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Short Surface Waves With Growth and Dissipation 

JEROME SMITH 

Scripps Institution of Oceanography, La Jolla, California 

The modulation of surface waves by larger-scale flows is central to many forms of remote imaging of 
the sea surface yet is an incompletely understood process. An excellent example is the modulation of 
short waves by long ones (e.g., by swell). Observed modulations are of the order of 10 times the 
long-wave steepness, decrease with both the long-wave frequency and windspeed, and have stable phase, 
with maximum short-wave amplitudes just forward of the long-wave crests. Assuming a balance between 
propagation, growth, and drift-enhanced dissipation, the short-wave modulations arise owing to (1) 
direct straining by the long-wave orbital motion, (2) straining of the wind drift layer (modulating the 
dissipation rate), (3) variations of the apparent gravity in the short-wave frame, and (4) induced variations 
of the applied wind stress (affecting both the short-wave growth and the drift-enhanced dissipation). As 
modeled here, only the last (stress variation) can reproduce the observed wind speed and frequency 
dependence. In addition, the drift layer and the short waves are closely matched, suggesting direct 
coupling. The implied fractional modulation of stress is of the order of 20 times the long-wave steepness. 

1. INTRODUCTION 

In recent years, many interesting and beautiful images of the 
ocean surface have begun to appear, owing largely to the 
development of techniques employing electromagnetic back- 
scatter. Under many circumstances, this backscatter results 
from resonant Bragg scattering from freely propagating sur- 
face waves [Wri•7ht, 1968; Stewart and Joy, 1974; Valenzuela, 
1978, 1980; Alpers and Hasselmann, 1978; Plant and Wri•7ht, 
1980; Plant and Keller, 1983, etc.]. In the case of SAR or other 
techniques using GHz-frequency radars, the Bragg scatterers 
are gravity-capillary waves with wavelengths in the range 1-50 
cm or so. The variations in backscattered intensity largely 
trace the hydrodynamic behavior of these short waves. To the 
extent that the short-wave amplitudes respond to the winds 
and to the currents induced by swell, internal waves, bottom 
topography, etc., such larger-scale structures are imaged. 

An attraction of these images is the possibility of continual 
global coverage of winds, waves, and currents, which could 
ostensibly become available via satellite. The strength of this 
attraction makes it desirable to attempt a hydrodynamic de- 
scription of the short-wave behavior, although in some re- 
spects it is somewhat premature. In order to produce results 
which can be compared to existing data, many assumptions 
must be made, of which many are little more than speculation. 
Nevertheless, the dynamic framework provides some insight 
into which of these ill-known factors are most likely to be 
important and may also provide insight as to how to estimate 
them better. 

Perhaps the most careful, complete, and thus theoretically 
exacting set of measurements to date concern the modulation 
of short waves by swell. It is a long-standing observation that 
short surface waves have greater amplitudes (or mean steep- 
ness) slightly forward of long-wave crests [Cox, 1958; Keller 
and Wri•7ht, 1975; Wri•7ht et al., 1980; Plant et al., 1983; 
Keller et al., 1985; etc.]. A particular attraction of radar back- 
scatter in detecting amplitudes of such short surface waves is 
the fact that Doppler shifting has no direct effect on the scale 
of the waves detected and is, in addition, measurable by the 
technique, providing a direct estimate of the long-wave orbital 
velocity. Optical measurements share the quality of "Doppler 
independence" for the short waves [Monaldo and Kasevich, 
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1981, 1982]; however, nonlinear shading by the short-wave 
roughness itself may confuse the estimates of long-wave slope 
and phase. In contrast, measurements by a wire or laser slope 
meter (for example) are smeared over a large band of wave- 
lengths, owing especially to the substantial orbital velocities of 
the larger waves. Here, the case of short waves modulated by 
longer ones is used to study some implications of a model 
based on a local balance between the advection, growth, and 
dissipation of such short waves; in view of the above consider- 
ations, the results will be compared primarily with the radar 
measurements. 

To translate observations into quantitative information 
about the large-scale flow, appeals have been made to relax- 
ation of the short waves toward an equilibrium level, versus 
the tendency of perturbing currents (or winds) to drive them 
off equilibrium [Keller and Wri#ht, 1975; Valenzuela and 
Wri•7ht, 1979; Alpers and Hemmin•7s, 1984, etc.]. A tidy sum- 
mary of our present understanding of this equilibrium, includ- 
ing generation, dissipation, and wave-wave interactions, is 
given by Phillips [1984] (see also Plant [1980]). In the relax- 
ation approach, discussion of the physics of short-wave gener- 
ation and dissipation is (quite intentionally) avoided. The in- 
tention here is not to replace the relaxation concept but 
simply to see what may be learned by applying a set of plausi- 
ble, physically based assumptions. 

The salient features of the observed short-wave modulations 

are more or less summarized by the results shown in Figures 1 
and 2 [from Plant et al., 1983]. These show measured "modu- 
lation transfer functions" (MTFs) for two wavelengths: 
roughly, 2.1-cm waves (Figure 1) and 12-cm (Figure 2). Al- 
though the MTFs (defined as backscatter intensity modula- 
tions divided by the long-wave steepness, UL/C L) include other 
effects as well (e.g., tilting and range variations), we are as- 
sured by the experimenters that the major characteristics 
shown reflect the modulation of the short waves themselves, at 
a (more or less) fixed wavelength. Note that there is a consis- 
tent decrease in the magnitude of the modulation with long- 
wave (driving) frequency and that the phases of the modula- 
tions are quite stable, around 0 ø to 30 ø ahead of the long-wave 
crests. Also, note that the X band (2.1 cm) modulations de- 
crease with increasing winds (over the range 5 to 14 m/s), 
while the L band (12 cm) modulations are insensitive to wind 
speed (in the range 7 to 15 m/s). 

Here, a two-scale analysis, based on the "action equation" 
[Bretherton and Garrett, 1969] modified to include direct gen- 

2616 



SMITH: SHORT SURFACE WAVES WITH GROWTH AND DISSIPATION 2617 

Irnl 

3O 

15 

0 
0 

X-BAND 

V-POL 

8 = 40 ø + 5 ø 

• = 0 ø :• 18 ø 

ß WS = 4-5 m/s (16) 
o WS = 5-6 m/s (8) 

ß WS = 7-8 m/s (8) 
o WS = 9-10 m/s (12) 
• WS : 11-12 m/s (12) 
ß WS = 13-14 m/s (12) 

0'25 
I 

0.50 f(Hz) 

9O 

-9O 

½,,• [],½ • .•.. 4•'•-•. ß 
0-25 

[ f (Hz) 
0'50 

Fig. 1. MTF versus long-wave frequency for 2.1-cm waves (X band radar, vertical polarization), for various wind 
speeds. The MTF is the ratio of the correlated backscatter intensity modulations to long-wave steepness. Numbers in 
parentheses are numbers of files averaged; each file is an average of 20 spectra (reproduced from Plant et al. [1983]; see 
the source for details). 

eration and dissipation (cf. Garrett and Smith, 1976], is used to 
trace the evolution of a short-wave "spectral band" or 
"packet," propagating over long gravity waves. This analysis 
presumes that the long and short waves are sufficiently differ- 
ent in scale to apply the "slowly varying hypothesis" (i.e., the 
Wentzel-Kramers-Brillouin or WKB assumption). For sim- 
plicity, a monochromatic long wave is considered, and ulti- 
mately only the first-order results (in long-wave steepness) are 
pursued for comparison with experiment. The focus here is on 
the local hydrodynamics of the short-wave modulations; in 
particular, nonlinear transfer of energy to or from other spec- 
tral components is neglected in comparison to the direct gen- 
eration, dissipation, and advection (straining) of the short 
waves. This "local balance" hypothesis is inspired by the 
rather strong generation of waves near the minimum phase 
speed (say, 1-10 cm long), as demonstrated by Larson and 
Wright [1975] and Plant and Wright [1977]. 

The details of short-wave growth and dissipation in the 
presence of long waves are buried in the strongly nonlinear, 
coupled shear flow between the air and sea [e.g., Valenzuela, 
1976]. Worse, the variation in surface roughness introduced 
by the short waves is itself of primary importance there [e.g., 
Gent and Taylor, 1976; Townsend, 1980; Landahl et al., 1981]. 
However, theoretical analyses of this problem more or less 
agree that the applied shearstress is greatest somewhere near 
the long-wave crests. Since the long waves are rapidly over- 
taking the short ones, maximal short-wave growth at long- 
wave crests would, by itself, lead to short-wave maxima 
toward the rear face of the longer peaks, contrary to observa- 
tion; by the same reasoning, maximal dissipation near long- 
wave crests would tend to move the short-wave maxima for- 
ward. 

Estimation of a short-wave dissipation rate is achieved by 
combining (1) a "narrow-band" theory for breaking waves, 
yielding a fraction of energy dissipated per wave cycle 

[Longuet-Higgins, 1 59a] and (2) a maximum steepness cri- 
terion including th• effects of "wind drift" [Phillips and 
Banner, 1974] and partial advection of the short waves [cf. 
Stewart and Joy, 1974; Plant and Wright, 1980]. To this end, 
evolution of the wind drift is reviewed [cf. Phillips, 1977; 
Longuet-Higgins, 1969b], and a "turbulent readjustment" is 
modeled via relaxation. The effects of a varying tangential 
wind stress on the drift (and hence on short-wave dissipation) 
are modeled separately. 

Finally, to compare the results to radar requires consider- 
ation of "spectral shifting terms", i.e., variations in backscatter 
intensity due to (1) changes in the intrinsic wave number due 
to straining, ak packet, and (2) changes in the detected wave 
number due to surface tilting by the long waves, Ak •r•gg. These 
"corrections" depend critically on the spectral form F(k), 
which may be ill known, especially for short waves near the 
"viscous cutoff." While an attempt is made to accommodate 
the first of these corrections (i.e., to describe the apparent 
variations in amplitude at a fixed wave number), the second is 
not pursued (there are also corrections for the variation in 
range and in sensitivity versus tilt, etc. [see Plant et al., 1983]. 
The variations in wave number due to long-wave straining 
induce variations in measured amplitude via both the spectral 
slope and dynamics: As the energy in an adjacent spectral 
band is brought into "view" by the changing wave number, 
the energy itself changes so as to conserve the action of the 
component waves. In view of this, it is convenient to evaluate 
this "Boltzman transport" term via an action spectrum. 

The model results are fairly sensitive to two aspects of the 
wind drift. Comparison of model and observed short-wave 
spectra indicates the drift layer to have a roughness length 
scale which increases with increasing wind. Comparison of 
model and observed short-wave modulations supports this 
and also indicates that the time scale of drift evolution must 

be comparable to that of the short waves. 
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Fig. 2. MTF versus long-wave frequency for 12-cm waves (L band radar, vertical polarization), for various wind speeds 
(as in Figure 1; reproduced from Plant et al. [1983]). 

2. SHORT-WAVE EQUATIONS 

Moving with the "advection velocity" U of the water below 
the short waves, the dispersion relation between short-wave 
"intrinsic frequency" co and wave number k is modified by 
accelerations due to the long waves: 

co = (g'K + Tk3) 1/2 (1) 

where T is the kinematic surface tension (about 72 cm3/s 2 for 
clean seawater near 15øC) and g'= Ig q-OtUI is an effective 
gravity (here, Dt is the material derivative, (rt/rtt + U- V)). All 
but the vertical component of acceleration, 2 -- DteZ (where 
Z is the mean surface displacement, averaged over the short- 
wave phase), will be neglected, and even this is unimportant 
except in determination of intrinsic frequency (and hence 
phase speed). Surface tension T may also be modulated (e.g., 
because of distortion and compression of surface contami- 
nants [cfi Lange and Huhnerfuss, 1984]), but no attempt is 
made here to model this. 

Variations in short-wave number k are described by [e.g., 
Phillips, 1977]: 

Ok 
-- + VH(co + k- U) = 0 (2) 
Ot 

The short-wave advection velocity U includes both long-wave 
orbital velocity U •' and the part of the surface wind drift 
which advects the short waves bodily, U a. For waves near the 
minimum phase speed (especially) the depth of the wind- 
induced "viscous sublayer" may not be negligible. The advec- 
tive drift velocity U a can be estimated from a detailed velocity 
profile UP(z) (averaged over the short-wave phase) provided 
the shear rtUD/rtz is not too large in comparison to co [Stewart 
and Joy, 1974]: 

ua= 2k f_o Ut>(z) e 2kz dz (3) 
(see also Plant and Wright [1980]). The remaining surface flow 

q = UP(Z)- U" is important to the short-wave dissipation 
model, to be discussed in section 3. 

The short-wave "intrinsic energy" E is evaluated in this 
frame: 

E • p<(•/'• q- TV2•)•> • (pco2/k3)«s2 (4) 

where p is the water density, • is the short-wave-induced sur- 
face displacement (from Z), the angle brackets (( )) denote 
averaging over short-wave phase only, and s = ak (where a is 
amplitude) is a measure of short-wave steepness. 

Variations in the short-wave energy are traced by conser- 
vation of action [Bretherton and Garrett, 1969], defined as the 
ratio of intrinsic energy to frequency: 

= (5) 

Here, the action equation is modified to include growth G and 
dissipation D: 

• + VH .[(U + cgS)A] = (G - D)A (6) 

where c g• is the short-wave group velocity. The non- 
conservative terms G and D appear here multiplied by A to 
emphasize at least proportionality to A and also to simplify 
the form of the solution; in particular, the dissipation D is 
expected to have additional, stronger A dependence. An effect 
of including G and D is that no singularities occur: For exam- 
ple, when the net action-flux converges toward a turning 
point, the input of action due to the convergence can always 
be accounted for by an excess of dissipation over growth. 
Direct forcing by random pressure fluctuations and action 
transfer from other scales are both neglected in the above 
equation in comparison to the direct forcing by D and G. 

The advection velocity U • is no greater than a few percent 
of the windspeed, while the long-wave phase speeds may rea- 
sonably be taken as being comparable to the windspeed; thus 
the analysis is restricted to the case Ua/C r << 1. Also, consider- 
ing short waves to the gravity side of C rain, the assumption 
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K << k (where K is the long-wave number) implies c gs << C t'. 
Although U a and c g• are therefore safely ignored here, their 
effect on dissipation via q may be important. 

To simplify presentation, envision a monochromatic long 
wave, propagating in the q-x direction, and shift to a reference 
frame moving with the long-wave phase speed, C •' (the long- 
wave "steady frame"). In this frame the long-wave-induced 
forcing becomes a function of x only, and so the resulting 
"short-wave-averaged" quantities (A, k, etc.) are also functions 
of x only. Applying the last two approximations, 

[(C L - U•')A] - (D - G)A (7) 
8x 

Neglecting U • and c •s also helps simplify evaluation of the 
short-wave number k. Using the chain rule to evaluate • in (2) 
via the dispersion relation (1), the result for the x component 
k• is 

•k x •U L • •T 
(o - v = kx + + (8) 

As noted by Garrett and Smith [1976], the second (acceler- 
ation) term is at most of the order of •(fl/•) sec 0• in relation 
to the first (Doppler) term, where fl is the long-wave frequency 
and Os is the angle between the short- and long-wave propaga- 
tion directions (measured where U • = 0). For fl << • this term 
is negligible except in the extreme case where 0• •/2. For 
Tk 2 • • the same argument justifies neglect of the variations 
in T as well (for comparable fractional modulation of T 
versus •). Thus to a fair approximation, 

k = k o 1- uL/c •' sin O s (9) 
The major assumptions employed so far are (1) fl << • (and 

hence K << k and c •s << C • as well), (2) the surface drift velocity 
is much smaller than the long-wave phase speed, and (3) the 
effects of all waves other than the band of short waves and the 

long waves considered are negligible. 

Small Modulations 

For simplicity, the long-wave orbital velocity is now ex- 
panded in terms of simple harmonics' 

U •= Re {eC•e •z + 82C2 ei2z +'"} (10) 

where e is the long-wave steepness parameter C• • (C •, 0) and 
• • Kx- •t is the long-wave phase function. From (9), the 
first-order variations in short-wave number are simply k• = 
ko• and kx• = 0. The first order variation of the short-wave 
frequency, neglecting variations in surface tension, becomes 

• •o • (co•S/co) co s2 Os - a/(2Co•o) (11) 

where Co = •o/ko is the mean phase speed of the short waves. 
Next, the short-wave action is expanded in powers of e: 

A(Z) = Ao + ease 'z + O(e 2) (12) 

Also, Taylor expansion of G and D in terms of both A and U • 
yields 

( G= G o +e A• •+ e 'z• +O(e 2) (13) 

( +O(e :) 

where the derivatives are evaluated with A = Ao and U • = 0. 
Gathering terms of similar order in e, the zero-order action 

equation yields Do - Go, while the order e equation is 

cL •xx (Axeiz) -- RA(Axe'Z) = •xx (CL eiz) -- FA eiz Aø 
where 

(15) 

and 

R' • _ 0(D -- G) 0A (16) 

O(G -- D) 
F '• = (CL/Ao) OUt, (17) 

Solution of the above yields 

(FA ) A• --Ao R. • if• 

Physically, the zeroth-order equation states that overall dis- 
sipation balances overall growth, while at order e there is a 
damped response (with relaxation rate R •) to the harmonic 
forcing due to straining (-ill) and to variations in the dissi- 
pative balance (FA). Note that for the "conservative case" 
(where R '4 and F '4--, 0), A•--, Ao, consistent with previous re- 
sults [e.g., Garrett and Smith, 1976]. The MTF (of Plant et al. 
[1983], etc.) corresponds roughly to Ax/A o. 

Growth 

The short-wave growth rate suggested by Plant [1980, 
1982] is based on radar measurements of the growth of centi- 
metric waves in a wind-wave tank (but the angular depen- 
dence is uncertain [Larson and Wright, 1975; Plant and 
Wright, 1977]): 

G • 33(x. k)/pc = 33(w, 2k2ro - •) COS (O s -- Ow) (19) 

where x is the wind stress, p is the water density, and w, is the 
water friction velocity. In order to better fit the data to the 
capillary side of c rain (near k -- 3.7 cm-•) an additional factor 
(1 + Tk2/g) - •/2 is here applied to G (see, for example, Figure 1 
of Plant [ 1982]). 

It seems reasonable to suppose that the variations in shear' 
stress induced by the long waves [cf. Gent and Taylor, 1976; 
Townsend, 1980; Landahl et al., 1981] are transmitted, at finer 
scale, to the growth rate of the short waves as well as to the 
drift layer. The induced variation of shear stress is given the 
form (neglecting veering) 

x = Xo Re [1 + etxe ix +--.] (20) 

where the magnitude of t x could be anything from 0 to 20 or 
so. For simplicity, the analysis is carried through for t• all real 
(i.e., maximum stress at the long-wave crests); extension to 
complex values is trivial. 

Some recent measurements of velocity near the moving sea 
surface (between 30 and 274 cm above the free surface) indi- 
cate relatively little variation in windspeed with long-wave 
phase [Hsiao and Shemdin, 1983]. This is especially surprising, 
since it runs counter to both the results of theoretical calcula- 

tions (e.g., those mentioned above) and to the extensive lore of 
sailors of small craft on the ocean. Hsiao and Shemdin [1983] 
continue with the speculation that this also implies little vari- 
ation in stress. However, models of wind flow over a wavy 
surface with constant stress at the surface display substantial 
velocity variations. A simple momentum-based argument ap- 
plied within the boundary layer therefore implies in order to 
reduce the velocity fluctuations there must be substantial vari- 
ations in the stress applied at the surface. In the absence of 
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any direct measurements of stress variation with long-wave 
phase it is regarded here as essentially a free parameter of the 
model. 

The net variation in short-wave growth rate is obtained by 
adding the first-order variations due to the varying applied 
stress to those due to changes in k and g: 

where 

G• = C L c•G • = G• ß + G• k + G• g (21) 

G• • = t•G o (22) 

Go(COS 0,• cos 0 s G•k = X,•--oos (0,• -- Os) + cøs2 0s[1 -- Cog/Co 

-- rko2/(g + rko2)]) (23) 
and 

G• g = «(gkoco0 -2 - rko2/(g + rko2))Go (24) 

3. DISSIPATION 

The dissipation of short waves imbedded in a full spectrum 
poses an outstandingly difficult problem. Here the case of an 
isolated band of short surface waves in the presence of much 
longer waves is investigated. The scenario envisioned is a band 
of strongly generated short waves near ½min, in an environment 
slowly modulated by long waves. Although many wave-wave 
interactions are possible (including triad interactions; cf. Val- 
enzuela and Laing [1972]), these are neglected for simplicity; 
their inclusion in future works is encouraged. 

The mechanism investigated here is an abrupt loss of energy 
whenever waves exceed some limiting steepness. Two previous 
arguments concerning a limiting steepness of waves are com- 
bined and extended: (1) Longuet-Higgins [1969a] estimates 
the fraction of wave energy dissipated per wave cycle, as- 
suming energy in crests exceeding some "critical level" to be 
lost in that time; (2) Phillips and Banner [1974] describe a 
limiting steepness by requiring that the fluid velocity at the 
actual surface not exceed the phase speed of the waves. A 
limiting steepness need not be enforced solely by "breaking"; 
for example, an abrupt increase in spectral transfer could have 
a similar effect and could also be modulated by long-wave 
straining and variations in the drift current. Here the analysis 
is carried through as if breaking were the sole cause; the pre- 
cise form of the result should not be taken too seriously. 

The first part is a paraphased summary of Longuet-Higgins 
1-1969a]. Consider a narrow band of short waves, co• < co < 
co:, carrying total wave action As: 

As = •'(ro) do• (25) 
1 

The mean square "slope" is 

Ss 2 = S(co) dco = 2(k3/o)A'(co) dco (26) 
I 1 

and the mean square frequency is 

(-Os 2 • Ss -2 (D2S(o.)) dco (27) 
1 

For convenience, a "mean wave number" ks is defined to relate 
the total action to mean square slope: 

ks 3 = « Ss2cos/As (28) 

This "narrow band" of waves may be thought of as a series of 
"packets" having frequency co s, wave number ks, and a vari- 
able slope-amplitude s which roughly follows a Rayleigh dis- 
tribution: 

2s 
P(s) = -- exp I--(s/ss) •'] (29) 

Ss 2 

If all slopes exceeding some critical steepness scrit were reduced 
to S½rit, the fraction of the action so lost would be 

A•øSt/As = ss -2 [-s 2 - (s•rit)2]p(s) ds = exp (--(s•rit/ss) 2) 
crit 

(30) 

Assuming that this equals the fraction lost in a single wave 
cycle, the dissipation rate becomes 

D œn= As(cos/2rOe -'4c/'4 (31) 

where Ss 2 is converted to A s and (scrit) 2 to A c using cos and k s 
as defined. 

In the presence of nonnegligible generation, additional dissi- 
pation should be expected, since input to waves already break- 
ing is also wasted. For input apportioned by existing action, 
an argument like that above indicates that the fraction of the 
input GA immediately destroyed in breaking waves would 
again be exp (--AC/As). Including viscous dissipation as well, 
the total dissipation takes the form 

D = [cos/2r• + G]e -Ac/As + 4v m ks 2 (32) 

where vm- = I•m/p is the molecular kinematic viscosity at the 
surface. Waves near c man are strongly generated and so should 
be "pushed up against the limit" more strongly than longer 
waves, yet observations of slope spectra show no reliable peak 
near c min [e.g., Plant, 1982]. Possibly, the stronger generation 
is countered by a reduction in the maximum allowed (critical) 
steepness. 

What is a reasonable limiting steepness scrit? AS described 
by Phillips and Banner [1974], breaking is expected when the 
actual fluid velocity at the surface matches or exceeds the 
phase speed of the wave. It is important to include the effects 
of even a small surface drift as well as variations in phase 
speed due to apparent gravity, etc. Neglecting viscous (or tur- 
bulent) effects and integrating the Bernoulli equation along 
the actual surface [cf. Phillips, 1977], the net velocity 
c- u-q becomes zero (in a frame moving along with the 
short-wave phase)just where 

(g'• -- TV2•) crit= «(c -- qs) 2 (33) 

where q,• is the component of surface fluid velocity parallel to 
the short-wave progagation direction, at a location where • • 
V2• • u • 0 (back in the short-wave intrinsic frame). Using 
the linear measure of steepness as defined in section 2, s • ak, 
the result is 

S crit • «(1 - qs/C) 2 (34) 

Note that ignoring advection momentarily, the maximum 
effect of q on s ½•it would occur at c mi". Since, however, the 
shorter waves are advected more than longer ones by the thin 
drift layer, the maximum effect is shifted slightly toward the 
longer, gravity-wave side of c mi". The surface drift is not neces- 
sarily small compared to the short-wave phase speed: For 
example, cmi"• 20 cm/s • 2% of 10 m/s, which is a fairly 

'typical drift velocity. 
How strongly is the effective drift qs modulated? Phillips 

and Banner [1974] and Phillips [1977] neglect readjustment of 
the drift under the wind, compared to the straining at the 
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Fig. 3. Model drift profiles: (a) laminar, (b), logarithmic, and (c) 
exponential (with d o reduced to 82%). The depth scale corresponds to 
centimeters and the velocity scale to centimeters per second for w, = 
1 cm/s. The log linear profile formed by joining profiles a and b at 
depth Bz o corresponds to the "viscous model." 

long-wave frequency, and also neglect variations in the ap- 
plied stress. Phillips [1977] gives a compact, exact solution for 
the resulting surface drift modulation. The pronounced ampli- 
fication of the drift near the long-wave crests shown there (see 
especially his Figure 3.10), together with the strongly nonlin- 
ear nature of the dissipation term above, suggests the follow- 
ing example: 

Consider a limiting case for steep long-waves, where all 
short-wave dissipation is concentrated at the long-wave crests. 
Neglecting all variations other than exponential growth, fol- 
lowed by a return to the "base-level" action A• at each long- 
wave crest, 

A(Z) = A• e -(am)x, 0 < g < 2rt, (35) 

where g -- Kx - tit is the long-wave phase function. The first 
harmonic of the modulation A • becomes 

2'rA(z) e -ix dg A•/A o --' G (36) 
•o 2'• G + i• dz 

For G >> fl the short-wave action becomes concentrated in a 

spike at the long-wave crests, and A• -• Ao with a phase of 0 ø. 
Conversely, for G small in comparison to fl the short-wave 
action approaches a "saw-tooth" pattern, and A• • GAo/if L 
with a first harmonic "maximum" 90 ø ahead of each crest. 

4. SURFACE DRIFT EVOLUTION 

In the short-wave action balance, both U D and c os were 
neglected in comparison to C". In the dissipation term, how- 
ever, U D appears in relation to c and so need not be small; in 
fact, as noted above, the surface drift under a 10 m/s wind is 
roughly equal to the minimum phase speed. A complete de- 
scription of the time-dependent evolution of the surface drift 
layer would be an ambitious undertaking; in the following 
section, an approximate drift model is developed to estimate 
the effects on short-wave dissipation. 

The surface drift U D is modulated directly by straining and 
indirectly by induced variations in wind stress (and, possibly, 
in short-wave dissipation). If the modulation is quick in com- 
parison to the "readjustment time" of the drift layer, the 
analysis of Phillips and Banner [1974] or Phillips [1977] may 
be applied. A measure of this readjustment time is the time 
required to replace the momentum in the drift layer via the 
applied stress, z = pw, 2 (where p is the density of the water 
and w, is the water friction velocity). For a surface drift of 
about 16w, [cf. Wu, 1975; Plant and Wright, 1980], and em- 
ploying a standard log linear profile (cf. Tennekes and Lumley, 
1972, pp. 160-161), this time is about 2 s (under a 6-m/s wind, 
for example). Thus readjustment probably shouldn't be ig- 
nored. Also, the surface drift U D partially advects the short 
waves. As noted by Phillips [1977], a 6-m/s wind generates a 
viscous sublayer about 2 mm thick, so that for example, this 
advection is negligible for short waves more than about 10 cm 
long. In contrast, for waves around 2 cm long (near c mi" and 
also primary scatterers for some radars) the advection would 
amount to roughly half the surface drift. Ergo, this too should 
be considered. Finally, the wind stress experienced at the sur- 
face will, in general, vary with long-wave phase, which will 
produce additional variations in the actual and effective drift. 

Modeling of the time-dependent drift evolution with long- 
wave-induced modulations is suggested as a potential avenue 
of research. For example, work on the modification of the 
turbulent bottom boundary layer due to wave motion could 
be used as a starting point [e.g., Trowbridge and Madsen, 
1984, and references therein]; however, short-wave dissipation 
(not relevant at the bottom) almost certainly influences the 
drift. Here, some credibility will be traded for tractability. For 
example, relaxation is used to model readjustment. Also, in 
deriving (3), Stewart and Joy [1974] assume c•U/c•z << to; but 
for waves near c mi", to is in the range 50-100 s-•, while for a 
6-m/s wind the viscous shear 3U/c•z approaches 110 s -•. Al- 
though the assumption is violated, the results compare favor- 
ably in the special case of a purely logarithmic profile to those 
derived by Plant and Wright [1980] with no restriction on the 
shear (their result is simply U • • U(0.0441)). 

To evaluate the effective drift q, a model profile for the drift 
layer must be chosen. To help separate model-dependent from 
robust results, four models were compared: a purely laminar 
layer, a purely logarithmic layer, a log linear layer, and an 
exponential profile, 

UO(z ') • Uøe z'/a (37) 

where z' = z - Z is the depth below the long-wave surface and 
U ø is the drift velocity at the actual surface Z. Since the 
exponential profile, with a surface value of around 16w,, re- 
sembles the standard log linear profile (see Figure 3) yet pro- 
vides the simplest exposition, it is the model shown here. 
Comparisons with results from a log linear profile and the log 
profile as employed by Plant and Wright [1980] are made in 
the next section. Also, key results from these two profiles (e.g., 
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Fig. 4. (Left) Surface drift derived from floats (closed circles), and from short-fetch phase speed data assuming z 0 = 
Z0air: open circles, 36-cm waves; open diamonds 16.5-cm waves; open squares 9.8-cm waves. The line corresponds to 
Uo = 0.60 u.. (Right) Roughness length in water derived from the same data assuming U 0 = 0.60u.. Open points are 
from Plant and Wright [1980], solid points are from Wu (as quoted in Plant and Wright [1980]). The open points are as 
above; solid circles, floats; solid triangles, fixed probe. The solid curve shows Z0air; the dashed curve shows z 0 from the 
"shear model," for comparison. The upturn of the dashed line at low winds represents the "viscous limit"; i.e., the 
roughness length is not allowed to fall below the value for a smooth wall (appropriate to the viscous model). (Reprinted, 
except for the dashed line, from Plant and Wright [1980]). 

effective drift q and total drift momentum M) are described in 
the appendices. 

The exponential profile yields an effective surface drift (from 
(3)) of 

U o 
q (38) 

1 + 2kd 

Straining 

To begin, the effects of long-wave orbital straining on the 
drift velocity are reviewed, paralleling the arguments of 
Longuet-Higgins 1-1969b], Phillips and Banner [-1974], and Phil- 
lips r1977]. As in these works, the drift shear v = c•uD/c•Z is 
assumed to dominate the vertical shear, the long-wave strain- 
ing Vn-U:'= c•UL/c•X is assumed to dominate among the 
horizontal divergence terms, and the drift layer is assumed to 
be thin compared to K-• (so that U L is effectively uniform 
through the depth of the drift layer). Under these assumptions, 
the drift profile is subjected to nearly uniform vertical stretch- 
ing by the long-wave strain, so the depth scale d behaves 
roughly according to 

D,d ,• -d(V a ß U L) (39) 

where D, is the (horizontal) material derivative. In addition (as 
noted by Longuet-Higgins [1969b]), the long-wave straining 
c•UL/c•X performs vortex stretching on the y component of the 
vertical shear, vy--c•uyD/c•Z, but not on the x component, 
Vx--c•uxD/c•z. Vertical differentiation of the horizontal mo- 
mentum equation yields (with the noted assumptions) 

Dry • v(VnU L) --(v- Vn)U L (40) 

The surface drift U ø is proportional to vd, where v is a suitable 
shear scale, say, the shear at the surface. Combining (39) and 

(40), the surface drift is 

DtU ø • -(U ø ß Vn)U L (41) 

Only the component of U ø parallel to U L is modulated; as 
mentioned in previous works, the modulations of d and v 
exactly cancel for the perpendicular (y) component. 

To estimate a relaxation time, it is useful to examine the 
"drift momentum," given by 

M = pUP(z) dz .• pvd 2 ,,• pUød (42) 

For completeness, the above arguments lead to an equation of 
the form 

DiM • --M(V n ß U t•) --(M-Vn)U t' (43) 

These arguments apply to any self-similar drift profile, using 
suitable scales for the shear v and depth d. 

The above equations can be integrated exactly to yield 
U D (z') as a function of U L. For the case where U D is parallel 
to the long-wave propagation the results are shown by Phillips 
[1977] in his figure 3.10 (refered to above) for various values 
of mean drift and long-wave steepness. However, these equa- 
tions neglect "turbulent readjustment" in comparison to the 
long-wave time scale f•. To model this, relaxation of the drift 
toward an equilibrium value will be introduced. 

To maintain simplicity, the long-wave slope expansion is 
first applied to d, v ø, U ø, etc.; e.g., 

d = do + adl eix +'" 

U 0-- Uo 0 -{- SUløS ix -{- -.- etc. 
(44) 

The zero-order (equilibrium) drift is assigned the value re- 
ferred to above [Wu, 1975; Plant and Wright, 1980]: 
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Uo ø • 16w, (45) 

where w, is the overall mean friction velocity in the water, 
w, = (Xo/p) •/2. the viscous shear stress at the surface gives 
Vo = ro/bt, where bt is the effective viscosity at the surface, 
whence 

do • Uoø/Vo -- 16v/w, (46) 
where v =/alp is an effective kinematic viscosity at the surface 
(here, an "eddy viscosity" might be most appropriate). The 
mean effective drift, using (38) then becomes 

Uoøco - • cos (Ow - Os) 
Qo = (qo' ko)/Wo - (47) 

1 + 2kodo 

Here (and below) the surface shear-stress condition should not 
be taken too seriously, since the profile is an approximation to 
a turbulent boundary layer. For example, in the case of a 
"smooth wall" (i.e., using v'") the exponential is a reasonable 
approximation to a log linear profile, using a value for do 
reduced to about 82% of the above value (as ...... be seen in Will 

the next section). Conceptually, the shear is matched at some 
depth within the laminar sublayer rather than at the surface 
(see Figure 3 again). 

This "viscous model" yields a drift momentum Mo • 256bt, 
which (somewhat surprisingly) is independent of the wind. 
This is qualitatively true for any self-similar profile where Uo ø 
is proportional to w, and the depth scale is proportional to 
w,- • (i.e., for constant v). The laminar model yields half the 
above momentum, while the log linear profile yields M0 • 
236/1. 

In modeling a turbulent boundary layer, the wind depen- 
dence of the depth scale (or "roughness length") is a critical 
consideration. For example, the roughness length in the air 
(Zo air) over water increases rapidly with wind speed (roughly as 
w,: see, e.g., Figure 4 (right) [from Plant and Wriqht, 1980]). 
In their study of the phase speeds of short surface waves, Plant 
and Wriqht [1980] show two complementary analyses: On 
one hand, assuming Zo • Zo air results in a "saturation" of drift 
velocity at high winds (reproduced in Figure 4 (left)); on the 
other hand, assuming U ø •, 0.6u, results in an estimate of Zo 
roughly independent of the wind (as in Figure 4 (right)). Thus 
in addition to the "viscous model" described above, a "rough- 
ness model," with fixed Zo, and a "shear model," where Zo is 
proportional to w, (and hence the surface shear value is fixed), 
are introduced. The wind dependence of the roughness length 
in the shear model is intermediate between that of Zo air and a 
fixed value (see Figure 4 (right) again). A log layer with z o • 
.004 cm (a fixed value suggested by Figure 4 (right)) yields 
M o • 1720pzow, for Uø/w, = 16. This is exponentially sensi- 
tive to the particular value of Uø/w, chosen, increasing to 
2600pzow, for Uø/w,--- 17. For fixed surface shear, the drift 
momentum is proportional to z0 (i.e., to w,:). 

A relaxation of the drift layer toward the equilibrium level 
M0 is now introduced. Conceptually, the two terms x - RDM 
are added to the momentum balance, (43). The zero-order 
balance (equilibrium) is then just between these two terms, 
yielding an estimate of the relaxation rate RD: 

R D= zo/Mo = v/do: (48) 

For the viscous model, the response time (RD) - • of the drift 
decreases with wind as w,-2; for the roughness model it de- 
creases as w• •; and for the shear model it is fixed. Among the 
different profiles and depth-scaling models, there is a fair 
range of values possible, but (RD) - • generally falls between 
about 2 and 20 s (for winds from 5 to 15 m/s or so). 

At O(e), the equations for d, U ø, M, etc. may all self- 

consistently be given the same relaxation rate; for example, 

Did • -d(Vn ' U r) - RD(d - do) (49) 

Substituting (44) into (49) and gathering the O(e) terms yields 

do 

d• ,•, 1 + iRD/fl (50) 
and (similarly) 

U•ø • Uoø( cøs0w ) 1 + iRD/f• ' 0 (51) 
where 0w is th• angle between the mean drift and the long- 
wave propagation direction (+x). Defining Q =-(q.k)/w, as 
implied in (47) and expanding in e as usual, the O(e) effective 
parallel drift is Q • = Q • D _1_ Q • + Q • g, where 

Q1 q --- Qo (cos Os cos Ow 1 + iRD/f• \•-oos (0• -- Os) 

Q0(COS O s COS 0 w CO gs Q ,k = \ •--oos (Ow - Os) Co -- • COS: O s -- 

2kodo 
1 •- 2•-odo' J (52) 

2kodo 1 + 2kodo cos: Os 
(53) 

(54) Q • = «a/½orO- 2Qo 

In (52) the first term represents the changes in actual surface 
drift parallel to k; the second term represents the effect of 
changes in the drift depth scale d on the advection rate of the 
short waves. In (53) the first two terms represent the changes 
in phase speed of the short waves (one via k, two via co), and 
the third term represents the change in advection rate due to 
varying the depth scale k of the short waves. Finally, (54) 
represents the change in short-wave phase speed (via w) due to 
vertical acceleration by the long waves. 

Variable Stress 

The response to a variable surface stress is treated separate- 
ly to allow downward shear propagation. The same sort of 
"relaxed approach" is taken to derive an O(e) solution to the 
stress variations. First, recall the expansion of the varying 
stress in terms of long-wave harmonics: 

• = Zo Re [1 + et•e iz +'-'] (20) 

(where, as mentioned in section 2, t• may be anything from 0 
to 20). Now allow the harmonic response to have a complex 
depth dependence: 

U'(z') = Re [eeixUl'(Z ') + 1•2ei2xU2'(z ') +"' ] (55) 

The O(e) viscous stress equation is assumed to "relax" at the 
same rate R • as above, so that (for constant v) 

( O2UI' - RD Ui')eiz (56) U •'Dte ix = v c•z2 
Assuming an exponential form for U•'(z) yields a complex 
depth scale: 

( v ) •/2 do d•'= RD _ in = (1 -- illiRa) •/2 (57) 
(where the second equality holds provided d o and R a are relat- 
ed as in (48). 

For a surface boundary condition of the form c3U/c3z ,,, t•Vo 
(i.e., demanding that the surface shear is in phase with the 
surface stress), 

Uo o eZ'/a' 
,., _ (58) 
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(since Uo ø = dovo). If U(0) is to remain proportional to w, as 
f•--• 0, then (since w, = (p- •Zo) •/2) the constant of proportion- 
ality in (58) must be «t• (at first order), or half the value given 
by a shear condition with viscosity independent of wind. Sub- 
stituting this into (3), subtracting, and dividing by the short- 
wave phase speed, the net modulation of the effective drift by 
the stress is 

Q•= «t•[,(1 - if•/R•) •/2 + 2kod0J (59) 
The above assumes constant v. In the viscous model, about 

I lw. of the total 16w. surface drift is accounted for in the 
laminar sublayer; in this case, the above is not unreasonable 
(e.g., using the "reduced do"). In the roughness or shear model, 
the drift layer becomes more turbulent as the wind increases, 
and the laminar sublayer is reduced and finally disappears. 
The relation between the complex exponential and log linear 
profiles (for example) is then less clear. To make use of this 
"varying stress" solution, an "equivalent depth" (2kd) e is intro- 
duced for the alternate profiles. In (59) the scaled depth 2kd 
helps determine the phase of the modulation, as it affects the 
short waves. It is therefore appropriate to consider the equiva- 
lent depth as a time scaling, amenable to a treatment similar 
to that of the relaxation rate R •. Define first an "advection 

depth" z a, at which the actual drift velocity equals the advec- 
tion velocity of the short-waves; then choose (2kd) e to preserve 
the ratio of the momentum M a, contained in the drift layer 
above z •, to the total drift momentum M O . For the ex- 
ponential profile, M • is simply 

;;z Mø (60) M •= pUo ez/a dz = 1 + 2k0do a 

Given M • and Mo from another profile (e.g., from Appendix 
B), the equivalent depth for use in (59) is then simply 

(2kd)e= Mo/M •'-- 1 (61) 

5. APPLICATION 

We now return to the short-wave model discussed near the 

end of section two. The zero-order balance provides the mean 
level of short-wave action, ,40, for given wind conditions: 

Ao = AoC(ln IGø + cøø/2•l'•-• Go -- 4vk02 J•] (62) 
The short-wave relaxation rate R A is 

R A = AøC (Go -4vko 2) (63) 
Ao 

Which is generally greater than the short-wave growth rate G. 
For "peak frequency" waves, Lonquet-Hiqqins [1969a] found 
a "saturation ratio" AoC/Ao of the order of 10. Here the rather 
strong wind forcing near c mi" drives this ratio down to about 2 
for moderately strong winds, yielding relaxation rates in rough 
agreement with those of Keller and Wriqht [1975] and Val- 
enzuela and Wriqht [1979]. 

The net forcing F A is now separated into parts owing to (1) 
straining of the drift (Fq), (2) the varying wind stress (F'), (3) 
the apparent gravity (Fg), and (4) short-wave number changes 

FA= F q + F • + F g + F t' (64) 
where 

F • - -- (65) RA(14Q•;o ) 

1 -- Qo (66) 

Fg = G•-g(1- e-•ø'/•ø) -- R•( 4Q•'g 1 -- Qo + «qkøø•ø- 2 
+ («qkor_Oo-2)(r_Oo/2:n:)e -Aø•/Aø (67) 

Ft'=G•'(1- e-Aø'/Aø)-- RA( 4Q• 1 - Qo + (3 - cogS/co) cos 2 Os 
-((cogS/co)(O->/2:n:)e -•ø'/•ø + 8vk02) cos 2 Os (68) 

Here the terms multiplied by R A all represent forcing due to 
changes in the critical steepness criterion. The "Q terms" 
derive from changes in the effective drift, already identified 
with the four basic sources in (52), (53), (54), and (59). The 
other "R • term" in (67) is due to the change in short-wave 
orbital velocity at fixed k induced by vertical acceleration; the 
remaining R • term, in (68) derives from the change in short- 
wave orbital velocity associated with changes in k. The "G 
terms" represent the net forcing due to changes in input from 
the wind, associated with three of the four basic sources; recall 
that the fraction exp (-Aoc/Ao) is directed at breaking waves, 
which cannot accept more action. The last term of (67) ac- 
counts for a change in the time period during which the 
breaking occurs, i.e., the change in 2•/ro induced by vertical 
acceleration. The similar term in (68) arises from the change in 
2•/ro due to changes in k. Finally, the last term of (68) is the 
change in viscous dissipation for a change in k. 

The forcing term F • represents the net imbalance arising 
from changes in the wavelength of the short waves: As the 
packet is squeezed (for example), the wave number increases, 
moving the equilibrium action level down along the slope of 
the "equilibrium spectrum." Since the detected wave number 
(e.g., by radar) is not likely to vary in the same way as the 
packet wave number, it is sensible to translate this shift in 
wave number to an apparent shift in action at a fixed wave 
number: 

8A t' 8k,, 8A 
(69) 

The action spectrum is used to evaluate this "Boltzmann 
transport," since these wave number changes are dynamically 
induced, and action is conserved as the short-wave number 
changes. 

Spectral Comparison 

The zero-order balance implied by the above model is now 
compared to observations of high wave number slopes to see 
whether the spectral slope (and hence transport) may also be 
predicted from this model. Although in reality the waves are 
imbedded in a continuous spectrum, the model developed 
above considers an isolated band of short waves under the 

influence of a much longer wave train. The steepness of the 
short waves clearly depends on the bandwidth chosen from a 
continuous spectrum. Thus it is appropriate to ask, how can a 
comparison be made? Appeal is made to the concept of a 
physical bandwidth; i.e., suppose it is sensible to assign a 
characteristic coherence length and time to each wavelength. 
Then the spectrum of short waves can be viewed in physical 
space as an agglomeration of many wave packets, each having 
different central wave number and frequency, and each having 
finite extent in space and time. The presumptions required 
then amout to: (1) each packet is large enough to be detected 
near its central wave number, and (2) other nonlinear interac- 
tions are negligible compared to either the long-wave forcing 
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Fig. 5. Model spectra for u. = 20 cm/s: (a) laminar drift (plain 
curve), (b) log linear profile (circles), (c) logarithmic (triangles), (d) 
exponential (crosses), and (e) with no drift (diamonds). Marks show 
location of 35-cm (L band), 2-cm (X band), and 1.7-cm (c mi") short 
waves. 

unknown physical bandwidth as well as the degree of satu- 
ration. 

Since F k represents the change in G - D due to changes in k 
(i.e., in kx), while R A represents the rate of change of A due to 
changes in G- D, the kx-dependence of A = (ptok-3)(Ake/ 
k)So 2 is given by the model as 

(71) 

Thus if the shape comparison proves acceptable, the model 
prediction at fixed wave number is simply given by replacing 
F •' in the above solution by -if•F•'/R a (where -if• represents 
the fractional rate of change of k,, due to the long-wave strain- 
ing). The net "conservative forcing" (combining this "spectral 
transport" with the straining term -ifS) is then F c-- --ifS(1 
+ Fk/RA). 

In his investigation of "a relationship between wind stress 
and waveslope," Plant [1982] compares many measurements 
of high-frequency slope spectra, from both wavetanks and the 
open ocean and by several methods (including radar back- 
scatter, laser slope-meter, sun glitter, and Cox's refraction 
method). Although individual data sets produce a variety of 
results, his overall conclusion apears to be that the upwind- 
downwind slope spectrum has roughly an f- • frequency de- 
pendence over a range from about twice the peak frequency to 
at least 20 Hz (c mi" occurs near 11 Hz) and is fairly constant 
over a wide range of wind speeds. By implication, b(k, z) is 
expected to be approximately constant with wave number (as 
indicated above). 

As the relative growth rate G/o3 increases, the average steep- 
ness of the waves is pushed closer to the limit s crit until the 
dissipation balances the input. Thus as mentioned in section 3, 
were a uniform limit imposed, the peak in G/o3 near c mi" 

or the dissipative balance (e.g., encounters between packets are 
either rare enough or weak enough in their effect to be ig- 
nored). Given the extremely rapid growth of wave near c mi- 
(e.g., Larson and Wright [1975] find doubling times of the 
order of three wave periods near c mi" under about 8-m/s 
winds), this neglect of the "other" interactions is not com- 
pletely unreasonable. 

On dimensional grounds, the slope spectrum S(k) should 
have roughly a k- • dependence (as supported by observations, 
[e.g., Plant, 1982]; say, S(k)• bk -•. For discussion, suppose 
each packet looks like a band of wave numbers taken from 
this mean spectrum. The mean square slope contained in a 
band k - «Ak to k + «Ak (as in (26)) then becomes 

k + Ak/2 s• 2 • bk- • dk • 2b tanh- • (Ak/2k) • (Ak/k)b (70) 
dr( - At(/2 

Ak << 2k 

Measuring the spectral level at wave number k M (with antenna 
bandwidth Ak M) is roughly equivalent to an integration over 
all packets with central wave numbers k e ranging from k • 
-«Ak p to k•+ «Ak p. From each of these packets, the 

measurement would detect a fraction Ak•/Ak •' of the packet's 
slope content; hence the result of the measurement simply 
yields (Ak•/kM)b, independent of Ak •. The physical slope limi- 
tation, however, depends on the physical bandwidth Ak P. Thus 
a comparison of spectral shape may be made, most con- 
veniently with wave-number-weighted (or frequency-weighted) 
slope spectra, kS(k)_= b(k), as long as the weighted spectrum 
b(k) is a weak function of k and provided Ak P and Ak • are 
small compared to 2k. The comparison of the magnitudes of 
the measured and predicted values of b(k) depends on the 
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Fig. 6. Spectra for the "viscous model" (z o ~ w.-•), using a log 
linear profile (plain curve), a log profile (circles), and the 82% reduced 
exponential (triangles). Air friction velocity is u. = (a) 16 cm/s, (b) 32 
cm/s, and (c) 48 cm/s. Marks show location of 35-cm (L band), 2-cm 
(X band), and 1.7-cm (C min) short waves. 
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would produce a corresponding peak in the slope spectrum; 
yet, no such peak is reliably observed. In the dissipation model 
posed above, the limiting steepness is not uniform; it depends 
on the ratio of effective surface drift to phase speed. Thus this 
steepness criterion has a roughly corresponding minimum 
near the most strongly generated waves. The two effects can 
virtually cancel over a broad range of wave numbers, yielding 
model "spectra" b(k) which are nearly flat (see Figure 5). Since 
each spectral component "samples" the drift to different 
depths, this "spectral comparison" is a fairly rigorous test of 
the difference between profiles. As Figure 5 shows, the differ- 
neces between results from the foul • drift profiles are minor (at 
u,--16 cm/s) compared to the difference from the model 
spectrum neglecting drift effects. 

The wind speed dependence of radar backscatter allows 
remote estimation of winds and so is fairly well studied. Al- 
though there are uncertainties associated with, for example, 
atmospheric stability, these studies indicate a wind depen- 
dence of radar cross section (associated with rms steepness) 
ranging from about U •/2, for L band backscatter from roughly 
35-cm waves, up to about U 2 for X band backscatter from 
2-cm Bragg waves [Thompson et al., 1983; Keller et al., 1985, 
and references therein]. Thus b(k, •) is expected to be a weak 
function of wind at 35-cm wavelengths, becoming more sensi- 
tive to • as the wave number increases toward 2-cm waves. At 

both points the steepness increases somewhat with wind. 
As the model wind speed is increased, the differences due to 

the different profiles become more pronounced. For the vis- 
cous model, the exponential profile can match the effect of the 
log layer, using a reduced depth scale d o of 82% of the value 
given by (46) (see Figure 6). In this "viscous case" the purely 
logarithmic approximation performs relatively poorly, over- 
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Fig. 8. Spectra for the "shear model" (z o • w,), using a log linear 
pro•le (plain curve) or a log pro•le (circles). Air friction velocity is 

= (a) 16 cm/s, (b) 32 cm/s, and (c) 48 cm/s. Marks show location of 
35-cm (L band), 2-cm (X band), and 1.7-cm (cmOS)short waves. 
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Fig. 7. Spectra for the "roughness model" (z o • .004 cm), using a 
log linear profile (plain curve) or a log profile (circles). Air friction 
velocity is u, = (a) 16 cm/s, (b) 32 cm/s, and (c) 48 cm/s. Marks show 
location of 35-cm (L band), 2-cm (X band), and 1.7-cm (c mi") short 
waves. 

estimating severely the effective drift at high wave numbers 
(Figure 6 again). For the modulation evaluation (where use of 
the log linear profile would be cumbersome) the "reduced ex- 
ponential" is therefore chosen. In the "roughness" and "shear" 
models, the fraction of the drift velocity accounted for by the 
laminar sublayer varies with windspeed' thus no uniform "re- 
duction" of do applies. In these two cases the log profile is a 
better approximation (see Figures 7 and 8) and will be used 
for the modulation analysis (the momenta M0 and M a for use 
in (61) are given in Appendix B). 

Among the different models for depth scale versus wind 
(Figure 6 to 8) the shear model yields spectral levels having 
the least variation with wave number overall, in best accord 
with the above observations. All three models show a decrease 

in steepness with wind, contrary to the observations; however, 
the decrease shown in the shear model is not as severe, again 
in best accord. A stronger wind dependence (e.g., z0 • z0 air • 
w, 2' not shown) performs better by this wind-dependence cri- 
terion. As caveats, the magnitudes of the model levels are 
somewhat high (requiring "physical bandwidths" comparable 
to wave number to match absolute magnitudes)' also, no 
"overshoot effect" is predicted. 

SHORT-WAVE MODULATIONS 

The models are now compared With some recent observa- 
tions, described by Plant et al. [1983]. In the cases chosen for 
comparison, the wind is roughly aligned with both long- and 
short-wave propagation directions (i.e., O s = Ow - 0ø). The two 
"short" wavelengths chosen for comparison are 2.1 cm, corre- 
sponding to the X band (9.3 GHz) radar directed downward 
40 ø from horizontal, and 12 cm, corresponding to the L band 
(1.5 GHz) at 30 ø depression angle (as in Plant et al. [1983]' in 



SMITH' SHORT SURFACE WAVES WITH GROWTH AND DISSIPATION 2627 

200 - 4'0 -- 

160 

120 

8o 

40 

0- 

-4-0 - 

-80 - 

-1200• 

b)øx ø 
_ 

_ a) •r••.•x>'•m • 

0'1 0'2 0'3 0'4 0'5 0'6 

FREQUENCY, Hz 

3'5 -- 

2'5- 

2'O 

1'5 a) 

1'0 

c ) •_• • 0'5 d) *-*-,- - -•-•-h • 
b ) 

0 0'1 0-2 0-3 0-4 0'5 0'6 
FREQUENCY, Hz 
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shown are for z 0 = .004 cm and u, = 16cm/s; the stress modulation factor tx is 1. 

both cases, their vertical polarization data is shown for the 
comparison). 

For the model calculations the physical constants used are 
g = 980 cm/s 2, T = 72 cm2/s, p = 1.026 g/cm 3, and v'" = 0.012 
cm2/s. For example, under a 7- to 8-m/s wind, (19) yields 
short-wave growth rates of about 1.9 s- • for the 2.1-cm waves 
and about 0.30-s-• for the 12-cm waves (or e-folding times of 
about six and 13 short-wave periods, respectively). The relax- 
ation rates R '•, from (63), are about 3.3 s-• for the 2.1-cm 
waves, and .75 s-• for the 12-cm waves, or about 1.7 and 2.5 
times the respective growth rates (comparable to the value of 2 
times the growth rate, as found by Keller and Wright [1975], 
for their first-order relaxation model). 

Measured short-wave modulations per unit long-wave 
steepness r .... ,•,,•H,,, t .... r•r functions) o,'• reproduced 
from Plant et al. [1983] for both the 2.1- (Figure 1) and 12-cm 
(Figure 2) short waves. For the range of conditions observed, 
these MTFs range roughly from 3 to 12 and generally de- 
crease with increasing long-wave frequency. The 2.1-cm MTFs 

also decrease with increasing wind, while the 12-cm MTFs are 
insensitive. The phases of the 2.1-cm MTFs fall in the range 0 
to 30 ø ahead of the long waves (i.e., maximum short-wave 
amplitudes just ahead of long-wave crests) and are indepen- 
dent of the long-wave frequency. The 12-cm MTFs decrease in 
phase from about 20 ø ahead of 8-s long waves to slightly 
behind 3-s waves. For comparison, the optical measurements 
of Monaldo and Kasevich [1982], taken under 5-m/s winds, 
indicate a constant MTF of about 9, leading by 90 ø, regardless 
of short-wavelength or long-wave frequency (for 3-, 11.5-, and 
30-cm short waves on long waves with periods between 3 and 
8 s). Since, as mentioned in the introduction, the optical long- 
wave slope measurements appear slightly less reliable than the 
Doppler velocities, comparison here will favor the radar re- 

The model predictions for 2.1-cm waves under gentle winds 
(u, - 16 cm/s, corresponding to about a 4-m/s wind) are first 
shown broken down into the phases and magnitudes of the 
modulations due to "conservative forcing" F½( -= --i•(1 + F•/ 
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R'•)), apparent gravity F o, drift modulation F q, and the modu- 
lated stress F ' (Figure 9). For both the 2.1- and 12-cm waves, 
the direct forcing terms effect a modulation increasing in mag- 
nitude with f•. Although the overall magnitude can be altered 
by (for example) assuming a different spectral slope, the in- 
crease with long-wave frequency is an unavoidable conse- 
quence of the balance between forcing at a rate dependent on 
f• against relaxation at a fixed rate R '•. The forcing due to 
changes in apparent gravity has the wrong phase; apparently, 
the enhancement of dissipation near the long-wave crests (due 
mostly to slowing the phase speed) overwhelms the increase in 
amplitude at fixed action under reduced gravity (included in 
the figure calculations, although it does not enter as an action- 
forcing term in (67)). The forcing due to modulation of the 
mean drift by straining yields a somewhat stronger effect and 
decreases in magnitude with long-wave frequency, but the 
phase is again almost exactly reversed (i.e., maximum ampli- 
tudes are induced in the trough). Finally, the net effect of a 
modulated stress has both the right trend with long-wave fre- 

quency and about the right phase. Maximum growth at the 
crests would by itself induce maximum amplitudes on the rear 
faces (as noted in the introduction); however, the varying 
stress also induces maximum drift on the rear faces, and hence 
maximum dissipation there, largely opposing the effect of 
growth and resulting in a net maximum of reduced size near 
the crests. The curves shown in Figure 9 correspond to t• - 1; 
in order to produce modulations resembling the measure- 
ments, keeping the rest of the model as is, requires a stress 
modulation much greater than this. In the absence of any firm 
knowledge regarding its magnitude (or phase) we are more or 
less free to speculate; thus for comparison, the model results 
shown below use t• -- 20. Although this is rather large, it may 
not be unreasonable; for example, in his "rapid distortion" 
model, Townsend [1980] calculates shear stress modulations 
of the order of 15 to 20 times the long-wave steepness, with 
maxima near the crests (see also the discussion, below). 

Next, consider the wind dependence. As mentioned, the 
radar observations of 2.1-cm waves (Figure 1) show a decrease 
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in modulation with increasing wind (over the range 5 to 14 
m/s), while the 12-cm modulations (Figure 2) are insensitive to 
windspeed (over the range 7 to 15 m/s). The net model predic- 
tions corresponding to the three different drift-scaling models 
("viscous," "roughness," and "shear") are shown in Figures 10 
to 12. These modulations are mostly due to the varying stress 
(tx = 20). The "shear model" again produces results most 
nearly resembling the observations, both in terms of decreas- 
ing magnitude with wind and nearly fixed phase. The shear 
model results (only) are also shown for the 12-cm short waves 
(Figure 13). Although the overall match is far from perfect 
(particularly the trend in phase with short wavelength), it is 
good enough to be encouraging. 

The performance of the model depends on both the wind 
dependence of Zo and its absolute magnitude. The (best) re- 
sults of the "shear model," (Figures 12 and 13) correspond to a 
roughness length matching the viscous solution at about u, - 
16 cm/s and increasing as w, increases (again, a model with 
Zo•W, 2 also performs well). With a smaller absolute value 
(for example), the decrease with wind is less rapid, or even 
reversed. Also, the phase of the response varies, owing to the 
different relaxation rates of the drift layer for different values 
of Zo. The changes in the model behavior with the magnitude 
of Zo are significant; e.g., a 10% change renders the results 
completely different from the observations. These results 
therefore represent a model in which the response of the drift 
is "tuned" to match that of the waves, especially with respect 
to timing. Such a "tuned response" is probably not coin- 
cidence; rather (if this tuning exists), the evolution of the drift 
and short waves must be coupled. 

Clearly, it is unlikely that a physically based model would 
have produced accurate predictions beforehand; there are 
simply too many ill-known factors. Instead, the observations 
are used as a guide by which to select from these factors those 
most likely to be important. 

6. DISCUSSION 

Several observations have contraindicated the use of drift- 

enhanced dissipation to explain the behavior of short surface 
waves. For example, the advection velocities measured by 
Plant and Wright [1980] are independent of fetch. Also, the 
spectral levels observed are nearly independent of the wind, 

whereas (as pointed out by Plant and Wright [1977]) a drift 
current proportional to w. was expected to reduce the ob- 
served levels with increasing wind by quite noticeable 
amounts. 

Conversely, a superficial examination of the effect of a mod- 
ulated drift (cfi the example in section 3) indicated an easy way 
to account for the tendency of short-wave maxima to occur 
forward of long-wave crests. 

Ironically, according to the analysis presented here, all three 
of the above have proven misleading. The response time of the 
drift is of the same order as that of the short waves; hence, no 
fetch dependence. The increase in dissipation can balance the 
increase in direct input from the wind; hence, spectral levels 
can be nearly independent of the wind. Finally, for small mod- 
ulations, the enhancement of dissipation alone near long-wave 
crests would result in short-wave maxima near the troughs, 
rather than crests. It is the combination of dissipation and 
growth under varying stress that appears to produce the cor- 
rect phase. 

In the above, rather large stress variations (of the order of 
20 times the long-wave slope) were invoked to help account 
for the observed short-wave modulations. The reason such a 

large value is needed is that the resulting modulations of 
growth and dissipation almost directly oppose one another 
(shifted only by the response time of the drift). If, for example, 
the phase of the drift were delayed further, the magnitude of 
the response would increase; a corresponding shift forward of 
the stress maximum could maintain the phase of the ampli- 
tude maximum. Reexamination of the drift development and 
the stress modulation could reduce the "implied" magnitude of 
t • significantly. 

An upper bound on the stress modulation is indirectly 
available. In their application of the first-'order relaxation 
model, Keller and Wright [1975] show the modulation mag- 
nitude versus long-wave steepness %" (reproduced as Figure 
14). This modulation "saturates" at long-wave steepness of the 
order of .05 to .07, implying that no component of modulation 
can exceed about 15 to 20 times the steepness (e.g., if the 
minimum stress •0(1- t•e) is to remain nonnegative). Con- 
versely, a stress modulation t• of the order of 15 to 20 would 
explain the saturation. Again, a value of the order of 15-20 is 
in rough agreement with the shear stress variations in Town- 
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where •c is Von Karman's constant (assigned the value 0.40) 
and the matching point Bzo is defined by requiring a single 
velocity value at the interface between the laminar and loga- 
rithmic sublayers: 

w, Vo = Bzo = m In (1 + B) (A2) 
K 

One possible solution for B is 0 (always); however, it is the 
larger solution (when it exists) which is of interest. By com- 
paring the projected logarithmic shear at the surface to the 
viscous shear, it is found that such a positive solution exists 
whenever Zo < vm/Kw,; for greater "roughness," no laminar 
sublayer exists. In the case of a smooth wall the above should 
reduce approximately to a "standard" model [e.g., Tennekes 
and Lurnley, 1972, pp. 160-161]. Thus the "viscous roughness" 
Zo v is defined as 

ZO v • vm/w,e 2 (A3) 

so that to-x In (Z/Zo v) _• 5 + to-x In (ZW,/Vm). With this value, 
the "matching velocity" Vo is about 11w,, so that most of the 
drift velocity is attained in the viscous sublayer. 

The thickness Dzo of the boundary layer is established by 
the surface drift value Uo: 

U0 = w_•_, In (1 + D) 
K 

or 

D -- e "Uø/w* -- 1 

The effective surface drift q is to be found from (3): 

q = 2k (W,2/vm)ze -2kz dz + 2k Uo e-2k• dz 
dO zo 

f Dzo + 2k (w,/•c) In (1 + Z/Zo)e -2•'z dz 
JBzo 

W• 2 e - orb - -- •-• (1- --o•Be + Uo e-•ø 

(A4) 

1 +D - 1 -ott [--e -•t In t]• +• + e dt 
K JI+B 

w*2(l•e •B) w, e• - •v g - + tc (Ex(cz(1 + B))- Ex(cz(1 + D))) 

(A5) 

where •z = 2kZo, t = 1 + Z/Zo, and E•(x) is the "exponential 
integral function," evaluated via the series [Abrarnowitz and 
Stegun, 1965, p. 229] 

E•(x) = --7 -In x - • (--x)" (A6) 
n= 1 

where • -- .57721 ... is Euler's constant. 
Finally, the total drift momentum is 

[o Mo = [Uo -- 2(W•2/vm)] d2 

+ Uo --- In (1 + Z/Zo) dz 
•]Bzo K 

= DzoU o - «(w, 2/¾m)B220 2 2øw* [t In t - t]• +a• +ø 

= «azoVo + (o - a) ZoW, _ Zo(Vo - Vo) (A7} 

(extensive cancellations occur via the definitions (A2) and 
(A4)). 

APPENDIX B: LOG PROFILE ECF. PLANT AND WRIGHT, 1980] 

The log profile is given by 

U(z) -- Uo -w, In (1 + Z/Zo) (B1) 

(where fully turbulent flow is assumed). The effective drift is 
given by Plant and Wright [1980] rather than found via (3): 

w, 
q • Uo - U(0.044;t) •- In (1 + 0.276/kzo) (B2) 

where it = 2r•/k is the wavelength. The drift momentum is 
given simply by (A7) with B _-- 0: 

M o = D ZoW, _ zoUo (B3) 

where D is as defined in (A4). 
For use with the varying stress solution (via equation (61)) 

the momentum in the layer above x • -- 0.276/k is given by 

M a = za(u a -[- W,/K)- Zoq o (B4) 

Finally, for use in computing the induced modulations, 
depth derivatives of q are also needed: 

= zø •Zo •-• = - kzo/0.276 + 1 
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send's [1980] "rapid distortion" model of turbulence over a 0'3- 
wind wave, though it is larger than the variations according to - 
most other theories. 

An interesting consequence of the implied stress modulation 0 

is an enhancement of the long-wave growth. By the analysis of ,• Garrett and Smith [1976], it doesn't matter whether the stress 

is applied to the drift or the short waves' the net long-wave • 0-2 growth becomes 

G L•v= Go q- txf•(w./CL) 2 = (33 q- tx)f•(w./Ct) 2 (72) 
Thus the long-wave growth rate might be nearly doubled by 
the input from the shear stress. This growth enhancement could "cut in" at some minimum wavelength, at which shorter 0-! 

waves become available for modulation (conceivably helping 
to explain the increased growth rate observed by Plant and 
Wright [1977] for waves longer than 10 cm or so). This non- 
resonant, nonlinear transfer is implied by the above model 
and does not affect further the short-wave amplitudes. 

In the foregoing analysis there is no fundamental reason to 
exclude resonant nonlinear interactions. They are excluded 0 0 O-OS 0-10 O.1S 
primarily for simplicity, and also to preserve the independence 
of results for different wavelengths. Since waves on both sides 
of c ain are (presumably) modulated by the long waves, the 
strength of these interactions could also be modulated and 
hence contribute to the observed modulations. It is also likely 
that the differential advection of waves by the drift is impor- 
tant to the resonance condition, so that drift modulation 
could enter here as well. Since resonant interactions may have 
a•gentler action dependence than the dissipation criterion em- 
ployed above, their inclusion could "soften" the slope cutoff 
somewhat, yielding (for example) a slower relaxation of the 
short waves. 

Consider also the turbulent nature of the drift layer. The 
critical slope (for example) should be regarded as random, and 
the dissipation rate should therefore take into account distri- 
butions of both wave slopes and critical slopes. In fact, cou- 
pling of the short waves and drift layer could be included by 
considering a joint distribution of wave- and critical-slopes. 
Note that the coevolution of the short waves and drift is an 

inherently nonlinear process, so that (for example) the whole 
spectrum of waves should be considered at once. Possibly 
(given the strong input to waves near cain), only a relatively 
small band of short waves is important to the drift evolution. 
This might help account for the apparent "tuning" referred to 
above. 

The possibility of other sources for short-wave action 
should not be neglected. Recently, I observed the sea surface 
under 10- to 15-m/s winds from aboard the R/V FLIP. I noted 
that relatively small scale whitecaps or "spills" frequently 
occur, directed mostly downwind but with some directional 
distribution (within about 20 ø to 30 ø off the wind). These spills 
occur more frequently near the dominant wave crests (com- 
monly a bit ahead), but occasionally occur between crests as 
well. The effect of these small spills appears similar to that of 
dragging small objects along the surface, producing miniature 
"wakes" of short, centimeter-scale waves; thus in addition to 
removing energy from midscale waves, they can act as a 
source of very short waves, creating them preferentially near 
long-wave crests. This may contribute to the variations in the 
short-wave generation required to match the data, subsumed 
into t x in the foregoing. 

The results of the above model should encourage further 
work. A suggestion is to regard the short "scatterers" as 
probes of the drift current. Since different wavelengths probe 
to different depths, an attractive possibility would be to "step" 

uL/C L 

Fig. 14. Measured fractional modulation of 2.3-crn waves versus 
long-wave steepness UL/C L (looking upwind in a wave tank; long- 
wave frequency is 0.575 Hz). Solid points are for u, = 16.5 ca/s; open 
points are for u, = 30 cm/s. The curves correspond to Keller and 
Wright's first order relaxation model (figure reproduced from Keller 
and Wright [1975]). 

the radar frequency rapidly through several frequencies (with, 
say, a few microseconds cycle time) in order to probe several 
depths virtually at once. Alternatively, this "scanning" is al- 
ready available in the optical technique of Monaldo and Kase- 
rich [1981, 1982]. In addition to providing information about 
the structure of the drift current, this would provide in situ 
estimates of the spectral slope, and hence allow more accurate 
estimation of the 'spectral shifting' due to both straining and 
tilting. 

7. CONCLUSIONS 

A physical model including local growth and drift-enhanced 
dissipation can be made to agree crudely with observations of 
short surface waves, both in the wind dependence of the equi- 
librium steepness and the magnitude and phase of modula- 
tions by longer waves. The viability of this model depends on 
several illknown factors: 

1. The depth scale z o of the drift must increase with wind- 
speed (e.g., z o • w. or w. 2). 

2. The timescales of development of the short waves and 
drift current (to depth comparable to k) must be nearly the 
same. Thus a close tuning is implied between the drift current 
and short waves, suggesting active coupling between them. In 
any case, the drift is very important to the short-wave dynam- 
ics and should be studied further. 

3. The implied source of the observed short-wave modula- 
tion is primarily variations in wind stress, rather than direct 
straining of either the waves or the drift current. The implied 
stress modulation is rather large, around 15 to 20 times the 
long-wave steepness, with the maximum stress just forward of 
the long-wave crests (on the upward accelerating face). 

APPENDIX A: LOG LINEAR PROFILE 

The log linear profile is defined by (with z increasing down- 
ward 

U 0 - U(z)= z(w,2/v m) 

Uo - U(z) = (w,/•) In (1 + Z/Zo) 

z _< Bz o 
(A1) 

z > Bz o 
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