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Abstract

Owing to intensified use of the coastal region and the frequent application of small-scale, tailored interventions such as beach nourishments,
there is a growing need for coastal state information and knowledge on spatiotemporal scales of meters to kilometers and days to months. The
design and implementation of engineering and management measures at these scales is hampered by limited predictability of their impact.
Advanced, automated video stations open the door towards the collection of long-term, high-resolution data sets, which offer enhanced oppor-
tunities for the prediction of coastal processes at smaller scales. In this paper, the added value of high-resolution data sets for prediction purposes is
explored. In particular the application of data-driven approaches as well as process models supported by video data are explored. In the data-driven
approach, the inclusion of monthly video-derived data was found to not only improve confidence intervals on the predicted shoreline evolution,
but also to facilitate the use of more sophisticated data extrapolation methods. Short-term, operational forecasts of the nearshore flow and sediment
transport field were found to benefit from the inclusion of intertidal bathymetric data derived from video imagery. Though in its pioneering stage
for video-based research, it is foreseen that significant advancement in prediction skill will be achieved through development of data-assimilation
schemes which combine the best of existing process and empirical knowledge on coastal morphodynamics.
© 2007 Elsevier B.V. All rights reserved.
Keywords: Argus video monitoring; Coastal state indicator; Data-driven modelling; Data-model integration; Prediction of coastal evolution; High-resolution
monitoring; High-resolution modelling
1. Introduction

Coastal managers, engineers and scientists increasingly need
coastal state information at small scales of days to weeks and
meters to kilometers. This is – amongst other reasons – due to
the frequent use of local beach nourishments as a sustainable,
tailored intervention to mitigate coastal erosion, the recognition
of rip currents as a serious threat for swimmer safety and the
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demand for year-round exploitation of beaches, driven by the
increasing recreational pressure on the coast. The design and
evaluation of coastal measures and engineering interventions is
hampered by the dynamics of the natural system, which act over
a wide range of spatiotemporal scales (e.g. De Vriend, 1997;
Stive et al., 2002). Beach and nearshore nourishments, for
example, are often found to adapt to the longer-term profile
shape in a matter of weeks but may show unexpected behaviour
that could pose temporary local erosion problems (e.g. Wijnberg
et al., 2006). Rip currents may even develop within days.
Effective management of a variety of coastal functions thus
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demands a sound understanding of the complex morphological
behaviour of coastal systems, long-term coastal monitoring
strategies with high resolution in time and space and predictive
skills to assess the future impact of coastal interventions.

Long-term, high-resolution morphological data sets that
enable the investigation of coastal dynamics at time scales of
days to months are sparse (Southgate et al., 2003). Traditional,
in situ survey methods involving the use of ships, amphibious
vehicles or jet skis provide excellent data but require major
logistical commitments and often lack spatiotemporal resolution
to resolve processes of interest. Besides, in situ hydrodynamic
data are often hard to collect owing to the hostile environmental
conditions in the surfzone. However, many nearshore processes
have a visible signature at the sea surface, which can be
monitored remotely. While perhaps of lower accuracy, remote-
sensing techniques offer the potential for cost-efficient, long-
term data collection with high resolution in time and space.
With the advent of digital imaging technology, shore-based
video techniques like the advanced Argus system (Holman and
Stanley, 2007-this issue) enable the monitoring of coastal
processes at spatiotemporal scales of meters to kilometres and
days to months.

Whereas accompanying papers (Kroon et al., 2007-this
issue; Jiménez et al., 2007-this issue; Medina et al., 2007-this
issue) focus on the quantification of coastal state information
from video and its interpretation in an end-user context (hence
adopting a descriptive approach), this paper adopts a predictive
approach by discussing the role of video imagery in predicting
daily to monthly coastal evolution. This implies that the high-
resolution video monitoring technique will not only be used to
nowcast the coastal system, but also to make near-future
forecasts of hydrodynamic and morphological developments. It
is the aim of this paper to demonstrate the added value of high-
resolution video observations for making short-term predictions
of nearshore hydrodynamic and morphological processes, at
spatiotemporal scales of meters to kilometers and days to
seasons.

Coastal scientists and engineers often utilise either data-
driven extrapolation techniques or process-based numerical and
analytical models to predict nearshore flow fields and the
resulting coastal evolution. Both represent classical approaches,
with known limitations owing to for instance the lack of long-
term high-resolution data sets, poor opportunities for model
calibration or inadequate representation of fundamental coastal
processes in the model formulations. In this paper, we explore
the added value of high-resolution video observation for both
approaches. In Section 2, this is done through application of
three different data extrapolation techniques to a video-derived
dataset of monthly shoreline locations. Results are evaluated
against the outcome of a traditional approach, based on annual
surveys of bathymetry. Data-driven methods are well suited to
trend predictions. However, to predict the impact of a particular
event or intervention, the use of process models would prevail.
The added value of high-resolution video data in support of
process models is evaluated in Section 3. High-resolution video
data are used for the updating of the intertidal bed level to
improve short-term predictions of the nearshore flow and
sediment transport field, as well as for validation and calibration
purposes. Despite the distinct added value to both approaches,
we anticipate significant advancement in prediction skill by
combining the best of the existing process and empirical
knowledge, adopting a true data-model integration approach.
Though still in its pioneering stage for video-based research,
opportunities in this respect are discussed in Section 4.

2. Data-driven prediction of intertidal beach evolution

Prediction of coastal evolution based on morphologic data
alone, implicitly assumes that morphologic time series contain
information about future developments of the morphology.
Since morphologic feedback is an essential element of the
coastal morphodynamic system, this seems a valid assumption.
That is, provided the statistical properties of the hydrodynamic
forcing remain unchanged at the time scale of interest, as are the
sediment properties. Measured time series of, for instance,
beach volume can thus be used to make predictions over future
time periods that are short compared to the data series.

The above notion is applied in current coastal zone
management practice in the Netherlands when assessing the
need for shore nourishment. This assessment is based on a time
series analysis of some aggregated measure of the shoreline
location in the previous ten years (Van Koningsveld and
Mulder, 2004). This aggregated measure is referred to as the
Momentary Coast Line (MCL) and is approximately derived
from the sand volume between the dune foot and the seaward
end of the surf zone. The analysis consists of a mixture of linear
trend extrapolation and expert judgement. Extrapolation of the
linear trend yields the predicted future coastline (referred to as
TCL), which governs decisions on whether to nourish or not.

In this section we will explore the added value of high-
resolution morphologic data sets for data-driven prediction as
compared to the present ‘data-poor’ situation. We will use the
intertidal equivalent of the MCL, the Intertidal Momentary
Coastline (MICL), as the indicator of coastal evolution (Kroon
et al., 2007-this issue). Kroon et al. (2007-this issue) have
shown that trends in video-derived MICL evolution correspond
well to the ground-truth MICL and MCL evolution as
determined from traditional annual beach surveys. In Section
2.1 we explore the effect of increased sampling resolution on
the prediction accuracy of linear trend extrapolation to arrive at
the future testing intertidal coastline location (TICL location). In
Section 2.2 we will focus on the potential merits of applying
more advanced statistical models that seek to take advantage of
the autocorrelation in the time series.

For the application of the more advanced methods, the
original time series were processed (example shown in Fig. 1) in
order to remove the immediate effects of large storm events and
human intervention, because of the inherent unpredictability of
the moment of their occurrence. The processing procedure is
aimed at removing these ‘extremes’ while retaining the under-
lying trends as much as possible. The processing consisted of
three steps. Firstly, linear trend lines and the standard deviations
(s.d.) about these lines were calculated for each of the series.
Data above trend plus s.d. and below trend minus s.d. were
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Fig. 1. Example of a MICL time series (longshore index number 41), showing
the original beach volume data and the data after truncation, smoothing and
interpolation used in the tests.
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truncated to the trend plus s.d. and trend minus s.d. values.
Secondly, a smoothing algorithm based on Velleman and
Hoaglin (1981) was used, which has the effect both of smoothing
short-term variations and removing outliers. To fulfill the
requirement of fixed time intervals, intervals for the data were
linearly interpolated through time so that they corresponded to
30-day intervals. This interval was chosen to be close to the
original sampling interval as well as to resolve the seasonal
fluctuations. Notice that the analysis presented in Section 2.1 is
applied to the original time series.

2.1. Improvements in prediction accuracy due to increased
sampling resolution

Prediction accuracy can be quantified by using, for instance,
the 95% confidence interval. The width of such an interval is
related to the magnitude of the deviations of the observations
from the fitted model. These deviations may be purely random
(measurement error, inherently random variations) as well as due
to lack-of-fit of the chosen model. Assuming an appropriate
model is fitted, the width of the confidence interval can generally
be reduced by increasing the number of observations, because it
improves the accuracy of the estimates of the model parameters
(such as the slope, in case of a straight line fit). However, due to
the presence of purely random error there will be a limit to this
narrowing of the confidence interval of the prediction.

In the presented example we will use the MICL as a proxy for
the MCL and compare linear prediction of the MICL one year
ahead (TICL) based on 10 year of Jarkus data (annual surveys) to
a prediction based on 10 years of Jarkus data with 4.5 year of
monthly video data added. We can not compare the conven-
tionally derived TICL to a TICL based on video data alone,
because we do not have 10 years of Argus data available yet (see
Wijnberg et al., 2004, for a direct comparison on the basis of
4.5 years of video data only). Adding the video data may affect
both the prediction itself as well as its 95% confidence interval.
Predictions of theMICL position aremade for December 2004 at
each of the 250 m-spaced Jarkus survey positions located in the
video-surveyed area (9 positions in total).

The predicted value of the TICL changes when the Argus-
derived MICL positions are added, because the slope of the
linear trend generally changes (e.g. Fig. 2). This is to some
extent related to the fact that the additional data are only
available for the last 4.5 years of the considered 10-year period.
An advantageous effect of adding more weight to the beach
evolution in recent years is that it may actually enhance the
prediction of coastal changes.

Adding Argus-derived data has a pronounced effect on the
width of the confidence interval as it narrows roughly by a third.
However, a cautionary note should be added here because some
autocorrelation is present in the residuals (i.e. the deviations
from the linear trend), both in case of the annual and the monthly
sampling. This complicates the estimation of a confidence
interval since standard statistical techniques require the residuals
to be uncorrelated. In case of positive serial correlation many
samples will be effectively redundant which leads to an effective
number of degrees of freedom which will be smaller than the
sample size would indicate, hence a wider confidence interval. A
correction procedure proposed by Nychka et al. (2000), which
estimates the effective sample size using the sample autocorre-
lation, indicates that in the present case, 12 samples per year
effectively reduce to only 2 to 4 samples per year. Note that due
to autocorrelation at the annual scale the 10 annual samples also
reduce to a smaller number of effective samples.

Provided the linear fit is an appropriate model for the MICL
time series, increasing the sampling resolution will improve the
accuracy of the trend estimate, hence the prediction, since the
effective number of samples increases. However, the presence
of autocorrelation in the residuals indicates that the linear fit
could possibly be replaced by a more appropriate model. More
advanced statistical models such as presented in the following
sections may be more appropriate.

2.2. Improved prediction accuracy through the use of advanced
statistical models

Two prediction methods are applied and compared. The first
is a ‘traditional’ time series prediction technique, known as the
Holt–Winters method (Chatfield, 1978), that has been used in
many fields over the past thirty years, although rarely, if at all, in
coastal science. From past data, the method identifies trends at
three time scales, local, seasonal and long-term, and determines
weighting factors for each scale. Future predictions involve
extrapolating and recombining these trends. This technique is
related to the ARIMA (or Box–Jenkins) method, but generally
requires less expert user intervention, although some interven-
tion is essential to set the three weighting factors (see below).
The relation of the Holt–Winters method to ARIMA and other
linear methods is discussed in Chatfield and Yar (1988) and
references therein. The second method uses a type of neural
network model, the feed forward neural network model, which
has begun to be used in coastal science over the past five years
(Kingston and Davidson, 1999; Kingston et al., 2000). These



Fig. 2. Ten-year trend in MICL evolution based on Jarkus data only (solid grey line) and ten-year trend in MICL evolution based on Jarkus and Argus data together
(solid black line), at 4 longshore locations (y). Circled dots represent the annual traditional surveys (Jarkus), dots the monthly video measurements. Dashed lines
represent the confidence intervals for both methods.
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Neural Network models have demonstrated their ability to
capture complicated system behaviour through recognition of
patterns linking system inputs and outputs. Both methods aim to
improve on the present method of linear trend extrapolation
used by Dutch Authorities for assessing where and when beach
renourishment is needed.

Both the Holt–Winters and Neural Network methods require
each time series to be split into a ‘fitting’ period over which
model fitting parameters are optimised, and a ‘prediction’ period
over which model predictions are made using the parameter
settings derived for the fitting period and are then compared with
the data. Given the relatively short time series (60 values) it was
decided to treat the first four years as fitting data and the final
year as prediction data. Predicting up to a year ahead allows an
assessment of the predictive ability of seasonal effects.

The actual approach taken for the Holt-Winters method is as
follows. This method determines an overall trend through the
data consisting of three components that describe respectively
the long-term trend, the seasonal trend, and the local mean.
Previous data values are weighted so that their influence on
forecast values is greatest for the most recent data and least for
the data furthest in the past. Geometric weights are chosen,
which decrease by a constant ratio for each of the three trend
components. These are the weighting (or fitting) parameters and
have values between 0 and 1. Optimum values are determined
by repeated running of the model over the fitting period using
different combinations of these parameters and choosing the
combination that gives the smallest mean-square error.

To train the model using the Neural Network method, short
segments are extracted from the fitting period of each time
series, which act as input to the network. The data point
immediately after each input sequence is the output value used
by the network while it is being ‘trained’. In this way, a Neural
Network allows for experimentation with different input
segment lengths to capture trends expected in the data, and,
once trained, can be used predictively.

Preliminary tests were done ignoring the first 13 data values
of each time series. This was because there was a beach
renourishment towards the end of the first year, and it would be
unrealistic to calculate trends across such an event. However,
because the renourishment occurred near the start of the time
series, it had relatively little effect on the trends that are present
towards the end of the fitting period, and the main tests were
done with the full time series.

After the fitting phase, the models were run predictively
using the optimum fitting parameter settings for a further
12 months (i.e. twelve time steps) into the future, corresponding
to the final year of data. However, since the aim is to predict
underlying trends, instead of actual MICL locations including
short-term events, trend-prediction rather than precise agree-
ment with the data was sought. For this reason, comparisons
were made with the smoothed data (described above) rather than
the raw MICL data.

The full results are presented as a set of twelve plots, one for
each time step in the prediction period. Each plot shows the
predicted MICL location (y-axis) for all 71 profiles (x-axis), for
the two models and for a default prediction in which MICL
values at the end of the fitting period are assumed to continue
unchanged through the prediction period. Fig. 3 shows a
selection of these results at 1, 4, 8 and 12 months into the



Fig. 4. Prediction–Decay plots using mean-square errors calculated across all
longshore locations. Holt–Winters, Neural Network and Default predictions.

Fig. 3. Predictions of beach volume (MICL) for all longshore locations at four timesteps (1, 4, 8, and 12 months into the prediction period). Holt–Winters, Neural
Network and Default predictions.
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prediction period. Generally, it is expected that the accuracy of
predictions decreases at longer prediction times. Qualitatively,
Fig. 3 bears this out, with the Holt–Winters predictions doing
well at 1, 4 and 8 months and poorly at 12 months, while the
Neural Network does well at 1 and 4 months but much worse at
8 and 12 months.

The uncertainties associated with these results are sum-
marised in the Prediction–Decay plot in Fig. 4. Mean square
errors (MSEs) across all the profiles are calculated for each
model (and the default) at each time step, and are normalised by
the variance of the full smoothed data set (all profiles and times).
The quantity 1−MSE/Variance is plotted against prediction
time step for the two models and the default, so that a value of 1
means a perfect prediction, and progressively smaller values
represent poorer predictions. The Neural Network outperforms
the default for up to 4 months but then decays rapidly. The Holt–
Winters method starts with slightly poorer predictions than the
default, but then improves, overtaking the default until decaying
at Months 11 and 12. It appears the Neural Network is ex-
trapolating local trends at the end of the fitting period, giving rise
to good predictions at short times but much poorer at longer
times after the local trends change. This may be expected if you
consider that short bursts of data were used in the training data
set. The Holt–Winters method, however, explicitly incorporates
seasonal trends, which helps towards a good performance at
longer times (around 5–9 months), at the expense of a slightly
poorer performance at shorter times. The performance of the
default is largely arbitrary, depending on where the last value in
the fitting period appears in relation to the trends and events in
the subsequent data.

2.3. Discussion and conclusions

In this section, the added value of high-resolution video
observations for the data-driven prediction of coastal evolution
at the seasonal time scale has been explored. The inclusion of



Fig. 5. Prediction next year MICL using probability approach showing
probabilities of exceedance.
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monthly video estimates of the momentary intertidal coastline
indicator (MICL) was found to narrow the width of the
confidence interval for one-year predictions of shoreline
evolution on the basis of a simple, linear regression technique.
A first order estimate indicates a reduction by about one third,
but redundancy in both the monthly and annual observations, as
indicated by serial correlation, may change this number. At the
same time this serial correlation warrants the use of more
advanced statistical methods to forecast MICL evolution.
Notice that, as a general limitation, any data-driven approach
can only predict the type of behaviour that is included in the
dataset.

The large amount of data also allows for the prediction of the
future coastline position (TICL position) in terms of probability.
At present, the extrapolation of the linear trend provides the
most likely position of the TICL (provided that linear evolution
is an appropriate model). However, it is very likely that the next
year observation of the MICL is located landward or seaward of
this TICL position. Confidence intervals of varying width can
now be used to predict lines along the beach with a given
probability of landward exceedance. For example, the 80%
confidence interval around a TICL implies that the next year
MICL observation has an 80% probability of being inside this
interval. Consequently it has a 20% probability of being outside
this interval, with equal chances of being smaller or larger. This
implies that the lower boundary of the 80% confidence interval
may be regarded as a position on the beach that has a 10%
probability of being exceeded in the landward direction by the
next year MICL observation. Analogously, using the 98%
confidence interval provides the position on the beach that has a
1% probability of being exceeded in the landward direction by
the next year MICL observation, etc. Application of this
approach on many locations along the beach (e.g. every 20 m,
see Fig. 5), enables the mapping of lines along the beach with
known probability of landward exceedance by the time of next
year's MICL observation.

This example illustrates the concept of making predictions in
terms of probability. Here a Gaussian, hence symmetric,
distribution of deviations from the trend has been assumed.
Although there may be theoretical reasons for asymmetric
distributions, such as non-linear beach response to individual
storms, no indications for such asymmetry were found in the
data. To test this, deviations of the MICL observations from the
trends were calculated. The frequency distribution of all these
deviations was then calculated and shown to be Gaussian.

Note that Fig. 5 is based on video observations only (covering a
period of 4.5 years), in order to illustrate the high spatial resolution
that can be derived using video data. It reveals that longshore
variation occurs in the cross-shore positions of these lines at a scale
that is notwell sampledwith the current 250m longshore spacing of
the profile surveys. Hence, using video-based surveys also reduces
the risk ofmissing a very localized threat to the coastal defense, e.g.
in relation to a stationary pattern in offshore bar morphology.

The availability of monthly MICL observations yields
another advantage for coastal management purposes, when
assessing the need for shoreface/beach nourishment. Currently,
this decision is made through linear extrapolation of the ten-year
trend in shoreline evolution, which is derived from annual
bathymetrical surveys. In the case of a perturbed (e.g.
nourished) coastal system, this approach is replaced by an
expert judgement, which involves a subjective component. The
availability of weekly to monthly MICL observations would
offer more complete information to the experts and at the same
time allow for a more objective evaluation by using advanced
prediction methods that are tailored to the nourished beach case.
Data-driven prediction methods, if sufficiently accurate, would
thus be an important tool for coastal management by providing
information about the extent to which volumetric changes are a
response to storm ‘events’ or reflect a longer-term ‘trend’, and
about when to implement beach renourishment or other
remedial measures.

The results presented in this section show a definite potential
for forecasting MICL locations (or beach volumes) up to a year
ahead based on previous MICL data derived from video images.
Improvements can be expected from refinements to the models
themselves, but also from longer time spans and higher
temporal resolution of MICL data, which potentially are
obtainable from raw Argus data. Furthermore, a more robust
coastal state indicator, involving beach volumes calculated over
a wider portion of the beach profiles (e.g. the MCL), would
increasingly tend to filter out events and noise, possibly making
the long-term and seasonal signals proportionately stronger.
This tendency to filter the event signal implies loss of
information on short-term changes to cross-shore morphology,
because such changes mainly occur within the wider portion of
the beach profile. The data-driven approaches discussed here
are complementary to process-based modelling, which is more
appropriate to predicting the effects of the immediate aftermath
of short-term events, such as storms or renourishment.

3. Process-based prediction of hydro- and morphodynamics,
supported by video data

This section discusses the use of high-resolution video data in
support of process-based hydrodynamic and morphological
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models. The predictability of coastal evolution is treated as an
inherent characteristic of the model formulations, in combina-
tion with the prediction horizon of the forcing conditions. Video
observations may improve model predictions by means of
iterative updating of the intertidal bed level condition, or through
enhanced opportunities for model calibration and validation.
As video monitoring systems allow for virtually continuous,
synoptic data sampling, video observations embody significant
added value as compared to in situ flow meters (few points in
space) or beach profile surveys (typically up to a few times per
year, at best). With improved communication capabilities and
computational power, remote-sensing data are easily collected –
without the need to deploy in situ instruments in a hostile
environment – and available in real-time. In contrast to the
previous section, video data play an indirect role to further the
predictability of nearshore coastal evolution at time scales of
days to months here. Several case examples of this approach are
discussed below.

3.1. Video-based updating of the intertidal bed level condition
in process models

Video observations of the nearshore zone easily allow for the
quantification of intertidal beach bathymetry on a daily to
monthly basis (e.g. Plant and Holman, 1997; Aarninkhof et al.,
2003). As in situ surveys of nearshore bathymetry are usually
sparse, the availability of video-derived bathymetrical informa-
tion allows for the frequent updating of intertidal bed levels in
process-based hydrodynamic and morphological models. As a
result, these models are being applied on the basis of more
recent bathymetrical data, which is expected to positively affect
the reliability of the model predictions.

The merits of this approach have, as a first example, been
explored in the framework of the Spanish Nearshore Operational
Forecasting System (NEOFOS). This operational system is used
to provide 48-hour forecasts of waves, currents and sea levels
along Spanish coastlines, with a 6-hour time interval, in support of
naval operations and swimmer safety. Hydrodynamic forecasts
are based on short-term predictions of the offshore wave and sea
level conditions, using numerical models on oceanic scale. These
wave and sea level predictions provide the input boundary
condition for a local spectral wave propagation model OLUCA-
SP (a parabolic approximation solution to the mild slope
equation), followed by wave-induced current forecasting using
theMOPLA-SP model (a 2DH nearshore circulation model). The
shallow water sea state and the wave-driven current system in the
nearshore zone are obtained using the most “recent” nearshore
bathymetry data as morphological boundary for the local models.
In a previous version of NEOFOS, the offshore and local sea
level, waves and currents were usually updated every 6 h, while
the coastal morphology rarely was. Consequently, the reliability
of the predictions was limited; especially in zones exposed to high
energetic wave conditions and zones with an important
morphological variability in short time intervals. This is the
case at the Cantabria coast (northern Spanish coast).

At El Puntal beach (near Santander, cf. Medina et al., 2007-
this issue), the NEOFOS is applied to provide state information
on swimmer safety, with a focus on dangerous currents and surf
zones, 48 h in advance. Being fully exposed to North-West
Cantabrian swell and sea waves with significant wave heights
up to 5–6 m during storm events, the beach shows strong
variations of morphology (cf. Fig. 6). For this reason, the
NEOFOS application is enriched with intertidal bathymetrical
data, derived from time-averaged Argus video imagery with the
help of the Intertidal Beach Mapper by Aarninkhof et al. (2003).
Shorelines are mapped every 30 min along a 1500 m coastal
stretch, at different tidal levels. Owing to the large tidal range
at Santander (up to 5 m during spring tide), these intertidal
bathymetries cover a significant part of the beach profile. Near
the tip of the spit, sub-tidal bathymetry was updated on the
basis of the observed shoreline changes in combination with the
assumption of a constant channel slope. Historical data records
confirm the validity of the latter assumption. Further towards
the east along the exposed part of the spit, sub-tidal bathymetry
was updated on the basis of empirical knowledge on sand bar
dynamics in the region, combined with their actual position as
observed from video imagery. Throughout the winter season
from October to March, the NEOFOS bathymetry is updated on
a daily basis; during summer (from April to September) the
bathymetry is updated every week.

The added value of updating the intertidal bed level con-
ditions is demonstrated with the help of the example application
presented in Fig. 6. It shows the NEOFOS prediction of wave-
induced currents during a storm event that occurred on
November 15, 2003, with a significant wave height of 4.5 m, a
peak period of 16 s and north-north-western direction. The
hydrodynamic computations are based on the surveyed
bathymetry of October 25, 2003 and the updated bathymetry
of October 30, 2003, respectively. The bathymetry at October 30
represents the situation after a severe storm. Updating the in-
tertidal bed level strongly affects the predicted nearshore flow
field, changing the current magnitudes as well as directions. This
qualitative analysis shows that the incorporation of up-to-date
bathymetrical data in the NEOFOS environment may contribute
importantly to the reliability of short-term forecasts of the
nearshore wave and flow field.

As a second case example, Siegle et al. (2006) utilise a coastal
video system to improve the initial bathymetric conditions for a
two-dimensional numerical model (MIKE21 — DHI Water &
Environment) to study the dominant processes responsible for
the evolution of a dynamic estuary and sandbank system at a
macro-tidal inlet near Teignmouth, UK (Davidson et al., 2007-
this issue). The ultimate goal of the study is to provide enhanced
predictions of sediment fluxes and bed evolution for different
morphological states of the system. A brief example is given
here but more detailed information, including the model
calibration parameters, can be found in Siegle (2003), Siegle
et al. (2003) and Siegle et al. (2004). Close to the region of
interest at the mouth of the Teign Estuary a spit constricts the
strong tidal flows (N2 m/s) leading to significant variability in
the water surface topography (water surface gradients are of
order 10−2). As a result, the common assumption of shoreline
detection models (e.g. Plant and Holman, 1997; Davidson et al.,
1997; Aarninkhof et al., 2003) mapping a horizontal beach

http://dx.doi.org/10.1016/j.coastaleng.2007.01.008
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http://dx.doi.org/10.1016/j.coastaleng.2007.01.007
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Fig. 6. Wave-induced currents at El Puntal, Santander (Spain) computed from NEOFOS operational forecasting system. Results are obtained by simulating the
November 30, 2003, storm conditions across a surveyed bathymetry dated October 25, 2003 (a) and the updated bathymetry dated October 30, 2003 (b). The October
30 bathymetry was enriched with intertidal bathymetric data sampled from video imagery, bathymetry after a severe storm.
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contour does not hold, inducing large errors in the order of 0.5–
1m near the tidal inlet (Siegle et al., 2002). Therefore, a two-fold
application of the coupled video-model system is required.

In the first instance the numerical model is used to predict the
water surface topography using the most recent bathymetric
information for its initial conditions. Using the model prediction
for the shoreline elevation in place of the horizontal shoreline
assumption is seen to improve the accuracy of the intertidal
surveys by a factor of two yielding survey accuracies of
±0.15 m (Siegle et al., 2006).

The second stage of the analysis involves carefully merging
the video-derived intertidal morphology with the most recently
measured sub-tidal bathymetric survey to provide the initial
conditions for the hydrodynamic, sediment transport and bed-
evolution modules. The assumption here is that the sub-tidal
bathymetry evolves over a longer time scale than the intertidal
area. In spite of the assumptions involved in the video-survey,
integration produces far more accurate initial conditions for the
model and permits a good assessment of the dominant processes
affecting sediment transport and the morphodynamic evolution
of the system. An example of the predicted sediment transport
patterns, bed evolution and comparison with the next observed
state using video-derived bathymetry can be seen in Fig. 7. At
short time scales (days to weeks) the methodology has allowed
an assessment of the dominant physical processes affecting the
morphodynamic evolution of the system, and how they interact,
which was not possible prior to this analysis. At longer time
scales (months to years) the combined video-numerical model
approach has resulted in qualitatively realistic prediction of the
sandbank evolution at each stage of the morphodynamic cycle.
3.2. Video-based calibration and validation of hydrodynamic
and morphological models

Video-based nearshore data collection provides suitable
information to add to the calibration and validation of both
hydrodynamic and morphological models. Several examples of
that are treated in this section.

3.2.1. Calibration and validation of hydrodynamic models
Long and Özkan-Haller (2005) examine the efficacy of a

nearshore circulation model along regions of complex bathym-
etry through comparisons with remote-sensing observations.
Bathymetry and offshore spectra measured during the Nearshore
Canyon Experiment (NCEX) are used to initialize a spectral
wave model (e.g. Booij et al., 1999; Ris et al., 1999) extending
approximately 10 km offshore and 12.5 km along the coast of
Southern California. The resulting wave forcing information is
used to drive a nearshore circulation model (Özkan-Haller and
Kirby, 1997, 1999), which is nested within the computational
domain of the wave model and covers the 6 km coastline of
Blacks beach. The flow model solves the depth-integrated time-
averaged Navier–Stokes equations and evaluates the temporally
and spatially varying circulation patterns.

Model-derived ten-minute average horizontal flow fields are
compared to variance images sampled from the Argus video
station at Blacks beach. Bright regions in variance images
correspond to areas of high optical intensity variability such as
the swash zone and the region of initial wave breaking. Rip
currents often provide a surface signature through advection of
persistent foam. Variance images are thus used to qualitatively



Fig. 7. Modelled sediment transport patterns (a) and associated initial bed level changes (b) over the Teignmouth sandbank for the January 2000 situation. The
predicted bar evolution over a two-month period (c) shows good correspondence with the observed evolution.
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validate model capabilities in predicting the location of rip
currents. Long and Özkan-Haller report good data-model
agreement (Fig. 8) in predicting the location of the observed
rip currents during two distinct rip events separated by 17 days.
This data-model comparison could be extended through
inclusion of video-derived estimates of flow velocity and
wave characteristics (wave period and direction). Techniques to
quantify these hydrodynamic properties are under continuous
development (Chickadel et al., 2003; Holman and Chickadel,
2004). Detailed, synoptic information on key characteristics of
the wave and flow field is expected to provide enhanced
opportunities for the calibration of wave dissipation and bottom
friction parameters in present-day models. This will yield an
improved representation of the process of wave breaking and
associated currents, hence improved morphological predictions.

A second example on the interaction of video observations
and hydrodynamic models is taken from Aarninkhof and
Ruessink (2004). Aarninkhof and Ruessink investigate the
process of depth-induced wave breaking on the basis of intra-
wave time series of pixel intensities and compare the time-
averaged video registration of wave dissipation (after correction
for the effects of background illuminations, noise and persistent
foam) to various model-predicted measures of wave breaking.
Although Aarninkhof and Ruessink primarily aim to develop
and verify a methodology for the quantitative interpretation of
time-averaged image intensities in support of their model to
map sub-tidal bathymetry from video imagery (Aarninkhof
et al., in press), their work provides an interesting side-product.
Based on video and bathymetric data collected at the double-
barred beach at Egmond (The Netherlands) and a standard wave
transformation model containing balance equations for wave
and roller energy, Aarninkhof and Ruessink find that the
modelled cross-shore distribution of the dissipation of the
energy of the surface roller (the white, aerated, turbulent mass of
water at the breaking wave face) matches the cross-shore shape
of breaking-induced image intensity well. Moreover, they find



Fig. 8. Ten-minute average flow field overlain on an Argus variance image of: insert location for Oct. 10, 2003 1500 GMT. Bathymetric contours show the submarine
canyon that strongly affects the incoming wave field. Bright patterns in the background image represent areas of strong optical intensity variability, including traces of
offshore drifting patches of foam associated with rip currents. The vector fields visualize the model-predicted ten-minute average flow field, which shows excellent
correspondence to the location of the rip currents observed from video imagery. After: Long and Özkan-Haller (2005).
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an optimal match between video-observed and model-predicted
dissipation patterns for settings of the roller dissipation
parameter β (e.g. Stive and De Vriend, 1994) in the range
0.10–0.125. These values are slightly larger than the default
settings recommended in literature (e.g. Stive and De Vriend,
1994; Nairn et al., 1990) based on measurements of wave set-up
across the surf zone. As the collection of field measurements of
wave set-up comes with considerable logistic and financial
demands, Argus video observations of wave breaking provide
enhanced opportunities for the calibration of wave models.

3.2.2. Calibration and validation of morphological models
Time-averagedArgus video imagery usually shows one or two

alongshore continuous high-intensity (i.e. white) bands, which
reflect locations of predominant wave breaking on the crests of
nearshore bars. These patterns have been shown to accurately
Fig. 9. Measured (♢) and computed (bold line) evolution of the alongshore-averaged
reflect the underlying sand bar topography (Lippmann and
Holman, 1989; Van Enckevort and Ruessink, 2001). The spatial
evolution of these wave breaking-induced patterns over time can
thus be used to characterize the evolution of a sandbar systemwith
high resolution in time and space. This allows for phenomelogical
analysis of coastal morphology (Konicki and Holman, 2001; Van
Enckevort et al., 2004, among others) and as discussed below
with 2 examples, may facilitate the calibration ofmorphodynamic
models.

In a one-dimensional, cross-shore approach, Barreto (2001)
adopts a detailed 3.5 year data set of video-derived, daily to
weekly sand bar locations at Noordwijk, The Netherlands (Van
Enckevort and Ruessink, 2003) to calibrate the morphodynamic
behaviour of Delft Hydraulics’ coastal profile model Unibest-TC
(e.g. Ruessink, 2005). The data set provides alongshore-averaged
bar crest positions, which were derived from the locations of
location of the outer bar at Noordwijk, The Netherlands (after: Barreto, 2001).



Fig. 10. Plan view video observation (left panel) and the corresponding model
prediction of wave dissipation at Palm Beach (after: Reniers et al., 2001).
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visually observed peaks in wave breaking at the inner and outer
bar. The latter, indirect measurements of bar crest position were
corrected for contaminating effects induced by water level
fluctuations in response to semi-diurnal tides and spring-neap
tide variations (see Ruessink et al., 2002a for further details). The
resulting time series consists of 391 daily observations for the
outer bar within the analysed 3.5-year (1282 days) period and
shows strong seasonal and interannual variability in bar position.

Consistent with the nature of the available video observations of
sand bar location, Barreto (2001) applied the one-dimensional
morphological model to an alongshore-averaged coastal profile,
obtained by averaging 5 cross-shore profiles spacing 250 m
alongshore. Time series of significant wave height Hsig and peak
period Tp were taken from the measurement platform ‘Meetpost
Noordwijk’ at 6 km off the coast. Limited by the availability of
good quality bathymetrical and wave data, morphodynamic model
simulations were carried out for the periodMay 1996 to December
1997.Model calibration involved the determination of best settings
for particularly the wave dissipation parameter γ (Battjes and
Janssen, 1978), the roller dissipation parameter β (Stive and De
Vriend, 1994), the bottom friction coefficient and an empirical
factor on the fraction of breaking wave affecting the onshore
sediment transport rate. Barreto (2001) compares the migration of
the outer bar as computed from the calibrated model to the
measuredmigration observed fromvideo (Fig. 9).Good agreement
was found for both offshore and onshoremigration of the outer bar.
The model failed to reproduce dramatic changes in bar location as
occasionally observed from the video data (e.g. the strong seaward
bar migration around day 320 of the period of interest). Moreover,
less good results were obtained in the region of the inner bar, where
the model results showed a seaward offset in the bar location.

A second case example illustrating the use of Argus video
imagery for model calibration and validation purposes is pro-
vided by Reniers et al. (2001). Reniers et al. (2001) present a new
morphological model to simulate the development and evolution
of complex, rhythmic patterns in coastal bathymetry, such as rip
currents. The model operates on the time scale of wave groups,
accounting for the effects of wave groupiness and associated
infragravity waves on the evolution of nearshore morphology.
The model was tested against field data sampled at Palm Beach
(Australia), a 2.5 km embayed beach that is known for the
frequent occurrence of rip channels. Video time exposures of the
surf zone were used to calibrate the model dissipation co-
efficients by comparing the measured image intensity and the
computed roller energy. Flow velocities obtained from the
calibrated model were found to be in good agreement with in situ
flow measurements throughout the eleven day duration of the
experiment, showing a strong tidal variation (Fig. 10). In ex-
tension of this approach, time series of plan view Palm Beach
time exposures were and will be used to directly validate the
model-predicted morphological evolution.

3.3. Discussion and conclusions

The case examples treated in this section demonstrate that
the use of high-resolution video observations provides a useful
aid to the process-based prediction of coastal evolution. The
distinct advantage of optical remote-sensing systems is found in
the synoptic nature of the data, the ease and safety of operation
(only minor logistic and financial commitments as compared to
in situ measurements in a hostile surf zone environment) and the
capability to serve long-term monitoring programmes with high
resolution in time. As a result, time series of nearshore video
observations span a wide range of conditions which yields
better opportunities for model calibration and validation, thus
improving the prediction range of process-based models. These
beneficial characteristics enabled, amongst others, the frequent
updating of the intertidal bed level condition to improve the
performance of hydrodynamic and morphological forecast
systems, the evaluation of a nearshore circulation model in
predicting the occurrence of rip currents and the calibration of
the behaviour of morphological models at time scales of days to
seasons. The applications would have been hard to achieve
without the availability of high-resolution remotely-sensed data.

The applicability of video imagery in support of the cali-
bration and validation of hydrodynamic and morphological
models is closely related to our capabilities to quantify relevant
nearshore variables from video. Interestingly, the location of the
shoreline is relatively simple to determine from video (e.g.
Davidson et al., 1997; Plant and Holman, 1997; Aarninkhof
et al., 2003; Turner et al., 2000) but the use of this type of
information for the initialization and validation of coastline
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models (e.g. Szmytkiewicz et al., 2000) is – with the exception
of a Narrowneck Reef application at the Australian Goldcoast
(Dronkers, 2001) – only in its infancy. The added value of
automated video imagery in this context would further benefit
from the ongoing development of robust algorithms to quantify
coastal state information from video, including sub-tidal
bathymetry and cross-shore current velocities.

4. Discussion: integration of video-derived data and
process-based models?

In the preceeding two sections two end-members in modelling
the nearshore system were encountered, viz. the data-driven
approach in Section 2 and the presently more common process-
knowledge approach in Section 3. The main advantage of the
latter approach is its genericity. As long as the physics of the
system under study is as the physics in the model, the model can
produce potentially useful predictions. Another aspect of the
genericity is the use of process models in scenario applications to
answer ‘what-if’ questions. In many situations, however, process
modelling is not as straightforward as it may seem, as each new
application will require appropriate external inputs, initial
conditions and, very likely, adjustments of the model's free
parameters. As advocated in Section 3, video-derived data may
play an essential role in calibrating process models.

Process modelling is, however, not always feasible. The
studied system may be too complex or too little understood to
build a process model. Also, the time scale of interest may be
beyond what is practically possible. The typically desired
engineering time scale of days to years would require a lengthy
forward stepping of a process model (with steps of typically 1 h);
because of various simplifications inherent to process model-
ling, such as the grid and process schematization, computational
errors propagate with time and may cause physically impossible
results on the long run. In such cases predictions have to
increasingly rely on historic input–output relations, leading to
data-driven approaches as exemplified in Section 2.

Their strength thus lies in the ability to make hindcasts and,
potentially, forecasts in situations where process models cannot
be applied or will fail.

However, the potential for predictions is at the expense of
genericity and process-knowledge improvement. For instance,
it is unlikely that the data-driven models for the temporal
evolution of the MICL at Egmond will produce any sensible
predictions elsewhere.

Analogous with developments in related disciplines such as
hydrology and weather forecasting, significant advancement in
prediction skill of nearshore systems can be made by combining
the best of the process-knowledge and data-driven approaches. It
is the author's belief that this data-model integration is an im-
portant future key research topic. Formally, data-model integra-
tion can be defined as the combining ofmodels andmeasurements
with the aim to objectively increase the total information of these
information sources beyond that of the individual components.
The combination of models and measurements involves the mu-
tual replenishment of unknown information and the reduction of
the uncertainties in both information sources.
Data-model integration is in its pioneering stage for video-
based research and clear examples of its use can, therefore, not
yet be given. In the following we present preliminary results of a
study that focused on the use of a dynamic neural network in
predicting sandbar behaviour and some thoughts and new
research initiatives on data assimilation.

Dynamic (or, recurrent) neural networks (DNNs) are neural
networks with one or more feedback loops (see Haykin, 1999)
for the foundations and terminology of DNNs). This feedback
distinguishes DNNs from static neural networks, as used in
Section 2, which have no such feedback. The feedback in DNNs
implies that they have the same time propagation as a process-
based model. Consider, for instance, the Unibest-TC based
modelling of sandbar position at Noordwijk discussed in
Section 3. The sandbar position at time t+1 was, in that case,
determined by its position at time t, external system forcing
(waves and water levels), the free model parameters, and system
knowledge. A DNN employs the same time propagation but
uses a fully parameterized model based on previous observa-
tions (the NN part) rather than physical principles and system
knowledge. Although strictly speaking a DNN is a data-driven
model, we consider it as an example of data-model integration
because the DNN combines a data-driven modelling approach
with the time propagation inherent to process-based modelling.
Additional discussion on the similarity of DNNs and process-
based models can be found in, among others, Van den Boogaard
and Mynett (2004).

Fig. 11 shows an example of a DNN based prediction of
sandbar position at Noordwijk (see Section 3) using wave
height, period and direction as external input and the predicted
position at the previous time step as feedback. Details on the
applied DNN structure, and on its training and testing, can be
found in Ruessink et al. (2002b,c)) and are not reiterated here.
As can be seen, the DNN reproduces the general characteristics
in the time series well Fig. 11a). Intriguingly, the DNN has
captured the dominant seasonal and interannual variability in
outer sandbar position (Fig. 11b and c), despite the fact that the
wave forcing varies mainly on daily and weekly scales.
Apparently, the applied DNN has the skill to model systems
with a long-term memory, that is, systems where the state at
time t depends on observations and external forcings at many
previous time steps. The results in Fig. 11 were found to be
robust to the various choices that can be made to set up the
network (Ruessink et al., 2002b). Additional tests showed that
the modeled seasonal variability in sandbar position was indeed
due to the weak seasonal variability in offshore wave charac-
teristics, as forcing the network with random noise as external
wave input failed to reproduce the seasonality in sandbar po-
sition (Ruessink et al., 2002b).

A second example of data-model integration is data as-
similation, which can be defined as the statistical combination
of observations and short-range forecasts (Kalnay, 2003) to
make a better prediction of the state and/or the parameters of the
system that need to be modelled or to better understand the
(relative importance of) uncertainties in the observations and
model predictions. In contrast to batch calibration (e.g. in
Section 3.2.2), data assimilation continuously updates the states



Fig. 11. (a) Observed (red) and DNN predicted (black) position of the outer sandbar at Noordwijk versus time, based on Ruessink et al. (2002b). Panels (b), (c) and (d)
show these time series decomposed into their interannual, seasonal and weekly components, respectively. See also Van Enckevort and Ruessink (2003). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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and/or parameters in the model when new observations become
available and is, therefore, also referred to as on-line calibration.
The expected added value of data assimilation is related to
the modelling nature of nearshore predictions: it is an initial/
boundary value problem where given an initial state (e.g.
bathymetry) and boundary information the model forecasts the
next state. Data assimilation helps in making a better guess for
the initial state and, in this way, for the next state. A recent
modelling study by Smit et al. (2004) suggested that predictions
of nearshore bathymetry might indeed be sensitive to initial
conditions, as two model simulations with marginally different
initial bed levels (in the order of a few centimetres) led to rather
different positions of rip channels (in the order of hundreds of
metres). This illustrates the chaotic character of the modelled
system, indicating that techniques incorporating this character
are near future in coastal morphodynamics. For nearshore bar
systems it is expected that continuously adjusting the model
forecasts with video-based bathymetric information will yield
improved model predictions.

There are, to the best of the authors’ knowledge, no examples
of data assimilation examples involving Argus based data and
process-based models at the moment of writing. There are,
however, various research initiatives. One example is the
BeachWizard project, funded by the Office of Naval Research
and involving 9 Australian, US and Dutch partners. The primary
idea in BeachWizard is to assimilate dense remotely-sensed
field observations of wave dissipation, phase speed, surface
currents, water line position, and sand bar morphology into the
process-based morphological model Delft3D to provide inte-
grated bathymetric and hydrodynamic nowcasts and short-term
(order one week) forecasts. A second example, funded by the
Netherlands Organisation for Scientific Research NWO and
carried out by Utrecht University, is the project ‘Predictability
and uncertainty analysis of nearshore sandbar behaviour’. This
project aims to (1) study the (limits to the) predictability of
nearshore sandbar dynamics by developing and applying novel
approaches to quantify uncertainties in nearshore sandbar
behaviour associated with parameter and observational errors,
and (2) to integrate 2D bed-evolution process models with
remote-sensing data of nearshore bathymetry to provide more
accurate state descriptions during forecasting and to assess
short-term variability in the model's free parameters. Some
initial results of the latter project can be found in Ruessink
(2005).

On the whole, we envisage that the combination of state-of-
the-art process modelling and field data collected for a wide
range of conditions will enable a more complete description of
nearshore morphological evolution than possible now. This
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should lead to improved nowcasts and forecasts of the
nearshore, including a better prediction of the impact of the
design and implementation of nearshore engineering and
management measures.

5. Concluding remarks

The prediction of coastal evolution at time scales of days to
months is becoming increasingly important for both coastal
managers and scientists. In this paper, the value of high-
resolution remote video observations for predicting the
behaviour of coastal systems has been examined. In a data-
driven approach, the inclusion of monthly video-derived data
was found to not only improve confidence intervals on the
predicted shoreline evolution, but also to facilitate the use of
more sophisticated data extrapolation methods. Inclusion of
video-derived monthly shoreline observations, for instance,
yielded a narrowing of the confidence intervals on one-year
shoreline predictions by about one third, in first approximation,
as compared to predictions based on the traditional annual
observations alone. Short-term predictions based on the use of
hydrodynamic and morphological models benefited from the
availability of high-resolution video observations through
frequent updating of the intertidal bed level and enhanced
opportunities for model calibration and validation. Though in its
pioneering stage for Argus video-based research, the authors
expect that significant advancement in prediction skill will be
achieved through development of data-assimilation schemes
which combine the best of existing process and empirical
knowledge on coastal morphodynamics.
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