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ABSTRACT

Estimation of second-order, near-surface wave kinematics is important for interpretation of ocean surface

remote sensing and surface-following instruments, determining loading on offshore structures, and un-

derstanding of upper-ocean transport processes. Unfortunately, conventional wave theories based on Stokes-

type expansions do not consider fluidmotions at levels above the unperturbed fluid level. The usual practice of

extrapolating the fluid kinematics from the unperturbed free surface to higher points in the fluid is generally

reasonable for narrowband waves, but for broadband ocean waves this results in dramatic (and nonphysical)

overestimation of surface velocities. Consequently, practical approximations for random waves are at best

empirical and are often only loosely constrained by physical principles. In the present work, the authors

formulate the governing equations for water waves in an incompressible and inviscid fluid, using a boundary-

fitted coordinate system (i.e., sigma or s coordinates) to derive expressions for near-surface kinematics in

nonlinear random waves from first principles. Comparison to a numerical model valid for highly nonlinear

waves shows that the new results 1) are consistent with second-order Stokes theory, 2) are similar to extrapo-

lation methods in narrowband waves, and 3) greatly improve estimates of surface kinematics in random seas.

1. Introduction

Wave-induced near-surface kinematics of nonlinear

random waves are important, for example, for under-

standing remote sensing signals (e.g., Rascle et al. 2014)

and for interpreting motions of wave-following instru-

ments (e.g., Herbers et al. 2012; Herbers and Janssen

2016), wave forcing on offshore structures (e.g., Donelan

et al. 1992; Schløer et al. 2011;Deng et al. 2016), oil droplet

transport (e.g., Geng et al. 2016), and wave-driven surface

flows and Stokes drift in random waves (e.g., Stokes 1847;

Monismith et al. 2007; Herbers and Janssen 2016).

Despite the importance of near-surface kinematics,

Stokes-typewave theories consider the fluid domain to be

vertically confined between the (impermeable) bottom

z52h and the unperturbed free surface z5 0 and do not

describe the fluid kinematics in the region above z 5
0 (e.g., Longuet-Higgins and Stewart 1960; Hasselmann

1962; Sharma and Dean 1981). The omission of the near-

surface kinematics in these theories is a consequence of

the fact that nonlinear effects associated with free-surface

deformations enter the solution through Taylor expansions

of the free-surface boundary conditions around z 5 0, but

the fluid domain is not modified accordingly. In other

words, the deformations of the free surface do not enter the

domain for which the field equations are solved.As a result,

the vertical structure of the velocity potential for a free (or

bound) wave with wavenumber k in deep water takes the

general form

exp(kz) 2h, z, 0,

which leaves the region 0 , z , h undefined. Two

common (and logical) extrapolation methods to estimate

wave-induced kinematics near the surface are 1) extrap-

olate the solution to the free surface (z 5 h) using the

analytic solution dictated by the Laplace equation (e.g.,

Baldock et al. 1996) or 2) use a Taylor series based around

z 5 0 to predict velocities above z 5 0 (e.g., RodenbuschCorresponding author: P. B. Smit, pieterbartsmit@gmail.com
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and Forristall 1986) In deep water these two approaches

give

exp(kz) and 11 kz (1)

for z. 0, respectively, whereas for z, 0 we always have

exp(kz). Both approaches—although distinct—appear

reasonable within the context of weakly nonlinear nar-

rowband waves. After all, in narrowband waves we can

define a representative wave amplitude a and wave-

number k0, where in this context a is a representative

extrapolation scale whereas k21
0 is a typical vertical scale

of themotion, so that bothmethods are accurate toO(«2)

for « 5 k0a � 1 and thus identical in the context of

second-order theory. However, these approaches do

differ in how they constrain the problem. Analytical ex-

trapolation maintains continuity in the region z . 0 as it

ensures that the solution obeys the Laplace equation.

However, the solution is inconsistent with the Taylor-

expanded free-surface boundary conditions, which leaves

an unbalanced term of O(«3). Linear extrapolation, on

the other hand, is exactly consistent with the free-surface

boundary condition to second order since it also repre-

sents the lowest-order term of a Taylor expansion.

However, it is not consistent with continuity and leads to

unbalanced terms of O(«3) in the Laplace equation.

In irregular waves, we can still define a single, charac-

teristic vertical scale for the surface elevation (for instance,

the root-mean-square crest height hrms), but the relevant

vertical scale k21 associated with the wave components

varies with frequency. As a consequence, even if the mean

steepness « is moderate, the vertical scale of the wave

motion in the tail of the spectrum is very short, such that

khrms can beO(1) when these short waves ride on the crest

of longer waves. In particular for analytical extrapolation,

which is the conventional way to estimate the fluid veloc-

ities over the water column (and which we will alterna-

tively refer to as conventional theory), this becomes

problematic. When evaluated at a representative vertical

elevation z 5 hrms, we find that exp(khrms) grows expo-

nentially with increasing k, so that for typical roll-off in the

spectral tail (e.g.,} k25/2), the kinematic estimates near the

surface grow without bounds. As a result, a perturbation

approach breaks down, and extrapolation errors are large

and result in unphysical results (e.g., Donelan et al. 1992).

To illustrate the issue in random waves, consider the ex-

trapolated pressure field in multidirectional irregular waves

(see Fig. 1). The analytical extrapolation leads to large

nonzero pressures at the surface, which clearly violates the

assumption of p 5 0 at the free surface (see Fig. 1). In

contrast, when using linear extrapolation, the surface pres-

sure is accurately constrained to zero (it is consistent with

applied boundary conditions), but it leads to an unrealistic

(and nonphysical) vertical profile with a kink at z5 0 (see

Fig. 1, right panel). Further, whenh, 0, both extrapolation

methods reduce to the analytical profile, and nonzero

pressures at the surface occur in either approximation.

To bypass the shortcomings of extrapolation methods in

random waves, empirical approaches to estimate near-

surface wave kinematics have been proposed. These ap-

proaches either simply remove high-frequency components

or use an empirical vertical structure function [pre-

dominantly in offshore engineering literature (e.g.,Wheeler

1970; Lo and Dean 1986; Donelan et al. 1992)] Perhaps the

most widely used method is that by Wheeler (1970), who

proposed to stretch the profile valid for the undisturbed

domain to fit the instantaneous domain. Although these

approaches alleviate some of the symptoms of the funda-

mental shortcomings of a Stokes-type expansion in a fluid

domain bounded by the undisturbed free surface z 5 0,

they do not fundamentally resolve them. Furthermore, they

are based on heuristic arguments, not constrained by first

principles, and can lead to unexpected results.

In this work we propose a different approach, which is a

natural and first-principle extension of Stokes-type theo-

ries, and unambiguously defines the near-surface wave

kinematics up to the second-order for multidirectional,

irregular waves. To do this we transform the vertical do-

main to a boundary-fitted coordinate system (e.g., as in

Blumberg and Mellor 1987; Shchepetkin and McWilliams

2005; Engsig-Karup et al. 2009; Chalikov et al. 2014) and

determine approximate series solutions to the transformed

system of equations. The resulting equations describe a

complete second-order wave theory for irregular waves,

which is consistent with Stokes theory, includes the correct

near-surface kinematics, remains valid if the extrapolation

scale is large compared with the vertical scale associated

with wave components (under the restriction that the

mean steepness « remains small), and consequently is

consistent for both narrowband and wideband wave fields.

To achieve this, we describe the governing equations and

the transformation (section 2) and use a perturbation ex-

pansion to find ordered solutions (section 3). We compare

our solutions for monochromatic and bichromatic waves

with numerical simulations and consider the significance

for the prediction of near-surface wave kinematics of ir-

regular random waves (section 4). Finally, we discuss the

relation with conventional second-order theory, the wave-

averaged near-surface flow (e.g., Stokes drift), and sum-

marize our main conclusions (sections 5 and 6).

2. Governing equations in boundary-fitted
coordinates

We consider surface gravity wave motion in an inviscid,

incompressible fluid of constant density. Thewave-induced
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flow field is described in a Cartesian coordinate system

where x*5 [x1*, x2*] and z* are the horizontal and ver-

tical coordinates, respectively. The fluid is vertically

bounded between the bed at z 5 2h (assumed con-

stant in space and time) and the free-surface

z5h(x*, t*) (with t* time), and z 5 0 denotes the

unperturbed free-surface location. We define that

mean surface elevation is zero (i.e., h5 0, where ( . . . )

denotes a suitable averaging operator). The velocity

potential f(x*, z*, t*) and the free-surface elevation

h(x*, t*) are related by the governing equations (e.g.,

Mei et al. 2005)

=2
x*f1 ›2z*f5 0 2h# z*#h ,

›
t*
f1 gh52

1

2
[j=

x*
fj2 1 (›

z*
f)2] z*5h ,

›
t*
h2 ›

z*
f52=

x*
f � =

x*
h z*5h ,

›
z*
f5 0 z*52h ,

(2)

with=x*5 [›x*1 , ›x*2 ]. From top to bottom, these equations

represent continuity (Laplace equation), the dynamic

free-surface boundary condition, and the kinematic

boundary conditions at the free surface and at the bed,

respectively. The principal step in the present derivation

is to replace the vertical coordinate z* by a boundary-

fitted coordinate, defined as

x5x*, t5t*, s5
z*2h(x*, t)

D
, D5h1h(x*, t). (3)

In the new s-coordinate1 system, the vertical domain

transforms from 2h# z*#h to 21 # s # 0. Further,

although the horizontal coordinates x in the new co-

ordinate system map one-to-one to the old coordinate

systems, they denote the horizontal location along sur-

faces of constant s, and not constant height z. Hence,

using this vertical transformation, the partial derivatives

with respect to x*, t*, and z* transform as

=
x*
5=

x
2

(11 s)=
x
h

D
›
s
, ›

t*
5 ›

t
2

(11 s)›
t
h

D
›
s
,

›
z*
5

1

D
›
s
.

After substitution of these transformations into the po-

tential equations, we obtain the transformed system2

=2
xf1

›2sf

h2
5L , 21# s# 0,

›
t
f1 gh5B , s5 0

›
t
h2

›
s
f

h
5K s5 0,

›
s
f5 0 s521

(4)

FIG. 1. Normalized dynamic pressure p0
d 5pd/(rgHm0

) (with Hm0
the significant wave height) for a realization

of a multidirectional irregular wave field based on a Jonswap spectrum (for details, see section 4c). Shown are

(left) predicted pressure and superimposed velocity vectors predicted using the analytical extrapolation as

a function of relative depth and time and (right) a comparison between analytical (black) and linear (blue)

extrapolation of the dynamic pressure as a function of relative depth along transect A (white dashed–dotted

line in left panel).

1 This coordinate system is widely referred to as the ‘‘s-coordinate

system.’’However, to avoid confusionwith theuse ofs as the (relative)

angular frequency in the wave literature, we choose to use the alter-

native ‘‘s-coordinate’’ naming convention found in the literature.
2 The transformed equations depend onD2m, withm5 1 or 2. To

separate linear from nonlinear terms, we multiplied the trans-

formed equations with Dm and divided the results by hm.
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with

L 5
(11 s)D

h2
(2=

x
h � =

x
1=2

xh)›sf

2
11 s

h2
j=

x
hj2[21 (11 s)›

s
]›

s
f2

2hh1h2

h2
=2
xf,

B 52
1

2h2
[(›

s
f)2 1 jD=

x
f2 (11 s)›

s
f=

x
hj2]

1
(11 s)D

h2
›
t
h›

s
f2

2hh1h2

h2
(gh1 ›

t
f),

K 52
D

h
=

x
h � =

x
f1

11 s

h
j=

x
hj2›

s
f2

h›
t
h

h
. (5)

Here the left-hand side corresponds to the usual terms

of linear wave theory, whereas the terms on the right-

hand side correspond to the nonlinear terms, which

contain additional contributions due to the coordinate

transformation. In particular, although the variable

extent of the vertical domain (due to the moving free

surface) is greatly simplified by the s-coordinate

transformation, this simplification comes at the price

of additional nonlinear terms in the potential equa-

tions. Most notable is the appearance of nonlinear

forcing terms on the Laplace equation, which is a

linear equation in Cartesian coordinates, due to the

coordinate transformation.

The use of boundary-fitted coordinate systems is

well established in large-scale ocean circulation

models (e.g., Blumberg and Mellor 1987; Shchepetkin

and McWilliams 2005). The transformation of the

vertical coordinate to a boundary-fitted coordinate

does not introduce any new approximation, and the

transformed set [(4)] is entirely equivalent to the

original nonlinear potential equations [(2)]. In fact,

the transformed set can be used as a basis for nonlinear

numerical codes that are applicable to nonbreaking

strongly nonlinear waves (e.g., Engsig-Karup et al. 2009;

Chalikov et al. 2014).

3. The ordered solution

To develop a series approximation for weakly

nonlinear wave motion in deep to intermediate water

depth, we define the nonlinearity parameter « as the

ratio between a characteristic amplitude and wave-

length and assume that the waves are in intermediate

[kh 5 O(1)] to deep water (kh � 1). To find ordered

solutions, we introduce the usual perturbation

expansions

h5 �
‘

m51

h(m), f5 �
‘

m51

f(m) ,

where h(m) and f(m) are assumed3 to be of order «m. Since

the lowest-order solution can be written as a superposition

of free-plane waves,4 we introduce the decomposition

h(1)(x, t)5 �
k1,S 1

ĥ1
1e

1
1, f(1)(x, z, t)5 �

k1,S 1

f̂1
1e

1
1.

Here k1 denotes thewavenumber, S 1 2 f1, 2g is a sign
index, ĥ1

1 [and f̂1
1(z)] denotes the amplitude of the

component with wavenumber k1 (subscript) and sign-

index S 1 (superscript). Furthermore,

enn 5 exp(ik
n
� x2 iv

n
t) .

in which vn 5S nskn is the angular frequency that de-

pends on k through the dispersion relation sk (with

s. 0). Further, since h and f are real, we have

ĥ
(m),1
1 5 [ĥ

(m),2
21 ]* f̂

(m),1
1 5 [f̂

(m),2
21 ]*,

where * denotes the complex conjugate and the

subscript 21 refers to the component 2k1. Further, an-

ticipating that higher-order corrections consist of bound-

wave components, theO(«2) contributions are written as

h(2)(x, t)5 �
k1,k2
S 1,S 2

ĥ1,2
1,2e

1
1e

2
2, f(2)(x, z, t)5 �

k1,k2
S 1,S 2

f̂1,2
1,2(z)e

1
1e

2
2,

where ( . . . )1,21,2 5 ( . . . )S 1,S 2

k1,k2
. Solutions for successive

orders are found by substitution of the perturbation

expansions into the governing set of equations [(4)] and

collecting terms of like order.

a. The O(«) solution

AtO(«) the Laplace equation is homogeneous and the

boundary conditions are linear, so that after collecting

terms up to O(«) and elimination of h from the kine-

matic and dynamic boundary conditions, we find the

relations for f̂1
1 as�

1

h2
›2s 2 k2

�
f̂1

1 5 0 21# s# 0, and�
2v2

1 1
g

h
›
s

�
f̂1
1 5 0 s5 0,

and ›sf
1
1 5 0 at s521. Hence, at this order, the problem

is mathematically very similar to linear wave theory, and

3 The ordering can be formalized using the scaling described in

appendix B; for brevity and legibility, here we choose to solve the

perturbed equations in dimensional variables.
4 In the present work, we will neglect evanescent contributions to

the wave field.
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consequently, when parameterizing the result in terms of

the free-surface amplitudes ĥ1
1, the solution takes the

familiar form

f̂1
1(s)5F1

1Ch
s
1, F1

1 5
2igĥ1

1

v
1

. (6)

Here v1 5S 1s1 is related to k1 through the dispersion

relation for linear waves s1 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk1 tanh(k1h)

p
and

Chs
1 5

cosh[k
1
h(11 s)]

cosh(k
1
h)

21# s# 0.

The solution of (6) is different from the usual vertical so-

lution of linear wave theory as it applies to the entire in-

stantaneous water column. This becomes apparent when

reverting back to Cartesian coordinates by substitution of

s 5 s(z, h), in which case we find f̂1
1(z)5F1

1Ch
z
1 with

Chz
1 5

cosh k
1

.
11

h

h

� �h i
(h1 z)

n o
cosh(k

1
h)

2h# z#h .

Thus, when compared to the usual vertical structure of

linear theory, the difference is the appearance of a factor

[11 (h/h)]21. In fact, at this order the solution for the ve-

locity potential is equivalent to the stretched coordinate so-

lution as proposed by Wheeler (1970) on heuristic grounds.

b. The O(«2) solution

For the O(«2) problem, we find that the second-order

potential is governed by

(›2s 2k2
1,2h

2)f1,2
1,2 5L 1,2

1,2 21# s# 0, and (7a)�
2v2

1,21
g

h
›
s

�
f1,2

1,2 52iv
12
B 1,2

1,2 2 gK 1,2
1,2 s5 0, (7b)

with ›sf̂
1,2
1,2 5 0 at s 5 21, v1,2 5v1 1v2, k1,2 5 k1 1 k2,

and where

L 1,2
1,2 5

ig(11 s)

2

"
k
1
k2
1,2 2 k3

1

v
1

Sh
1
(s)1

k
2
k2
1,2 2 k3

2

v
2

Sh
2
(s)

#

2
ig

h

�
k2
1

v
1

Ch
1
(s)1

k2
2

v
2

Ch
2
(s)

�
,

K 1,2
1,2 5

ihv
1,2

2

�
12

gk
1
� k

2

2v
1
v
2

�
,

B 1,2
1,2 52

�
v
1
v
2

2
1

g2k
1
� k

2

2v
1
v
2

�
.

Hence, at the second order, the solution procedure dif-

fers from that of conventional theory in that we have to

solve an inhomogeneous boundary value problem. In

general, the solution consists of the two homogeneous

solutions and a particular solution. In this case, the

particular solution that satisfies (7a)—as can be verified

by substitution—is given by h1
1h

2
2P

1,2
1,2(s) with

P 1,2
1,2(s)52

ig(11 s)

2

�
k
1
Shs

1

w
1

1
k
2
Shs

2

w
2

�
,

where

Shs
1 5

sinh[k
1
h(11 s)]

cosh(k
1
h)

.

The particular solution automatically satisfies the bot-

tom boundary condition (i.e., ›sP
1,2
1,2 5 0 at s 5 21), so

that the homogeneous solution only consists of a con-

tribution proportional to Ch112, and the solution that

solves (7a) and (7b) can be written as

f̂1,2
1,2 5 H 1,2

1,2Ch
s
112 1P 1,2

1,2

� �
h1
1h

2
2 , (8)

with

H 1,2
1,2 5

iv
1,2
g2

s2
112 2w2

1,2

"
k
1
� k

2

v
1
v
2

2
v

1
v
2
1v2

1 1v2
2

g22

1
(k2

1v2
1k2

2v1
)

2v
1
v
2
v
12

#
. (9)

The solution at this order thus consists of a term familiar

from conventional second-order theory [the first term

on the right of (8)] and a new term [the second-order

term on the right of (8)], which has no comparable

counterpart in conventional second-order theory and is

the consequence of insisting that the complete second-

order potential satisfies theLaplace equation inCartesian

coordinates (up to that order).

With the potential solution known, we obtain the ex-

pression for the second-order surface field using the

dynamic boundary condition

ĥ1,2
1,2 5C1,2

1,2h
1
1h

2
2 , (10)

with

C1,2
1,2 5

�
iv

1,2

g
H 1,2

1,2 1
v2

1 1v2
2 1v

1
v
2

2g
2 g

k
1
� k

2

2v
1
v

2

�
and C1,2

1,2 5 0 if k1 1 k2 5 0 (because h5 0 by definition),

which is equivalent to the interaction coefficient from

conventional theory relating the amplitude of the

bound component to the forcing pair of primary waves

(e.g., Hasselmann 1962; Herbers and Janssen 2016)

Consequently, although the second-order potential is

significantly modified near the crest because of the co-

ordinate transformation, the solution for the second-order
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surface elevation remains exactly the same as predicted by

conventional theory.

c. Second-order near-crest velocity and pressure field

To find the horizontal velocities, we recall that the

horizontal velocity is defined as the horizontal spatial

gradient along planes of constant height (and not con-

stant relative height),

u5=
x*
f5=

x
f1 (=

x
s)›

s
f, w5 ›

z*
f5 (›

z
s)›

s
f ,

so that the velocities are given by

u5=
x
f2

11 s

D
=h›

s
f5=

x
f2

11 s

h
=h›

s
f1O(«3), and

w5
1

D

›f

›s
5

1

h

›f

›s
2

h

h2

›f

›s
1O(«3) ,

where we approximatedD215 (h1 h)21 using a Taylor

series approximation. Although to the order of accuracy

the Taylor approximation can be omitted, it simplifies

the second-order expressions because of various can-

cellations while retaining the same accuracy. On

substituting the second-order expressions for f and h in

these relations, and into the Bernouilli equation to ob-

tain the pressure, retaining terms up to O(«2), and re-

turning back to Cartesian coordinates, we find

u

w

p

264
3755 0

0

p(0)

264
3751 �

k1,S 1

ĥ1
1

264U1
1

W1
1

P1
1

375e111 �
k1,k2
S 1,S 2

ĥ1
1ĥ

2
2

2664
U1,2

1,2

W1,2
1,2

P1,2
1,2

3775e11e22 .
(11)

Here the O(«0) contribution to the pressure is given by

the hydrostatic contribution

p(0) 5
rg(h2 z)

11 (h/h)
.

For the first-order contributions, we find

U1
1 5

gk
1

v
1

Chz
1, W1

1 52i
gk1

1

v
1

Shz
1,

P1
1 5 rg

�
Chz

1 2
h1 z

h1h

�
, (12)

where

Shz
1 5

sinh
k
1

11
h

h

(h1 z)

24 35
cosh(k

1
h)

.

The second-order contributions to the horizontal and

vertical velocity and pressure can be written as

U1,2
1,2 5 ik

12
H 1,2

1,2Ch
z
112 1

g(h1 z)

2(h1h)

�
k
1
k
1
Shz

1

w
1

1
k
2
k
2
Shz

2

w
2

�

W1,2
1,2 5 k

12
H 1,2

1,2Sh
z
112 2 i

g(h1 z)

2(h1h)

�
k2
1Ch

z
1

w
1

1
k2
2Ch

z
2

w
2

�
,

P1,2
1,2 5

g(h1 z)

2(h1h)
(k

1
Shz

1 1 k
2
Shz

2)2 iw
12
H 1,2

1,2Ch
z
112

1
g2

2w
1
w

2

[k
1
� k

2
Chz

1Ch
z
2 2 k

1
k
2
Shz

1Sh
z
2]

2
g(h1 z)C1,2

1,2

h1h
.

(13)

Consequently, the linear part of the solutions only differ

from conventional theory in the vertical structure

function, but otherwise are identical to those obtained

with conventional theory [cf. (12) with (A2) in appendix

A]. The nonlinear contributions, on the other hand, also

contain, in addition to terms that only differ in the ver-

tical structure function, contributions that have no

counterpart in the conventional description [cf. (13)

with (A3a) and (A3b) in appendixA], and which are due

to the movement of the surface.

4. Results

a. Monochromatic waves

To illustrate the difference with conventional theory

and to verify our results, we consider a typical Stokes-type

wave in deep and intermediate water. In this case, sincewe

consider narrowband waves, for which the relative ex-

trapolation distance remains of the order of the steepness

O(«), so that differences between conventional theory and

the present s-coordinate solution remain small and boun-

ded. To assess the accuracy of the results, we compare

predictions of both theories with results from stream-

function wave theory. Streamfunction wave theory was

first introduced by Dean (1965) as an accurate numerical

approximation for strongly nonlinear unidirectional waves

of constant form and is still often used as a benchmark

solution [we will use a solution by Dalrymple (1974)].

For «, 0.1, crest velocities are similar when predicted

using either stream theory, conventional theory, or

the s-coordinate solutions in either deep kd 5 1 or in-

termediate water kd 5 5, and u/(«c) is generally

proportional to « for all solutions, indicative that second-

order theory applies (Fig. 2). For «. 0.1, streamfunction

theory shows that u/(«c) } «2, indicative that second-order
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theory is no longer strictly valid. As a consequence,

both conventional and s-coordinate theory diverge

from the streamfunction theory solution, and particu-

larly so in intermediate water. Up to «5 0.2 agreement

with stream theory is reasonable for s-coordinate the-

ory. In particular, near-trough velocities predicted by

s-coordinate theory in intermediate water agree much

better with streamfunction theory than the empirical

methods.

Overall, when considering the near-surface velocity

field under monochromatic waves, the s-coordinate

theory provides slightly better results near the crests and

troughs (Fig. 3). This mostly goes to show that the

s-coordinate expressions are consistent, since in the limit

of weakly nonlinear monochromatic (viz., narrowband)

waves, the extrapolation methods are consistent to the

order of approximation with the s-coordinate theory.

b. Bichromatic waves

Larger differences between the theories are expected

when short components ride on the crests of longer

components. To illustrate this and to verify the s-

coordinate solutions, we consider the case of bichromatic

unidirectional waves. Further, because stream theory

does not apply for multicomponent waves, we compare

results we consider simulation results computed with

the Surface Waves till Shore (SWASH) nonhydrostatic

time-domain model, which solves the Euler equations

(Zijlema et al. 2011) as a reference solution. Because

this is a time-domain model that requires an initial

condition, we consider a standing wave solution in a

closed 1D basin that can be initialized at t 5 0 by

prescribing the surface elevation alone (maximum el-

evation at the antinodes), while setting the velocity

field to zero everywhere. This way we do not force the

velocity field (either at the boundary or as an initial

condition), but rather let it evolve naturally in the nu-

merical model to minimize potential errors arising

from the initialization.

For our simulations, we consider a basin with depth

h 5 10m and length L. The wave field consists of two

primary (or free) modes5: 1) a base component with

frequency v, amplitude a, and wavelength 2L of steep-

ness « 5 0.15 in deep water (kh 5 5) and 2) a shorter,

secondary component with frequency vm 5 mv and

amplitude am, with small steepness «m 5 «/5 that has a

wavenumber km 5 m2k.

At t 5 0 both components are in phase and have a

positive antinode at x 5 0. For our comparisons, we are

principally interested in the situation where the sec-

ondary component ‘‘rides’’ on the crest of the base

component, occurring near t5Tm/4. At this moment the

surface elevation of the base component is still near its

maximum, but the velocity associated with the second-

ary component is nonzero. Because the range of the

vertical motion is dominated by the low-frequency

component [am/a 5 O(m22)], we characterize the ver-

tical scale with a. In this case we anticipate that the

FIG. 2. Horizontal velocities at the (left) crest and (right) trough of a monochromatic wave as a function of the

steepness « in intermediate (kh 5 1, red lines/markers) and deep (kh 5 5, black lines/markers) water. Comparison

between stream theory (markers), conventional theory (dashed lines), and the s-coordinate solution (solid lines).

5 Arguably for each fundamental mode of the basin, the wave

field is composed of a forward- and backward-propagating free

wave; here we refer to this coupled pair as a single component/

mode.
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extrapolation of the short wave to the surface remains

valid as long as kma 5 O(m2«) does not approach O(1).

To reproduce this case using SWASH, we discretize the

basin vertically in 80 logarithmically distributed layers,

where the layer thickness increases from top to bottom by

5% for each successive layer, thus ensuring a high reso-

lution near the surface. Horizontally, we use a constant

mesh size such that Dx 5 L/640, and the solution is

marched in time from t5 0 until t5 T/8 s (withT the wave

period of the low-frequency component) using a time step

of Dt 5 T/1000.

Evaluating the solution for secondary components with

frequencies of 2–4 times the base component, we find that

for m 5 2 (with kma 5 0.6) the three models predict very

similar horizontal velocities near the free surface (Fig. 4).

Form5 3 (kma5 1) small differences start to occur, as the

conventional theory underpredicts velocities for x/L #

0.075 and generally shows small differences for x/L# 0.15.

Overall, s-coordinate theory performs better, but up until

this point the differences are not dramatic. However, for

m5 4 (withkma5 2) conventional theory fails dramatically

near the surface, whereas the s-coordinate solution retains

good agreement with the SWASH results, both near the

surface and further down in the water column (Fig. 5).

Surface velocities estimated from linear extrapolation

are identical to s-coordinate theory, at the surface.

Away from the surface, linear extrapolation results de-

viate from SWASH results, and they are identical to

conventional theory for z , 0 (Fig. 5). In the far field

from the surface, all three solutions converge and are

identical, as would be expected.

In general, the s-coordinate solution accurately re-

produces near-surface velocities, regardless of band

separation of the bichromatic wave field. For wideband

waves, the near-surface velocities predicted by conven-

tional methods strongly diverge from the SWASH re-

sults and even away from the surface the velocity field

can differ in these cases.

c. Random sea state

The principal motivation for the development of the

present s-coordinate wave theory is to realistically

FIG. 3. Relative horizontal velocities u/(«c) (with c 5 v/k) below a monochromatic wave in intermediate water.

Comparison between (a) stream theory solution (left and right of dashed lines) and the s-coordinate solution

(between dashed lines); (b) as in (a), but now with conventional theory between dashed lines. Contours (thin lines)

are drawn between 22 and 2 at an interval of 0.2, where the gray and black contours correspond to the stream

theory solution and the black contours to the conventional/s-coordinate solutions, respectively. (c),(d) The relative

errors between stream theory and conventional/s-coordinate solutions.

1664 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 47



reproduce near-surface kinematics in random seas. To

illustrate the issues with conventional methods and the

possible improvements by using the more consistent

s-coordinate approach, we revisit the example considered

in the introduction where we evaluate the pressure field

below a steep unidirectional, randomwave field («5 0.15).

The wave field is generated using a directional spectrum

E(v, u)5 2E(v) cos2(u)/p, where u is the angular direction

(radians) restricted to the half plane2p/2# u# p/2. For

the frequency distribution E(v), we choose a Jonswap

spectrum with kpd 5 2 (we set the water depth d 5 10m

and kp the peak wavenumber) and significant wave height

Hm0
5 4[

Ð
E(v) dv]1/2. To construct a realization, we dis-

cretize the spectrum between 0.5vp and 4vp (with vp the

peak angular frequency) and 2p/2 # u # p/2 using 35

equidistant frequency meshes centered around frequen-

cies vm 5 (1/2)vp 1 mDv and 30 equidistant directional

meshes centered around un 5 2p/2 1 nDu. Each di-

rectional/frequency bin is associated with the primary

wave (and its conjugate) with frequency vm, direction un,

amplitude jzm,nj5 (1/4)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DvDuE(vm, un)

p
, and a phase

arg(zm,n) that is drawn from a random uniform

distribution.

In contrast to the extrapolated results, the pressure field

predicted with s-coordinate theory for the same (arbi-

trary) location and period of time as in Fig. 1 (using the

same wave phases), consistently evaluates to zero along

the surface (Fig. 6). Further, the pressure profile smoothly

transitions from agreeing with conventional theory in the

lower part of the water column to 0 at the surface, without

the kink as observed when using linear extrapolation. A

similar picture emerges when considering the horizontal

and vertical velocity (Figs. 7a,b). Away from the surface

the influence of high-frequency components attenuates,

and the different approximations all predict similar values.

Although linear extrapolation generally agrees with

s-coordinate theory right at the surface, the horizontal

velocity profile differs significantly in the near field of the

surface. Further, the slope of the linearly extrapolated

solution and the analytically extrapolated solution can

differ dramatically at z5 0. The reason for this is that the

slope is dominated by the nonlinear contributions, which

are assumed constant above z 5 0 for the linearly ex-

trapolated profile (see appendix A). In other words, in the

case of linear extrapolation, ›zu at z 5 0 is calculated

based on the linear solution alone.

Differences between the solutions are much larger

even if we consider components in excess of 4vp. For

instance, when including components up to 5vp, the

velocity profile changes dramatically, with only minimal

changes in the surface elevation profile (Figs. 7c,d). This

sensitivity illustrates that the extrapolation methods are

not at all well behaved in the crest-to-trough region. In

contrast, velocity profiles computed with s-coordinate

theory remain physical, with changes in the profile due

to presence of short waves confined to the near-surface

regions, as would be expected.

5. Discussion

The s-coordinate wave theory introduced in the

present work is based on a well-established vertical

FIG. 4. Horizontal velocities along the surface for a bichromatic primarywave consisting of the fundamental basin

mode and a higher free harmonic vm 5 mv, evaluated for (from left to right) m 5 2, 3, 4. The velocities are

evaluated at t 5 Tm/4 along the first half of the basin. Comparison between velocities obtained using SWASH

(markers), the s-coordinate solution (black line), and conventional theory (gray line).
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coordinate transformation, which is suited tomodel fluid

kinematics in the vicinity of a moving free surface. Our

results are consistent with conventional second-order

theory and include near-surface kinematics in wave

fields of arbitrary bandwidth (which is not well-defined

in conventional theory). The corrections in s-coordinate

theory mostly affect the near-surface (and surface) ki-

nematics, but do not significantly affect the second-order

FIG. 6. Normalized dynamic pressure for thewave field as in Fig. 1, but the results shown in the left panel are computed

using s-coordinate theory. The right panel shows a comparison between s-coordinate theory (red) and conventional

theory using either an analytical (black) or linear (blue) extrapolation above z . 0.

FIG. 5. Horizontal velocities below the bichromatic wave field in the first half of the basin evaluated at t 5 Tm/4

for the case where the short-wave component has a frequency of 4 times the base component.
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free-surface elevation profile. We also see that linear

extrapolation gives equivalent values for the wave

kinematics as s-coordinate theory right at the surface

(but not elsewhere) as long as the surface is positive.

To investigate why this is the case, we consider the

velocity potential at the surface as predicted by linear

extrapolation

f(h)5f(1)(0)1f(2)(0)1 [h(1) 1h(2)]
›f(1)

›z

					
z50

. (14)

The final term contributes up to O(«3) and can thus be

neglected, whereas the linearly extrapolated term has

order O(«2) and is thus part of the second-order solu-

tion. When we combine the two second-order terms and

express them as a sum over the interacting pairs

f(2)(0)1h(1)›f
(1)

›z

					
z50

5 �
k1,k2
s1,s2

F1,2
1,2h

1
1h

2
2, (15)

we find that the interaction coefficient is equivalent to the

interaction coefficient from s-coordinate theory evalu-

ated at the surface, that is, F1,2
1,2 5f1,2

1,2(s5 0). Moreover,

since the linear contributions at the surface are equal, the

velocity potential predicted by s-coordinate theory is

identical to that predicted by linear extrapolation [to

O(«2)]. However, away from the surface the solutions are

generally at variance (e.g., as illustrated in Fig. 7), with

the s-coordinate producing the correct kinematics.

Also, away from the near-surface region, s-coordinate

theory converges to conventional theory, as would be ex-

pected for the theory to be consistent with conventional

second-order Stokes theory. To illustrate this, consider

that in the region (jzj/«� 1 for z, 0) components for

which k1hrms is large, attenuate fast and can safely be

neglected, whereas for longer components we have

k1h 5 O(«). Hence, the s-coordinate profile can be ap-

proximated by a first-order Taylor series inh around h5 0,

Chz
1 ’

fCh
1

z

1 k
1
h 11

z

h

� �fSh
1

z

1O(«2) ,

and similarly for Shz
1. When substituted in the expression

for the velocity potential, the linear contribution reduces

to the linear contribution of conventional Stokes theory.

Furthermore, if we collect all second-order terms and

express the result as a sum over interacting pairs, we find

that the interaction coefficient also reduces to the in-

teraction coefficient of conventional second-order theory

(not shown).

The s-coordinate theory thus smoothly bridges the gap

between the surface and a consistent solution to the field

equations in the interior of the fluid (z , 0). Where con-

ventional theory provides a solution to the Laplace equa-

tion for z , 0 while incorporating the surface boundary

conditions up toO(«2), the s-coordinate theory extends this

to include the region 0 , z , h. This is generally more

consistent, but particularly important in random sea states

characterized by large separation of length scales of the

wave components (wideband).

FIG. 7. Vertical profiles of the (a),(c) horizontal and (b),(d) vertical velocity under the crest at t/T5 1.05 (Fig. 6)

predicted using s-coordinate (red), conventional (black), and linear extrapolation (blue above z . 0). Top panels

are estimates of the velocity using a maximum frequency of 4fp whereas the bottom panels include components up

to 5fp.
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The s-coordinate theory provides an approximate

solution for the Laplace equation because we neglect

terms of O(«3) when solving the equations transformed

to s coordinates. Historically, this has been a point of

criticism of the linear (Wheeler) solution (Lo and Dean

1986), where imbalances occur at O(«2). However, if

Wheeler stretching is viewed as a first-order approxi-

mation, neglecting terms that are O(«2)—even if they

occur in the Laplace equation—is entirely consistent

with overall order of approximation.

The empirical methods have often been used to pre-

dict the velocity profile under strongly nonlinear waves,

far outside the region where second-order theory ap-

plies. For such highly nonlinear wave profiles, well

outside the validity range of second-order theory, there

is of course no guarantee that the more consistent

s-coordinate theory would perform well or better than

empirical profiles specifically derived for that purpose.

However, the s-coordinate theory presented here is a

consistent second-order approximation, and for that

reason should be preferred over more empirical

methods to estimate the near-surface wave kinematics

to that order of approximation.

Mean velocities and mass flux

Although the material transport due to the presence of

ocean waves (or Stokes drift) is still not a fully resolved

topic (e.g., Monismith et al. 2007), its existence is a well-

known prediction of (weakly nonlinear) potential wave

theory. Away from the surface, below trough level, the-

ory predicts that the wave motion does not contribute

to the mean Eulerian transport, but induces a mean

Lagrangianmass transport. The s-coordinatewave theory

as presented here is essentially a hybrid description that is

horizontally Eulerian and vertically Lagrangian, which

affects the interpretation of its mean properties. Further,

it is known that the linear version of the theory (which is

identical to Wheeler stretching) does not reproduce the

proper (depth integrated) mass transport (Donelan et al.

1992) and in fact erroneously predicts a mean Eulerian

flow below trough level. For these reasons it is important

to verify that the mean properties of the second-order

theory are consistent with known results.

Foremost, because the s-coordinate solutions con-

verge to conventional results away from the crest–

trough region (as discussed above), Eulerian averages

in that region of the flow also vanish in that region (to

the order considered). However, near the surface,

Eulerian averages are notmeaningful, as points above the

lowest trough level are often outside the fluid domain. In

contrast, the mean velocity along levels of constant s are

always well defined and easy to compute in s-coordinate

theory. However, this average along levels of constant s

represents a quasi-Lagrangian average. To facilitate in-

terpretation, we can assign a mean vertical position z in

Cartesian space to averages in s by using the mean of the

inverse transformation from s / z, that is

z5 (h1h)s1h5 hs , (16)

where z now represents the average location of a surface

of constant s. In this case, the mean velocities along a

level of constant s can be expressed in terms of z as

u(z)5 �
k1

g(h1 z)k
1
k
1

v
1
h

Shz
1Ek

. (17)

Here, Ek 5 2zkz k* is the mean energy associated with

component k. At the mean location of the free surface

z5 0, this has the clear physical interpretation as the

mean velocity measured along the free surface and re-

duces to vkEk, or exactly half of the deep-water value of

Stokes drift at the surface (e.g., Santala and Terray 1992).

Away from the free surface, a level of constant s no

longer conforms to amaterial surface, and themean u(z)

no longer holds a clear physical significance. For in-

stance,
Ð 0
2h
u(z) dz does not represent the wave-induced

mass transport, because it does not account for the

variation of the domain, and consequently, u(z) can-

not be interpreted as a mean transport velocity (or

mass flux). Instead, the wave-induced mass flux Q is

found from integration over s of the mean value of the

product of u and the Jacobian of the transformation

j›szj5h1h,

Q5

ð0
21

(h1h)u ds5 �
k

gkE
k

v
, (18)

and this does correspond to the usual definition of the

wave-induced mass transport. In fact, all second-order

depth-integratedmeanwave properties (meanwave energy,

energy flux, radiation stress) can be readily recovered in this

way from the second-order solutions (appendixC, sectiona).

Consequently, s theory reproduces the integrated mass

flux, and—using a proper transformation to a material-

surface coordinate system—it reproduces the vertical dis-

tribution of mass transport otherwise known as the Stokes

drift profile (appendix C, section b). However, a more

natural way to define a vertically resolved mass-transport

um in the semi-Lagrangian framework is found by setting

u
m
(z)dz5 (h1h)uds . (19)

In this definition, um(z)dz describes the mean mass

transport along s through a vertical plane (h1 h)ds, and

since dz does not change in time, the mean transport

velocity is then found as
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u
m
(z)5 �

k1

gk
1
k
1

v
1

 
h1 z

h
Shz

1 1
Chz

1

k
1
h

!
E

k1
. (20)

This is a consistent definition of the mean mass flux

within the context of our coordinate mapping. How-

ever, because levels of constant s do not correspond to

material surfaces, it does not equal the usual Stokes

drift. Compared with Stokes drift, mass transport de-

fined this way is generally lower near z5 0 but larger in

the lower part of the water column (Fig. 8). However,

both definitions result in the same vertically integrated

mass flux Q.

Clearly, Stokes drift is easier to physically interpret

as it corresponds to the mean Lagrangian drift of a

water particle. However, this makes it very difficult to

observe directly as it requires a fully Lagrangian

framework of observation. As a consequence, only

indirect observational methods have been used in the

field to estimate this Lagrangian transport (e.g., Lentz

et al. 2008). The hybrid (Lagrangian in the vertical,

Eulerian in the horizontal) transport equation (20) is

possibly not so easily interpreted, but may be more

amendable to observations. For instance, from a col-

located observation of the free-surface and horizontal

velocities, um(z) can be estimated as

u
m
(z)5

�
11

h(t)

h

�
u


�
11

h(t)

h

�
z1h, t

�
.

Whether this is possible in the field or laboratory with

current sensor technology remains to be seen, since it

requires fairly high spatial and temporal sampling res-

olution in the near-surface region, whichmay be difficult

to achieve due to attendant noise levels.

6. Conclusions

In this work we derived a second-order accurate de-

scription of the wave kinematics valid in the crest-to-

trough region from first principles. Our results show that

the profile first introduced by Wheeler (1970) on em-

pirical grounds is essentially a consistent approximation,

but it must be considered as a lowest order—or linear—

estimate. For weakly nonlinear waves, additional

higher-order corrections are required to obtain the

correct (near) surface kinematics and to ensure that the

mean properties—that is, the vanishing mean Eulerian

flow and the Lagrangian mass flux (or Stokes drift)—are

predicted correctly.

Near the surface, the s-coordinate solution is generally

more consistent and robust than conventional second-

order theory. However, the improvements in estimates of

near-surface kinematics are particularly important and

significant in natural random waves. For arbitrary sea

states, the results from s-coordinate theory remain well

behaved and consistent to the order of approximation

without the need to introduce arbitrary cutoff frequencies

or heuristically motivated approximations.
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APPENDIX A

Conventional Second-Order Theory

Following the definitions as laid out in section 3, the

second-order expressions for the velocity and pressure

can be expressed as

24 u

w

p

355
24 0

0

p(0)

351 �
k1,S 1

ĥ1
1

2664
~U1
1

~W1
1

~P1
1

3775e111 �
k1,k2
S 1,S 2

ĥ1
1ĥ

2
2

26664
~U1,2
1,2

~W1,2
1,2

~P1,2
1,2

37775e11e22,
(A1)

FIG. 8. Comparison between the normalized mean transport

velocity u0 obtained from (20) (black) and the Stokes drift profile

[(C3), gray] in deep water for otherwise the same wave field as

considered in section 4c. Both velocities are normalized with the

Stokes drift velocity at z5 0.
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in which p(0) 52rgz and where for the first-order con-

tributions we find

~U1
1 5

gk
1

v
1

fCh
1

z

, ~W1
1 52i

gk1
1

v
1

fSh
1

z

, ~P1
1 5 rgfCh

1

z

, (A2)

Further, the interaction coefficients relating pairs of

surface amplitudes to second-order contributions are

given by

~U1,2
1,2 5 ik

12
H 1,2

1,2
fCh

112

z
~W1,2
1,2 5 k

12
H 1,2

1,2
fSh

112

z

(A3a)

and

~P1,2
1,2 5 i(v

1,2
)H 1,2

1,2
fCh

112

z

2
g2k

1
�k

2
fCh

1

zfCh
2

z
2g2k

1
k
2
fSh

1

zfSh
2

z

v
1
v
2

(A3b)

with H defined as in the main text.

The vertical structure functions are defined for

2h# z# 0 as

fCh
1
5
cosh[k

1
(z1 h)]

cosh(kh)
fSh

1
5

sinh[k
1
(z1 h)]

cosh(kh)
.

To evaluate the velocities and pressure for z . 0, we

either simply continue the vertical profiles (analytical

extrapolation) or when using linear extrapolation re-

place fCh1

z
(and similarlyfSh1

z
) with a Taylor series around

z 5 0, that is

fCh
1

z
5 11 k

1
z tanh(k

1
h) 0, z#h(1), andfSh

1

z
5 tanh(k

1
h)1 k

1
z 0, z#h(1) .

To be consistent with the boundary conditions eval-

uated to O(«2), we truncate the Taylor series at the

first order when evaluating the linear contributions

[i.e., the linear term is assumed to be O(«2)]. Further,

if z is above the first-order solution h(1), the solutions

remain constant. For the second-order contributions,

we neglect the linear term [which is O(«3)] and ef-

fectively assume that the second-order contributions

are constant and equal to the contribution at z 5
0 for z . 0.

APPENDIX B

Scaled Equations

Our objective is to seek approximate solutions for

weakly nonlinear wave motion in deep to intermediate

water and characterize the nonlinearity by the ratio

« between a characteristic amplitude a0 and a charac-

teristic vertical length scale L0
y, such that «5 a0/L0

y. Here

we and choose a generally applicable scaling and set

Ly 5 m̂/k0, where k0 is a characteristic wavenumber and

m̂5 tanhm is a revised dispersion parameter such that in

the long-wave limit m5k0h � 1, we have m̂5m,

whereas in deep water m̂5 1 (Beji 1995; Kirby 1998).We

introduce the scaled variables

~x*5 k0x*, ~z*5 k0z*/m̂, ~t*5 k0c0t*,

~h5h/a0, ~f5
c0a0

L0
yk

0 f .

Here ~x* is the scaled quantity corresponding to x* (and

similarly for ~z, ~h, etc.) and c0 5
ffiffiffiffiffiffiffiffi
gL0

y

p
is a characteristic

celerity (with g the gravitational acceleration). Sub-

sequently, we introduce a boundary-fitted coordinate

transformation defined as

~x5 ~x*, ~t5 ~t*, ~s5
~z*2 «~h

~D
, ~D5 11

m̂«

m
ĥ , (B1)

so that in the new coordinate system the vertical domain

transforms from2m/m̂# z# «h to2m/m̂# s# 0 and ›~s~f

is still an O(1) term. Furthermore, ~D effectively repre-

sents the total water depth with the order parameter

û«/m representing the relative significance of the surface

elevation on the total water. Using this vertical trans-

formation, the partial derivatives with respect to x*, ~t*,

and ~z* transform as

=~x*j
5=~x

2«
~S(=

~x*
h)

~D
›
s
, ›~t* 5 ›

t
2«

~S(›~t*h)

~D
›
s
, ›

~z*
5

1
~D
›
s

with

~S5 11
m̂~s

m

where, because ~s ranges from m/m̂ till 0, the variable ~S

should be considered as an O(1) term. Substitution of

these definitions, and after multiplication with ~D2, the

potential equations become

=2
~x
~f1

1

m̂2
›2~s
~f5 ~L 2m/m̂# ~s# 0,

›~t~h2
1

m̂2
›
~s
~f5 ~K ~s5 0,

~h1 ›~t
~f5 ~B ~s5 0, and

›~f

›~s
5 0 ~s52m/m̂ ,

with
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~L 5 « ~S[2=~x
~h � =~x

(›~s
~f)1 (=2

~x~h)›~s
~f]2 2

m̂«

m
~h=2

~x
~f1

m̂«2

m
~S[2~h=~x

~h � =~x
(›~s

~f)2 2j=~x
~hj2›~s~f1 ~h(=2

~x~h)›~s
~f]

2 «2 ~S2j=
~x
~hj2›2~s ~f2

m̂2«2

m2
~h2=2

~x
~f .

~K 52«=~x
~h � =~x

~f2
m̂«

m
~h›~t~h2

m̂«2

m
~h=~x

~h � =~x
~f1 «2 ~Sj=~x

~hj2›~s~f ,

~B 52
«

2
[(›

~s
~f)2 1 j=

~x
~fj2 2 2 ~S›~t~h›~s

~f]2
2m̂«

m
(~h2 1 ~h›~t

~f)2
m̂2«2

m2
(~h3 1 ~h2›~t

~f)1 «2 ~S=
~x
~f � =

~x
~h›

~s
~f

1
m̂«2

m
~S~h(›~t~h)›~s

~f1
m̂«3

m
~Sh=

~x
~f � =

~x
~h›

~s
~f2

«3

2
~S2(›

~s
~f)2j=

~x
~zj2 .

The transformation into the new coordinate system

introduces a host of terms not present in the original

Cartesian problem. In particular, the equations now give

rise to higher-order nonlinear terms up to O(«3) and

terms that scale as m̂n«m/mn. The later terms originate

from the denominator of the transformation defined in

(B1) and effectively express that when the water is deep,

that is, m � 1 [such that m̂5O(1)], the contribution of

the surface elevation to the total depth can be neglected

in the transformation (B1), and these additional terms

can be safely ignored. However, in intermediate to

shallow water, as m̂/m5O(1) these terms contribute at

the orders «m and should be included to the order of the

approximation in « pursued.

Finally, we remark that for a Stokes-type perturbation

to be tenable, as done in the main text, we have to restrict

ourselves to a short-wave scaling, or in other words the

dispersive parameter m̂ has to beO(1). In this case «5 k0a
represents the usual wave steepness. However, in light of

the discussion above, themost interesting dynamics occur

when m/m̂5O(1), and since tanh(1)5O(1) we tacitly

assume water of intermediate depth, that is, m5O(1)

as well.

APPENDIX C

Mean Wave Properties

a. Depth-integrated properties

Important depth-integrated second-order mean dy-

namical quantities such as the mass flux Q (or pseu-

dowave momentum), wave energyE, the energy flux F,

and the radiation stress S1,2 are within the context of

conventional wave theory all derivable from the first-

order solutions. However, because in s-coordinate

theory the mean second-order velocity does not van-

ish, the full second-order solutions are required when

these properties are derived from the expressions

formulated in s coordinates. Denoting the vertically

resolved quantity corresponding related to the depth

integrated property as f(s), the mean-integrated

quantities are given by

r

ðh
2d

f (z) dz5 r

ð0
21

hf 1hf ds

because dz5 (h1 h)ds.Whenwe substitute the ordered

solutions and retain terms up to O(«2), take the spatial

and temporal average, and perform the vertical in-

tegration, we obtain for the wave energy

E5 r

ð0
21

�
h

2
ju(1)j21 h

2
[w(1)]21g(11 s)fhh(2)1[h(1)]2g

�
ds

5 �
k

E
k
,

(C1)

where Ek 5 2a1k a
2
2k is the mean energy associated with a

component k. Similarly, expressions the mass flux, en-

ergy flux, and radiation stress become

Q5

ð0
21

[hu(2) 1h(1)u(1)]ds5 �
k

k

k

E
k

c
,

F5 h

ð0
21

p(1)u(1) ds5 �
k

kc
g

k
E

k
, and

S
1,2

5

ð0
21

[hu
(1)
1 u

(1)
2 1hp(2) 1 p(1)h(1)] ds

5

�
k
1
k
2

k2

c
g

c
1 d

1,2

�
c
g

c
2

1

2

��
E

k
,

where

c5
v

k
, c

g
5

�
1

2
1

kh

sinh(2kh)

�
c , (C2)
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are the usual definitions of the wave celerity and group

velocity, respectively. Consequently, to O(«2), the pres-

ent theory is in full agreement with established results.

b. Stokes drift

To show that the s-coordinate solutions are consis-

tent with the usual definition of a mass transport ve-

locity, we define a material coordinate system (similar

to Mellor 2015)

z(x, s0, t)5 s0h1 z(s0, t),

where z(x, s0, t) denotes the instantaneous location of a

material surface that on average is located at s0h, and z is

the instantaneous displacement of the material surface,

which to O(«2) is given by

z(s0, t)’
ðt0
0

w(s, t0)j
s5s0 dt

0 5 �
k1,s1

ẑ11
gk

1

v2
1

Shs
1

				
s5s0

e11.

Expressing u(s) in terms of s0 and following the same

procedure as before but now averaging in time while

keeping s0 constant and noting that we have z5 hs0, we
arrive at

u
m
(z)5 u

dz

ds0
ds0

dz
5 �

k

2gkk

v

cosh[2k(h1 z)]

sinh(2kh)
E

k
, (C3)

which corresponds to the usual definition of the mean

mass transport velocity (or Stokes drift). Hence, the

definition from (20) is consistent with (C3), and the

differences are due to a different way of accounting for

the vertical motion in the averaging process.
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