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ABSTRACT

The propagation of ocean swells from generating regions to remote coastlines is affected by sub-

mesoscale turbulence in the surface flow field. The presence of submesoscale velocity variations results in

random scattering of wave rays. While the interactions with these flow fields are weak, cumulative effects

over oceanic scales are significant and result in observable changes in the wave field. Using geometrical

optics and statistical mechanics we derive a framework to express these scattering effects on the mean wave

statistics directly in terms of the variance spectrum of the submesoscale current field. The theoretical

results are presented in Lagrangian and Eulerian forms, where the latter takes the form of a radiative

transport equation augmented with a diffusive term in directional space. The theoretical results are veri-

fied through Monte Carlo simulations with a geometrical optics model. We show that including sub-

mesoscale scattering on ocean wave evolution can explain observed delays in swell arrivals, accelerated

wave height decay, and much larger directional spreading of the wave field than predicted by geometrical

spreading alone.

1. Introduction

Pioneering work in the mid-twentieth century (Munk

and Traylor 1947; Barber and Ursell 1948; Munk et al.

1963; Snodgrass et al. 1966) explored the foundations of

swell dynamics over large propagation distances in the

open ocean, and explained observed narrowing (in fre-

quency and directional space) of the wave spectrum

by frequency dispersion and geometric spreading. The

evolution of ocean waves over long distances is impor-

tant for many physical processes, including wave-driven

flows (e.g., Stokes drift, Langmuir circulation; Xu and

Bowen 1994; McWilliams et al. 2004), air–sea interac-

tion (transfer of momentum and upper ocean mixing;

Sullivan andMcWilliams 2010; Cavaleri et al. 2012), and

cross-shelf mass transport (e.g., Lentz et al. 2008) and

affects nearly every aspect of wave-driven coastal dy-

namics (e.g., longshore currents, rip currents, sediment

transport; Longuet-Higgins 1970; Battjes 1974;MacMahan

et al. 2006).

The cumulative effects of geometric spreading and

dispersion successfully explain some characteristics of

oceanic swell evolution. However, considerable differ-

ences between geometrical optics and observed evolu-

tion remain unaccounted for and are poorly understood.

Specifically, directional spreading values (a measure of

spectral width in directional space) are considerably

larger than predicted by geometrical optics (e.g., Ewans

2002), travel times of swell fields are often incorrectly

predicted (with bias toward late arrivals; Jiang et al.

2016a), and observed decay of swell fields remains un-

explained (e.g., Ardhuin et al. 2009; Young et al. 2013;

Stopa et al. 2016; Jiang et al. 2016b).

As an example we can consider wave arrivals along

the California coast originating from a storm in the

Southern Ocean. In this example, the storm is sche-

matized as a directionally isotropic source with a

1500-kmwidth traveling eastward at 30 kmh21 along a

line of constant latitude (Fig. 1A). Assuming that the

waves generated in the storm propagate along great

circles we find that the width of the wave field ap-

proaching the California coast ranges from 18 to 108
(see Fig. 1). However, the historical record (spanning 10

years of data) at Coastal Data Information Program

(CDIP) site 191 (moored in deep water at 1143-m depth

near San Diego, CA) shows directional spread values

ranging mostly between 158 and 258 and events nar-

rower than 58 spreading are never observed. The

considerable discrepancy between these observations
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and geometric-dispersive theory are not due to in-

strumental bias, as the instrument-type used (Datawell

WaveRider) has been shown to yield unbiased estimates

for directional spreading (O’Reilly et al. 1996). Further,

similar directional widths are observed at other CDIP

sites (not shown), and have been reported for south-

western swell at the west coast of New Zealand (Ewans

2002). Although multimodality of the wave field (multiple

sources) can explain some of the bias toward larger

spreads, the virtual absence of sub-108 events suggests
that something is missing.

As ocean waves travel over long distances in open

ocean, the refraction associated with mesoscale and

submesoscale eddies will drive deviations from great-

circle paths, extending pathlength, and delaying arrivals

(Gallet and Young 2014; Ardhuin et al. 2017). Although

mesoscale flow fields are generally more energetic than

submesoscale (1–100 km) eddies1 (Callies et al. 2015),

observations and numerical simulations indicate that

submesoscale eddies are more energetic than previously

presumed (Callies et al. 2013, 2015). Moreover, the

shorter scales result in larger shear and vorticity values,

so that the effective inhomogeneity presented to the

wave field by submesoscale currents is similar to the me-

soscale variability. During a transoceanic crossing, swell

waves encounter hundreds of eddies of varying scale,

which affects the wave characteristics in the far field.

The propagation of waves through random media has

received considerable interest in the context of extreme

wave statistics. Refraction creates constructive and de-

structive interference, that combined with nonlinear ef-

fects, may drive rapid (on the scale of individual waves)

variability in the statistics and increase the probability

of extreme wave events (e.g., Janssen and Herbers 2009;

Fabrikant and Raevsky 1994; Metzger et al. 2014; Heller

et al. 2008). These are typically near-field effects and

thus important locally, but are averaged out in the far

field (Smit and Janssen 2013; Heller et al. 2008). Re-

fraction of waves over submesoscale flows will drive

variations in phase-averaged properties, such as wave

height, on the scale of the submesoscale flow (Ardhuin

et al. 2017). On this scale, crossing waves originate from

statistically independent regions, and will appear as a

superposition of multidirectional uncorrelated waves,

without coherent interference effects (Smit and Janssen

2013). These submesoscale effects however do affect the

mean properties on the larger scales, such as directional

spreading and pathlengths (and thus arrival times).

Technically, if the submesoscale flow field is known, the

FIG. 1. (a) Directional width at a buoy site near San Diego (CDIP site 191) due to waves originating from a hypothetical storm south of

New Zealand traveling due east. The storm is parameterized as an isotropic radiator traveling eastward at 30 kmh21 with the locally

generated sea represented by a JONSWAP spectrum (peak at 14 s and 8-m significant wave height). Directional widths at CDIP site 191

are estimated through great-circle ray tracing from the moving storm. (b) Histogram for the directional width of swell arriving at the same

site. The site is in deep water (1143m), and we consider 10 years’ worth of data (October 2007–January 2018, in total 39 832 events). To

select relevant swell fields only and exclude more local fields, which would bias the spreading high, only spectral peaks below 0.1Hz

with mean directions that originate from the Southern or Indian Ocean are considered. Directional properties are calculated according to

Kuik et al. (1988)

1More restrictive definitions of submesoscale based on flow

dynamics exist in the literature. Since only flow kinematics will

enter our discussion, we use a scale-based (literal) definition.
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resulting wave effects (submesoscale and larger) can

be determined with operational third-generation wave

models. Unfortunately ocean-wide submesoscale flow

fields are not generally available, and resolving the global

wave field at these scales is not feasible due to compu-

tational efforts needed. If we assume that the individual

submesoscale eddies are statistically uncorrelated, and

that submesoscale refraction does not affect energy con-

servation (e.g., no enhanced dissipation), describing me-

soscale swell fields with mean properties is reasonable.

However, neglecting the interaction with the small-scale

flow altogether ignores the directional broadening of the

wave field.

In the present work we investigate the large-scale ef-

fects of submesoscale turbulence on the directional

properties of swell and how we might incorporate these

effects in statistical (Eulerian) models without explicitly

resolving the underlying flow fields. Our goal is to ap-

proximate the long-term mean effects of scattering due

to submesoscale flows on the evolution of mesoscale

properties of the wave field. We propose a theoretical

framework based on geometrical optics to predict the

average directional properties of a large ensemble of

wave rays that propagate through a medium with tur-

bulent velocity fluctuations. Specifically, we demonstrate

that under the assumption of isotropic, homogeneous

turbulence the long-range random scattering effects can

be accounted for by including a directional diffusion term

in the action balance equation. We will start our explo-

ration using geometrical optics (section 2) to consider the

average statistical properties of an ensemble of wave rays

(section 3). Subsequently, we use this Lagrangian frame-

work to derive additional diffusive contributions to

the action balance (section 4). We validate predictions

from stochastic theory using Monte Carlo simulations

(section 5), discuss implications (section 6), and sum-

marize our main results (section 7).

2. Deterministic framework

We consider propagation of surface waves in deep

water, in the absence of dissipation or source inputs

(conservative), disconnected from local winds (swell)

and characterized by low steepness. The medium is

represented by a surface current field where the ratio

« between a characteristic surface velocity and charac-

teristic wave celerity is assumed small (« � 1). The in-

fluence of vertical shear on the wave motion is assumed

sufficiently small so that we can represent the surface

velocity field by a representative velocity field u 5
[ux, uy]

T, with ux, uy representing orthogonal horizontal

velocities as a function of spatial coordinates x, y and

time t. Further spatial changes in the flow field occur on

temporal and spatial scales larger than a typical wave

period and wavelength (see appendix A for scaling de-

tails). Since waves exchange energy with the flow wave

energy density is not conserved. However, under the

stated assumptions the wave action is (approximately) an

adiabatic invariant (Bretherton and Garrett 1968;

Andrews and Mcintyre 1978; Ardhuin et al. 2008), and

our starting point will be conservation of wave action for

ocean swells,

d

dt

�
E

k

s

�
5 0: (1)

Here Ek(t) 5 E[k(t), x(t), t] is the energy density of a

wave packet with wavenumber k(t) 5 [kx(t), ky(t)]
T at

location x(t)5 [x(t), y(t)]T and time t. Further, s(t) is the

intrinsic frequency related to the wavenumber through

the deep-water dispersion relation jkj5 s2/g, with g the

gravitational acceleration.

We express the wavenumber in terms of the wave

direction u and intrinsic frequency s {using k 5 k(s)

[cos u, sin u]T}, and denote the location of a wave packet

in geographical and spectral space asX5 [x, y, u, s]T. In

this case X evolves along the rays of geometrical optics

according to

dX

dt
5 c(X, t), (2)

with

c(X, t)5

26664
c
x

c
y

c
u

c
s

377755
g

2s

26664
cosu(t)

sinu(t)

0

0

377751

266666664

u
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u
y

2›
m
u
n

2
1

2
s›

n
u
n

377777775 . (3)

Here un[x(t), u(t), t], um[x(t), u(t), t] are velocities di-

rected parallel and perpendicular to the local wave di-

rection, and ›n and ›m are the derivatives along and

perpendicular to the wave direction. Specifically,"
u
n
(x, u, t)

u
m
(x, u, t)

#
5A

"
u
x
(x, t)

u
y
(x, t)

#
,

"
›
n

›
m

#
5A

"
›
x

›
y

#
, (4)

withA the rotation matrix for rotation angle u defined as

A(u)5

�
cosu sinu

2 sinu cosu

�
. (5)

Note that u(t) is a Lagrangian (dependent) variable,

whereas u in Eqs. (4) and (5) is an independent variable,

representing some angle of rotation. For convenience
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(and brevity) we consider wave motion in a Euclidean

geometry since Earth’s curvature does not affect our

results to the order considered. Equations (1)–(3)

constitute a geometric optics approximation (e.g., Mei

et al. 2005) to account for the effect of horizontal

variations in depth uniform flows on the surface wave

motion. We do not include effects due to, for exam-

ple, velocity shear, higher-order wave–current or

wave–wave interactions, and dissipation or genera-

tion. These may contribute to long-term swell evolu-

tion (e.g., swell dissipation; Ardhuin et al. 2009), but

will be excluded here because our focus is on the

leading-order scattering due to spatial variations in

the surface flow.

Given the surface velocity field u, Eq. (2) can be in-

tegrated directly. However, global deterministic knowl-

edge of the turbulent velocity field at submesoscales is

unavailable, and the computational effort involved in

resolvingO(10) km scales for cross-basin propagation is

formidable. We therefore split the near-surface hori-

zontal flow field u in large-scale (mesoscale and larger

scale) flows U and smaller-scale (submesoscale) fluctu-

ations u0, written as

u5U1 u0 .

In operational models, typically only the large-scale flow

field that varies on time and space scales TU and LU

(mesoscale and larger) is resolved. To capture the

effects of the smaller-scale dynamics on the wave prop-

agation, we assume that u0 can be represented as a zero-

mean ergodic stochastic process that decorrelates on

spatial and temporal scalesLu0 andTu0 (withLu0 �LU and

Tu0 � TU). We further assume that the underlying ran-

dom process is quasi-stationary and quasi-homogeneous,

so that the variance of u0, changes on the TU and LU

mesoscales. Further, we assume that waves travel

fast relative to submesoscale time and space scales,

expressed as

L
u0

C
g

� T
u0 , (6)

so that the submesoscale velocity field appears frozen

from the waves perspective. This means that changes in

the surface flow field as observed by an observer moving

with the wave field are principally due to the propaga-

tion of the waves through the (frozen) flow field.

The nonlinear dependence of ray velocities on di-

rection and intrinsic frequency complicates statisti-

cal analysis of the influence of u0 on the coupled ray

equations. Because in the absence of the flow field the

problem has rotational symmetry, we first consider n

and m which measure the distances traveled in the

crest normal and along-crest directions, respectively.

Specifically,�
n(t)

m(t)

�
5

"
n(t

0
)

m(t
0
)

#
1

ðt
t0

A(t)

"
c
x
(X(t), t)

c
y
(X(t), t)

#
dt, (7)

with A(t) 5 A[u(t)] the local rotation matrix.

We define the ray starting location as x(t0) andm(t0)5
n(t0) 5 0. For a given ray starting at X0, we can then

express the local position x[M(t;X0);X0] as a function of

M 5 [m, n, u, s]T and the starting label X0. The time

evolution of M(t) then follows

dM

dt
5 c[M(t), t], (8)

with

c5
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c
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c
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c
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s

377755
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2
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2
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2
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n

377777775,

(9)

and where Um, Un, and u0
m, u

0
n are the velocities di-

rected along the local m, n directions as a function of

position x, u, and t. To leading order the dependence

of c on directions disappears, but the nonlinear de-

pendence of c on s remains due to the group velocity

Cg 5 g(2s)21.

To further simplify we note that the absolute fre-

quency v is locally related to the intrinsic frequency and

flow field through the dispersion relation

v5s1
s2

g
(U

n
1 u0

n) . (10)

We decompose absolute and relative frequencies as

s5s1s0 and v5v1v0, where here (and in what

follows) the bar indicates a mean contribution averaged

over submesoscale (but varying in the mesoscale) and

primed variables are fluctuating components about that

mean. Over the time scales of O(10) days relevant for

swell propagation we find that the fluctuating compo-

nent to the absolute frequency may be neglected (see

appendixA for details) and toO(«) we find thatv’v so

that v is directly tied to the large scale flow and mean

intrinsic frequency as

s5v2
(s)2

g
U

n
. (11)
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In addition, absolute frequency fluctuations s0 are di-

rectly tied to velocity fluctuations (appendix A)

s0 ’2
(s)2

g
u0
n . (12)

Since s0/s5O(«) we can now approximate Cg as a first

order Taylor series, so that the along-ray velocity

cn 5Cg 1Un 1 u0
n becomes

c
n
’

g

2s
2

gs0

2(s)2
1U

n
1 u0

n 5C
g
1U

n
1

3

2
u0
n ,

with Cg 5 g(2s)21. From this we see that the group

velocity is affected by the presence of fluctuating mo-

tions. With these approximations in place, c can be

separated as

c5 c1 c0 , (13)

where c is the local mean ray velocity that depends on

the mean properties of the medium,

c5

�
U

m
, C

g
1U

n
, 2›

m
U

n
, 2

1

2
s›

n
U

n

�T
, (14)

and c0 represents fluctuations in c due to the presence of

small-scale surface flow fluctuations,

(c0)5
�
u0
m ,

3u0
n

2
, 2›

m
u0
n , 2

1

2
s›

n
u0
n

�T
. (15)

As a consequence, for small fluctuations, the ray prop-

agation speed varies linearly with u0 and gradients of u0.

3. Ensemble statistics

To develop a statistical framework, we consider the

properties of a large ensemble of wave packets that

propagate through givenmeanflow superposed by random

flow fluctuations. We express energyE and ray positionM

in terms of an ensemble mean and fluctuating component

E
k
5 hE

k
i1E0

k , M5 hMi1M0 , (16)

where h. . .i denotes the ensemble average. Initially, the

location and action densityN of each ensemble member

is known and set (without loss of generality) tom5 n5
u5 0, with s5v and s0 defined by the local u0

n as above.

As a consequence, the initial s0 is randomly distributed.

Further, because c0 and s0 are linearly dependent on

u0
n, u

0
m (to the order considered) we find that hci5 c and

hsi5s. The objective in what follows is to predict the

mean energy, the position, and the scatter around the

mean (variance) for a large ensemble of rays (see, e.g.,

Fig. 2).

FIG. 2. (left) Ray paths through a turbulent medium for a wavefield with initially (along x5 0) parallel (eastward

directed) waves. The background flow, calculated as described below in section 5, is characterized with the vorticity

(positive red, negative blue). Due to the irregular refraction individual rays deviate from a straight line, and the

deviation takes the form of a random walk. (right) For example, the ensemble mean wave direction remains ap-

proximately 0, but the wave direction for an individual ray (e.g., black line) develops erratically.
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a. Ensemble average ray path and energy density

To find the mean path hMi(t) traced by the ensemble

we take the ensemble average of the ray equations

dhMi
dt

5 hc(M)1 c0(M)i . (17)

We further assume that M0 does not induce O(LU)

changes in position, expressed as

jx(M, t)2 x(hMi, t)j
L

U

� 1,

so that in Eq. (17) we may approximate hc(M)i5
c(hMi). Further, invoking quasi-stationarity and quasi-

homogeneity, and noting that velocity perturbations

u0 (or gradients thereof) across the ensemble are un-

correlated with M0, we have hc0(M)i’ hc0(hMi)i5 0.

With these assumptions in place, and upon integration

in time of Eq. (17), the average ray path traced out by

the ensemble mean hMi can be written as

hmi5
ðt
0

U
m
dt , hni5 g

2v

�
t2

ðt
0

Gdt

�
1

ðt
0

U
n
dt ,

hui52

ðt
0

›U
n

›m
dt, (18)

where G5v/s2 1 and jGj � 1. Along-ray mean displace-

ment hni is dominated by displacement due to the wave

motion proper. Propagation effects driven by the mean

flow only become significant over long integration times.

In what follows, given U, the mean properties in Eq. (18)

are treated as known (e.g., through numerical integration).

The random fluctuations in the surface velocity field

drive random fluctuations in the intrinsic frequency s

around its mean. Due to the conservation of wave action,

N 5 E/s such random variations in s result in random

variations in the energy density. The ensemble-averaged

energy density hEi can be written as

hEi
k
5 hN

k
(s1s0)i5N

k
s ,

which shows that along a wave ray, hEik is unaffected

by small-scale fluctuations. In contrast, the frequency-

direction energy density (Es,u 5 c21
g kEk) is slightly en-

hanced in the presence of such zero-mean fluctuations.

Specifically, making use of the binomial theoremwe find

hE
s,u
i5 2s4

g2
N

k

*
(s1s0)4

s4

+
5

2s4

g2
N

k

"
11 4

�
s0

s

�

1 6

*�
s0

s

�2
+
1 4

*�
s0

s

�3
+
1

*�
s0

s

�4
+#

However, since hs0i5 0, ands0/s5O(«) (see appendixA)

corrections only enter at O(«2) and this bias can be

neglected.

b. Variance and diffusivity estimates

To characterize the spreading around the mean loca-

tion in each of the coordinates we consider the ensemble

(co)variance defined as

V
ab

5 h(a2 hai)(b2 hbi)i , (19)

where a and b denote m, n, s, or u. Due to the explicit

dependence of s0 on u0
n, Vs0s0 is constant in time,

V
s0s0

s2
5

*
(u0

n)
2

4C2
g

+
. (20)

As a consequence, since u0/Cg 5O(«), the relative variance

due to velocity fluctuations isO(«2), so that conservation of

absolute frequency ensures that the intrinsic frequency re-

mains constrained within limited bands around the mean.

For the remaining variables no such constrains apply.

In general, individual realizations will follow random

walks with growing variance in time. Specifically, since

u0 decorrelates over spatial scales Lu0, and the waves

propagate at a characteristic velocity c0, we assume that

velocity fluctuations decorrelate on time scale tc 5 Lu0/c0,

such that the correlation Gab(t, t) ’ 0 for t . tc, with

G
ab
(t, t)5 hc0a[M(t), t]c0b[M(t1 t), t1 t]i. (21)

The evolution of variances Vab follows from random

walk theory. Specifically, since a0 5
Ð t
0
c0a(t1)dt1, we have

V
ab

5

ðt
0

ðt
0

c0a(t1)c
0
b(t2)dt1 dt2 5

ðt
0

ðt
t2t

G
ab
(t, t)dt dt

5

ðt
0

ðtc
2tc

G
ab
(t, t)dt dt2

ðtc
0

ðtc
t

G
ab
(t, t)dt dt

2

ðt
t2tc

ð0
t2t

G
ab
(t, t)dt dt, (22)

where t5 t1, t 5 t1 2 t2, and where we used that Gab ’ 0

for t . tc. We assume that t � tc, so that the integra-

tion domain of the last two terms in (22) is }t2c , and the

first term on the right side integrates over 2tct. If we

assume that Gab integrated over tc is nonzero, the last

two terms on the right of Eq. (22) can be neglected.2

2 Note that for Gs0s0 we would find that the first term in Eq. (22)

vanishes and all contributions to the variance originate from the

latter terms. Specifically, Eq. (26) would integrate to 0 in that case.
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Further, making use of G(t, t)’G(t, 2t) the rate of

change of the variance is given by

dV
ab

dt
5 2D

ab
(t) , D

ab
(t)5

ðtc
0

G
ab
(t, t)dt, t. t

c
,

(23)

where Dab is the diffusivity which may change on slow

scales. For stationary statistics (Dab constant) the vari-

ance grows linearly in time (Vab 5 2Dabt) akin to

Brownian motion, and in general we find

V
ab

5 2 ~D
ab
t , ~D

ab
5

ðt
0

D
ab
(t0)dt0

t
, (24)

where ~Dab is the effective mean diffusion. Since

u0
mu

0
n 5 0 and ›nu

0
n is in quadrature with u0

n, non-

diagonal contributions to the (mean) diffusion and

covariance tensors vanish (Dab 5 Vab 5 0 if a 6¼ b).

The diagonal entries Daa can be nonzero, but are

expressed in terms of the correlation in time of the

fluctuations c0a as observed in a coordinate system

following a wave group. The leading order contribution

to ray propagation occurs along n (see appendix A),

so that

M(t1 t)’M(t)1DM[j
m
(t), j

n
(t)], (25)

with jn 5 gt/(2s), jm 5 0, and

DM(j
m
, j

n
)5 [j

m
, j

n
, 0, 0]T.

Invoking quasi-stationarity and quasi-homogeinity

Ga,a(t, t) can then be expressed in terms of the spa-

tial correlation ga,a as

G
aa
(t, t)’ g

aa

�
0,
gt

2s
, hMi, t

	
with

g
aa
(j

m
, j

n
, hMi, t)5 hc0a(M, t)c0a[hMi(t)1DM(j

m
, j

n
), t]i.

As a consequence, the diffusion coefficient can be

expressed in terms of integration over the spatial cor-

relation function g as

D
aa

5
2s

g

ðjc
0

g
aa
(0, j,M, t)dj

with jc 5 gtc/(2s).Alternatively, for a quasi-homogeneous

field (statistics do not change within spatial correlation

scale) this may be approximated in terms of the local

velocity wavenumber variance spectrum as

D
aa

5
2ps

g

ð
e
aa
(l

m
, 0,M, t)dl

m
, (26)

with eaa(lm, ln) the variance density spectrum of ve-

locity fluctuations c0a as a function of the along-crest lm
and along-ray ln wavenumbers. Given the definition of

c0, and under the assumption that velocity fluctuations

are isotropic such that eu0m 5 eu0n 5 e/2, with e(lm, ln) the

total variance density, we find that

e
m
5

e

2
, e

n
5

9

8
e , e

u
5 l2

m

e

2
.

Expressed in terms of wavenumber magnitude l and

flow direction Q (unrelated to the wave direction),

and with the assumption that there is no preferential

decorrelation direction, we have e(l,Q)5 (2p)21e(l),

and since e(lm, ln) 5 e(l, Q)/l we find after sub-

stitution that

D
mm

5
s

g

ð‘
0

e(l)

l
dl , (27)

D
nn
5

9

4
D

mm
, and (28)

D
uu
5

s

g

ð‘
0

le(l)dl . (29)

The relations (26)–(28) express the wave ray diffusivities

in terms of the submesoscale velocity variance spectrum

and they represent the main results of this section.

c. Geographical mean and variance in fixed
coordinates

Predicting variance and mean values in a fixed co-

ordinate frame X is complicated due to the nonlinear

dependence of the leading order geographical ray ve-

locities on wave orientation u, as seen in

"
c
x

c
y

#
5C

g

�
cosu

sinu

�
1

2664 11
1

2
cos2u

1

2
cosu sinu

1

2
sinu cosu 11

1

2
sin2u

3775u01U .

Estimates of spatial mean location and variance in

fixed coordinates differ from estimates in wave-

oriented coordinates. However, statistical estimates

for u and s are unchanged. To estimate spatial mean

and variance we neglect mean flows (Ux 5 Uy 5 0),

and assume u5 0. Further, deviations from the mean

are assumed small, and approximating sinu and

cosu by truncated second-order series approximations

then yields,
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"
c
x

c
y

#
5C

g

264 12
1

2
(u0)2

u0

375

1

26664
3

2
2

1

4
(u0)2

1

2
u0

1

2
u0 11

1

2
(u0)2

37775u0 1U . (30)

The angle u depends on the integrated history over veloc-

ity gradients, but is not correlated to instantaneous veloc-

ities. As a consequence, ensemble-averaged velocities are

"
c
x

c
y

#
5C

g

264 12
1

2
V

uu

0

375 , (31)

so that ensemble average velocity estimates depend on

the directional variance Vuu. This reduces the mean

propagation speed of the ensemble. Physically, this

speed reduction is due to path extension by the random

fluctuation around a straight path. As a consequence,

the mean ensemble location is affected by small scale

fluctuations since

hxi5C
g

�
t2

1

2
D

uu
t2
�
, (32)

and hyi 5 0. Similarly, spatial variances are influenced

by directionality since (see appendix B for details)"
V

xx

V
yy

#
5

ðt
0

ðt
0

" hc0x(t1)c0x(t2)i
hc0y(t1)c0y(t2)i

#
dt

1
dt

2
’ 2t

"
D

nn

D
mm

#

1C2
g

26664
1

3
D2

uut
4

2

3
D

uu
t3

37775 . (33)

Although initially spatial variance growth is dominated

by Dmm, Dnn, as time progresses and directional vari-

ance of the field increases, the growth is dominated by

additional spatial spreading due to enhanced direction-

ality of the field. Further, for time scales such that the

small-angle approximation remains valid (t , 1/Duu), we

have thatVyy.Vxx, or lateral spreading dominates during

initial evolution. Essentially, the process is comparable

to shear-induced dispersion, since a small perturbation

in the angle between two particles will result in large

lateral differences in position due to difference in the

lateral propagation velocity. Dispersion in the y di-

rection dominates initially because we start along u5 0

for which ›ucx ’ 0.

4. The diffusive action balance equation

The Lagrangian wave-packet viewpoint is convenient

to estimate diffusive rates, but is not easily amendable to

calculating the evolution of swell fields. Our goal here is

to describe the evolution of the mean Eulerian action

density N(x, y, s, u, t) in the presence of random scat-

tering. Assuming the action density is known at a time

t, where NJ (with J 5 Cg/k the Jacobian) is conserved

along rays, we consider the action integrated over a

small volume dV 5 dxdydsdu at time t 1 t. Here t is a

time interval long compared to the decorrelation time

scale, but short compared to other time scales. Assuming

that the statistics are quasi-homogeneous and quasi-

stationary, the mean wave action in a small volume may

be approximated asð
dV

JN(X, t1 t) dx dy ds du’ JN(X, t1 t)dV .

During the time interval t rays undergo displacement

D(t, X) such that X 2 D denotes the point of origin at

time t. Consequently (similar to Einstein 1905), the ex-

pected value of the total action density t 1 t is

J(X, t1 t)N(X, t1 t)dV

5N[X2D(t), t]J[X2D(t), t]dV , (34)

where the displacement D during t is given by

D(t, t)5

ðt1t

t

[c(t0)1 c0(t0)]dt0 ’ c(t)t

1
dc(t)

dt

t2

2
1 � � � 1X0(t) .

Since the displacements and time interval t are assumed

small, we approximate both sides of Eq. (34) by Taylor

approximation, which results in

t
›NJ

›t
1

t2

2

›2NJ

›t2
1 � � � 52D

a

›NJ

›X
a

1
D

a
D
b

2

›2NJ

›X
a
›X

b

1 � � � .

Substitution of the definition of D, dropping terms pro-

portional to t2 and higher, and using that NJ5NJ then

results in

›NJ

›t
1 c

a

›NJ

›x
a

5D
ab

›2NJ

›x
a
›x

b

. (35)

Here Dab are the Lagrangian diffusivities. To leading

order, the LHS of Eq. (35) represents an energy con-

servation equation (e.g., Tolman and Booij 1998). Using

Dss ’ 0, ›uJ 5 0, and neglecting spatial gradients of
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J due to slow-scale variations in the diffusive terms we

obtain

›N

›t
1

›c
x
N

›x
1

›c
y
N

›y
1

›c
u
N

›u
1

›c
s
N

›s

5D
xx

›2N

›x2
1 2D

xy

›2N

›x›y
1D

yy

›2N

›y2
1D

uu

›2N

›u2
, (36)

which is a conventional action balance augmented with

diffusive terms on the right hand side. Further, the

spatial diffusion coefficients are given by

D
xx
5D

mm

�
11

5

4
cos2u

�
,

D
yy
5D

mm

�
11

5

4
sin2u

�
,

D
xy
5D

mm

�
5

4
sin u cos u

�
,

withDmm defined as in Eq. (27), whereas the directional

diffusion coefficient Duu is given by Eq. (29). Note that

the dependency of spatial diffusion on directional vari-

ance, which explicitly is accounted for in Dxx in the

previous section, does not explicitly enter the spatial

diffusion coefficients (due to assumed small t). Instead,

under the present Eulerian approximation, the effects of

directional variance on spatial diffusion enter as a shear-

dispersion effect.

5. Monte Carlo simulations

To verify the theoretical Lagrangian predictions, and

to estimate the significance of small-scale flow effects on

the wave statistics, we conduct Monte Carlo simulations

for a large ensemble of wave rays propagating through a

flow field with submesoscale variability. Specifically,

following Callies et al. (2013, 2015), we parameterize the

variance in the background flow e(l) as

e(l)5

8><>:
e
0

p

�
l

l
0

�2n

, l
low

# l# l
up
,

0 , elsewhere,

(37)

where n is the power of spectral decay and e0 is the ki-

netic energy density3 at reference wavenumber l0. De-

pending on season and location, the exponent n typically

varies between 2 and 3 for oceanic surface flows, and

using 10 km as a reference wavelength, e0 ranges from 1

to 10m3 s22. We use n 5 2.5 and set e0 5 1 or 10m3 s22.

Further, llow and lup denote the upper and lower

wavenumbers considered. We assume that scales above

50 km are part of the mean flow (which we will neglect

here) and use 1 km to define the upper wavenumber

limit, to avoid excessively small integration steps in the

ray tracing procedure.

To construct realizations of the flow field we assume

that the flow statistics are isotropic.We use a discrete 2D

spatial Fourier representation for u0
x and u0

y on a domain

of 500 km 3 500 km. For each realization the amplitude

for each wavenumber component is set according to the

variance contained in the binned interval around that

wavenumber, and the phase is drawn randomly from a

uniform distribution.

For a single realization of the flow field a set of 40 rays

is initialized along x 5 0 spaced at 12.5-km intervals

along y and initialized with a given absolute radian fre-

quency v 5 2pf and direction u 5 0. For each ray j, the

evolution of Xj is subsequently calculated by numeric

integration of the ray using Eqs. (2) with a fourth-order

Runge–Kutta solver. For efficiency, use is made of the

periodic nature of Fourier series approximation, and

rays that leave the domain continue at the opposite

boundary. We consider a total of 50 independent re-

alizations with 40 rays each and ensemble-averaged

statistics are based on 2000 rays.

Results

The theoretical values for the standard deviation

Sa 5
ffiffiffiffiffiffiffiffi
Vaa

p
are in excellent agreement with estimates

from Monte Carlo simulations, for a range of frequencies

and different values of e0. Here we specifically consider

results for waves with periods of 10 and 20 s and e0 5 1 or

10m3s22 (Fig. 3). Spatial spreading inm and n coordinates

(Sm and Sn) typically grows toO(1) km over 5 days (Fig. 3,

left and center panels). Although distances increase for

large e0 and f (sinceDmm } fe0 the standard deviations Sm
and Sn are proportional to

ffiffiffiffiffiffi
fe0

p
t), in general Sm, Sn are

small relative to the mean distance traveled (a 10-s wave

travels ;3000km in this time) and the typical spatial size

of a storm (;100km). These findings imply that the direct

spatial dispersion due to propagation of the waves by

random flows is negligible.

The directional spreading Su is also }
ffiffiffiffiffiffiffiffi
fe0t

p
, which

implies that directional variance increases with in-

creased flow variance and increased wave frequency.

However Su varies from ; 18 to 108 after 1 day (Fig. 3,

right panel), so that even the lower limit is significant

compared with observed directional spreading of ocean

swell fields of O(108).

3 The factor p21 results from a change from inverse wavelength

density as in Callies et al. (2015) to wavenumber density, and

transforming from kinetic energy to variance.
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In Earth-fixed coordinates, the increased pathlengths

induce a spatial lag Cgt2 x in the x coordinate along the

mean wave direction. This spatial lag is frequency in-

dependent (results with different periods coincide),

and scales as } e0t
2. After 5 days, the spatial lag grows to

10–100km (Fig. 4, right panel). Although this is rela-

tively small compared to the total travel distance this

will have significant influence on swell arrival times (we

return to this in the discussion).

Spreading along the mean wave direction Sx for small

t is determined by the fluctuating flow (dependent

on frequency). However, as directionality grows, shear-

dispersion dominates variance in Eq. (33) and Sx be-

comes frequency independent and } e0t
2 (Fig. 4, left

panel). As a consequence Sx values are typically an

order of magnitude larger, and comparable to the

spatial lag in magnitude [in fact, Sx ’ 2(Cgt2 x)/
ffiffiffi
3

p
for

large t]. However, spatial spreading on the order of

days is typically dominated by lateral spreading. The

Sy is }t
ffiffiffiffiffiffiffiffi
e0ft

p
and consequently increases with in-

creased variance of the flow or increased frequency,

and after 1 day Sy ; 20–100 km (Fig. 4, center panel).

6. Discussion

The statistical framework developed here describes

themean effects on a wave packet propagating over long

distances through a field of submesoscale eddies. The

predictions made by the model are in excellent agree-

ment with directMonte Carlo simulations. Since oceanic

submesoscale turbulence is present everywhere, these

effects are important for operational modeling of wave

propagation over long distances. Direct empirical veri-

fication of the theoretical framework presented here can

be obtained by observations of the directional evolution

of ocean swell across the ocean along its route from

generation area to remote coastline. Such observa-

tions are becoming more and more available from

drifting wave and weather buoys. Once the theoretical

predictions are empirically validated, the form of the

directional scattering term in the radiative transfer

equation can be immediately incorporated in opera-

tional models to account for scattering of waves on

surface flow turbulence.

a. Delayed swell arrival

Deviations from the great-circle path due to refraction

in a random medium increases travel time for oceanic

swells. Although the spatial lag is small compared to

the total travel distance, the resulting delay in arrival

times (compared with arrival times of swells in a

quiescent ocean) is significant and easily observable.

Specifically, from Eq. (32), we find that the expected

delay Dt 5 t0 2 t is

FIG. 3. Evolution of standard deviation (left) Sm, (center) Sn, and (right) Su as a function of time. Considered waves have periods of 10 and

20 s and the variance spectrum e(l) of the flow is parameterized with e0 5 10m3 s22 (upper curves) and e0 5 1m3 s22 (lower curves).
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Dt5
1

2
D

uu

hxi2
C

g

} e
0
f 2hxi2 ,

where t0 is the travel time for a great-circle route (as-

suming that Dt/t0 � 1) and x is the mean distance from

the source to the observation point. Hence, expected

delays rapidly increase as a function of increased source

distance and frequency. The delay for swells with f .
0.05 that traveled;3000km can easily be in the order of

hours (Fig. 5). In the context of operational forecasting

applications this is a significant difference.

The order of magnitude of time delay and bias to late

arrivals (travel times never decrease relative to the

shortest path) is consistent with Jiang et al. (2016a) who

reported mean arrival delays of several hours for swell

at Pacific sites (compared with model results). While

other factors may contribute, and the exact influence

depends on the strength of oceanic surface flows, the

present mechanism is a plausible explanation for de-

layed arrivals.

b. Balance between geometric and diffusive spreading

Arguably, the most significant result of the present

work is that within an Eulerian framework the effect

of random scattering of waves can be represented by

diffusive terms that can be directly related to the

variance spectrum of the flow turbulence. Since spa-

tial diffusivities are small, the leading contribution

comes from the diffusion term in directional space,

so that—augmented with source terms S representing

FIG. 5. Contours of the expected time lag (h) for swell propa-

gating through a turbulent flow field. Flow field parameterized as in

Eq. (37) with n 5 2.5 and e0 5 10m3 s2.

FIG. 4. Evolution of standard deviation (left) Sx, (center) Sy, and (right) the diffusion induced lag Cgt2 x as a function of time. Con-

sidered waves have periods of 10 and 20 s and the variance spectrum e(l) of the flow is parameterized with e0 5 10m3 s22 (upper curves)

and e0 5 1m3 s22 (lower curves).
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generation, dissipation, and nonlinear interaction—

the action balance becomes

›N

›t
1

›c
x
N

›x
1

›c
y
N

›y
1
›c

u
N

›u
1

›c
s
N

›s
5D

uu

›2N

›u2
1 S , (38)

where Duu is determined from Eq. (29). The inclu-

sion of a diffusive term implies that the evolution of

the directional shape of the spectrum will be influ-

enced by a balance between geometric spreading,

which decreases directional width, and the diffu-

sive term, which increases directional width. Initially,

near the source region the directional distribution

is relatively broad and geometric spreading domi-

nates the evolution. As the directional aperture of

the wave field increasingly narrows, diffusion be-

comes more important and eventually arrests the

geometrical narrowing, so that a stable directional

shape develops.

To illustrate this, we consider an initial Gaussian wave

field (period 15 s, cosine squared distribution, mean di-

rection due north) with a 500-km-diameter footprint.

We solve Eq. (38) numerically (finite differences) for a

single frequency, in the absence of mean ambient flow

[fourth and fifth term of LHS of Eq. (38) do not con-

tribute] and sources and sinks (S 5 0). The initial de-

velopment of the wave field is similar to a reference

solution without diffusion (Fig. 6). However, when in-

cluding diffusion, after 2 days the narrowing of the dis-

tribution due to geometric spreading is arrested and a

balance between diffusive scattering and geometric

spreading is established. The resulting directional ap-

erture is approximately 158 (Fig. 6, center panel),

whereas the aperture of the reference solution (no dif-

fusion) continues to narrow. Further, compared to the

reference solution the wave height is significantly re-

duced after 10 days (by 50%). This simple modeling

example shows that the scattering of surface waves on

currents results in directional apertures in agreement

with what is commonly observed (see Fig. 1). Further,

these results are very similar to findings by Gallet and

Young (2014), who used Monte Carlo ray tracing to

estimate the probability density function of the far-field

directional deflection angle. Moreover, the observed

swell decay is weak but significant and may explain or

contribute to widely observed, but unexplained, oceanic

swell decay rates (see, e.g., Ardhuin et al. 2009; Young

et al. 2013; Stopa et al. 2016).

FIG. 6. Evolution of an ocean wave field with 15-s period according to Eq. (38) propagating at the group velocity in themean direction of

the initial swell field. For the initial wave field, we assume a spatially Gaussian distribution (500-km width) and a cosine squared

directional distribution. (a) Directional spreading with (black) and without (gray) the inclusion of diffusive scattering for increasingly

energetic submesoscale motions [parameterized with Eq. (37)]. (b) Comparison between directional spreading after 5 days calculated

with and without diffusive term in. (c) Wave heights as a function of time with (black) and without (gray) diffusive term (the latter is

indistinguishable from least energetic diffusive solution).
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7. Conclusions

We derived a stochastic model to account for the

mean effects of near-surface submesoscale turbulent

flows on the evolution of ocean surface wave fields.

Specifically, we argued that due to the ubiquitous pres-

ence of submesoscale surface flow fields in the ocean,

a wave packet’s trajectory deviates from a straight (great

circle) propagation path, and—analogous to Brownian

motion—this deviation takes the form of a random walk

in geographical, intrinsic-frequency, and directional

spaces. Based on Lagrangian and random walk theory

we determined the ensemble mean and variance of the

wavepacket position and frequency and direction for a

wave ray bundle propagating through a random me-

dium. We derived diffusion coefficients in each of the

coordinate spaces, expressed in terms of the variance

spectrum of the turbulent flows, and verified our the-

oretical results with Monte Carlo simulations. The

scattering of surface waves on (sub)mesoscale turbu-

lence can be accounted for in stochastic wave models

by including a directional diffusion term in the action

balance equation. Accounting for these subgrid re-

fraction effects in operational forecast models will

improve our ability to estimate swell arrivals, wave

height decay (due to directional dispersion of swell

fields) and the aperture of the directional distribution

(due to a balance between geometric narrowing and

diffusive spreading). Modeling errors in swell arrivals,

wave heights, and—in particular—the directional ap-

erture, have been widely observed, and some of these

errors could likely be explained by accounting for

submesoscale refraction effects. The changes in the

wave statistics predicted by this theory are observ-

able with standard oceanographic instruments, and

direct empirical validation of these theoretical results

is possible.
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APPENDIX A

Order O(«) Approximations for s0 and Group
Velocity

The starting point are the previously introduced ray

equations together with the along ray time variation of

the absolute frequency

dM

dt
5 c ,

dv

dt
5

s2

g
(cosu›

t
u
x
1 sinu›

t
u
y
) , (A1)

where the absolute frequency v is related to the intrinsic

frequency through the dispersion relation

v5s1
s2

g
u
n
. (A2)

The wave field is characterized by characteristic period

Tw, wavelength Lw, (absolute) frequency s0 5 2p/Tw,

wavenumber k0 5 s0/c0, celerity c0 5 g/s0, and we in-

troduce the scaled variables

t5
~t

T
w

, m5
~m

L
w

, n5
~n

L
w

, u5 ~u ,

s5s
0
~s , v5s

0
~v, (A3)

where e. . . denote scaled variables. Further, the flow and

flow gradients are scaled as

U
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5 u

0
fU

n
, U

m
5 u

0
gU

m
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with u0 the characteristic flow scale; LU the spatial scale

and TU the time scale of the large scale flow; andLu0 and

Tu0 the spatial scale of the small scale flow.We define the

scale parameters

«5
u
0

c
0

, l
u0 5

L
w

L
u0
, l

U
5

L
w

L
U

, m
u0 5

T
w

T
u0
, m

U
5

T
w

T
U

,

(A7)

which are all assumed to be small (� 1) so that the

current speed is assumed small compared to the wave

propagation and the characteristic scales of the current

are large compared with the wave scale. Further, we

introduce the scaling assumption

T
u0

T
U

5a
T
,

L
u0

L
U

5a
L
, (A8)
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with O(aT) 5 O(aL) � 1. This formalizes the assump-

tion that small and large scales vary by at least an order

of magnitude. With this scaling in place the ray equation

and dispersion relation reduce to

d ~M

d~t
5~c

d~v

d~t
5 «m

u0(~s)
2 cosug›

t
u0
x1sinue›

t
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y

� 	
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T
«m
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2 cosug›

t
U

x
1sinue›

t
U

y

� 	
, (A9)
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(A10)

and

~v5 ~s1 «~s2( ~U1 eu0) . (A11)

At the leading order we thus have ~v5 ~s and toO(«) we

have

~s5 ~v2 «~v2( ~U1 ~u0) . (A12)

We now decompose absolute and intrinsic frequencies

into mean and fluctuating components as ~v5 ~v1 ~v0 and
~s5 ~s1 ~s0. We further introduce the scaling assumption

~v0 5O(«mu0) so that ~v0 can be neglected to O(«)

(we motivate this assumption below).

The average s and fluctuating part of the intrinsic

frequency s0 now follow immediately from taking the

average of Eq. (A12), and subtracting the result from

Eq. (A12). Noting that to the leading order ~s5 ~v, and

since accurate up to O(«) we have ~v5 ~v, we then

obtain

~s5 ~v2 «~s2 ~U ~s0 52«~s2~u0 . (A13)

To the order considered changes in absolute frequency

are thus associated with changes in mean intrinsic fre-

quency, whereas ~s0 balances with the Doppler shift due

to local velocity fluctuations.

From Eq. (A13) we find that (es0)
21

~s5O(«) and we

can thus approximate the propagation velocity (2~s)21

with a Taylor series approximation, which at the first

order reduces to

1

2~s
’

1

2~s
2

~s0

2fs2

’
1

2~s
1 «

~u0

2
.

As a consequence, in the leading order approximation

particle displacement only occurs in the normal di-

rection, with cn 5 (2~s)21 1O(«).

a. Order of ~v0

To obtain the evolution equation for ~v0 we take the

mean of Eq. (A9), and subsequently subtract it from

Eq. (A9). To the leading order this results in

d~v0

d~t
5 «m

u0 ~s
2(cosue›

t
u0
x 1 sinug›

t
u0
y) . (A14)

As a consequence ~v0 5O(«mu0) on short time scales,

and since we only consider up to O(«) in Eq. (A12)

may be neglected onO(1) time scales. Further, due to

fluctuating nature of eu0, growth is not monotonic; in-

stead ~s0 oscillates and a mean drift only accumulates

slowly. To estimate the time scale when ~s0 becomes

O(«), we assume (analogous with the other variables

in the main text) random walk for the perturbed

variable so that

S
~v0 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D

~v0 ~v0 t
q

}
ffiffi
t

p
, (A15)

with S~v0 the standard deviation and D~v0 ~v0 a coeffi-

cient characterizing the diffusive strength. If the

initial scale Sv0 is order O(«m) this implies that

Sv0 becomesO(«) after ~t’O(m22). Setting Tw5O(10)

s and Tu0 5 O(104) we find that m22 represents

O(106) wave periods, or O(100) days. As a conse-

quence, we may neglect the ~v0 contribution on

scales of O(10) days that are of interest for swell

propagation.

APPENDIX B

Estimation of Vxx and Vyy

To estimate Vxx and Vyy in Eq. (33) we have to

approximate"
V

xx

V
yy

#
5 2C2

g

ðt
0

ðt1
0

"
hc0x(t1)c0x(t2)i
hc0y(t1)c0y(t2)i

#
dt

2
dt

1
,

where we made use of symmetry of the inte-

grands about t1 5 t2 so that now t2 # t1. To approximate

Vyy (which we will make use of in approximating Vxx

below) we note that hc0y(t1)c0y(t2)i5 C2
ghu(t1)u(t2)i1

(9/4)hu0
x(t1)u

0
x(t2)i [neglecting in Eq. (30) assumed

small contributions originating from products be-

tween u0 and u0], and assume quasi-stationary statistics

so that
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hu(t
1
)u(t

2
)i5

ðt1
0

ðt2
0

hc
u
(t
3
)c

u
(t
4
)idt

3
dt

4
5

ðt1
0

(t
1
2 t)G

cucu
(t, t)dt

1

ðt2
0

(t
2
2 t)G

cucu
(t, t) dt2

ðt12t2

0

(t
1
2 t

2
)G

cucu
(t, t)dt,

wherewe introduced the coordinate transformation t5 t32
t4 and t5 t4 and integrated over t assuming stationary sta-

tistics. Assuming that t is much larger than the coherence

length scale, we may approximate the upper bounds of the

integrands over t with the coherence length scale tc (thus

neglecting contributions toVyywhen jt12 t2j# tc, t1# tcand

t2 # tc). And since we then have t � t1 and t � t2 we find

hu(t
1
)u(t

2
)i’ 2t

2
D

uu
. (B1)

Substitution into Vyy of this approximation we then find

after integration that

V
yy
5

2

3
C2

gDuu
t3 1 2tD

nn
. (B2)

To approximate Vxx, we substitute c0x 5 cx 2 cx so that

hc0x(t1)c0x(t2)i5
1

4
C

g

2h[u0(t
1
)]2[u0(t

2
)]2i

2
C

g

4
V

uu
(t
1
)V

uu
(t
2
)1 hu0

y(t1)u
0
y(t2)i .

If the statistics are (and remain) Gaussian, we can

neglect fourth-order cumulant contributions to the

fourth-order moment,

h[u0(t
1
)]2[u0(t

2
)]2i’V

uu
(t
1
)V

uu
(t
2
)1 2[hu0(t

1
)u0(t

2
)i]2 .

Consequently, with Eq. (B1) we have hc0x(t1)c0x(t2)i5
2D2

uut
2
2, so that after substitution and integration of the

results we find

V
xx
5

1

3
C2

gD
2
uut

4 1 2tD
mm

. (B3)
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