it being steady parallel shear
flow. Any shear profile is consistent with the assump-
tions, and, in the absence of friction and forcing, simply
continues unmodified. This illustrates the following two
points. 1) The “spinup” to the mean velocity V of mass
injected by a decreasing wave mass flux (say) is bal-
anced by the “spin down” of mass removed by the cor-
responding increase in mean mass flux imposed by con-
tinuity. 2) The wave refraction force in the y direction
is apparently countered by the mean advection of y
momentum across its gradient [as indicated by (3.4)].
Another way to view this result is that for the shear to
remain at a fixed location in x, and therefore satisfy the
assumption of steady state, the net Lagrangian trans-
port in the x direction (U � UW) must be zero.

The x momentum budget is not quite as simple. With
the same assumptions, the mean flow x momentum
equation is [again from (2.28) and (2.29)]

�x�HU2� � gH�x� � HVW�xV � U�x�HUW� � H�xJ.

�3.5�

Similar to above, the first term is split into HU�xU �
U�x(HU); the latter part combines with the second term
on the right, and is eliminated because of continuity.
All remaining occurrences of H are outside of the de-
rivatives, so this can be divided. The result is

g�x� � VW�xV � �xJ �
1
2

�xU2. �3.6�

In terms of the depth-mean wave transport velocities,
we can rewrite (2.23) in the form

J � |UW|�cg �
1
2

c� � �UW2 � VW2�1�2�cg �
1
2

c�.

�3.7�

From the y momentum solution [(3.4) and discussion
after], U � �UW, so U2 � UW2, and either can be used
in evaluating (3.6). Alternatively, comparing this to the
terms in J, it appears reasonable to neglect this term. It
is consistent to neglect the U2 term but not the VW�xV
one, because there is no similar constraint on the size of
the shear �xV; also, neglecting the shear term would
amount to neglecting the whole problem. In contrast to

FIG. 1. Example 1: steady waves incident across a parallel shear
zone. The waves are refracted by the shear. The component of
wave force parallel to the shear ( y or vertical as shown here) is
counteracted by a mean flux to the left (�x) of y momentum
[(3.3), (3.4); arrow denoted UdxV ]. The component perpendicular
(x) can only be balanced by a pressure gradient, resulting in setup.
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the y momentum budget, however, the wave refraction
force in the x direction is not countered by mean ad-
vection, and must instead be balanced by a surface
slope. Even for deep-water waves (where the J term is
zero), shear can induce setup via the refraction force
(the first term on the right). For waves incident from a
low angle (i.e., nearly parallel to the shear), this refrac-
tion force can dominate.

In both the x and y momentum balances, the wave
force term resulting from spinup of the mass-flux diver-
gence was countered by the corresponding spin down of
the mean mass-flux divergence, which (for a steady
state) must exactly balance because of continuity. Some
models currently incorporate the CL vortex force only
[implicitly including the first term on the right in (3.3)],
but neglect the other (spinup) term. This could yield an
incomplete cancellation and an erroneous result; how-
ever, this would only happen if the mass-flux diver-
gence was included in calculating the mean flow, but
excluded from the wave force.

To determine the setup, the response of the waves is
needed. However, it is not necessary to show explicit
solutions: the main points of this example are clear al-
ready from the form of the equations. 1) The net inter-
action does not modify the shear profile V(x), because
the wave force component parallel to the shear (y di-
rection) is countered by the mean advection of momen-
tum [see (3.3) and (3.4), and the discussion thereafter].
This is consistent with there being no change in the x
flux of the wave’s y momentum as well [as can be seen
from (2.27)], and with the system remaining in steady
state. 2) Refraction of the waves by the shear does alter
the surface setup across the shear zone, because of the
component of the wave force perpendicular to the
shear [see (3.7)]; this can be assisted or countered by
shoaling effects [the J term in (3.7)]. 3) The term arising
from spinup of the wave’s mass-flux divergence [the last
term in (3.3)] is balanced by the spin down of the cor-
responding mean flow mass-flux divergence enforced
by continuity. 4) The results are consistent with the
general principle that the effects of (irrotational) waves
can neither create nor destroy vorticity (though it can
rearrange it).

4. Longer waves forced by wave groups

The second example is the Eulerian motion induced
by groups of waves or swell propagating into still water.
The analysis here resembles “method 2” of Longuet-
Higgins and Stewart (1962, hereinafter LHS62). The
following simplifications are made: wave input and dis-
sipation are negligible; the induced motion is irrota-
tional; the induced response U/cg is small, of order
(ak)2, as is MW/hcg, so all terms in FW involving prod-

ucts of MW and U can be neglected [order (ak)4] com-
pared to the virtual pressure term H�J [order (ak)2]
and the surface mass-source term [also order (ak)2]; the
bottom is locally flat, h � constant, and �/h is very small,
so h can replace H; and the x axis is aligned with MW,
as is the response, so subscripts x or y are unnecessary
(e.g., MW � MW

x ).

a. Shallow-water-forced waves

The simplest case is one where the forced wave is
long compared to the depth but the free waves are not.
Then, u � U is approximately uniform from � to �h. To
lowest order, the momentum balance [(2.28) and
(2.29)] becomes

�tU � �x�g�� � ��xJ, �4.1�

where the mean pressure is hydrostatic (consistent with
the long-wave assumption).

A solution is sought propagating with the constant
wave group velocity cg, so �/�t can be replaced by �cg�/�x.
This results in

cgU � g� � J, �4.2�

where the constant of integration is chosen so that U �
� � 0 when there are no waves [this is just Eq. (3.20) of
LHS62]. The lowest-order mass conservation Eq. (2.20)
becomes

hU � cg� � �MW, �4.3�

where the constant of integration is chosen as above.
The solution is

U � �
gMW � cgJ

gh � �cg�2 , �4.4�

and

� � �
cgMW � hJ

gh � �cg�2 , �4.5�

consistent with the results in LHS62. Note that when
the primary (free) waves are deep-water waves (J � 0),
the forcing results entirely from the virtual mass source
at the surface � · MW. As the depth increases further,
so (cg)2 � gh, the forced flow balances the Stokes’
transport hU � �MW, so there is zero net (integrated)
Lagrangian transport. Conversely, as the group velocity
approaches the shallow-water limit the solution blows
up, violating the initial assumption of a small response.
Clearly, exact cancellation of the terms in the denomi-
nator is sensitive to small corrections to the group ve-
locity due to finite-depth and finite-amplitude waves.
These limits are pursued further in sections 4c and 4d.
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In terms of the depth-mean wave transport velocity
MW � hUW and J � UW(cg – c/2), and the above takes
the form

U � �UW�gh � �cg�2 �
1
2

cgc

gh � �cg�2 �, �4.6�

and

� � �hUW� 2cg �
1
2

c

gh � �cg�2�. �4.7�

b. Finite-depth-forced waves

Again following LHS62, the results can be general-
ized to deeper water (or shorter groups) with the addi-
tional assumption that the vertical structure of the
forced response in u and pm is the same (as is the case
for a surface wave–like potential flow response). De-
fine � such that

�
�h

�

u dz � 
�h � ��U � 
hU, �4.8�

where U is the mean horizontal surface velocity. For
example, if the wave groups force a simple harmonic
long wave of wavenumber K, the resulting potential
flow solution would yield


 �
tanh�Kh�

Kh
. �4.9�

By assumption, the pressure has the same form,

�
�h

�

pm dz � 
hg�. �4.10�

To lowest order in the mean quantities, the momentum
equation becomes

�t�
hU� � �x�
hg�� � �h�xJ. �4.11�

Using �t → �cg�x, integrating with cg and h assumed
independent of x, and dividing by �h, this becomes

cgU � g� � J�
. �4.12�

Again, integration constants are chosen so there is no
motion or elevation in the absence of waves. Mass con-
servation yields

�t� � �x�
hU� � ��xMW, �4.13�

or

cg� � 
hU � MW. �4.14�

Combining these,

U � �
gMW � cgJ�



gh � �cg�2 �
MW


h �
gh � �c0
g�2 �

1
2

c0
gc0


gh � �cg�2 �,

�4.15�

and

� � �
cgMW � hJ


gh � �cg�2 � MW� 2cg � c�2


gh � �cg�2�. �4.16�

The results have the roughly same form as in (4.4)
through (4.7), but with h replaced by �h (except in the
J term). As noted in LHS62, this can be extended to
arbitrarily shaped groups by Fourier expanding the
forcing terms MW and J, and (to lowest order in u and
�) summing the results.

c. Deep-water-forced waves

In deep-water the wave force becomes negligible,
and the response is driven entirely by the mass-flux
condition at the surface boundary,

�t� � W � ��xMW, �4.17�

where W is the vertical velocity associated with the re-
sponse (forced long wave). For a wave group with en-
velope wavenumber K propagating with group speed cg

as contemplated here, �t is replaced by �cg�x. Assuming
the response is irrotational and nondivergent, it should
have a depth dependence of the form eKz. By continu-
ity, W can be replaced by �x(U/K), where U is the sur-
face value of the horizontal response current. The mo-
mentum equation and surface boundary condition then
reduce to

�x��cgU � g�� � 0, �4.18�

and

�x�U�K � cg� � MW� � 0, �4.19�

respectively. Choosing constants of integration so that
U � 0 when �� 0, the partial derivative operators can
simply be dropped. The solution takes the form

� � �cg�g�U and �4.20�

U � �
gMW

g�K � �cg�2 �4.21�

[as in (4.15), (4.16) with J � 0 and h� � K�1]. For
deep-water waves, (cg)2 � (1⁄2c)2 � 1⁄4(g/k). Using also
MW � (2k)�1US, where US � a2kS is the surface
Stokes drift associated with the waves (and is not to be
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confused with UW, see also discussion in section 5),
(4.21) can be written as

U � �US� �K�2k�

1 � �K�4k��. �4.22�

A wave group must contain at least one full wave, so
K � k. Thus, the surface current response should be
less than (2/3)US in magnitude. In contrast, both labo-
ratory measurements (e.g., Klopman 1994, as refer-
enced in Groeneweg and Klopman 1998; also Kemp
and Simons 1982, 1983; Swan 1990; Jiang and Street
1991; M96) and some recent open-ocean measurements
(Smith 2006) indicate a surface response equal in mag-
nitude to the surface Stokes drift, which is a somewhat
stronger response. It might be speculated that some
vertical structure is imposed on the response that dif-
fers from that assumed above. Because the above form
seems to be implied for an irrotational, nondivergent
Eulerian mean response, however, this is puzzling. This
clearly warrants further study.

d. Finite-amplitude, finite-depth free waves

In the shallow-water limit, the first-order propaga-
tion speed terms in the denominators of (4.4) and (4.5)
cancel, so higher-order terms must be considered.
Among the next-order terms to consider are both fi-
nite-amplitude modifications of the phase and group
velocities of the free waves and the back interaction of
the forced velocity field on both the short-wave propa-
gation and amplitude evolution. Proper treatment of
finite-amplitude dispersion requires consideration of
the actual spectrum of waves (Herbers et al. 2002).
However, for strongly peaked spectra, and to provide a
simple example, it is sufficient to consider a “carrier
wave” with a slowly modulated amplitude, which is
treated as if it were locally a unimodal plane wave,
consistent with the approximation used in deriving ac-
tion conservation (Bretherton and Garrett 1968).

For a unimodal wave train, the phase speed c and
group speed cg expand to second order in wave slope as

c � �g

k
tanhkH�1�2�1 �

�ak�2

16
�9 � 10 coth2kH � 9 coth4kH�� and �4.23�

cg �
1
2 �g

k
tanhkH�1�2�1 � R �

�ak�2

16
�9�5 � R� � 10�5 � 3R� coth2kH � 9�5 � 7R� coth4kH�	, �4.24�

where

R �
2kH

sinh2kH
. �4.25�

These are derived from the nonlinear dispersion rela-
tion of Whitham (1974), which in turn is derived from
an expansion in wave steepness ak, and is applied lo-
cally as if the wave were approximately a uniform plane
wave. This expansion diverges in very shallow water: as
kH decreases, the terms proportional to (ak)2 coth4kH
eventually become large. To assess where this becomes
a problem it is worth looking at some actual values. As
an example, for 11-s waves incident with deep-water
rms height W � 1.5 m, the term (ak)2 coth4kH ap-
proaches unity near 5-m water depth, while depth-
limited breaking does not start until closer to 3-m depth
(see Fig. 2). The effects of the finite-depth and finite-
amplitude corrections on the wave phase and group
speeds are illustrated in Fig. 3 for the same example
wave. The finite-amplitude corrections are small except
close to shore, as expected; the deep-water steepness is
ak � 0.025, so the deep-water phase speed is increased
by a factor of only 1.0003. The expansions appear to

diverge near the inner limit at 5-m depth. In very shal-
low water, the terms involving (ak)2 coth4kH increase
the phase speed but decrease the group speed with in-
creasing amplitude; that is, the dispersive characteris-
tics of the waves are enhanced, as seen most clearly in
the ratio cg/cp (Fig. 4). This may help to retard wave
front steepening as the waves shoal, and hence help to
prolong the existence of a steep just-before-breaking
waveform.

The above expansion is for frequency as a function of
a given wavenumber ( � ck); the speeds are written as
functions of k, H, and amplitude a (a � W/2), not fre-
quency . In practice, it is more common to specify the
frequency (e.g., as in section 3); in this case dispersion
has to be solved iteratively to determine k. To compli-
cate the issue, in a typical application the wave ampli-
tude itself is a function of the group velocity: the energy
flux EWcg is specified, so EW (and hence the amplitude
and steepness) depends inversely on cg. Thus , h, and
EWcg are input parameters, and k, c, cg, and EW are
found by iteration. To further complicate the issue, the
mean response U is of the same order as the nonlinear
terms of cg, and so advection by U must be included as
well. In principle the energy flux EW(cg � U) is speci-
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fied at the outer boundary, and the system of coupled
equations is solved as a set.

To obtain a simple solution for this group-forced
long-wave problem, the modulations of the free-wave
amplitude are assumed small relative to overall mean
wave amplitude. Thus, for example,

MW � M0
W � �M1

W � H.O., �4.26�

where the subscript 0 denotes overall mean quantities
and � is a small parameter. The overall means must

themselves satisfy the basic equations in (2.20), (2.27),
and (2.28) with (2.29). The overall mean flow is as-
sumed to be uniform in depth. For consistency, a steep-
ness parameter �2 � (ak)2 is introduced. The transport
velocities U0 and MW

0 /H are of order �2c0, as are the
nonlinear terms in the group velocity cgNL

0 . The modu-
lations U1/c0, MW

1 /c0, and �1/H are of the order of ��2.
The modulation of group velocity cg

1 � cgNL
1 is also of

the order of ��2c0, but these will be seen to enter only
in the wave evolution equation in (2.27).

Supposing that somewhere downstream there is a
coast imposing no net x flux of mass, or (alternatively)
picking a frame moving with the net mean Lagrangian
flow, continuity (2.20) implies that

HU0 � M0
W � 0. �4.27�

The total depth H should formally be H0, but because
H1 � �1 this would be redundant. The mean wave mo-
mentum is most easily found from the conservation of
action A0 [(2.25)] and crests [(2.26a)], rather than from
momentum [(2.27)]. First, a reference action flux B�

and (constant) encounter frequency � are specified,
nominally for deep-water and zero mean current. Then,
action conservation can be written

A0�c0
g � U0� � B�. �4.28�

The equations for frequency and dispersion combine to
yield

	� � 	 � k0U0 � k0c0 � k0
2A0 �H, �4.29�

FIG. 2. Dimensionless parameters for surface waves in finite
depth with finite amplitudes [(4.23)–(4.25)], except for “k0h,”
which uses the linear k0. The example calculations are for 11-s-
period incident waves of 1.5-m rms height in deep water. Depth-
limited breaking is shown for ak at depths less than 3 m.

FIG. 3. Finite-depth and finite-amplitude surface wave phase
and group velocities [Eqs. (4.23), (4.24)]. Linear limit (thick lines),
finite amplitude (thin lines), linear shallow limit (long dashed
lines), and linear deep-water limits (horizontal dashed lines).
Phase velocities are the upper set of lines, group velocities are the
lower set. For the example wave (11-s period, 1.5-m height), the
finite-amplitude corrections are negligible in water deeper than
about 10 m, and the finite/shallow approximation performs well to
about 20 m, deeper than expected.

FIG. 4. Ratio of surface wave group speed over phase speed
for an 11-s, 1.5-m incident wave: linear finite depth (thick line);
finite-amplitude finite-depth solution (thin line). The finite-
amplitude corrections become large very quickly as the water
shoals.
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where c0 is the nonlinear phase speed for the overall
mean conditions, and use was made of (4.37) and the
relation MW

0 � k0A0. The nonlinear terms of c0 are
proportional to �2 � (ak)2 [see (4.23)]. The wave energy
is EW � A � 1⁄2ga2, so the steepness parameter is
evaluated as

�2 � A0�2	k0
2 �g�. �4.30�

As illustrated in Fig. 5, the nonlinear dispersion terms
are nominally the same size as the Doppler shift, so
these should be evaluated together in (4.29). Because
the Doppler-shifted dispersion relation (4.29) is a com-
plicated function of k, h, and �2, it is solved via itera-
tion. The overall mean wave parameters are evaluated
through iteration of (4.28) and (4.29). It is useful to note
that at order �2, � can be substituted for  in (4.30) for
use in (4.29), and that each additional pass through
(4.28) and (4.29) provides a correction that is smaller by
another order �2 relative to the last [i.e., only two passes
are needed to get O(�2) results].

To proceed and evaluate the effects of order � modu-
lations of the overall means, all such quantities (de-
noted with subscript 1) are assumed to be approxi-
mately steady in a frame of reference moving at the
constant net group velocity (cg

0 � U0), so �t → �(cg
0 �

U0)�x. Note in particular that the mean group velocity
cg

0 includes a mean finite-amplitude correction (it is not
just the linear group velocity). In addition, let the
forced long wave have a characteristic wavenumber K,
and (as in section 4b) assume the pressure and horizon-
tal velocity have the same vertical structure. Thus, for

example, the integral of the order � horizontal velocity
results in �U1, where U1 is the order � velocity at the
surface. Then, the order � equation for continuity (2.20)
becomes


HU1 � �c0
g � U0��1 � �M1

W �4.31�

and the momentum equations [(2.28) with (2.29)] yields

�c0
g � U0�
HU1 � g
H�1 � HJ1 � U0M1

W, �4.32�

where the constants of integration are chosen so the
order � quantities have zero overall means. The result-
ing solution is

�1 � �� M1
Wc0

g � J1


gH � �c0
g�2 � U0

2� and �4.33�

U1 � ��gM1
W � �c0

g � U0��HJ1 � U0M1
W��
H


gH � �c0
g�2 � U0

2 �
� �� gM1

W � c0
gJ1�



gH � �c0
g�2 � U0

2�� U0� �1


H�
� � U0

2M1
W�
H


gH � �c0
g�2 � U0

2�. �4.34�

Comparing these with (4.15) and (4.16), we see that in
addition to including nonlinear terms in cg

0, this analysis
has added U2

0 to the denominators, and a couple of
other new terms in U1. It is useful to assess the relative
sizes of the various terms. Of particular interest is the
behavior as kH becomes small. In this limit,

gH � �c0
g�2→gH��kH�2 �

9
8

�2�kH��4 � � � ��.

�4.35�

The first term comes from the finite-depth linear dis-
persion relation, while the second arises from the non-
linear correction to group velocity. The nonlinear dis-
persion terms diverge in the shallow-water limit, re-
stricting the validity of the above to depths where the
second term above is small relative to 1; however, this
analysis extends estimation of the forced long-wave am-
plitudes into somewhat shallower depths than the linear
solution. The third term in the denominators of (4.33)
and (4.34) U2

0 is of the order of �4, and so can be ne-
glected relative to the nonlinear propagation term. The
numerators of (4.33) and the first term of the second
line of (4.34) are both of the order of ��2. The equiva-
lent numerator in the second term of (4.34) is of
the order of ��4, while the last is of the order of ��6;
thus, these last two terms may also be neglected. The
final assessment based on this ordering is that the mean
advection terms (involving U0) can be neglected, but

FIG. 5. Size of the nonlinear groups speed terms [dashed line;
(4.24)], mean advection U0 [thickest line; (4.28)], uniform-with-
depth response U1 [medium line; (4.37) with � � 1], and short-
group limit response U1(K � k) [thin line; (4.37), with � � �(k)],
all normalized by (ak)2c.
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the nonlinear dispersion terms can be important, par-
ticularly in (moderately) shallow water.

At the leading order, by similar arguments, J1 �
(MW

1 /H)(cg
0 � 1⁄2c0); so the above solution can also be

written in the form

�1 � �M1
W� 2c0

g �
1
2

c0


gH � �c0
g�2 � U0

2�
� �M1

W� 2c0
g �

1
2

c0


gH � �c0
g�2� and �4.36�

U1 � �
M1

W


H �
gH � �c0
g � U0��c0

g �
1
2

c0 � U0�

gH � �c0

g�2 � U0
2 �

� �
M1

W


H �
gH � �c0
g�2 �

1
2

c0
gc0


gH � �c0
g�2 �. �4.37�

These are precisely as in (4.15) and (4.16), but for the
conceptual addition of the mean nonlinear correction
terms to the group velocity. A similar overall result
regarding the combined effect of nonlinear dispersion
and advection by the long-wave field was obtained with
a different approach by McWilliams et al. (2004; see
their section 6.5).

The modified long-wave forcing is illustrated in Fig.
6, in terms of the ratio of the long-wave current U1 to
the driving wave mass-flux velocity MW

1 /�H. The singu-
larity in the long-wave forcing is suppressed as finite-
amplitude modifications of the group velocity (in par-
ticular) result in additional terms of the same order or
larger than the remainder from previously retained
terms (which nearly cancel out). It can also be seen that
as the depth increases the ratio approaches unity (as
mentioned above).

For gentle waves and swell (small ak), the finite-
amplitude parameter (ak)2 coth4kH can exceed 0.5 well
before the waves break, at which point the corrections
to wave phase and group velocities are significant, and
probably unphysical. Additional terms or different ex-
pansion strategies are needed in such shallow water;
however, this analysis extends the validity of the long-
wave evaluation somewhat farther into shallow water
than the linear solution. It applies to very weak bottom
slope; in the presence of finite slopes, the response has
been observed to lag behind the short-wave groups, and
to evolve as the waves shoal (Janssen et al. 2003; Battjes
et al. 2004).

5. Discussion: Physical interpretation and vertical
structure

The formulation and derivation in this paper have so
far been in terms of vertically integrated quantities.
However, most of the terms in the wave force (2.29) can
be identified with similar terms evaluated in other
works (to be cited), and the resulting physical insight
permits reasonable estimates of the vertical structure.

Reevaluation of the second and fourth terms of the
wave force (2.29b) as functions of depth is facilitated by
an alternative approach to the basic equations. For a
homogeneous fluid as contemplated here, it is useful to
return to (2.1) (with 	 � 1) and employ the vector
identity

�u � ��u �
1
2

��u � u� � u � �� � u� �5.1�

to obtain

�tu � ��1
2

u � u � p� � u � �, �5.2�

where � � � � u is the vorticity [Batchelor 1967; e.g.,
his (5.1.1) and (6.2.3)], and all three components are
included in the vectors.

To simplify the analysis, the x axis is aligned with
wave propagation, so all wave quantities are indepen-
dent of y. Then, u • u � u • u � (u
2 � w
2). Next divide
the pressure into the mean and wave part as before, and

FIG. 6. The long-wave forcing ratio: amplitude of the Eulerian
response U1 to the amplitude of the Stokes’ transport UW � MW/
h: linear finite-depth solution (thick line); finite amplitude and
finite depth (thin line). Note that the response is always larger
than the wave group Stokes transport: the net transport of the
combined system as a group passes is backward relative to the
propagation direction. The depth and degree of nonlinearity are
scaled as for 11-s waves with 1.5-m wave height in deep water.
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recall that the wave-induced part is pw � �w
2 through-
out the fluid. Then, the wave-averaged gradient term in
(5.2) can be written

�1
2

u � u � p� � ��1
2

u � u � pm �
1
2

�u�2 � w�2��.

�5.3�

Comparing the last term with (2.23), it is recognized as
J from the radiation stress. This J term acts dynamically
like a hydrostatic pressure gradient, and is also identi-
fied with an irrotational wave-induced Reynolds stress
u
w
 (Rivero and Arcilla 1995). The rest of these gra-
dient terms are just the normal mean flow momentum
terms.

To proceed, the wave-averaged result from the term
on the right in (5.2) is needed. The equation for vortic-
ity is obtained readily by taking the curl (which elimi-
nates the gradient term),

�t� � � � �u � ��. �5.4�

As before, we separate the flow into a mean and wave
components, now including the vorticity (so � � � �
��). The “wave components” of vorticity arise solely
from perturbations of the mean vorticity because of
straining and tilting by the wave motion. Consistent
with the previous assumptions, the mean flow is smaller
than the orbital velocities, and the mean flow gradients
are also small; thus, these wave-induced vorticity fluc-
tuations can be neglected in the wave evolution equa-
tions. However, as noted by CL76, these wave-
correlated components give rise to effects that are not
negligible in evaluating the evolution of the mean
fields. Paralleling closely the arguments of CL76 [their
(8)–(13)], the wave-induced vorticity fluctuations re-
sulting from stretching and tilting the mean are evalu-
ated and then used to evaluate the last term of (5.2).
Because these fluctuations are induced by the wave mo-
tion, they can be assumed to propagate with the waves;
that is, �t can be replaced by �c�1�x. Noting also that
the wave motions (and therefore also wave-induced
fluctuations) are independent of y, the vertical fluctu-
ating component of vorticity is evaluated [here the sub-
script on � denotes the component, while the velocity
components are (u, v, w) as before]: �t�
z � �x(w
�x �
u
�z � u�
z) or (u � c)�x�
z � �x(w
�x � u
�z), or,
neglecting u relative to c,

��z � �z�u��c� � �x�w��c�, �5.5�

Similarly, the x component is

��x � �x�u��c� � �z�w��c�. �5.6�

The y-component fluctuations of vorticity are zero.
This is self-consistent because 1) there is no straining,
and hence no vortex stretching, in that direction, and 2)
the motions are approximately uniform in y and there-
fore cannot tilt or twist y vorticity into or out of the
other components at the wave frequency. Using these
results in (5.2) (in the term on the right-hand side) and
averaging over the waves, the only nonzero wave-
induced contribution is the y component

�u� � ���y � w���x � u���z � �zc�1�w�2 � u�2�. �5.7�

To complete the comparison with CL76, this is put in
terms of the depth-resolved Stokes drift, defined as the
difference between the average horizontal velocity at a
fixed point and the average horizontal velocity of a
material fluid parcel whose mean position would have
been at that point in the absence of the waves. The
depth-resolved Stokes drift uS(z) is evaluated to second
order in wave quantities in terms of the local displace-
ments � and � combined with the local gradients of
velocity. The displacements are

���z� � �
t0

t

w��z� dt and

��i�z� � �
t0

t

u�i�z� dt, �5.8�

where t0 is chosen so �
 � 0 and �
i � 0 in the absence
of waves. To lowest order, the Stokes drift is

ui
S�z� � ���zu�i � ��j�ju�i � ���zu�i � u�i�j��j

� ���zu�i � u�i�z�� � �z���u�i�. �5.9�

Here use is made of the knowledge that �
j u
i � 0 for
surface waves, and that incompressibility implies �j�
j �
�z�
 � 0. Using the linear finite-depth solution for a
monochromatic wave,

ui
S�z� � a2	ki

cosh2k�h � z�

2 sinh2kh
� ki	

�1�u�2 � w�2�,

�5.10�

where the amplitude a is defined so that �2 � 1⁄2a2.
Aligning k with the x axis, this precisely matches the
factor multiplying �z in (5.7), yielding �zuS for that
term, consistent with CL76.

The last form shown in (5.9) for the depth-resolved
Stokes drift reveals that its vertical integral is just MW

i

[(2.9), truncating to second order]:

Mi
W � ���u�i�z�� � �

�h

�

�z���u�� dz. �5.11�
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With the assumption that the mean flow, and therefore
�z also, does not vary significantly over the depth in-
fluenced by the waves, the term on the right of (5.7)
[and hence the wave-induced part of (5.2) as well] in-
tegrates directly to MW � (� � U) (where now MW and
U include horizontal components only), recovering this
“refraction force” term of the wave force (2.29b).

For the steady shear problem (section 3), the vertical
structure of the refraction force would induce a second-
ary circulation. The wave refraction force drives the
uppermost fluid more strongly than below [with a pro-
file like that of the Stokes drift; see (5.7) and (5.10)],
while the setup (pressure gradient) forces a more nearly
uniform return flow with an equal and opposite verti-
cally integrated mass flux.

The remaining terms in the wave force are not easy
to identify and evaluate rigorously in the depth-
resolving equations; hence, the following is somewhat
speculative. The first term in (2.29b), dissipation of
wave momentum (mainly via breaking), presumably
acts like a surface stress on the mean flow, as has been
shown for viscous dissipation (Phillips 1977). Alterna-
tively, wave breaking may initially induce rollers
(Svendsen 1984), which then transfer the momentum
via interfacial (surface) stress to the mean. The third
term in (2.29b) is an adjustment accounting for the fact
that mass flux lost from the waves (� • MW) appears not
with zero velocity, but at the mean flow speed U. Fol-
lowing this logic, the results should depend on the cause
of the mass-flux divergence. Part of the change in mass-
flux is because of dissipation, and this part should ap-
pear as a correction to the “wave dissipation stress” at
the surface, using the mean surface velocity. Part is
because of adiabatic adjustment of the waves to varying
depth, and should be uniformly distributed in depth
like J (thus involving the depth-mean velocity). The
part resulting from refraction by currents should be dis-
tributed in depth like that term [e.g., (5.7)], and so
would involve a depth-weighted-average velocity in the
vertical integral form.

6. Conclusions

The analysis and examples have brought to light the
following several points of interest:

1) The “radiation stress” associated with surface waves
acts on the combined (wave � Eulerian mean) flow
system. Wave evolution equations provide a way to
isolate the effects on the mean flow versus changes
in the waves. The analysis here extends Garrett’s
(1976) work to finite depth.

2) Care is needed to consider all appropriate terms.

One term, the “refraction force” [MW � (� � U)],
is identified with a vertical integral of the “CL vor-
tex force” derived by Craik and Leibovich (CL76;
Craik 1977; Leibovich 1977, 1980), which has been
implemented in recent models simulating (e.g.)
Langmuir circulation (Leibovich and Tandon 1993;
Skyllingstad and Denbo 1995; McWilliams et al.
1997; Phillips 2002). However, as shown in a simple
shear-refraction example, other terms of the same
order may significantly alter the results.

3) The Eulerian transport in response to passing wave
groups is at least as large as the Stokes transport of
the driving wave groups. Thus, the net fluid trans-
port of the combined system is backward relative to
the wave propagation direction. The backward
transport increases with shoaling.

4) The Eulerian group-forced response and finite-
amplitude corrections to phase and group speeds are
formally of the same order, (ak)2c. This has two very
different implications:
(a) Finite-amplitude dispersion counters an appar-

ent singularity in the shallow-water limit for the
response.

(b) Advection by the forced response is of the same
size as the finite-amplitude effects, and should
be included in analyses of nonlinear wave group
evolution.

5) Additional work is needed in considering the verti-
cal structure of wave-forced flows. Recent labora-
tory measurements of vertical profiles of waves and
currents indicate a close correspondence between
the estimated Stokes drift profile and that of the
opposing Eulerian response (e.g., Groeneweg and
Klopman 1998; Kemp and Simons 1982, 1983; Swan
1990; Jiang and Street 1991; M96). The simple analy-
sis and interpretation given here does not explain
these profiles. While complex numerical simulations
do appear to reproduce the laboratory results
(Groeneweg and Klopman 1998), physical interpre-
tation and explanation of this response remain elu-
sive.
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