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ABSTRACT

Waves and currents interact via exchanges of mass and momentum. The mass and momentum fluxes
associated with surface waves are closely linked to their Stokes drift. Both the variability of the Stokes drift
and the corresponding response of the underlying flow are important in a wide range of contexts. Three
methods are developed and implemented to evaluate Stokes drift from a recently gathered oceanic dataset,
involving surface velocities measured continually over an area 1.5 km in radius by 45°. The estimated Stokes
drift varies significantly, in line with the occurrence of compact wave groups, resulting in highly intermittent
maxima. One method also provides currents at a fixed level (Eulerian velocities). It is found that Eulerian
counterflows occur that completely cancel the Stokes drift variations at the surface. Thus, the estimated
Lagrangian surface flow has no discernable mean response to wave group passage. This response is larger
than anticipated and is hard to reconcile with current theory.

1. Introduction

Surface waves are of central importance in general to
air–sea interactions (Thorpe 1982; Edson and Fairall
1994; Andreas et al. 1995; Asher et al. 1996; Pattison
and Belcher 1999; Zilitinkevich et al. 2001; Zappa et al.
2004), and in particular to the motion in the surface
layer of the sea. For example, much of the wind stress
acts directly on the waves, which then transmit the
stress to the underlying flow via intermittent wave-
breaking events. Although they have historically been
the subject of much discussion, the implications of this
intermittent stress transfer have only recently been
simulated and studied in detail (Sullivan et al. 2004).
The simulations indicate that vortical structures result-
ing from breaking events influence the motion to a
depth many times as great as the wave amplitude,
deeper than previously thought.

It has long been recognized that waves transport
mass and momentum (Stokes 1847; Longuet-Higgins
1953). Both are related to the difference between the
average velocity of a fluid parcel (Lagrangian velocity)
and the current measured at a fixed point (Eulerian

velocity). This difference, first identified by Stokes
(1847), is called the “Stokes drift.” The vertical integral
of the Stokes drift is the “Stokes transport,” corre-
sponding to both the net mass flux and wave momen-
tum per square meter of the surface (Longuet-Higgins
and Stewart 1962). Because waves are strained and re-
fracted by currents, exchanges of mass and momentum
occur between the waves and mean flow. Longuet-
Higgins and Stewart (1962, 1964), described the “excess
flux of momentum due to the presence of waves” and,
in analogy to optics, named it the “radiation stress”
(noting a slight grammatical inconsistency, but bowing
to historical usage). Changes in the radiation stress
(momentum flux) of the waves are compensated for by
changes in the mean field, so the overall momentum is
conserved. Additional analysis is needed to determine
the partitioning of momentum between waves and the
mean. For example, earlier papers (Longuet-Higgins
and Stewart 1960, 1961) provided the basis for the de-
scription of the generation of group-bound forced long
waves, which is relevant to the “Eulerian response”
discussed here. Such wave–current interactions are also
considered important in generating and maintaining
Langmuir circulation (LC), a prominent form of mo-
tion found in the wind-driven surface mixed layer
(Langmuir 1938; Craik and Leibovich 1976; Craik 1977;
Leibovich 1977, 1980; Phillips 2002). Analyses and
simulations indicate that LC is important in the long-
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term evolution of the mixed layer (Li et al. 1995;
Skyllingstad and Denbo 1995; McWilliams et al. 1997;
McWilliams and Sullivan 2000). A key term in the gen-
erating interaction involves the bending of vortex lines
by the vertically nonuniform Stokes drift of the waves.

For depth-resolving simulations, the depth depen-
dence of the Stokes drift, including variations in direc-
tion as well as magnitude, is needed.

To date, analyses and simulations of Langmuir circu-
lation have considered only an overall mean (temporal
and horizontal) Stokes drift resulting from the waves.
However, given that the intermittent nature of wave
breaking in transmitting stress to the underlying flow
has recently been found to be important (Sullivan et al.
2004), it is reasonable to examine the spatial and tem-
poral scales over which the Stokes drift varies, because
there may be an analogous effect.

Evaluation of Stokes drift from a recently gathered
oceanic dataset is one focus of this paper. The experi-
ment took place just off the west–northwest shore of
Oahu (Hawaii). An area of the ocean surface with a
roughly 1.5 km radius by 45° in bearing was monitored
for velocity and acoustic backscatter intensity, using a
novel acoustic Doppler system referred to as the “long-
range phased-array Doppler sonar” (“LRPADS”). The
area is resolved to 7.5 m in range by 1.3° in bearing
(�7000 cells), sampled every 2.5 s. The vertical aper-
ture encompasses the ocean surface and the near-
surface bubble layer, which almost always dominates in
backscatter intensity by several orders of magnitude
over returns from all other depths, and yields a vertical-
scale depth for the measurement of about 1.5 m.

Another focus is the examination of the underlying
flow field. One method developed here for the Stokes
drift (“method 3”) involves estimating currents at both
a fixed level (Eulerian) and following the surface (semi-
Lagrangian: following vertical but not horizontal dis-
placements). It is found that Eulerian counterflows oc-
cur that cancel the estimated Stokes drift variations at
the surface completely. This is a stronger surface re-
sponse than expected from the group-bound forced
wave analysis mentioned above (discussed further in
section 7).

The observations presented here are the first con-
cerning the Eulerian surface current response to short-
wave groups in open-ocean, deep-water conditions
(�1000 m depth). Wave group responses in the field
have been observed previously via pressure arrays in
intermediate-depth water (Herbers et al. 1994), and
were found to be consistent with second-order theory
for that case. However, the expected response in inter-
mediate depths differs markedly from that in deep wa-
ter, and the measurements were close to the bottom

rather than near surface, so a detailed comparison is not
appropriate.

Similarly sized Eulerian counterflows have also
been observed in laboratory experiments (Kemp and
Simons 1982, 1983; Jiang and Street 1991; Nepf 1992;
S. G. Monismith et al. 1996, unpublished manuscript;
Groeneweg and Klopman 1998; Swan et al. 2001). The
changes in the Eulerian current profile from case to
case (no waves, down-current waves, up-current waves)
are comparable to (and oppose) the Stokes drift profile
calculated from the wave parameters as given (in both
magnitude and shape). However, in these experiments
the waves are quasi steady, and there is time for the
turbulence to adjust over the depth of the waves. In-
deed, this is the interpretation given for numerical
simulations of these cases (Groeneweg and Klopman
1998; Huang and Mei 2003). In contrast, the field ob-
servations described here involve short groups or
“packets” of waves, and the response occurs too
quickly for the diffusion of vorticity to occur; thus, the
results are puzzling and remain to be explained satis-
factorily.

The vertical structures of the Stokes drift and Eule-
rian response are not discussed here. While the profile
of Stokes drift can be estimated from the directional
wave parameters, the vertical profile of the Eulerian
response is not resolved in this dataset. Only the values
near the surface (averaged over the near-surface
bubble layer) are observed, compared, and discussed
here.

Organization of the paper is as follows. Stokes trans-
port and drift are defined in section 2, with an eye
toward evaluation from measured directional wave
spectra. The experimental setting and circumstances
are described in section 3. In section 4, an area-mean
estimate of Stokes drift at the surface is described that
is based on the difference between the mean velocity of
features embedded in the flow (bubble clouds) versus
the mean Doppler shift; this also introduces consider-
ation of acoustic sheltering by wave crests. In section 5,
two more methods are developed to estimate Stokes
drift, using wavenumber–frequency (k–f ) Fourier coef-
ficients of the time–range data. The Eulerian and
Lagrangian responses are evaluated in section 6, fol-
lowing the method outlined in section 5. Discussion of
the results versus the expected irrotational response is
in section 7. Results and conclusions are summarized in
section 8.

2. Stokes drift resulting from the surface waves

To set the stage and clarify terminology, the Stokes
drift is defined and some of its characteristics are de-
scribed for the case of deep-water surface waves. Both
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the volume transport and the Stokes drift profile result-
ing from the presence of waves are considered, and the
stage is set to estimate the time–space variations of
Stokes drift and transport from data.

a. Stokes transport and linear waves

In an Eulerian frame, the Stokes transport arises en-
tirely at the moving surface. For simplicity, the density
is assumed constant, and is set to 1. Taylor expanding
from the mean surface at z � 0 is

TS � �
�h

�

u�z� dz � �
�h

0

u�z� dz

� ��u� 	
1
2

�2�zu 	 � � ��
z�0

. �2.1�

The mean vertical shear is assumed to be small, leaving
just the first term on the right. The linearized momen-
tum equation at the surface, again expanding from z �
0, is used to complete the evaluation. Aligning the wave
with the x axis so that u � u, and substituting a wave
solution of the form Pei(kx�
t) for both � and u,

�tu 	 g�x� � ��i��u 	 g�ik�� or u � ��, �2.2�

where use is made of the linear dispersion relation in
the absence of currents, 
2 � gk. Thus, the net Stokes
transport is

TS � �u � ��2 � u2��. �2.3�

For waves propagating in weak shear, the Stokes trans-
port can be identified to second order in wave slope
with the wave momentum.

b. Stokes drift profile

Theories describing wave–current interactions gener-
ally require not just the integrated transport, but also
the vertical profile of Stokes drift. To determine this,
the notion of “displacement” is extended to the fluid
interior, and also to include the horizontal displace-
ments associated with the waves. The displaced loca-
tion of a fluid parcel is associated with its undisplaced
location; that is, for some function of space–time “q,”
associate

qL�x, z, t� ⇔ q�x 	 �, z 	 �, t� �2.4�

following Andrews and McIntyre (1978) (note there is
an implicit assumption that the mapping is unique and
invertible; also, the Jacobean of this transformation
might not be one).

The generalized Lagrangian mean (GLM; cf. An-
drews and McIntyre 1978) is formed over the displaced

locations, while the Eulerian mean is formed (as is nor-
mally done) at the undisplaced location,

qL � q�x 	 �, z 	 �, t� and

qE � q�x, z, t� � q. �2.5�

The Stokes drift associated with the waves is the differ-
ence between the GLM and Eulerian mean velocities,

uS � uL � uE. �2.6�

Consider next the instantaneous difference between the
horizontal velocity at the displaced minus undisplaced
locations,

uIS � u�x 	 �, z 	 �, t� � u�x, z, t�

� ���xu 	 ��zu��x,y,t� 	 �H.O.�. �2.7�

For a monochromatic small-amplitude wave in deep
water, the velocity field can be written as

u�x, z, t� � Re�U�x, z, t� � Re�Pu�k, ��ekzei�kx��t�,

�2.8�

where Pu is a complex velocity amplitude (like a single
Fourier component). The horizontal displacement field
is a time integral of horizontal velocity,

� � �
t0

t

u dt � Re���i���1U � ���1 Im�U�, �2.9�

and the vertical displacement field is

� � ��1 Re�U�. �2.10�

The velocity gradients are

�xu � Re��ik�U � �k Im�U� and

�zu � Re��k�U � k Re�U�. �2.11�

To second order in wave steepness, the instantaneous
Stokes drift is

uIS � ���xu 	 ��zu��x,y,t� � �k����u2 	 w2� � |U |2�c.

�2.12�

Note that one-half of the net Stokes drift comes from
the vertical displacements, and half from the horizontal
(in deep water). As an aside, note also that this instan-
taneous drift is constant with respect to the wave phase
for deep-water waves, where the orbital motions are
circular.

The above considers a single-wave component. For a
spectrum of waves, the nonlinearity of (2.7) or (2.12)
means that shorter waves riding on longer ones intro-
duce high-frequency oscillations to |U |, so some form of
wave filtering is required. This is addressed in section 5,
where methods are developed to use wavenumber–
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frequency Fourier coefficients to estimate the Stokes
drift as well as to implement a wave filter. It remains
true for multiple deep-water waves that half of the net
Stokes drift derives from vertical and half from hori-
zontal displacements.

Before proceeding with estimates of the time–space
characteristics of the Stokes drift, the experimental set-
ting and data collection is described. Then, an estimate
of the global-averaged Stokes drift used previously is
reexamined, leading to detailed consideration of the
effects of the wave displacements on the measurements
themselves, and also helping to motivate the wavenum-
ber–frequency analysis that follows.

3. Experimental setting

The data considered here were gathered aboard the
Research Platform (R/P) Floating Instrument Platform
(FLIP), in conjunction with the Hawaii Ocean Mixing
Experiment (HOME; see Rudnick et al. 2003), at a
location just west–northwest of Oahu (Fig. 1). Typical
conditions there consist of steady trade winds of 10–12
m s�1 from the east, with occasional storms or calm
periods. During the data-gathering period, the initially
typical winds dropped, remained slack for a few days,
and then resumed. Surface currents are dominated by
tides, which cycled from spring to neap to spring tide
again. The surface wave field varied from being
strongly bimodal (or multimodal; i.e., distinct wave

groups from several directions) to approximately uni-
modal (a single dominant direction and peak fre-
quency).

A key ingredient in current theories of LC genera-
tion is the Stokes drift profile resulting from surface
waves (as noted above). Quantitative estimation of the
Stokes drift requires good wave data: direction and fre-
quency must be resolved over a wide range of scales. To
provide this, a 50-kHz LRPADS was operated continu-
ously for about 20 days, from 14 September to 5 Octo-
ber 2002. This provides both the surface waves and the
underlying surface flows over a considerable area, with
continuous coverage in both space and time.

The operating principles and concerns for a phased-
array Doppler sonar are described by Smith (2002). In
brief, an acoustic signal is transmitted in a broad hori-
zontal fan, with a vertical beamwidth sufficient to en-
counter the surface beginning a few tens of meters
away, and continuing until attenuation reduces the
backscattered signal level below the ambient noise. The
near surface is a region of strong backscatter. Bubbles,
when present, provide backscatter that is of order
104 times louder than that from other scatterers. In the
absence of bubbles, materials at the surface still often
produce a signal stronger than that of the volume scat-
ter from below. Thus, the backscatter can for the most
part be considered to be from the surface. Because the
sample volumes are strongly surface trapped, the
acoustic sheltering of wave crests by closer troughs is an
aspect to be considered (see section 4). The backscat-
tered signal is received on a linear transducer array and
is digitally beamformed into an array of angles span-
ning the breadth of the transmitted fan. The time of
flight since transmission is combined with the speed of
sound to determine the range. The bulk of the acoustic
paths are below the bubble layer, so sound speed varia-
tions are small, and a value based on the mean tem-
perature and salinity in the surface mixed layer can be
used. The returns are segmented in both range and
angle, so each “ping” results in many measurements
distributed over a pie-shaped surface area. For the
LRPADS as configured in HOME, an area extending
roughly 1.5 km in range and 45° in bearing is segmented
into measurement bins about 1.3° wide (35 beams) and
7.5 m in range (200 range bins), with a total of 7000
locations. The entire area is sampled every 2.5 s (the
time needed for sound to propagate out 1800 m and
back) over the whole 20-day period (with few gaps, the
largest of which are a few minutes long). The LRPADS
was operated with about 7 kHz of usable bandwidth.
Repeat-sequence codes (Pinkel and Smith 1992) were
used to reduce Doppler noise, resulting in single-ping

FIG. 1. Location of R/P FLIP during the near-field leg of
HOME, from September through October 2002. The site is about
30 km east–northeast of Oahu, over an underwater ridge that
extends roughly halfway to Kauai. The depth contour interval is
1000 m, with the deepest shown at 4000 m. (The abyssal plain is
5000 m, so that contour is messy and hence is omitted.) Data
contoured are 2-min resolution, from National Geographysical
Data Center (NGDC).
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rms noise levels of about 10 cm s�1 per range/angle bin.
With 7-kHz bandwidth and 50-kHz center frequency,
the code bits correspond to about seven wave cycles
each. A plane wave from the outermost angles (�22°)
completes 16 cycles across the face of the receiver ar-
ray, corresponding to more than two bit’s worth; thus,
beam forming is done via time delay. While this is more
computationally demanding than simple FFT beam
forming, it also reduces the ambiguity between the
Nyquist wavenumber angles (between 	22° and –22°).
As operated, the selectivity between 	22° and –22° for
the LRPADS in HOME appears empirically to be of
the order of 6 dB. The continuous data stream was
segmented into files of about 8.5 min worth each. Re-
taining raw data permits experimentation with new
beam-forming algorithms, near-field focusing, and/or
resampling with a higher range resolution.

The Doppler shift is estimated with a time-lagged
covariance technique (Rummler 1968), where each
ping is considered independently. With this scheme,
there is a finite level of Doppler noise even at a high
signal-to-noise ratio (SNR; see Theriault 1986; Brumley
et al. 1991; Pinkel and Smith 1992; Trevorrow and
Farmer 1992). At the farthest ranges, the SNR de-
creases as the signal fades into the ambient acoustic
noise, further degrading the estimates. For finite SNR,
use is made of the empirical finding (Pinkel and Smith
1992) that the error variance e2


 of the Doppler-shifted
frequency estimate is about twice the value of the lower
bound given by (Theriault 1986)

e�
2 �

2
LTaTo

�1 	
36

SNR
	

30

SNR2�, �3.1�

where L is the number of independent samples (here,
the number of bits in the repeated code), To is the
duration of the total transmitted code sequence less
covariance lag time (“overlap time”), and Ta is the av-
eraging window length (Smith 2002). The measured
backscatter intensity is used to estimate the SNR, as-
suming that the farthest ranges contain only noise. To
facilitate objective viewing and to precondition the data
for Fourier analysis, the velocity estimates are scaled to
make the net error variance constant with range; that is,
they are divided by the square root of the portion in
parentheses in (3.1). As a consequence, the values at
the farthest ranges, where the signal approaches pure
noise, are tapered smoothly to zero.

Example single-ping frames from sequences of slope
and elevation images are shown in Fig. 2. The spatial
dynamic range of the measurements is illustrated by the
following combination: wavelengths from about 15 m to

over 1 km are resolved, corresponding to wave periods
from 3 to more than 20 s, longer than any swell in this
dataset. The full three-dimensional (two space 	 time)
evolution of the surface velocity fields can be viewed in
the form of movies, or various slices through the 3D
data volume or corresponding 3D spectra can be con-
sidered.

4. Area-mean velocities and acoustic sheltering

The most direct way to estimate the Stokes drift is to
simultaneously measure a Lagrangian mean and the
corresponding Eulerian mean velocities. Two area-
mean velocity estimates can be formed from LRPADS
data that tend toward this ideal, but fall short. The two
estimates arise from 1) the area-mean displacement of
all intensity features from one time to another (Smith
1998), and 2) weighted averages of the Doppler shifts
over the area, yielding mean along-axis (cosine
weighted) and across-axis (sine weighted) velocity com-
ponents (where the “axis” is the center angle of the
beam-formed array). The first, based on an area-mean
feature-tracking algorithm, is a Lagrangian velocity es-
timate. The other, based on mean Doppler shifts, is not
exactly Eulerian or Lagrangian, but something in be-
tween. This requires further analysis to be understood,
and a few assumptions for quantitative evaluation (see
below), but also leads to a more accurate way to esti-
mate Stokes drift and other effects. Nevertheless, the
difference between the two area-mean velocities is a
reasonable approximation of the Stokes drift, within
25%, as will be seen. This area-mean approach is
“method 1” for the estimation of Stokes drift.

Development of the feature-tracking average arose
from an unrelated motivation: simple time averaging to
eliminate surface waves can lead to significant smearing
of features resulting from advection by the mean flow.
The area-mean feature-tracking algorithm is described
by Smith (1998). A fringe benefit is estimation of an
area-mean horizontal Lagrangian velocity. An alterna-
tive is to form averages moving with the mean velocity
derived from the Doppler signal; however, the two dif-
fer systematically, and the former maintains sharper
features. Smith (1998) noted that the difference be-
tween the two mean velocities corresponds closely to
the Stokes drift calculated from a resistance wire (sur-
face elevation) directional wave sensing array using sec-
ond-order quantities derived from linear wave theory
(as in section 2). The feature-tracking algorithm was
applied to the HOME LRPADS dataset. Figure 3
shows a comparison of the velocity difference [feature
track–Doppler velocity (FDV)] versus a rule-of-thumb
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estimate that the Stokes drift is 1%–2% of the wind
speed [note that the appropriate comparison is not with
the Stokes drift at the actual surface, but with a
“bubble-weighted average” over the top few meters as
discussed below; e.g., see discussion after (5.18)]. The
best match occurs for 1.25% W10, which is within this
range. It is also seen that the difference vector is
roughly parallel to the wind. As an aside, note that
while the overall agreement on longer time scales be-
tween the FDV and 1.25% W10 is quite close, the two
vary out of phase with approximately the tidal fre-
quency over the later windy period (yeardays 272–276).
This suggests that the waves respond to the large-scale
currents associated with the tides in addition to the
local wind. Investigation of this is suggested for future
work.

The measurements can be understood as vertical as
well as horizontal averages, with the depth averaging
determined by the vertical distribution of bubbles
(which are the dominant scatterers). The feature-
tracking velocities are estimates of the mean bubble
advection. Because the bubbles are embedded in the
fluid, and both the rise-rate and the macroscopic evo-

FIG. 3. Feature-tracking minus Doppler-based velocity esti-
mates (Vfeature � VDoppler or “FDV”; thin black lines) vs 1.25%
W10 (gray lines) over the time the LRPADS was deployed. The
latter is a good “rule of thumb” estimate of the surface Stokes
drift. The former is thought to be tightly related to the actual
Stokes drift, although somewhat noisy. The overall correspon-
dence between the two estimates is good. Note the antiphase
oscillations at tidal frequencies in the two estimates of the east-
ward component on days 272 through 276 (yearday 274 � 1 Oc-
tober 2002). A negative eastward component corresponds to
downwind flow, because the wind is from the east.

FIG. 2. Two views of the surface wave field: (left) radial slope component and (right) estimated surface elevation.
The black arrow indicates the wind direction and magnitude (�10 m s�1). The dominant waves are near 10-s
period, and are propagating downwind. In the elevation plot (right) some weaker wave components can be seen
propagating to the right, with crests roughly parallel to the left edge of the pie. Data are from 1453 Hawaii daylight
savings time (HDT) 4 Oct 2002.
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lution of bubble clouds are slow compared to the time
needed to resolve advection (10–30 s), the feature-
tracking result is an average of the Lagrangian velocity
over both the observed surface area and the bubble
depth distribution.

The Doppler estimates too are weighted in the ver-
tical by the bubble cloud density; however, they may
also be affected by the sheltering of wave crests, be-
cause acoustic rays must pass under the preceding wave
troughs. For sound incident from below at angles
steeper than the wave slopes, the measurement volume
rises and falls with the bubble clouds, but has fixed
range bounds. Thus, without sheltering the Doppler
measurement volume moves vertically but not horizon-
tally. As noted in section 2, one-half of the Stokes drift
comes from vertical displacements, and one-half from
horizontal, so in this case the difference between FDVs
should correspond to one-half of the Stokes drift [be-
cause the former includes it in full and the latter only by
half, as noted by Smith (1992)]. In contrast, at grazing
angles wave troughs shelter more distant wave crests,
limiting the measurement volume to a more nearly
fixed depth interval below the typical wave trough
depth. This leads to an expected difference between the
previously reported 1990 versus 1995 results. With a
typical wave steepness of 0.1 and a sonar deployment at
35-m depth, as in the 1990 deployment (Smith 1992),
the former behavior would be expected out to an about
350-m range, which is nearly full range in that case.
With a sonar deployment at 15-m depth, as in the 1995
deployment (Smith 1998), some sheltering of crests is
expected beyond 150 m; focusing on ranges from 200 to
450 m, sheltering is expected there, and the result
comes closer to the full Stokes drift.

To develop a model of the Doppler response, con-
sider the depth weighting resulting from bubbles. In the
ocean, bubble density generally decreases exponen-
tially below the surface, with a depth scale (depending
weakly on wind speed) of the order of 1.5 m for 10 m s�1

winds (Thorpe 1986; Crawford and Farmer 1987). A
reasonable model for the bubble distribution is

B � B�x, y, t�ekbz, �4.1�

where B(x, y, t) can vary over several orders of magni-
tude (Crawford and Farmer 1987), but the depth scale
kb � (1.5 m)�1 is assumed not to vary significantly in
time or space. The bubble-weighted depth average of a
quantity “q(z)” is formed from some upper limit zs

downward, where the “sheltered depth” zs may be be-
low the actual surface because of sheltering (discussed
further below),

qz �

�
��

zs

qekbz dz

�
��

zs

ekbz dz

� kbe�kbzs�
��

zs

qekbz dz.

�4.2�

A surface wave of frequency f and corresponding wave-
number kf yields a response of the form

um�r, t� � u�r, t�z

� U0 cos�	k � 	r�e
i�krr � 2
ft�

kbekfzs

kb 	 kf

� ur�r, t�� ekfzs

1 	 kf �kb
�, �4.3�

where the nominal radial current ur is defined at the
mean surface, z � 0. The final response factor in (4.3)
can be used to adjust the measured velocities to esti-
mate what the value would be at z � 0 or z � �. Near
the high-k cutoff (kf � 0.39 rad m�1), the denominator
is about 1.6. The denominator is a fixed correction (i.e.,
independent of zs) that can be performed simply in the
frequency domain using linear dispersion to get kf. This
correction is henceforth taken as applied, and the term
is dropped from explicit analysis. The remainder of the
effect lies in the placement of the upper limit of the
average zs. For a wave of wavenumber kf, the result can
be adjusted to the semi-Lagrangian surface velocity U�

and Eulerian velocity U0 (see Fig. 4),

U��r, t� � um�r, t�ekf �� � zs� and

U0�r, t� � um�r, t�ekf �z0 � zs�, �4.4�

where z0 is a chosen fixed depth (e.g., a typical wave
trough depth). Each wave component has a different
depth scale k, while the sheltered depths zs(r, t) and
elevations �(r, t) are defined in the time–space domain
from the entire ensemble of waves. Thus, applying this
adjustment to the data requires the equivalent of a
“slow” Fourier transform. This is discussed further in
section 5.

To examine the effects of acoustic sheltering of wave
crests, and the transition between the two limiting be-
haviors, simulations were performed. Effects of the
sheltering on both wave orbital velocities and on a
background surface shear layer are considered. Shelter-
ing is determined by a simple algorithm, considering a
single sonar beam in isolation, and by assuming the
acoustic rays are straight (although the bubbles affect
sound speed and hence cause refraction, the distances
from troughs to crests are too short for the rays to
refract significantly, so this approximation is reason-
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able). First, a wave elevation profile �(r, t) is defined as
a function of range and time, in a form similar to that of
the velocity data. Then, the array of vertical angles
from the sonar to the center of each range bin is defined
via its sine, which is the ratio of � 	 sonar depth to the
radial distance. Starting from zero range and working
outward, the minimum value of all previous sine angles
out to the target range is retained (Fig. 5). Applying the
results of (4.3) or (4.4) (see Fig. 4 again), mean veloc-
ities calculated at the moving surface, at a fixed level
(near a typical trough depth, say), and at the simulated
sheltered depths in between can be directly compared
(Fig. 6). The sheltered depth always lies between the
actual surface and the depth of the wave troughs; thus,
the result lies between a surface-tracking semi-
Lagrangian estimate and a Eulerian estimate at the
depth of a typical wave trough. The simulations show
how measured values should differ from surface-
following versus fixed-depth values as a function of
range: the Doppler measurement (dotted line, Fig. 6)
matches the surface-tracking value (dashed line, Fig. 6)
over the first 150 m, and then moves gradually toward
the fixed-depth value (x axis, Fig. 6) at the most distant
ranges, as anticipated. The transition is not quick. For

the wave steepness and sonar depth as simulated, the
transition is only 50% complete at 600-m range. Using
estimates averaged over a middle segment (say 300–
1200 m), the difference between the Doppler mean and
feature-tracking velocities is expected to be about 75%
of the Stokes drift. Because wave steepness is robust,
the calibration coefficient between the FDV and true
Stokes drift should remain roughly constant for a given
deployment geometry.

The presence of a thin wind-drift layer also affects
the sheltering results. For simplicity, consider a steady
wind-drift layer with an exponential drift profile with
scale depth kd

�1. As described in Smith (1986), the
overall character of the wind-drift layer is well captured
by this approximate form, and the results are easily
manipulated and understood. The drift layer is assumed
to move up and down with the free surface. Modulation
of the wind drift by the waves is neglected, because this
is expected to be small except very near breaking
(Longuet-Higgins 1969a; Banner and Phillips 1974;
Smith 1986). Then, the weighted-average response (4.3)
applies, with kd substituted for kf. Given the wind-drift
strength and depth scale, the effect on measured veloc-
ities can be efficiently estimated as

um
d �r, t� � ud� ekd�zs � ��

1 	 kd�kb
�. �4.5�

A reasonable estimate of the surface wind drift ud is
1.6% W10, where W10 is the wind speed at 10-m height
(Wu 1975; Plant and Wright 1980). With just molecular

FIG. 5. Schematic of acoustic sheltering of wave crests vs range.
The simulated surface elevation (solid black line); sheltered
depths or upper limit of acoustic probing zs (solid gray line); and
some of the acoustic paths from the sonar, starting at 15-m depth
(dashed lines). For typical wave conditions, sheltering does not
occur before 150–200-m range.

FIG. 4. Schematic of sheltering geometry, showing the upper
bound of the measurement volume “zs” and the nominal depth
dependencies of a wave and the drift current profiles.

FIG. 6. Time-mean velocity differences in the simulated data.
Synthetic measured velocity minus the Eulerian reference, Um �
U0 (dotted line); surface velocity minus Eulerian, U� � U0 (dashed
line); the theoretical �U� � U0� for the input spectral lines (solid
line). The synthetic measured velocity is at the calculated shel-
tered depth zs; the Eulerian velocity is at fixed depth z0 �
�RMS(�); the semi-Lagrangian velocity is at the surface (z � �),
but not displaced horizontally. The solid and dashed lines should
both correspond to one-half of the Stokes drift.
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viscosity, the drift layer would be just millimeters thick,
and this average would be negligible. Following Smith
(1983), a “law of the wall” style turbulent drift layer
with z0 � 0.004 cm (as observed in the atmosphere in
similar conditions) would still result in a layer only
about 2.4 cm thick, for which the denominator of 4.5 is
still over 60. However, breaking waves have a signifi-
cant influence on the near-surface turbulent shear
structure. A wave-induced eddy viscosity as described
by Terray et al. (1996) would result in a wind-drift
depth scale comparable to the rms wave amplitude. In
simulations, the greatest effect from drift sheltering oc-
curs for wind-drift depth scales between the sheltering
thickness and the bubble depth scale. The rms wave
amplitude is in this range, so its use yields a roughly
maximal estimate of the drift-layer effect. From simu-
lations, the two main effects are 1) a slight decrease in
the mean downwind flow in proportion to sheltering,
and 2) a decrease in the measured orbital velocities
with increased sheltering, because the forward velocity
in each crest is decreased by the amount of missing

wind drift there. The former produces an increase in the
predicted FDV, because the missing drift only affects
the Doppler measurement and so helps explain the ten-
dency toward the full value of Stokes drift found in the
observations; that is, the missing drift partially compen-
sates for the missing Stokes drift. The latter helps ex-
plain a systematic decrease in wave amplitude with
range, although finite angular spreading of the beams
has a similar effect resulting from the crossbeam
smoothing of wave motion. Other effects of clipping the
wind-drift layer, which appear at wave harmonics and
at group envelope scales, are smaller and can be ne-
glected.

Sheltering can be estimated for the actual data using
this same algorithm (Fig. 7). The method for estimating
elevation from time–range segments of radial velocity is
outlined in section 5. In the data segment shown here,
the sheltering thickness increases to 0.5–1 m at the
greatest ranges, which is only slightly smaller than kb

�1.
For the wind-drift parameters used here (1-m depth
scale, 16 cm s�1 surface value), estimated drift anoma-

FIG. 7. The sheltering thickness (depth of upper-acoustic sampling limit below the actual surface; values are positive only) estimated
from field data. Elevation is estimated from radial velocity [see section 5, (5.14); corresponding velocity data are shown in Fig. 9], then
the acoustic shading algorithm is applied. Waves propagating at right angles to the beam are ineffective at sheltering, so loss of
sensitivity to such waves because of sensing only the radial component is unimportant in this calculation. The estimated deficit in wind
drift resulting from sheltering looks very similar (but with a scale change from 1 m to about 15 cm s�1).
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lies are roughly proportional to the sheltering thick-
ness, with maxima near 15 cm s�1 (this would look like
Fig. 7, but with 0–15 cm s�1 amplitude scale). Figure 8
shows the time-mean drift anomaly from the same data
(and wind-drift magnitude and depth scale). Assuming
an area mean can be substituted for a time mean (and
vice versus), this would correspond to an increased
FDV estimate as well. Because the wind-drift deficit
amounts to about 1/6 of the Stokes drift in magnitude,
this would bring the FDV value (formed over 200–
1100 m in range) up from 75% to about 92% of the
Stokes drift. Last, the estimated leakage into group en-
velope characteristics and into higher harmonics of the
waves is small, as anticipated from the simulations. This
ordering of effects is corroborated by the backscatter
intensity data, which act mathematically like a proxy
for a wind-drift layer (though perhaps with a different
depth scale); as the exponentially surface-trapped
bubbles are moved up and down into sheltered regions,
the resulting modulation of the intensity signal is strong
along the surface wave dispersion part of the corre-
sponding k–f spectrum, but undetectable along the 5
m s�1 propagation line corresponding to group enve-
lope characteristics.

The explicit extrapolation of wave motion from shel-
tered depths to both the moving surface and a fixed
level provides an alternative way to evaluate the Stokes
drift: the difference between the two is half of the drift.
In addition, this approach provides objective estimates
of the Eulerian velocity fields. This is developed below
(section 5) as method 3.

5. Stokes drift estimates using frequency–
wavenumber spectra

In this section, estimation of time–space maps of the
radial component of Stokes drift along a given sonar

beam direction is considered. The objective is to pro-
duce estimates of the Stokes drift that are directly
analogous to the radial velocity measurements of the
underlying flow for each beam. Then, time–range
propagation characteristics of the Stokes drift can be
examined to see 1) how intermittent the wave influence
or interaction might be, and 2) how it compares with
the observed underlying flow. Two methods are devel-
oped, using frequency–wavenumber Fourier coeffi-
cients formed from time–range data slices.

A natural and useful slice through the 3D time–space
data volume is a time–range plot, formed along a single
direction. Because the heading of FLIP, and hence of
the array, can vary by tens of degrees over time scales
of minutes, the beam-formed data are first interpolated
onto a set of fixed directions. Time–range plots reveal
both phase propagation and group (envelope) charac-
teristics of surface waves along a given direction. For
example, Fig. 9 shows a time–range plot for a beam
directed roughly downwind. Compact packets of
roughly 7-s-period waves can be seen, forming slashes
at an angle on the time–range plane corresponding to
about 5 m s�1 (the group velocity for 7-s waves, which
also have a phase velocity near the wind speed, 10 m s�1).
These compact packets are distinct from the spectral
peak waves (near 10.6 s), which form broader groups
(e.g., in Fig. 9 note a longer group starting at 300 s and
propagating upward at a steeper angle, near 7.5 m s�1,
reaching 1000 m at about 435 s).

Figure 10 shows the log magnitude of the 2D Fourier
transform of the velocity data shown in Fig. 9, color
contoured on the k–f plane. Because the data are real,
the (	f, 	kr) components are redundant with respect
to the conjugate (�f, �kr) components. The wavenum-
bers are shifted so that kr � 0 is centered. The frequen-
cies are not shifted, so the variance for frequencies past
the Nyquist frequency, which are aliased onto negative
frequencies, aligns with the unaliased variance along
the surface wave dispersion curve. The continuity of
variance along the dispersion curve suggests this aliased
information can be used. Because of the external
knowledge that the waves propagate predominantly
downwind, the ambiguity of location on the aliased k–f
plane is resolved. As seen in Fig. 10, the resolved (but
aliased) surface wave variance extends well past the
frequency Nyquist limit, fN � 0.2 Hz, to more than
0.3 Hz. After masking (zero filling) to remove redun-
dant information, the remaining k–f Fourier coeffi-
cients are interpreted with the convention of time going
forward and waves propagating in the same direction as
k; that is, the (	f, �kr) half-plane is retained, and the
amplitudes are adjusted to preserve the net variance.

FIG. 8. The time-mean reduction in measured surface drift be-
cause of sheltering, for a wind drift with 1-m depth scale and
surface magnitude 16 cm s�1. This effect contributes to the dif-
ference between the feature-track- and Doppler-derived means
(FDV), increasing it from 75% to roughly 92% of the estimated
value of Stokes drift.

1390 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 36



To resolve the unwrapped wave information, the FFT
size is doubled in the f direction. The inverse Fourier
transform thus has results interpolated to twice the
sample rate (samples every 1.25 s rather than 2.5 s).

The original processing used the nominal range reso-
lution for this data of 10.6 m. The downwind surface
wave dispersion branch was seen to extend beyond the
corresponding Nyquist wavenumber kN � 0.047 cycles
m�1, wrapping a second time into the low-frequency,
low-wavenumber region. Resolving this double alias
was important not only for effectively enhancing the
resolution of the surface wave measurements, but also
because this second alias of the wave variance would
otherwise be falsely identified as being slower-moving
“nonwave” activity. Retaining the raw data made it
possible to resample at 7.5-m resolution in range, re-
solving this problem. While the error variance of each
estimate is increased, the increase is in proportion to
the increase in area on the k axis; that is, the spectral
noise floor remains the same.

a. Linear dispersion and spectral bounds

The k–f spectra strongly favor waves propagating di-
rectly along the beam. This is largely because of the
cosine response of the measured along-beam velocity
component to propagating waves. On the k–f plane, the
linear dispersion curve is kr � kf, where kf is the mag-
nitude of the wavenumber for a given frequency f. In
deep water, and including advection by a mean velocity
U, linear dispersion yields (note conversion from Hz to
rad s�1)

� � 2
f � �gkf�
1�2 	 Ukf cos�	k � 	u�, �5.1�

where �k � �u is the angle between the wavenumber
and the mean flow directions. This can be inverted into
a form that is stable with respect to U → 0 (substitute
x � k�1/2

f ),

kf � � 2�g�1�2

1 	 �1 	 4U�g�1 cos�	k � 	u�1�2�2

�5.2�

FIG. 9. Time–range plot of radial velocities, dominated by the surface wave orbital velocity. The spectral peak is near 0.1 Hz; note
a large wave group starting near 0-m range at 300 s, and moving out to 1000-m range by 435 s, corresponding to a group velocity of about
7.5 m s�1. Several thinner “slashes” are seen propagating a little slower, at a speed of about 5 m s�1. These slashes are compact wave
groups of order one wavelength long (along the vertical axis; i.e., spatially). The frequency associated with these compact groups is near
0.14 Hz (7-s period). The group speed is about 5 m s�1, and the corresponding phase speed is about equal to the wind speed, 10 m s�1.

JULY 2006 S M I T H 1391

Fig 9 live 4/C



[Smith and Bullard 1995, their (4.2); however, note that
their (4.1) is erroneous]. At higher wavenumbers ad-
vection becomes more noticeable on two counts: first,
the fractional change in k at fixed f and U is larger
because of the decreasing phase speed (so U
g�1 is
larger); and second, for a larger value of k the spectral
resolution is a smaller fraction of k. Thus, at the high-
wavenumber end resolved here (near-3-s period) veloc-
ities of even a few centimeters per second make a de-
tectable difference. Note also that the advection veloc-
ity of the shorter waves includes the Stokes drift of the
longer waves; at the level of accuracy required here,
this can be parameterized as 1.25% W10 (wind at 10-m
height), which is added to the Doppler mean estimate.

Surface waves are both the fastest-moving and the
largest-amplitude signal detected. To delimit the area
on the k–f plane dominated by waves, objective bounds
on kr versus f are determined based on a balance be-
tween wave variance and the noise floor of the mea-
surement. Dimensional analysis, assuming all but grav-

ity to be small influences, yields an “equilibrium spec-
trum” for surface orbital velocity variance of the form

Pu
2� f � � f�1�g�f �2 � f�3. �5.3�

On the k–f plane this variance is spread out from kr �
0 to kr � kf � f 2, so that

Pu
2� f, k� � f�5,

�kf � kr � 	 kf . �5.4�

The cosine response of the radial current measurement
results in a further kr dependence, yielding

Pu
2� f,kr� � Pu

2� f �kf
� 1 cos2�	k � 	r� � f�5�kr �kf�

2 � f�9kr
2.

�5.5�

Thus, the bound is set according to

klow � kr�lowerbound� � f�4.5. �5.6�

To set the constant for this limit, the curve is made to
intersect the linear dispersion curve where the latter

FIG. 10. Wavenumber–frequency spectrum from the data shown in Fig. 9. (left) Full spectrum with aliased content; (right) spectrum
with aliased data and some of the noise near k � 0 masked off. In addition to surface wave variance (outlined in red on the left), a
weaker ridge of variance lies along a line at roughly 45°, corresponding to propagation at about 5 m s�1. This variance is broadly
distributed in k and f, so it would be difficult to isolate without both the k and f information. The red lines are also used to delimit the
separation between “wavelike” from “nonwave” variance in the spectral domain.
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fades into the noise. For example, in Fig. 10, klow � kf

is enforced at ktr � 0.065 cycles m�1, with the corre-
sponding frequency ftr � 0.33 Hz.

The upper bound must be above the dispersion curve
because of finite spectral leakage. The upper limit is not
as critical as the lower because 1) the variance there is
primarily spectral leakage, and 2) adjustments to be
applied that involve dividing by cos(�k � �r), for ex-
ample (see below), are not singular there. Here the
upper limit is set assuming (typical) spectral leakage of
the form

P�kf 	 � � f��→�n, �5.7�

where the limit is approached quickly; that is, for �
more than a few times the spectral resolution �k. To
form a simple parametric curve describing the total en-
ergy at f, we assume that Pu

2 approaches an f�3 decay
at high frequency (as before), is maximal at some speci-
fied frequency f0, and rolls off to zero for small f even
faster, say, as f 6. Allowing for leakage behavior as in 5.7
with n � 2, and adding this to dispersion, a curve of the
form

khi � kf 	
2D0

� f�f0�3�2 	 � f�f0��3 �5.8�

is adopted, where D0 is a specified maximal distance
above the dispersion curve, achieved at f � f0. For ex-
ample, in Fig. 10, the values D0 � 12(�k) and f0 �
0.1 Hz were used, where �k is the spectral resolution
for the finite FFT employed (�1 cycle per 2.7 km).
Last, a small amount (�k) is subtracted to permit more
low-frequency/low-wavenumber variance to pass, be-
cause surface waves longer than 30 s or so are not seen
in this dataset, and some of the “5 m s�1 variance”
crosses the axis at small but finite frequencies.

b. Stokes drift from LRPADS radial velocity data

Estimation of the radial (along beam) component of
Stokes drift along individual beams of the LRPADS
data is now addressed. Waves propagating at right
angles to the beam contribute nothing to the net along-
beam drift, so it is unimportant that the measurements
from the beam are insensitive to such waves. The re-
sults from all of the beams can be combined so the full
space–time evolution of the Stokes drift can be evalu-
ated, and time–space maps of the radial Stokes drift can
be directly compared to the underlying nonwave flow
measured simultaneously.

The two methods developed here work from the 2D
k–f Fourier coefficients. Zero padding the negative fre-
quencies and doing the inverse transform results in
both the (oversampled) original time series (real part of

the result) and a constructed out-of-phase part (or Hil-
bert transform; imaginary part). For a narrowband pro-
cess, the absolute value corresponds to the envelope of
the radial component of velocity

|ur�r, t�|2 � |u|2 cos2�	k � 	r�, �5.9�

whereas the radial component of Stokes drift

ur
S�r, t� � uS�r, t� cos�	k � 	r� � c�1|u |2 cos�	k � 	r�

�5.10�

is the quantity of interest. The phase speed c is a simple
function of frequency: from dispersion

c � ��kf � 2
f�kf . �5.11�

To reduce from cos2� to cos � requires dividing by
(kr /kf), which is singular at kr � 0. The objectively de-
rived low-k cutoff (5.6) provides the necessary tool.
Rather than truncate sharply at klow, an arbitrary but
smoothly weighted function is employed of the form

W�kr, f � � � x3

1 	 x4�� kf

klow
�, where

x �
kr

klow� f �
�5.12�

and klow is defined in (5.6). This has the desirable prop-
erties that it 1) → 0 rapidly as kr → 0; 2) → �cos(�k �
�r)]�1 rapidly for kr � klow; 3) decreases smoothly
through the threshold value kr � klow; and 4) retains the
sign of kr.

One way to obtain estimates of the Stokes drift is to
weight the Fourier coefficients by the square root of the
net conversion factor,

Pu�kr, f �→Pu�kr, f ��W�kr, f ��c� f �1�2. �5.13�

This, when reverse transformed, yields a “root velocity”
field whose absolute value squared is (nominally) the
Stokes drift (this is “method 2”). However, note that
the sign of kr is important: the Stokes velocity from
incoming waves is in the opposite direction from those
that are outgoing. The weighting function W also
changes sign, but here this yields an imaginary factor,
which merely alters the phase of the “carrier wave.”
Because the transforms are complex and absolute val-
ues are eventually taken, the change in sign is ignored.
The simplest fix is to treat the 	kr and �kr parts sepa-
rately. Here the upwind-directed portion is so weak
that only the downwind portion needs to be treated.
Method 2 has the advantage of speed, because it em-
ploys only FFT operations and a weighting; yet it pro-
vides more detailed time–space information than
method 1, the area-mean FDV.
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Another approach is to take advantage of the fact
that for deep-water waves the vertical displacements
alone can be used to estimate one-half of the difference
between the Lagrangian and Eulerian velocities
(method 3, as indicated in sections 2 and 4). To this end,
the velocity fields are extrapolated vertically from the
measurement level to both a constant level (e.g., z � 0)
and to the moving surface (at z � �). Method 3 has the
advantages of (a) explicitly considering the sheltering
of crests, (b) properly handling upwind- versus down-
wind-directed components, and (c) providing objective
estimates of the Eulerian and semi-Lagrangian flows,
corrected for sheltering effects.

Elevation displacements � are needed to evaluate
sheltering and also to implement method 3. These are
to be estimated from the radial component of horizon-
tal velocity, which is insensitive to waves propagating at
right angles to the beam. To control singularities in this
estimate, we use

� � � ��1ur

cos�	k � 	r�
�� ��1urW�kr, ��, �5.14�

where W is the inverse-cosine weighting function with a
built-in cutoff defined above (5.12). Because both the
radial Stokes drift and the sheltering effects are also
insensitive to the perpendicularly propagating waves,
the loss of information about them is ultimately not
important.

The estimated elevations are used to explicitly calcu-
late displaced and fixed-level radial velocities, fre-
quency by frequency:

ur
��r, t, f � � �Pu�r, f �e�i�2
f �tekf �� � zs�, �5.15�

and

ur
0�r, t, f � � �Pu�r, f �e�i�2
f �te�kfzs, �5.16�

where zs is the sheltered depth discussed in section 4,
both zs and � are functions of range and time, and the
subscript r denotes the radial (along beam) component
of velocity. Note that the total displacement fields
zs(r, t) and �(r, t) are used for all frequencies; this makes
the method 3 result fundamentally different from that
of method 2. The portion inside the brackets is under-
stood as an inverse Fourier operation carried out on a
single frequency component (there may be an addi-
tional normalization factor, depending on the Fourier
transform definition used). The results are integrated
over f at each location in range–time space (or, for
discretely sampled finite-length data, summed) to yield
the net displaced (semi-Lagrangian) and fixed-level
(Eulerian) radial component of the velocity fields. The
wave-averaged difference between the vertically dis-

placed and fixed-level velocities is one-half of the
Stokes drift, so the estimate by method 3 is

ur
S�r, t� � 2�ur

� � ur
0�, �5.17�

where � � denotes an average over the waves. Here the
k–f plane separation described above is used to sepa-
rate wavelike and nonwave variance. Note in particular
that the 5 m s�1 ridge extends far enough in both f and
k that a simple time filter alone would be insufficient to
separate it from the waves. Extensive combined space
and time information is required to detect this phenom-
enon.

Results of the root velocity [(5.13)] versus the dis-
placement [(5.17)] methods (2 and 3) for estimating the
Stokes drift are close but not identical. Figure 11 shows
a comparison between the time-mean Stokes drift esti-
mates via the two methods versus range over the same
data segment as shown in Fig. 9. The agreement is good,
verifying that the upwind-directed waves are negligible
and that the narrowband assumption is a weak require-
ment. Both methods lead to Stokes drift estimates that
weaken with range. The estimated effect of a nominal
wind-drift layer (see section 4) was incorporated, which
also helps to flatten this response profile slightly, but
lateral averaging remains as the beams spread. The
range resolution of 7.5 m matches the beamwidth near
330-m range. Beyond this range the crossbeam smooth-
ing dominates, and waves at any finite angle to the
beam experience progressively more suppression. Esti-
mates adjusted by a linear increase with range is also
shown; this increase is statistically related to the ob-

FIG. 11. Mean estimated radial component of Stokes drift Us for
the same time and beam as shown in Fig. 9: (bottom) Us from
twice the difference between U� and U0 [thick line; (5.17)], and Us

from the magnitude squared of adjusted spectral coefficients
[lower thin line; (5.13)]. (top) Same, respectively, but adjusted by
a linear increase with range (see section 6).
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served Eulerian response, and is discussed in section 6
below.

Figure 12 shows a time–range plot of the radial
Stokes drift for the same time segment and beam as in
Fig. 9, using the displacement method (5.17). The re-
sults clearly show wave groups, as expected. Note par-
ticularly the correspondence between the strongest
Stokes drift signals and the compact higher-frequency
groups propagating at roughly 5 m s�1 seen in Fig. 9.

For a spectrum of the form posited above, the net
contribution to Stokes drift drops off weakly as a func-
tion of frequency,

uS� f � � Pu
2� f ��2
f�g� � f�2. �5.18�

The high-frequency tail of the spectrum affects the
Stokes drift at the actual surface. This can be addressed
by parameterization in terms of a local equilibrium with
the wind (e.g., as in Hara and Belcher 2002), or by using
higher-frequency unidirectional data (e.g., from an el-
evation resistance wire) combined with an assumption
that the high-frequency waves propagate downwind

with some approximately known directional spread.
However, in the context of the forcing of LC or the
evolution of bubble clouds, an average over some small
but finite depth (say, that of the bubble clouds) is more
dynamically relevant. An exponential average of the
Stokes drift over kb � (1.5 m)�1 results in an effective
spectral cutoff near kf � kb/2 � (3 m)–1 (in radians),
corresponding to a linear wave of f � 0.3 Hz frequency.
For example, Kenyon’s (1969) solution applied with the
equilibrium spectrum of Pierson and Moskowitz (1964)
yields a surface value of about 4% W10, but a bubble-
weighted average of about 1.2%, which is remarkably
close to the 1.25% value quoted above. Thus, it appears
(coincidentally) that the enhanced effective resolution
of the dealiased spectra is adequate to resolve the im-
portant part of the wave spectrum and hence of the
resulting Stokes drift.

6. Observed response to wave groups

The next most prominent feature after the surface
waves in the k–f spectra of velocity is a roughly linear

FIG. 12. Time–range plot of the radial Stokes drift for the same data segment as in Fig. 9 (time means at each range are removed;
see Fig. 11). Note the predominance of darker “slashes” at an angle corresponding to roughly 5 m s�1 propagation along the beam.
Comparing this with Fig. 9, it can be seen that the high Stokes drift events are largely associated with the smaller-scale but intense
“packets” of 7-s waves, while weaker activity results from the larger-scale 10-s waves.
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ridge along a line near 45° (see Fig. 10), corresponding
to about 5 m s�1 propagation speed. To see what form
this activity takes in the time–space domain, a speed-
based filter was applied in k–f space, passing variance
moving between 4.5 and 6.5 m s�1, which was then in-
verse transformed. Figure 13 shows two spatial images
from the resulting sequence, 20 s apart (results from all
beams, each processed independently). The features as-
sociated with this 5 m s�1 ridge are very narrow in the
along-wind direction, but extend coherently a consid-
erable distance in the crosswind direction. They consist
of blue-shift anomalies (i.e., bands of upwind-directed
velocity) that propagate downwind.

Figure 14 shows a time–range plot of the wave-
filtered Eulerian velocity U0(r, t). The objective k–f
bounds [(5.6) and (5.8)] shown in Fig. 10 were used to
exclude the waves, and the results were inverse trans-
formed back to time and range. Of particular note is
that blue slashes in Fig. 14 resemble the dark slashes in
the Stokes drift plot (Fig. 12). In fact, the sum of the
two U0 	 US yields a field of velocity that is nearly free
of bias in propagation direction. This is verified most

clearly by comparison of the k–f spectra of the Eulerian
(U0) versus the net Lagrangian (U0 	US) velocities
(Fig. 15). The spectrum of the wave-filtered Lagrangian
velocity has almost no hint of variance (other than
noise) along the 5 m s�1 line, while the Eulerian-
estimated field has a distinct ridge there. Note that the
cancellation of Eulerian flow variance by the Stokes
drift extends over a wide range of wavenumbers along
this ridge. Inclusion versus exclusion of wind-drift shel-
tering effects (cf. section 4) had no discernable influ-
ence on these spectra.

The wave-filtered Eulerian velocity field is correlated
with the Stokes drift at a statistically significant level
(Fig. 16). With N � 208 samples (the number of pings
over which the correlations are averaged), the coher-
ence confidence level is (Thompson 1979)

C�
2 � 1 � �1��N�1� � 1 � 0.05�1�207� � �0.12�2, �6.1�

where � is the allowed probability of error (� � 0.05 for
95% confidence). The correlation is several times
larger than this level (0.3–0.4), so robust statistical es-

FIG. 13. Spatial distribution of radial velocity associated with the ridge of variance along the 5 m s�1 line in the
k–f spectra. A spectral filter passing variance moving between 4.5 and 6.5 m s�1 (in either direction along each
beam) was applied. The background “speckle” of �3 cm s�1 or so is the noise level of the measurement as filtered.
The darker blue band seen near 700-m range on the left and near 800 m on the right is the motion associated with
the 5 m s�1 spectral ridge. The two frames shown are 20 s apart. The black arrow indicates the wind direction and
speed (�10 m s�1); the red arrow indicates the mean current (�15 cm s�1). The feature is short in the along-wind
direction, long in the crosswind direction, and moves at about 5 m s�1.

1396 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 36

Fig 13 live 4/C



timates of the transfer function from Stokes drift to the
Eulerian anomaly can be made,

Tc � ��USU0���US
2� �6.2�

(Fig. 17; note minus sign here). The Eulerian response
is negatively correlated with the Stokes drift, with a
transfer coefficient of about 1 and no spatial lag, indi-
cating that the correlated parts cancel each other out. In
fact, a slight increase of the estimated Stokes drift with
range is needed to achieve complete cancellation ev-
erywhere. Given the azimuthal smoothing characteris-
tics of the measurement, the underestimation of both
the Stokes drift and the response is expected to increase
with range. Because the Stokes drift estimates involve
squared data while the response estimates do not, such
smoothing has a larger effect on the former than the
latter. A linear fit to TC over the range interval of 200–
1000 m is shown in Fig. 17. Interestingly, application of
this as an “adjustment” to the Stokes drift estimates
makes them vary less with range, without changing the
near-range value (Fig. 11, upper curves).

The fact that the “5 m s�1 variance” disappears with

the transform to the estimated Lagrangian mean flow is
convincing evidence that the Eulerian response is equal
and opposite to the Stokes drift (in the near surface
layer sampled). It is difficult to imagine any procedure
that could lead coincidentally to such nearly perfect
cancellation. Several other data segments have been
examined (e.g., Fig. 13 is from a different segment than
shown in Fig. 9); in each case such a cancellation of
Stokes drift and Eulerian flow at the surface is ob-
served.

7. Discussion: Wave groups and the expected
response

Larger-scale motion forced by advancing groups of
surface waves was discussed in some detail by Longuet-
Higgins and Stewart (1962). While much of the interest
centered on intermediate to shallow-water cases, the
results have a sensible deep-water limit. To review the
deep-water case briefly and simply, Garrett’s (1976)
formulation is used, in which the wave effects appear as
a “wave force” in the momentum equation and a “mass

FIG. 14. Time–range plot of the wave-filtered radial Eulerian velocity U0 along one beam. There is a predominance of blue slashes
rising to the right, propagating at about 5 m s�1. There is close resemblance between the blue slashes here and the dark slashes in the
plot of Stokes drift (Fig. 12).
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source” at the surface. Consider waves aligned with the
x axis, having wavenumber k, and a regular group
modulation with wavenumber K [e.g., for the simplest
case of two wavenumbers k1 and k2, let k � (k1 	 k2)/2

and K � (k2 � k1)]. Let U be the surface value of the
current associated with the induced motion. The near-
surface momentum equation is

�tU 	 �x�U
2� 	 g�x� � ��1FW, �7.1�

where � is the surface deflection associated with the
response, � is the water density (assumed constant and
set to one), and the wave force FW is

FW � BMW 	 MW � �� � U� � U�� · MW� �7.2�

(Garrett 1976; for an extension to the finite depth see
Smith 1990). Here, MW � �TS is the wave momentum.
In the first term, B represents a dissipation rate (e.g., by
breaking). The second term is the return force resulting
from refraction of the waves by the current, and the last
accounts for mass transferred from the wave transport
to the mean transport at speed U. Here U is assumed
small, as is US � 2kTS, and second-order terms are
neglected [the second term in (7.1) and the last in (7.2)].
Breaking and vorticity are also neglected, so in this case
the wave force is negligible. Under the same assump-
tions, the surface boundary condition is

�t� � W � ��xTS, �7.3�

FIG. 16. Coherence between US and the wave-filtered Eulerian
velocity �U0 vs range, as estimated from time averages:
��USU0�/(�US

2��U0
2�)1/2 (note minus sign). The 95% level is

about 0.12 (dashed line), and the coherence levels are more than
twice this. The maximum coherence occurs with no spatial offset
(i.e., no phase lag between US and U0).

FIG. 15. Wavenumber–frequency spectra for (left) the Eulerian velocity field and (right) the Lagrangian velocity
field formed by adding the Eulerian and Stokes drift estimates. The reduction in variance along the 5 m s�1 line
in the Lagrangian field is dramatic. Because the means are not well determined, some residual variance is to be
expected near the origin. Comparison of the spectral levels at 	 and �k values for the same frequencies confirms
that there is little or no preferential direction for the Lagrangian variance (right). Elimination of the variance from
the Lagrangian spectrum implies complete cancellation of the Stokes drift by the Eulerian response.

1398 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 36



where W is the vertical velocity associated with the re-
sponse (forced long wave). Thus, in deep water the long
wave is forced entirely by mass conservation. For a
wave group with envelope wavenumber K propagating
with group speed cg as contemplated here, �t can be
replaced by �cg�x and the response should have a depth
dependence of the form eKz (assuming, as seems rea-
sonable, that the response is irrotational). At the sur-
face, W can be replaced by �x(U/K) in this case (by
continuity with integration). The momentum and the
surface boundary condition reduce to

�x��cgU 	 g�� � 0, �7.4�

and

�x�U�K � cg� 	 TS� � 0, �7.5�

respectively. Choosing constants of integration so that
U � 0 when � � 0, the results have the same form but
with the partials dropped. The solution is

� � �cg�g�U, �7.6�

U � �
gTS

g�K � cg
2 . �7.7�

For deep-water waves, c2
g � (1⁄2c)2 � 1⁄4(g/k); using also

TS � (2k)�1US, (7.7) can be written as

U � �US� 2cg
2

g�K � cg
2� � �US� �K�2k�

1 � �K�4k��, �7.8�

which is useful for comparison with the results of sec-
tion 6. For compact groups, that is, as K decreases to-
ward k, the factor in 7.8 increases toward 2/3, but the
estimated response U cannot get as large as �US, as is
observed.

There is a kinematic constraint on the minimum
group length in deep water: it must be long enough to
maintain a constant mean elevation over the group for
all phases of the wave. For example, a model minimum-
length group is obtained by multiplying a Gaussian en-
velope times a trend, then forming the Hilbert trans-
form to obtain the out-of-phase portion (Fig. 18). The
resulting group has the ratio K/k � 0.6 (using spectral
mean wavenumbers for both), and the calculated re-
sponse peaks at U � �0.4US [calculated from the spec-
trum of the group envelope using (7.8) for each com-
ponent, as suggested originally by Longuet-Higgins and
Stewart (1962)]. The overall response is substantially
lower than 1:1.

From (7.8), there should be significant K dependence
in the response. The factor involving K does not flatten
out short of K � 2k, yet values of K � k are unreason-
able. For smaller K, there should be an approximately

FIG. 17. The transfer coefficient from Stokes drift US to the
negative Eulerian velocity anomaly (wave filtered) �U0: TC �
��USU0�/�US

2�. This starts very near 1.0 at near ranges, indicating
that the correlated part of the two fields cancel out. A value over
1 indicates a Eulerian anomaly larger than the Stokes drift, con-
trary to expectations. As range increases, the Stokes drift is prob-
ably underestimated slightly because of finite spatial smoothing.
The increase in transfer coefficient with range is likely attribut-
able to this, and might serve as a guide in compensating for this
underestimation (see Fig. 11). The response is no smaller than the
Stokes drift, and is most likely a one-to-one match, as also implied
by the elimination of variance from the Lagrangian velocity spec-
trum (Fig. 15).

FIG. 18. (top) A conceptual minimal-length wave group, show-
ing quadrature phase wave profiles (dashed) and an envelope
(solid). (bottom) The resulting Stokes drift (solid line), and the
calculated response from simple theory (	 symbols). Simple
theory predicts the largest response for the shortest groups;
even for this minimal-length group, the response is substantially
below 1:1.
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linear increase in response with K. As seen in the k–f
spectrum of the Eulerian and Lagrangian velocity
fields, however (Fig. 15), there is no evidence of K
dependence in the observed response. Rather, looking
in particular at the estimated Lagrangian response, the
Eulerian and Stokes drift fields appear to cancel at a
one-to-one ratio across all the wavenumbers along the
5 m s�1 ridge (except perhaps at the lowest wavenum-
bers and frequencies, where the response is less well
determined: the wave-induced motion of FLIP is re-
moved via a full-field average, depending therefore on
the ratio of the group size or response scale to the field
of view, approximately 1 km).

This simple analysis has several weaknesses. First, no
attempt is made to describe or reconcile the dynamics
of a “minimum-length wave group.” Also, analysis is
truncated at second order, whereas the waves at midg-
roup must be steep; this relates (in extreme form) to the
effect of breaking, parameterized as BMW in (7.2). Sys-
tematic breaking at the wave group maxima would have
two effects: 1) the resultant wave-breaking force op-
poses the response velocity, so it would work to reduce
the energy of the response, and 2) its integral is out of
phase with the prior response, so it would alter the
phase. Last, the separation of scales used to derive the
above equations becomes invalid as the limit of mini-
mal group length is approached. However, historically
such simple two-scale analyses have proved surprisingly
robust, perhaps because of the fundamental footing on
the conservation of mass, momentum, and vorticity.
They generally provide guidance on at least the quali-
tative behavior of the system, even near the limits of
validity. Here, the fundamental driving term is mass
conservation. To maintain an irrotational flow field, the
response must be made up of irrotational and incom-
pressible components (vorticity cannot be advected
over several meters depth in the time it takes a single
group to pass). The observations present a puzzle: the
observed response is too large, even positing unreason-
ably short wave groups; further, the response ratio ap-
pears to be scale independent.

As noted in the introduction, Eulerian counterflows
have also been observed in laboratory experiments
(e.g., Groeneweg and Klopman 1998; also Kemp and
Simons 1982, 1983; Swan 1990; Jiang and Street 1991;
S. G. Monismith et al. 1996, unpublished manuscript).
Both Groeneweg and Klopman (1998) and Huang and
Mei (2003) have treated the problem using numerical
generalized Lagrangian mean formulations (cf. An-
drews and McIntyre 1978). However, these results per-
tain to statistically steady or slowly varying waves and
flows, so the “group size” is large. The observed and
calculated changes in profiles from case to case (no

waves, down-current waves, up-current waves) are ap-
proximately equal to the Stokes drift profiles calculated
from the wave parameters as given. Because they treat
the full problem, including shear, viscosity, and turbu-
lence, the solution permits vorticity in the (quasi
steady) response, which has time to diffuse downward
through the system. In contrast, the short groups ob-
served here are much too fast for diffusion of vorticity
to occur; further, there is no phase lag in the response
as that would seem to imply.

8. Results and conclusions

There are two significant scientific results:

1) As wave groups pass, Eulerian counterflows occur
that cancel the Stokes drift variations at the surface.

The magnitude of this counterflow at the surface
exceeds predictions based on an irrotational re-
sponse (cf. Longuet-Higgins and Stewart 1962);
namely, the response approaches 1/2–2/3 the surface
Stokes drift as the wave group length decreases to a
single wave. In contrast, the observed response is
roughly 1:1 across the entire broad range of wave-
numbers resolved. The mechanism by which this
counterflow is generated is not well understood.

2) The Stokes drift resulting from open-ocean surface
waves is highly intermittent.

While this is expected also with a Rayleigh distri-
bution of wave amplitudes, appropriate to random
seas (Longuet-Higgins 1969b), the observations
also show compact wave “packets” (perhaps too
short to be called “groups”) that appear to remain
coherent for a considerable distance as they propa-
gate. Such coherent packets have not been observed
in open-ocean deep-water conditions previously. As
an aside, it may be speculated that because the
Eulerian response is of the same order as finite-
amplitude dispersion corrections, it may be impor-
tant in understanding wave group dynamics.

In addition, several technical issues have been ad-
dressed:

1) The difference between an area-mean velocity
based on feature tracking and one based on area-
mean Doppler shifts (so-called FDV) has been ana-
lyzed and explained in terms of the acoustic shelter-
ing of wave crests. The sheltering of crests moves the
measurements from being semi-Lagrangian (surface
following) toward being more nearly at a fixed level.
For the typical wave steepness, sonar depth, and
range interval employed, the analysis suggests that
about 1/4 of the Stokes drift remains in the mea-
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sured Doppler means (as opposed to 1/2 for the
semi-Lagrangian limit with no sheltering). The ef-
fect of a wind-drift layer contributes a small addi-
tional deficit to the measurements, making the FDV
closer to the full value of Stokes drift (bringing it up
to 92%, rather than 75%, as estimated here).

2) Including the FDV (as method 1), three methods
were developed to estimate Stokes drift from the
data. In particular, methods 2 and 3 permit estima-
tion of the time–space trajectories of Stokes drift
anomalies associated with wave groups, in a form
directly comparable to that in which the underlying
flow is measured. Method 2 makes use of weighted
FFT coefficients on the k–f plane, and is efficient.
Method 3 involves detailed extrapolation of the
measured velocities to both a fixed level and the
moving surface. While more computationally de-
manding, this also permits explicit estimation of
both the Eulerian and fully Lagrangian velocity
fields, and also of sheltering and drift current effects.

3) The spatial and temporal extent of the data permits
aliased wave variance to be unwrapped in the spec-
tral domain. This effectively extends the resolution
of the wave measurements to include the entire por-
tion of the wave spectrum thought most relevant to
wave–current interaction dynamics (up to frequen-
cies of order 0.3 Hz).
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