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ABSTRACT

During the near-field leg of the Hawaiian Ocean-Mixing Experiment (HOME-NF), short, steep surface

wave groups were observed that elicited strong group-forced responses in the wave-filtered surface current

field, as reported by Smith. Some of these wave groups persisted for 17 wave periods, yet were only about

1 wavelength long in the along-wind direction. Here, the authors consider the evolution of wave groups of the

form observed and find that this persistence is consistent with linear dispersion in spite of the very compact

form. The key aspects enhancing persistence are 1) that the wave crests within the group are oriented at an

angle with respect to the group envelope and 2) they are much wider in the crosswind direction than along-

wind (in the example examined in detail, about 5 times). According to a simplified model, groups with the

observed 5-to-1 aspect ratio and this ‘‘slant-wave’’ structure can persist for up to 20 wave periods, consistent

with the observations (cf. 8 periods for a collinear wave group). The maximum persistence increases in

proportion to the across-wind length of the group.

1. Introduction

Motivation for this work comes from observations of

large responses to passing wave groups reported by

Smith (2006b). In brief, surface waves introduce a dis-

crepancy between the mean speed measured at a fixed

point (Eulerian mean) and the mean speed following an

actual moving water parcel (Lagrangian mean); this

difference is known as the ‘‘Stokes drift’’ (after Stokes

1847). Integrated over depth, the ‘‘Stokes transport’’

varies roughly as the square of wave amplitude, so wave

groups have an associated varying mass transport. The

convergence and divergence of this wave-induced mass

transport must be compensated for by an ‘‘underlying

flow response’’ in the Eulerian (fixed frame) mean flow

field. The depth over which the compensating flow arises

is proportional to the distance between the convergence

and divergence. The longer the group, the deeper the

return flow and the weaker the surface value of the re-

sponse should be for the same net transport. The shortest

group is one wave long, for which the expected surface

response should be about half the surface Stokes drift

(e.g., Longuet-Higgins and Stewart 1962; Smith 2006a).

However, Smith (2006b) found a response roughly equal

to the Stokes drift at the surface, about double the ex-

pected value (this remains unexplained).

In addition to the larger than expected response, it

was noted that the wave groups responsible for inducing

the response were both short, of order one wavelength,

and persistent, lasting sometimes for more than 2 min

(17 wave periods) before propagating out of view. Smith

(2006b) focused on the forced response of the under-

lying flow to the groups, comparing it to the theoretical

response as noted previously, but deferring examination

of the wave groups themselves. Here, we take up this

examination. A key question is how long such wave

groups ought to last according to linear theory, and hence

whether the explanation requires nonlinear dynamics.

Previous works on nonlinear deep-water surface wave

groups have focused mainly on long groups, so weakly

nonlinear effects have time to develop. On one hand,

modulational instabilities can cause a uniform wave train

to develop into ‘‘groups’’ (e.g., Benjamin and Feir 1967;

Longuet-Higgins 1978; Dysthe 1979); and on the other,
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groups can evolve to exceptionally steep waves that

persist only briefly, producing ‘‘rogue waves’’ or break-

ing (e.g., Tulin and Waseda 1999; Banner and Peirson

2007; Dysthe et al. 2008). In contrast, the wave groups

discussed here are exceptionally short (on the order of

one wavelength) but persist for many wave periods

without changing significantly in structure or form. In

further contrast to most previous theoretical treat-

ments of wave groups (an exception is noted below),

the constituent waves are not aligned with the group

envelope. Indeed, these observed groups resemble

short pieces of ship’s wakes, which have been shown to

persist a very long time and are thought to eventually

involve nonlinear dynamics (e.g., see Brown et al.

1989). However, it is not clear that these results apply

to a short piece of a ship’s wake, rather than an es-

sentially infinitely long one.

Here, the interest lies in how long wave groups of the

form observed ought to persist, compared to how long

they actually do. We explore first the hypothesis that

nonlinear dynamics are not required; that is, whether the

observed persistence is consistent with linear propaga-

tion. We find the persistence is in fact compatible with

linear dynamics, largely because of how the waves

composing the group are oriented at an angle relative to

the group envelope, which is narrow in one direction but

long in the other.

First, we briefly review the experimental setting, in-

strumentation, and analysis methods. We show a repre-

sentative example of a compact persistent wave group,

which lasts for about 120 s (17 wave periods). We then

show that linear propagation is sufficient to explain the

persistence, given the actual (measured) surface wave

field at a nominal starting time, and using linear dis-

persion to forward propagate the field in time. The

comparison with the later observed data is quite good.

Next, we develop a simple model of a wave group with

waves that are slanted at an arbitrary angle with respect

to the group envelope and find that persistence can be

explained as a consequence of this structure. Then, we

return to the group-forced response as a useful proxy for

the occurrence of such short, steep, and persistent wave

groups. The results indicate they are surprisingly com-

mon at this site, with typically 2–3 such groups per

8.5-min segment, whenever (but only when) the wind

blows. Since the winds were either calm or blowing at

about 10 m s21, this also reinforces the link between

these short, steep, and persistent waves and the wind:

group speeds of 5 m s21 imply phase speeds of about

10 m s21, corresponding to the expected ‘‘wind wave

peak.’’ Finally, we discuss what aspects of the conditions

may be conducive to forming such groups and list some

possible effects.

2. Experimental setting and data

Quantitative estimation of the directional surface wave

field requires data that are extensive in both time and space:

direction, wavelength, and frequency must be resolved

over a wide range of scales. To provide this, a 50-kHz long-

range phased-array Doppler sonar (LRPADS) was oper-

ated continuously for about 20 days, from 14 September

to 5 October 2002. The data were gathered aboard the

research platform–floating instrument platform (R/P

FLIP), in conjunction with the near-field leg of the

Hawaiian Ocean-Mixing Experiment (HOME-NF).

The R/P FLIP was moored over the Kaena Ridge just

off Oahu, Hawaii, where the water depth is about

1000 m, increasing to well over 4000 m off either side of

the ridge (see Fig. 1).

In addition to the LRPADS data, many other mea-

surements were made from R/P FLIP. These include

wind, surface wave elevation spectra, and conductivity,

temperature, and depth (CTD; with which salinity and

density can also be calculated) profiling every 4 min or

so throughout HOME-NF (e.g., see Pinkel and Rudnick

2006; Klymak et al. 2008).

The general design and operation of a PADS is

described in Smith (2002) and the extension to the

LRPADS is summarized in Smith (2006b). The brief

description here follows the latter. For the LRPADS, as

configured in HOME-NF, a pie-shaped area extending

out to 1.5 km in range and 448 in bearing is segmented

into measurement bins about 1.38 wide (33 beams) and

7.5 m in range (200 range bins), a total of 7000 locations.

The area is sampled every 2.5 s, which is the time needed

for sound to propagate out 1800 m and back. Vertical

FIG. 1. Location of R/P FLIP during HOME-NF, September–

October 2002. The site is about 30 km west of Oahu in about 1000-m

water depth, over an underwater ridge that extends roughly halfway

to Kauai. Depth contour interval is 1000 m; the deepest shown is

4000 m (figure from Smith 2006b).
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location is not resolved; the vertical beamwidth includes

the surface bubble layer beyond about 90-m range, so

the effective location of the measurements is dictated

by the centroid of the bubbles, which are some 104 times

brighter than competing scatterers. Since bubbles are

strongly surface trapped (Thorpe 1986; Crawford and

Farmer 1987), the measurements can be considered

as essentially surface velocities. Horizontal (azimuthal)

beamforming is done via time delay, since the array is

wider than the transmitted ‘‘code bits’’ (the 0.1-ms code

bits are 15 cm long, and the array is over 1 m wide). The

raw data stream was segmented into files of roughly

8.5 min each and processed later. After beamforming,

the Doppler shift is estimated with a time-lagged co-

variance technique, treating each ping independently

(Rummler 1968). This yields a finite level of Doppler

noise, even at a high signal-to-noise ratio (SNR); here,

repeat-sequence codes were used (Pinkel and Smith

1992), reducing the single-ping rms noise level to about

7 cm s21 per range and angle bin (see also the discus-

sion, section 6). At the farthest ranges, the SNR de-

creases as the signal fades into the ambient acoustic

noise, further degrading the estimates. Here, we taper

the data to zero to facilitate FFT processing, stopping

short of ranges where the ambient noise is an issue, even

when ships or other noise sources are present.

The LRPADS provides both surface waves and the

underlying surface flows over a sizeable area, with con-

tinuous coverage in both space and time. The resolution

is sufficient to clearly define waves with periods longer

than 5 s, and the area is large enough that with 10 m s21

winds the equilibrium peak waves (7-s period) can be

observed for many periods: waves with phase speeds of

10 m s21 have group speeds of 5 m s21, with a 1-km

aperture, it would take 200 s (or 28 wave periods) for

a group to cross the area. The ability to track many wave

groups with such precision over such long times is fairly

novel, particularly on the open ocean.

The continuous 3D coverage (2D space and 1D time)

permits clean separation of the observed variability into

different dynamical phenomena, with a variety of methods

to choose from (e.g., see Smith 2002, 2008). The approach

taken here is to filter by phase speed. Surface waves are

the fastest modes measured and so are easily separated

from embedded flow features, such as Langmuir circu-

lation, fronts, or the previously mentioned Eulerian re-

sponse to the passing wave groups themselves (as noted

in Smith 2006b, the last in particular depends on the full

3D coverage for accurate separation). After this sepa-

ration, the well-constrained characteristics of surface

gravity waves permit the directional response of the

LRPADS (which provides only one component of sur-

face velocity along each beam) to be largely compen-

sated for (described in section 3). This permits surface

wave propagation and evolution to be considered in-

dependent of angular position across the measurement

area.

As noted, a previous analysis of this dataset revealed

a surprisingly prominent Eulerian response to passing

groups (Smith 2006b), which also provides motivation to

consider the wave groups themselves, as we do here.

Specifically, we consider the linear dynamics and evo-

lution of the wave groups as observed, which can be

quite short in the along-wave direction (about 1 wave-

length), yet remarkably persistent, having been observed

to last over 17 wave periods. We shall consider a partic-

ular representative example in some detail to help de-

termine the controlling dynamics.

A useful way to view wave propagation is via contours

of velocity plotted on a time–range (T–R) plane (‘‘T–R

plot,’’ as in Fig. 2) Distinct wave groups appear as di-

agonal bands of higher-amplitude velocities, within which

the phase speed can be perceived as the more steeply

angled crests and troughs of the waves. The group circled

in Fig. 2, which persists for about 120 s, is our chosen

example. Since the waves composing the group have

about a 7-s period, this corresponds to about 17 wave

periods.

The spectrum of waves has several peaks in direction

and frequency, a couple of which confuse the picture yet

do not interact with the wave groups of interest. For

clarity, the data in Fig. 2 were filtered for outgoing

(roughly downwind) waves only, suppressing some large

upwind-propagating swell (the full 2D wavenumber

spectrum is shown later).

3. Data processing methods

a. Fourier transform processing: Time–range to
frequency–wavenumber

A fast Fourier transform (FFT) in time yields both

positive and negative frequencies that are complex con-

jugates of each other and so redundant. The FFT can be

used to generate an imaginary component of the original

times series by setting all negative frequencies to zero,

increasing the positive frequency coefficients by the fac-

tor of 21/2 to preserve the variance, and then doing the

inverse transform. The result yields both the original se-

ries (as the real part) and a Hilbert transform (as the

imaginary part; see, e.g., chapter 13 in Bendat and Piersol

1986). This synthesized imaginary part effectively incor-

porates temporal information into each spatial snapshot,

so the direction of propagation of each wavenumber

component (e.g., from a 2D spatial FFT) is unambigu-

ous: for an input (real) cosine in space, the synthesized
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imaginary part can be either 2sine (corresponding to

waves going one way) or 1sine (going the other way)—

the temporal evolution determines which (or how much

of each). This permits each snapshot to be processed

independently, with no ambiguity in direction, as would

occur with only a single original (all real) snapshot.

Working from the temporal FFT data (frequency

transform), a spatial FFT can be performed along each

sonar beam, using a finite-range interval of dependably

good data, which we take here as 100–950 m (this rather

short end point insures that the signal will dominate

even over the occasional noisy boat traffic). The result is

a two-dimensional (2D) Fourier transform from time

and range to frequency and wavenumber (see Fig. 3). A

notable feature of this 2D spectrum is that the upper half

(outgoing waves) has a much larger area of high wave

energy; these correspond to approximately downwind-

traveling waves. Further, it is pretty clear that the branch

of wave energy in this upper half, which extends past

the Nyquist frequency, corresponds to genuine higher-

frequency waves (the Nyquist frequency is that for which

there are 2 samples per cycle; with 2.5 s per sample, the

Nyquist frequency is 0.2 Hz). The downwind surface

wave variance is very large, even in the high-frequency

‘‘tail’’ of waves beyond 0.2 Hz. It is important to prevent

this tail of energy in the upper-right quadrant of Fig. 3

from aliasing into the lower-left quadrant of the spectrum,

where it would be misinterpreted as lower-frequency

upwind-traveling phenomena of some sort. To prevent

this, we cut the lower half off short of the Nyquist fre-

quency, along the solid, blue line shown in Fig. 3. Smith

(2006b) discusses the option of keeping the upper-high-

frequency tail beyond the Nyquist frequency by artifi-

cially doubling the frequency range and ‘‘dealiasing’’ to

favor this downwind branch (e.g., along the continuation

of the solid, blue line); however, in the present analysis,

the important wave periods are on the order of 7 s, so this

is unnecessary. As noted in Smith (2006b), it appears we

could examine waves in this way beyond 0.3 Hz, provided

all the conditions are met to say with confidence that the

correct ‘‘branch’’ is positively identified (e.g., this would

not be true of a sonar beam directed anywhere near

perpendicular to the wind).

b. Correcting for the directional response of the array

Each sonar beam measures just the along-beam (ra-

dial) component of the surface velocity. As deployed in

HOME-NF, this corresponds to a horizontal component

of the orbital velocities of the waves, sampled along the

line of the beam. The response to a plane wave propa-

gating at an angle u relative to a particular beam is re-

duced by cosu compared to a similar wave traveling

straight along the beam (either directly toward or away

from the instrument). To estimate wave elevations, for

example, requires that we correct for this to the extent

possible. Here, we outline a method to apply a correc-

tion using the wavenumber–frequency (k–f ) transform

of the time–range data from a single beam at a time. The

FIG. 2. An example T–R plot of surface velocity along a single sonar beam. Note the appearance of

wave groups (groups of higher-amplitude waves), such as the one circled. This group, which lasts about

120 s (from t ’ 110 to 230), is selected for closer study.
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method is essentially as described by Smith (2006b), with

a minor improvement minimizing the expected error.

We begin with the 2D frequency–wavenumber ( f–k)

transform from the time–range data of a single beam at

a time; subsequently, we will combine information from

all the beams to get the complete 2D spatial picture. The

components Ur( f, kr) are the Fourier coefficients from

the time–range FFTs of the observed radial velocities

ur(t, r) along a given sonar beam. Then, in the surface

wave part of the spectrum, at each frequency f the radial

component of a wavenumber is kr 5 kf cosuk, where kf 5

k( f) is the magnitude of the true wavenumber, which we

will estimate from the linear dispersion relation, and uk

is the angle of propagation relative to the beam of the

wave corresponding to kr. In the presence of a mean

current V, the deep-water linear dispersion equation for

surface gravity waves is

v 5 (gk)1/2
1 kV cos(u

k
� u

V
) (3.1a)

or

f 5
gk

2p

� �1/2

1kV cos(u
k
� u

V
), (3.1b)

where f is the wave frequency in Hz (and v is in rad s21),

k the wavenumber magnitude in cycles per meter (cpm;

and k is in rad m21), V is the mean current magnitude,

and uV is the direction of the current (also relative to the

beam direction). This can be inverted for k( f) in a form

that is well behaved as V / 0 (Smith and Bullard 1995):

k
f
5 k( f )

5 (8pg�1) f 2f1 1 [1 1 (8pg�1)f V cos(u
k
� u

V
)]1/2g�2.

(3.2)

In general, the currents are small compared to the wave

phase speeds. For example, a 3-s period wave has a

phase speed c 5 vg21 5 2pfg21 of about 4.7 m s21,

while the typical currents are 0.20 m s21 or less, so V/c ’

0.04. In terms of the small normalized current V̂ [ V/c,

(3.2) simplifies to

k
f
’ k

0
[1� 2V̂ cos(u

k
� u

V
)], (3.3)

where k0 5 (2pg21)f is the zero current value for k.

Although this correction is small, it is large enough to

see on the k–f spectral plots (see Fig. 3). It is also cu-

mulative and so becomes noticeable after the waves

propagate for 100 s or more, as we hope to test here.

To estimate, for example, wave elevations from the

measured radial component of velocities Ur ’ U0 cosuk

FIG. 3. A typical k–f spectrum from the LRPADS data. (left) The complete spectrum with 1 and 2 frequencies and aliasing. Note the

straight ridge of variance at a slope corresponding to 5 m s21. (right) The surface wave–related part of the spectrum, which has maxima

along a curve that is roughly quadratic in f. The red curves correspond to linear dispersion, while the black curves are corrected for

advection by the observed mean current. The outgoing waves (upper half) go more nearly downwind, so the wave variance is larger on that

half of the spectrum. The bottom half (incoming waves) was zeroed out to make Fig. 2. The wave part on the right was partially corrected

for the directional response (see text), so the wave variance extends closer to zero wavenumbers than in the left (look particularly near

0.1 Hz). To prevent aliasing of the high-frequency waves into slower upwind-propagating bogus variance, the lower half is cut at the solid

blue line rather than at the Nyquist frequency (0.2 Hz). In circumstances where there may be strong incoming waves as well as outgoing,

we would cut the upper half in a similar way, along the blue dashed line.
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(where U0 is the true wave orbital velocity), Ur must be

effectively divided by the response cosuk 5 kr/k; how-

ever, this is singular near the kr 5 0 axis. In Smith

(2006b), a weighting function was introduced to tame

this singularity. Here, we improve on this by forming an

optimal estimate of Ur /cosuk in the presence of noise.

Let the observed velocity be the sum of the true value

plus a uniform variance zero-mean noise term « (the

Doppler estimation noise is distributed uniformly on the

f–k plane, so this is appropriate):

U
r
5 U

0
( f , k

r
) cosu

k
1 « 5 2p fA( f , k

r
)

k
r

k
f

 !
1 «,

(3.4)

where kf is the wavenumber magnitude from dispersion,

kr is the wavenumber component as measured along the

sonar beam under consideration, uk is the angle between

the beam direction and the wave propagation direction,

and A( f, kr) is the (complex) elevation amplitude of the

component with frequency f and along-beam wave-

number component kr. Then, we seek an optimal weight

b such that the estimate Û [ bU
r
( f , k) has minimal

error relative to the true U0 (which we also know is in the

direction of wave propagation at the crests):

h Û �U
0

�� ��2i5 hÛ2i � 2hÛU
0
i1 hU2

0i5 minimum.

(3.5)

The result (setting the variation with respect to b to zero)

yields an optimal estimate:

b 5
q

q2 1 h«2i/hU2
0i

, (3.6)

where q 5 cosuk 5 kr /kf. The orbital velocity variance

hU0
2i is related to the elevation variance as U0

2 5 v2A2( f) 5

(2pf )2A2(f ), so if the elevation frequency spectrum

has the form hA2( f )i } f 25 (e.g., as in the ‘‘equilibrium

range’’ of Phillips 1958), then hU0
2i } f 23. To avoid

specifying both the waves’ orbital variance and the noise

level explicitly, we instead specify a ‘‘critical frequency’’

fC at which «2 5 U0
2( fC). Then, since hU0

2i } f 23, it fol-

lows that h«2i/hU0
2i 5 ( f/fC)3. Since the peak waves

generally exceed the extrapolated value of this ‘‘equi-

librium-range’’ level (e.g., Hasselmann et al. 1973), this is

a conservative estimate of the signal-to-noise ratio for

the peak wind waves of interest here, which is accept-

able. We estimate the critical frequency by noting where

the surface wave–related ridge on the measured k–f

spectrum fades into the background. For example, on the

upper (downwind) branch in Fig. 3, this occurs near f 5

0.32 Hz. In terms of this critical frequency, the optimal

weight is

b 5
q

q2 1 ( f / f
C

)3
. (3.7)

Although each individual beam is ‘‘blind’’ to waves

propagating at a right angle to the beam direction, the

beam directions over the whole field of view vary over

448, so the array taken together can detect waves going

in any direction to some degree.

A useful way to characterize the resulting directional

response is to specify where the practical weight b is just

half as large as the ideal weight 1/q 5 1/cosuk. This is just

where ½ 5 bq 5 q2/[q2 1 ( f/fC)3], or q 5 ( f/fC)3/2. For

example, with fC 5 0.32 Hz, the 7-s-period group waves

have a critical-frequency ratio f/fC of about 1/2.25 5

(1/1.5)2, so the response is half as large as ideal at q 5

(1.5)23 or for uk about 178 short of 908. At this frequency

then, waves propagating within 738 of parallel to the axis

of the pie (the center angle) have at least half the beams

with a response factor of better than ½. Here, the focus is

on waves and groups propagating roughly downwind,

hence within 458–608 of being directed along the axis of

the pie. Thus, for this study no additional correction is

applied beyond the previously described optimal weight.

The optimal weights can be defined separately for the

waves propagating away (kr positive) versus toward R/P

FLIP (kr negative). This permits choosing different values

of fC for downwind versus upwind waves. Also, note that

the sign of approaching waves’ orbital velocities are

reversed (in accordance with cosuk being negative), so in

all cases the resulting estimate Û corresponds to a veloc-

ity that is directed toward the estimated true wavenumber

direction at the crest. Thus, for example, dividing the

estimated Û( f, kr) by the corresponding frequency v 5

2pf results in proper estimates of elevation z( f, kr).

When working from a single snapshot, the frequency is

recovered from the wavenumber via the dispersion re-

lation in (3.1).

Figure 4 shows the example velocity fields corrected

for the directional response, with the actual velocity field

(real part of the complex velocity) on the right and the

envelope (complex magnitude) on the left.

4. Linear propagation model

As noted, the ‘‘positive frequency only’’ FFT process-

ing incorporates directional propagation information im-

plicitly into the spatial maps of (now complex) velocity

in each snapshot (time sample). Thus the 2D spatial map

of complex velocities can be processed independently for

each snapshot without directional ambiguity.

The simplest model for wave evolution is based on linear

propagation of each wavenumber component (see, e.g.,

section 11.2 in Whitham 1974). Here, this is implemented
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FIG. 4. A series of snapshots showing wave propagation. (left) The wave envelope

(plotted negative for better color) and (right) the orbital velocity field. The black arrows

show wind direction and speed (;10 m s21), and the red show the mean surface current

(;8 cm s21). (a) The ‘‘initial snapshot’’ for the linear propagation test (see text), this

shows both a ‘‘slant-wave group’’ (near 500-m range) and a ‘‘collinear wave group’’ (near

200 m). Note that (right) the wave crests in the lower group are nearly parallel to (left) the

envelope, while the upper group has crests slanted at an angle with respect to the envelope

orientation. (b) 35 s later (5 wave periods), the lower group has dispersed, while the upper

group continues. (c) After 70 s (10 wave periods), the slant-wave group still persists. The

orientations of the images have all been rotated ;108 so the long dimension of the per-

sistent group is aligned with y (left to right).
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with complex sinusoidal behavior in both time and space:

the frequency is deduced via linear dispersion from the

wavenumber, which is derived from a spatial 2D FFT of

the (complex) velocity field. As before, the area-mean

current is incorporated in the dispersion relation for f(k)

[Eq. (3.1b)]. Although this advection is small, it can have

a noticeable effect over the 100-s life span of the wave

groups: a 20 cm s21 current would result in a 20-m offset

after 100 s, a significant fraction of the order of a 70-m

group length.

To implement linear propagation, we start with an

initial snapshot at some time t0 (e.g., the top panel of

Fig. 4), take the 2D spatial FFT of the complex veloci-

ties, propagate each component forward in time by

multiplying each complex wavenumber component by

the corresponding factor exp[2i2pf(k)(t 2 t0)], and in-

verse FFT. We then compare the propagated field with

the observed one at later times (we could also compare

earlier times). Figure 5 shows both the propagated and

observed velocity fields (real parts), while Fig. 6 shows

the corresponding wave envelopes (complex magni-

tudes), all starting from the initial snapshot shown in the

top panel of Fig. 4. Only the area where linear propa-

gation has a fair chance should be compared (i.e., ever

more to the upper-left corner, since zeroes propagate in

from the bottom and right).

In both the real data and the linear propagation results,

we observe that there are two kinds of wave groups:

FIG. 5. Comparison between (left) linear propagation and (right) the real observed propa-

gation after (top) 5 wave periods and (bottom) 10 wave periods. The initial snapshot is shown in

Fig. 4a. The propagated data look like the real data in the upper-left areas, following the

persistent wave group. The lower-right part of the pie becomes calm in the linear propagation

model as zero-amplitude waves propagate into the field of view through the boundary. Arrows

as in Fig. 4.
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1) One kind of group (seen near 200-m range at the

bottom of the pie in Fig. 4) disperses quickly. The

waves inside the group are aligned with the envelope

(i.e., the crests are roughly parallel to the long axis of

the envelope).

2) The other kind of group (starting near 500-m range in

Fig. 4) has an envelope narrow in ‘‘x’’ (vertical) and

long in ‘‘y’’ (left to right), but has waves inside that

propagate at a finite angle u with respect to the group

envelope orientation and persists.

We focus on the latter, the ‘‘persistent wave group.’’

What accounts for the endurance of this group? There

are three kinds of explanations (not mutually exclusive):

1) the superposition of independent wave components

obeying linear dispersion, but with waves that are slanted

at an angle with respect to the group envelope (a ‘‘slant-

wave group’’), 2) nonlinear dispersion and/or wave–wave

interactions, and 3) advection and straining by the un-

derlying forced response.

As seen in Figs. 5 and 6, the difference between the

propagated velocity fields and the observed velocity

fields are small. For the persistent group, we find that the

velocity variance matches to better than 10% even after

10 wave periods (70 s), using a 400-m square box cen-

tered on the group. Further, there is no apparent bias in

the phase of the propagated waves versus the observed

ones (which is easy to quantify with complex values)—

the errors appear more or less random. Thus, the real

propagation speed matches the linear value to within

FIG. 6. As in Fig. 5, but showing the wave envelopes (plotted with the negative color scale,

consistent with Fig. 4). (left) The linear propagation results and (right) observed waves after

(top) 5 and (bottom) 10 wave periods show good agreement in the upper-left area where the

propagation has a fair chance. The initial snapshot is shown in Fig. 4a. Arrows indicate wind

(black) and current (red), as in Figs. 4 and 5.
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our resolution (say within a half a range bin, or 63.75 m

over the 70-s propagation time, or 5 cm s21). The prop-

agated wave group envelope remains as tight as the ob-

served one, indicating linear dynamics are sufficient to

explain these short, steep, and persistent wave groups.

The first explanation is the simplest and fits the data we

have, so it is preferred. As an aside, the second and third

explanations—the nonlinear dispersion correction and

advection by the forced group response, respectively—

have opposing tendencies and so (partially) cancel. This

may help explain why linear dispersion works so well,

even after the times long enough to see subtle errors in

the propagation speed. This also means that nonlinear

interactions may still play a role in the group persistence;

therefore, they are not ruled out.

We next use some characteristic values of this ob-

served persistent group to examine and understand its

behavior in terms of a simplified (but more generalized)

model wave group.

5. Group evolution and dispersion

Consider the linear propagation of a model wave

group in which the waves composing the group are at an

angle u relative to the group envelope orientation—a

slant-wave group. First, orient the axes so the long di-

mension of the observed group lies parallel to the y axis

(1y to the left), the group is short in the x direction (1x

upward), and the angle u is reckoned from the x axis

(1 angle is to the left of up).

To help introduce the concept, first consider a simple

sum of two waves of amplitudes a and b (e.g., for eleva-

tion), with slightly different values of the x component of

(radian) wavenumber kx, no difference in the y-component

ky, and a corresponding difference in frequency v:

z(x, y, t) 5 Refaei(k
x
x1k

y
y�vt)

1 bei[(k
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Taylor expanding Dv ’ Dkx(›v/›kx) 5 Dkxcx
g, the en-

velope factor on the second line is seen to propagate at

roughly cx
g [ ›v/›kx:

1 1
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Since the real wave group envelope is much narrower in

x than y, we anticipate that the wavenumber spread is

dominated by Dkx, similar to this simple superposition

example (where Dky / 0). Even though the waves

propagate at an angle to the x axis, the group envelope is

long in y and short in x, and its major axis is roughly

parallel to the y axis, so Dkx� Dky.

What is observed in the data is a wave group enve-

lope that propagates at about 5 m s21 in the x direction

(vertical in Figs. 4–6; however, note that the group

does drift a bit to the left as well). In all these figures,

the pie plots are rotated (;108) so that the persistent

wave group’s envelope is oriented with the long di-

mension parallel to y, consistent with the axis orien-

tation defined previously. The group length in the x

direction is about 70 m, roughly 1 wavelength at the

center wave period of about 7 s, and is about 5 times

that in the y direction.

We shall start with a model wave group and estimate

how quickly it disperses with time. It’s useful to first

define and examine a curve on the wavenumber plane

showing all waves that have an x component of group

velocity cx
g matching the observed group propagation

speed in that direction. Figure 7 shows the full 2D

wavenumber spectrum corresponding to the data shown

in Figs. 4–6 for an area immediately surrounding the

persistent wave group (400 m by 400 m, centered on the

group), including upwind and crosswind swell peaks that

were filtered out for Figs. 4–6 (where they would have

confused the view of the wave groups of interest). Figure 7

also shows a roughly oval curve representing the wave-

numbers for which cx
g 5 5 m s21. The center wave-

number of the group is assumed to lie near this curve.

The spread in wavenumber is dominated by Dkx (or Dkx

in cpm, as annotated in the figure). To make our initial

estimates, we set Dkx and Dky using length scales esti-

mated from Fig. 4:

Dk
x

5
2p

L
x

and Dk
y

5
2p

L
y

, (5.3)

where Lx ’ 70 m and Ly ’ 5Lx ’ 350 m.

Since the x-wise width of the group envelope Lx is

roughly a wavelength, it follows that Dkx ’ jkj. The

spread of peaks in the x direction in the actual estimated

2D wavenumber spectrum (Fig. 7; excluding upwind

waves) is consistent with this. Note too that the ‘‘center

wavenumber’’ is closely aligned with the wind direction.

It might be more appropriate to think of the group en-

velope as being ‘‘slanted’’ rather than the constituent

waves. As seen in the propagation exercise, the group

moves up and to the left (Figs. 4, 5, and 6), consistent

with going directly downwind.

To estimate a group dispersal time, we take the time

needed for the spread in component group velocities to

separate the fastest and slowest components by the

corresponding distances Lx or Ly. Then the ‘‘x wise’’ and

‘‘y wise’’ dispersal times are roughly
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In the observed groups, the angle of the waves relative to

the group envelope is less than 308 or so; thus, the con-

tribution of ky to jkj (and to jcgj) is less than half that of

kx. Then, since Dky is about 5 times smaller than Dkx, the

net effect of Dky on cg should be roughly 1/10th that of

Dkx, justifying its neglect. Thus, we assume the main

cause of both Dcx
g and Dcy

g is the spread Dkx in kx.

To estimate the effect of a spread Dkx about a center

component value kx0, we could Taylor expand from kx,0

to kx,0 6 ½Dkx—the error in Dcx
g keeping just the linear

term should be of order 20%. However, adding this to

the 10% error already incurred for ignoring Dky would

make the result only marginally believable. Moreover, it

is straightforward to compute the difference directly:
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where g is gravity, and advection by the mean current

(which does not depend on k) is ignored. To be useful,

these have to be recast in terms of the prescribed vari-

ables: the center wave component angle u and the

FIG. 7. The 2D wavenumber spectrum corresponding to the times illustrated in Fig. 4, using

a box 400 m on a side centered on the persistent group. The roughly oval red curve shows all

waves that have a group velocity component in the x direction of 5 m s21. Also shown is the

wind direction, the Dkx corresponding to the spread over the three visible downwind peaks, and

the boundaries of the directional filter used for Figs. 4–6 (solid, black lines, roughly 6608 about

the wind direction).
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observed x-wise group speed C 5 c
g
x,0 5 5 m s21 (de-

fined as fixed; note this applies to the center wave-

number: when displaced by ½Dkx, the value will usually

differ from this). The angle of propagation u is defined

as above, so 08 is upward (parallel to the x axis), with

positive angles increasing counterclockwise, so 1908

points along the 1y axis. Then, for the center wave

component, c0
g
5 C/cosu, k0 5 g/4(c0

g
)2 5 g cos2u/4C2, so

k
x,0

5 k
0

cosu 5
g cos3u

4C2
(5.10)

and

k
y

5 k
0

sinu 5
g cos2u sinu

4C2
(5.11)

(note that the assigned spread Dkx in kx is independent

of the angle). Equations (5.10) and (5.11) describe the

‘‘roughly oval curve’’ shown in Fig. 7 (labeled ‘‘cx
g 5

5 m s21’’).

The results for Dcx
g and Dcy

g versus angle u (with con-

stant spread Dkx 5 2p/70 m and C 5 c
g
x,0 5 5 m s21) are

shown in Fig. 8. A striking feature of this is that the x-wise

dispersal Dcx
g goes to zero at about 278 (actually 26.98). At

that angle, only the y dispersion acts to break the group

up, so if it were infinitely long in the y direction it could

persist indefinitely (a ship’s wake is a good conceptual

model of this limiting case). For this amount of spread

Dkx, a rough rule of thumb is the spread in the x com-

ponent Dcx
g for u 5 08 is about ½C (actually 0.53C), and

the spread in the y component Dcx
g roughly equals C

(actually 0.97C) at the x component zero crossing angle

u ’ 278 (but note these values change with Dkx/jkj).

In general, both components of the group dispersal

are involved, so we need to assign a shape to the model

group to interpret cases where Dcx
g and Dcy

g are com-

petitive. A reasonable and workable shape is an ellipse,

with a major axis of length Ly parallel to the y axis and

minor axis of length Lx. In this case, simply normalize the

x and y ordinates by the respective group length scales:

x* 5
x

L
x

and y* 5
y

L
y

. (5.12)

Then the normalized group boundary is a unit circle, and

the dispersal time is just the time it takes the normalized

spread in group velocity to go a unit distance in any

direction:
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and the net dispersal time is
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Figure 9 shows the dispersal times Tx, Ty, and Td versus

slant-wave angle u for the case at hand (C 5 5 m s21,

Lx 5 70 m, Ly 5 5Lx). The longest net dispersal time Td

occurs very near the zero in Dcx
g, so the time is essentially

set by the value of Dcy
g there. Using the ‘‘rule of thumb’’

values yields Ly/C 5 350/5 5 70 s (or 10 wave periods),

compared to the explicitly calculated maximum value of

72.9 s. For any case where Ly � Lx, then we can esti-

mate the dispersal time as roughly Ly/C (for this amount

of spread Dkx). In contrast, a collinear group would

disperse in about 2Lx/C ’ 28 s (or four periods), versus

the explicitly calculated 26.4 s.

FIG. 8. The dispersal rates in the x and y directions (Dcx
g; solid

line, and Dcy
g; dashed) due to the spread in the x component of

wavenumber (Dkx ’ 2p/Lx) vs slant-wave angle u. Note that Dcx
g

goes to zero at about u 5 278, at which point Dcy
g is comparable to C

(5 m s21), the x propagation speed of the groups.

FIG. 9. The dispersal times in the x and y directions (Tx and Ty),

and the net dispersal time for an elliptical group (Td) vs slant-wave

angle u. The maximal net dispersal time is roughly set by the y

dispersion Ly/Dcy
g at the angle where Dcx

g goes to zero.
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These dispersal estimates correspond to the time it

takes a well-formed group (maximally compact) to dis-

perse to something like twice the area. Since linear

dynamics are time reversible, the time for the groups to

coalesce would be the same, so the total estimated du-

rations of each kind of group (from dispersed to compact

to dispersed again) are twice the above. Considering

this, a collinear group would endure for 8 wave periods,

while the slant-wave group would persist for a bit over

20. The slant-wave group endurance is consistent with

the observed group, which persists for 17 wave periods.

The fact that the phase speed of the waves comprising

the group matches the wind speed suggests these are

related to the wind. This leads to the questions ‘‘when do

such short persistent groups occur?’’ and ‘‘how fre-

quently would one encounter them?’’ To address these

questions, we return to the group-forced response as

a possible proxy measure.

6. Group-forced response and the occurrence of
short persistent groups

Examination of these short, steep, and persistent wave

groups was motivated by the study of Smith (2006b),

which in turn was motivated by the occurrence of a dis-

tinctive ‘‘ridge’’ observed in the k–f spectra of surface

velocities well away from the surface wave dispersion

curve (e.g., as seen in Fig. 3). The ridge appears along

a line corresponding to about 5 m s21 on the k–f plane.

Since wind waves with phase speeds matching the wind

speed of 10 m s21 would have group speeds of 5 m s21,

Smith (2006b) was inspired to examine whether such wind

wave groups were related to this variance. Smith (2006b)

found that the physical location and strength associated

with the ‘‘5 m s21 variance’’ seen in the k–f spectra cor-

responds well with that of the waves’ Stokes drift (though

the response is larger than predicted by theory).

Here, we focus on the 5 m s21 spectral ridge as a

possible proxy for the occurrence of short, steep wave

groups. The coherence between Stokes drift and the

Eulerian response corresponding to this ridge was found

by Smith (2006b) to be between 20.3 and 20.4, which is

well above the 95% significance level. As we shall see,

this level of coherence is consistent with a perfect ‘‘signal’’

correlation together with the expected Doppler noise of

the velocity estimates for the configuration of the de-

ployment. The correlation supports a one-to-one relation

(actually 21 to 1) between the resolved wave-filtered

Eulerian current response at the surface and the Stokes

drift of the wave groups there (both minus the means).

The length of the ridge on the f–k plane (Fig. 3) verifies

both the shortness of the forcing groups (which sets the

high-wavenumber cutoff) and the persistence (which

sets the low-frequency cutoff). Note that consistent with

the dynamics thought to play a part, this response em-

phasizes especially wave groups that are both steep and

short. Since this ‘‘5 m s21 variance’’ is easy to extract,

we use it to assess how common such short persistent

groups were over 9 days surrounding the observational

segment shown. Visual inspection of a random sampling

of these events on the full time-evolving 2D spatial plane

verifies that the wave groups are similar, with the con-

stituent waves at a finite angle (which varies a little)

relative to the envelope of the group. The 9 days ana-

lyzed in this way encompass the example shown and

have winds varying from 0 to 10 m s21.

Figure 10 shows the wave-filtered surface velocities

for the case examined. A significant ‘‘slash’’ of negative

velocity (current toward R/P FLIP) is located along the

same line on the time–range plane as the short persistent

surface wave group circled in Fig. 2, consistent with Smith’s

earlier finding (which was for a different data segment,

on a different day than that shown here).

Based on these strong correlations, we conclude that

the variance along the 5 m s21 ridge in k–f spectra

formed from each 8.5-min data segment is a reasonable

proxy measure of the strength and frequency of the oc-

currence of compact persistent groups (we shall revisit

this later). To estimate this variance, we mask the k–f

spectrum over two separate 5 m s21 bands, one going

downwind (the proxy for short wave groups), and another

going upwind (a ‘‘control,’’ since we expect no such

upwind-propagating groups). Figure 11 shows an ex-

ample of a k–f spectrum with outlines of the two masks.

The downwind mask (D5) and upwind mask (U5)

were applied to the sequence of data files from 1430 HDT

26 September to 1725 HDT 4 October 2002. The results

(Fig. 12) show D5 variances that correspond well with

the wind, fading to near the noise floor when the wind is

calm for a few hours, and rising shortly after the onset of

10 m s21 winds.

Given the area of the masked region of the spectrum

and the expected Doppler noise level, the estimated re-

sponses can be compared to the expected noise floor. The

expected rms Doppler noise DV can be written in terms

of the speed of sound cs (’1540 m s21), the center fre-

quency f0 (50 kHz), the sample interval ts (0.1 ms), the

length of the repeat sequence code L (23 samples), the

number of samples averaged in range Na (100), and

the number of ‘‘overlap samples’’ (M 2 1)L, where M

(59) is the number of code repeats transmitted (Smith

and Pinkel 1991):

DV 5
c

s

4p f
0
t

s

1 1 N
a
/2N

0

LN
a
N

0

� �1/2

’ 4.25 cm s�1. (6.1)
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Two further adjustments are needed: 1) in practice, the

empirical noise variance is typically about double this

value (increasing the rms by 21/2), and 2) the received

signal is filtered to 70% full bandwidth, which has the net

effect of reducing L by a factor 0.7 in the above equa-

tion. The resulting adjusted estimate of the rms Doppler

noise is 7.2 cm s21.

The D5 and U5 masks each capture about 1/25th of the

total spectral area (actually 1331/32 768), so the Doppler

noise is expected to contribute about 2.1 (cm s21)2. As

seen in Fig. 12, this is consistent with both the D5 and U5

results over the first day or so, and then as the wind rises

the ‘‘control’’ U5 increases to about 3, while the group-

proxy D5 increases to between 4 and 7 (cm s21)2. Since

some genuine surface activity (turbulence) is expected

in the presence of wind, the indication is that the control

U5 is a fair measure of the noise floor, and the difference

D5 2 U5 is a good measure of the group-forced response

signal, as desired.

Overall, the downwind 5 m s21 variance (D5) increases

to about 2–4 (cm s21)2 larger than the control (U5) as

the wind increases (to about 10 m s21). A delay is also

seen, on the order of ½ a day between the wind rising

and the response appearing. To check again on how well

these proxy results match, we made a visual assessment

of wave groups from a large selection of the T–R plots

and found the correspondence to be quite good (as ex-

pected from the correlation and transfer function anal-

ysis): whenever D5 2 U5 is bigger than 2 (cm s21)2 or so,

there are short persistent groups evident in the T–R

plots. Two ‘‘spikes’’ are seen in the estimates, one near

1800 HDT 26 September and the other near noon on 3

October. Upon examination, the latter appears to be a

result of some very loud ambient noise, while the former,

on the evening of 28 September, represents an excep-

tional collection of short, steep wave groups (see Fig. 13).

Next, we reconsider the coherence levels observed by

Smith (2006b), with the spectral noise level estimate

(from U5) in hand. The wave filter used in that analysis

leaves intact about 2/3 of the spectral area (21 972/32 768

so the Doppler noise estimate yields a contribution of

about 35 (cm s21)2, while the group-forced response

estimate (D5 2 U5) for that example yields about

4 (cm s21)2. Thus, the maximum coherence magnitude

possible, even if the 4 (cm s21)2 signal were perfectly

correlated with the waves’ Stokes drift, would be only

(4/39)1/2 5 0.32, which is consistent with the reported

level. It appears that the true signals (wave-filtered re-

sponse and Stokes drift variability) must be very tightly

correlated indeed.

The typical contribution to D5 2 U5, or ‘‘5 m s21

downwind variance,’’ from the Eulerian wave group

FIG. 10. T–R plot of the filtered (nonwave) surface velocities over the same T–R intervals as Fig. 2. The

circled blue–green slash matches the location of the persistent wave group circled in Fig. 2. This is the

surface signature of a forced response to the wave group, which is steep, short, and persistent. This kind of

response produces the distinctive ridge of high variance in the corresponding k–f spectra along a straight

line corresponding to a constant speed of roughly 5 m s21 away from R/P FLIP (see Figs. 3 and 11).
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responses in each data segment is about 3 (cm s21)2,

while the actual ‘‘slashes’’ have velocities on the order

of 10 cm s21; therefore, it appears that such a response

is present about 1/33rd of the time. Since the duration of

these groups is on the order of one wave period (57 s),

this would imply a group is typically encountered about

once every 4 min or so. This is consistent with our visual

estimate of 2–3 times per data segment (8.5 min); how-

ever, some segments have quite a few more (e.g., see Fig.

13), whereas others have none.

7. Discussion

The fact that the short persistent groups are only seen

when the wind blows (;10 m s21, here) reinforces the

idea that the waves involved are associated with the wind.

For the wind direction encountered (blowing from the

east), Oahu blocks waves coming from the southeast (see

Fig. 1), so the longer waves are expected to be biased to-

ward those going to the left of the wind direction (as shown

in Fig. 7, the 2D wavenumber spectrum showing the di-

rection toward). Shorter waves develop more quickly and

hence are more nearly parallel to the wind. This wave-

length directional ‘‘twist’’ is in the right sense to favor wave

groups of the form seen, with a low-wavenumber peak to

the left of the wind, a wind wave peak closer to the wind,

and a higher-wavenumber peak continuing the trend. This

is also a plausible explanation for the ‘‘handedness’’ of the

observed groups—almost all have waves slanted in the

sense of the example shown in detail (constituent waves

oriented to the left of the direction of the envelope), and

none were found oriented the other way. While upwind

sheltering by an island or coast will certainly introduce this

kind of spectral directional twist, it can also result from

veering winds (e.g., as noted in Smith and Bullard 1995), so

this condition can be met in open ocean conditions too.

The limiting case Ly / ‘ is conceptually like one side

of the wake of a boat that has moved at a constant speed in

a straight line. We know the leading edge of such a wake

(which makes a 19.58 angle with respect to the boat’s path)

remains well formed, with the largest wake waves con-

fined to a narrow envelope near the leading edge (e.g., see

Brown et al. 1989). The waves within the wake are ori-

ented at an angle to the wake envelope, consistent with the

present results. Naturally, the question arises of whether

the observed persistent groups are remnants of actual ship

FIG. 11. The example k–f spectrum showing the two ‘‘5 m s21’’ masks. We focus on the

region of the downwind-directed 5-m s21 ridge (D5; black outline) as a proxy for the strength of

the forcing wave groups in comparison to the control case (U5; red dashed), which selects

upwind-directed responses and is expected to reflect the noise level of the spectral estimates.

An especially strong group or several moderate ones may produce an equivalent signal. This

spectral response emphasizes groups that are steep, short, and persistent.
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wakes. The angle of the wake to the ship track implies

a ship speed about 3 times the speed of advance of the

wake in the direction orthogonal to the wake’s leading

edge, so this would require ships going 15 m s21, which

are rare. This high speed and the frequency of occurrence

of such groups (see section 6) appear to rule this out. Also,

the fact that the phase speed of the waves comprising the

group matches the wind speed, and that they only appear

when the wind is blowing, suggests that they are related

to the wind, not shipping.

There a few ways these persistent wave groups may be

important. 1) The unusually large group-forced response

FIG. 12. (top) The wind (black), ‘‘downwind 5 m s21 variance’’ (D5; red), and ‘‘upwind

5-m s21 variance’’ (U5; green) over 9 days. At the start of this period, the wind was calm, and

both D5 and U5 are near the expected noise level. Shortly after the wind rises, D5 increases

more than U5 does. (bottom) Wind (black) and the difference (D5 2 U5), thought to be

a better indicator of the signal portion of the D5 variance. Correspondence with the wind is

strong, with a delay on the order of ½ day. The highest peak in D5 2 U5 occurs just after the

wind rises, late on 28 September.
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has yet to be explained and could be of wider significance.

2) The waves in these groups are probably breaking, since

they are among the steepest (though certainly many other

waves are breaking as well, due to random superposi-

tion). The existence of a persistent line of breakers, with

an envelope oriented some 208–308 off the crosswind

direction, could result in some large-scale interactions

with the airflow. 3) Since the wave groups move at half

the wind speed, we speculate there is potential for some

kind of direct interaction with eddies in the atmospheric

surface shear flow. 4) As noted by a reviewer, the slant-

wave orientation also implies that breaking could hap-

pen continuously, as an individual wave crest maximum

slips sideways along the group, rather than just breaking

briefly as the wave crosses in the short direction. In this

case, a mariner traveling at a corresponding angle to port

of downwind might manage to keep up with the contin-

ually breaking crest, helping to either win a race or to

capsize and cause trouble.

8. Conclusions

Persistent wave groups, propagating at about 5 m s21,

were observed to occur frequently over the several days

considered here, whenever the wind blew (the wind al-

ternated between calm and about 10 m s21 from the

east). Linear propagation dynamics are sufficient to

explain these observed groups. Very short groups, only

one wavelength long, can persist as long or even longer

than those observed—up to 20 wave periods for the

group envelope geometry observed. The key to this per-

sistence is that the waves composing the groups have

crests oriented at an angle relative to the group envelope’s

major axis, which is much longer than the short direction.

Using previously noted group-forced responses (Smith

2006b) as a proxy for the occurrence of short, steep, and

persistent wave groups, we assessed how often they oc-

curred. Over the 9 days studied, winds rose from calm to

10 m s21 twice. After the wind starts to blow, the group-

forced response becomes distinct, and compact persis-

tent groups similar to that described here were then

encountered roughly 2–3 times per data segment

(8.5 min), or 15–20 times h21. The delay after the onset

of wind is on the order of ½ a day.
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