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ABSTRACT

General positive-definite and monotonic limiters are described for use with unrestricted-Courant-number
flux-form transport schemes. These limiters are tested using a time-split multidimensional transport scheme.
The importance of minimizing the splitting errors associated with the time-split operator and of the con-
sistency between the transport scheme and the discrete continuity equation is demonstrated.

1. Introduction

Scalar transport schemes in geophysical fluid flow
models produce discrete solutions to the general scalar
conservation equation

���

�t
� � · �V� � 0, �1a�

where � is a scalar mixing ratio, � is the air density, V
is a velocity vector, and the operator � · represents a
multidimensional flux divergence. Additionally, the
mass fluxes �V satisfy the mass conservation equation

��

�t
� � · �V � 0. �1b�

Discrete solvers for the scalar transport equation ap-
pear in a number of important geophysical fluid dynam-
ics applications, including climate, weather, and ocean
modeling, and air quality and air chemistry modeling.
Typically these solvers are based on extensions of
schemes developed for one-dimensional transport—for
which a wide variety of schemes have been developed.

Relative to the large number of one-dimensional
schemes described in the literature, there are many

fewer multidimensional schemes because of the addi-
tional complexities that arise in attempting to extend
the 1D schemes while simultaneously preserving valu-
able scheme properties such as monotonicity and con-
servation. Existing multidimensional transport schemes
can be grouped into two general categories. First, 3D
schemes can be constructed in a fully explicit manner
where all the cross terms are explicitly derived and rep-
resented in the algorithm and resulting code. Examples
of this approach can be found in Leveque (1996),
Leonard et al. (1996, hereafter referred to as LLM96),
and Stevens and Bretherton (1996). Second, algorithms
for 3D transport have been constructed based on se-
quential application of 1D schemes. These algorithms
are called time split, and examples of this type of split-
ting include Easter (1993), Walcek (2000), and Clappier
(1998).

Recently, so-called unrestricted-time-step schemes
have been implemented in large-scale Eulerian models
(e.g., LLM96; Lin and Rood 1996, hereafter referred to
as LR96). These schemes are based on 1D schemes and
they can be cast in both time-split and nonsplit forms
(LLM96). In both LLM96 and LR96 it is found that the
positive-definite and monotonic limiters used with their
transport schemes are no longer absolutely positive-
definite or monotonic (to machine roundoff) for Cou-
rant numbers |U�t/�x | � 1. We have verified this be-
havior of the limiters in the unrestricted-time-step
schemes and we have designed two new general limiters
that are positive-definite and monotonic (to machine
roundoff). In this paper, we describe the limiter formu-
lations and test them in 2D and 3D applications using a
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time-split solver based on the LLM96 scheme that mod-
els the transport of a scalar in a compressible fluid. We
highlight the importance of minimizing the splitting er-
rors associated with the time-split operator, and the
need for consistency between the transport scheme and
the discrete continuity equation is also demonstrated.
Given that the fully explicit schemes of LLM96 and
LR96 have costs that scale approximately as n2 (n is the
number of spatial dimensions) whereas the cost of time-
split schemes scale approximately as n, the time-split
formulations offer attractive and cost-effective alterna-
tives to LLM96 and LR96 for some applications.

2. Unrestricted-time-step time-split transport
scheme

a. Basic time-split scheme

A one-dimensional forward-in-time (FIT) discretiza-
tion of (1a) and (1b) can be written as

����t��t � ����t 	 Fx��t �, �2a�

�t��t � �t 	 Fx�I �, �2b�

where superscripts denote the solution time level and
the vector I 
 1. The operator Fx denotes the discrete
flux divergence in x and is typically expressed as

Fx��� � ��t��x�� f ���x��x�2 	 f ���x	�x�2�.

To construct the fluxes f, the mass fluxes at the faces
(�u)x�x/2 are multiplied with values of �x�x/2 that are
determined through some form of interpolation or in-
tegration (i.e., the advection scheme). The mass fluxes
(�u)x�x/2 are identical to those used in the mass con-
servation Eq. (2b).

The mass conservation Eq. (1b) is usually solved
within a full dynamical model and is discretized within
a 3D formulation as

�t��t � �t 	 Fx�I � 	 Fy�I � 	 Fz�I �. �3�

To extend the 1D scalar scheme (2a) to multiple di-
mensions, we follow the formulation of Easter (1993)
wherein the mass conservation Eq. (3) is simulta-
neously reintegrated with the discrete version of the
continuous transport Eq. (2a). The 3D algorithm is

����* � ����t 	 Fx��t �, �4a�

�* � �t 	 Fx�I �, �4b�

�* � ����*����*, �4c�

����** � ����* 	 Fy��*�, �4d�

�** � �* 	 Fy�I �, �4e�

�** � ����**����**, �4f�

����t��t � ����** 	 Fz��**�, �4g�

�t��t � �** 	 Fz�I �, �4h�

�t��t � ����t��t��t��t. �4i�

It can easily be seen that the scheme (4) collapses to (3)
for � � I, and hence is consistent (i.e., if � � constant
at the initial time, it remains constant for all time; see
LR96 for further discussion). Additionally, the time-
split scheme (4) is only first-order accurate in time. A
form of Strang splitting (Strang 1968) can be used to
achieve second-order accuracy. Strang splitting for (4)
consists of alternating the order of the splitting each
time step; the order of the flux divergence operators is
alternated between x → y → z as in (4) and z → y → x
(see LLM96 for a 2D example).

Figure 1 shows results for a 2D test problem, de-
scribed in the appendix, for the advection of a passive
tracer in a deformational flow field (Durran 1999, sec-
tion 5.7.4). Results from a 2D solver using the piecewise
parabolic method (PPM; Carpenter et al. 1990) and Eq.
(4) with Strang splitting are compared with results from
the COSMIC (LLM96) solver. The comparison indi-
cates that both solvers produce very similar solutions
using �x � 0.02. The PPM solution for �x � 0.01 is also
shown to demonstrate that the solutions converge (the
COSMIC solution at �x � 0.01 is almost identical). The
PPM time-split solver has slightly more than half as
many operations as the 2D explicit COSMIC solver but
a similar level of accuracy as measured in the L2 and L�

norms. Thus the PPM solver is significantly more effi-
cient for this level of accuracy.

Figure 2 depicts the results for three permutations of
the PPM solver we have described. Figure 2a shows the
PPM solution that does not use Strang splitting (x → y
each time step) and that is mass inconsistent (�t is used
in each substep to recover the mixing ratio). Figure 2b
depicts the results using Strang splitting (x → y fol-
lowed by y → x) but is still mass inconsistent. Figure 2c
depicts a mass-consistent result [using (4)] without us-
ing Strang splitting. It is obvious in these results that
both mass consistency and second-order-accurate split-
ting are important for optimizing scheme accuracy.

b. Removing the Courant number restriction

Most of the one-dimensional FIT schemes described
in the literature have a Courant number limitation
|Cr | � |U�t/�x | � 1, and extensions of these schemes to
multiple dimensions usually result in a Courant number
limit |Crx | , |Cry | � 1 as opposed to the more restrictive
condition |Crx | � |Cry | � 1. For applications where the
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flow field is well resolved it may be advantageous to use
a time step dictated by accuracy as opposed to one
limited by a Courant number.

Two general approaches have been developed to
remove the Courant number restriction. Semi-

FIG. 1. Comparison of exact solution with numerical solutions
for the 2D test problem described in the appendix. The thick lines
are the 0.05 and 0.75 contours for the exact solution. The numeri-
cal solutions are contoured with a contour interval of 0.05 begin-
ning at 0.05, and the dashed contours are 	0.01 and 	0.05. The
plotted domain is (0:1, 0:1) and the number of grid cells are given
for each plot, as is the maximum Courant number for the simu-
lation, the maximum and minimum in the numerical solution, and
the L2 error norm. The maximum/minimum for the exact solution
is 1/0.

FIG. 2. (a) Time-split PPM solution without mass correction or
Strang splitting. (b) Strang-split PPM without mass correction. (c)
Mass-corrected PPM without Strang splitting. Plotted as in Fig. 1.
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Lagrangian schemes are limited by the Lipschitz num-
ber �t |(�u/�x) | � 1 as opposed to the Courant number.
The schemes are based on the characteristic (advective
form) equations, where fluid trajectories are calculated
and mixing-ratio values are interpolated from the regu-
lar grid points to the trajectory departure points (when
using backward trajectories), or from the arrival points
to the regular grid points (when using forward trajec-
tories) in the updating process [see Staniforth and Cote
(1991) for a complete review]. The advective form of
the transport equation does not naturally lead to
schemes that are locally or globally conservative, al-
though formulations exist that possess local and/or
global conservation, for example, Bermejo and Conde
(2002), Nair and Machenhauer (2002), and Leslie and
Purser (1995).

In an alternative approach using the conservation
form of the governing equations, LR96 presents a
modification to the one-dimensional flux calculation
that removes the Courant number restriction for any
FIT scheme that is limited by |Cr | � 1. Our implemen-
tation of this scheme begins with the discrete form of
the mass conservation Eq. (1a) in one spatial dimen-
sion:

� i
t��t � � i

t 	 �t�x ���̃u�i�1�2 	 ��̃u�i	1�2�.

The discrete index i maps to physical space x � i�x.
Following the standard discretization approach, the
mass fluxes �t�̃u are specified at the control volume
faces at i  1⁄2. In the LR96 formulation, these mass
fluxes are decomposed into integer (or full) and frac-
tional fluxes as follows:

�t��̃u�i	1�2 � �
k�1

Ki	1�2

��t�x�i	k � Cr�i	1�2��
t�x�i	1	Ki	1�2

,

�̃u 	 0

� �
k�1

Ki	1�2

	 ��t�x�i	1�k � Cr�i	1�2��
t�x�i�Ki	1�2

,

�̃u 
 0. �5�

The integer Courant numbers at the control volume
faces Ki	1/2 and the fractional Courant numbers (Cr�i	1/2)
are determined by (5). Note that the integer Courant
number K is defined as positive here, even for negative
fluxes. The fractional Courant number Cr�i	1/2 is com-
puted by increasing K until (0 � Cr�i	1/2 � 1) for �̃u �
0 or (	1 � Cr�i	1/2 � 0) for �̃u � 0.

To advance the discrete form of the scalar conserva-
tion Eq. (1a)

����i
t��t � ����i

t 	 �t�x � f ��t �i�1�2 	 f ��t �i	1�2�,

the scalar fluxes f(�t)i	1/2 are specified as

�tf ��t �i	1�2 � �
k�1

Ki	1�2

����x�i	k
t

� f ���t, Cr�i	1�2, i 	 1�2 	 Ki	1�2�,

�̃u 	 0

� �
k�1

Ki�1�2

	 ����x�i�k	1
t

� f ���t, Cr�i	1�2, i 	 1�2 � Ki�1�2�,

�̃u 
 0. �6�

The fractional fluxes and f �(�t)i	1/2 are computed using
the base advection scheme evaluated at the appropri-
ately shifted control-volume face, i 	 1⁄2 	 Ki	1/2 for
�̃u � 0 and i 	 1⁄2 � Ki	1/2 for �̃u � 0, and using the
fractional Courant number Cr�i	1/2.

LR96 and LLM96 use this approach within their non-
time-split schemes to remove the Courant number limi-
tations of their base advection schemes. This approach
also works well in the time-split scheme (4) using
Strang splitting. Figure 3 depicts results using time steps
that have maximum Courant numbers 4 times larger
than the results shown in Fig. 1. The results show that
the errors are similar at both time steps; �max is slightly
reduced in the large time step simulation but the L2

error is unchanged. The two different schemes (split
PPM and COSMIC) work well at Courant numbers
much larger than 1. The additional cost incurred in us-
ing (5) and (6) is small relative to the advection opera-
tors (PPM in this case). Thus the similarity of the results
produced by the extended scheme (6) and COSMIC
indicates that the scheme (6) is significantly more effi-
cient for this problem. In addition, the splitting errors in
the extended scheme have not become more noticeable
with the larger time step.

As in semi-Lagrangian schemes, the Courant-number-
unlimited scheme we have outlined has time step re-
strictions based the Lipschitz number �t(�u/�x) � 1. In
semi-Lagrangian schemes this restriction can be under-
stood as restricting trajectories such that they do not
intersect (Smolarkiewicz and Pudykiewicz 1992). For
the flux formulation (5) and (6), the restriction can be
understood as not allowing mass to be completely
evacuated from a grid cell in a single 1D substep in (4),
which would be the practical result of intersecting tra-
jectories.
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3. Positive-definite and monotonic limiters

a. Formulation of the limiters

A scheme is positive definite if it does not generate
negative mixing ratios � from nonnegative initial mix-
ing ratios. Following Thuburn (1996), a scheme is
monotonic1 if it does not amplify extrema in the initial
mixing ratios. A monotonic scheme is positive definite
and is also consistent (a constant mixing ratio will re-
main constant; see LR96). A number of techniques ex-
ist for rendering conservative flux-form FIT schemes
either positive definite or monotonic. Typically
schemes modify or limit the fluxes to achieve monoto-

nicity or positive definiteness, or they will modify the
value of the mixing ratio � that multiplies the mass flux
on a cell face from which the flux divergence is calcu-
lated.

As noted in the introduction, positive-definite or
monotonic limiters typically used with the base advec-
tion schemes are no longer absolutely positive definite
or monotonic in the unrestricted-time-step formula-
tions of LR96 and LLM96. We have examined two lim-
iters for use with the time-split scheme (4) and the Cou-
rant-number-unlimited flux evaluations (6). For posi-
tive-definite transport, the renormalization approach
described in Smolarkiewicz (1989) can be extended to
applications with |Cr | � 1. The base (|Cr | � 1) Smo-
larkiewicz (1989) algorithm begins with a calculation of
the full fluxes. Next, a lower bound on the full update is
determined by computing the flux divergence for each
cell using only the outgoing fluxes,

����* � ����t 	 �t �
i�1

n

�xi
� fi �

�, �7�

where (��)* is the lower bound on the update and [ fi]
�

denotes the outgoing fluxes in the i coordinate direction
(x, y, z). Note that the incoming fluxes are not consid-
ered in the renormalization—they can only act to in-
crease the mixing ratio, not decrease it; thus (��)* is a
lower bound. If this lower bound is less than zero, the
outgoing fluxes are renormalized by multiplication with
a constant such that the lower bound becomes zero:

f j
�* � f j

� ����t��t �
i�1

n

�xi
� fi �

��	1

. �8�

We have found it necessary to modify (7) and (8) for
use with the Courant-number-unlimited scheme. First,
we recast the fractional flux associated with the frac-
tional Courant number Cr� [see (5) and (6)] as the sum
of the first-order upwind flux plus a remaining higher-
order correction. Second, we calculate a partial update
of the scalar mass in the cell using both the integer
fluxes and the fractional first-order upwind fluxes. This
update is positive definite and monotonic—it is the
first-order upwind solution. Finally, we apply the renor-
malization steps (7) and (8) to the remaining higher-
order corrective fluxes using the computed partial up-
date in place of (��)t. Results for the 2D test case are
shown in Figs. 4a and 4b. Negative mixing ratios are
eliminated using this procedure. Comparison with the
non-positive-definite solutions (Figs. 1b and 2b) shows
that solution accuracy is maintained in this test case;
solution errors are similar for the tests at the two Cou-
rant numbers.1 Thuburn (1996) uses the term shape preserving.

FIG. 3. (a) COSMIC and (b) PMM results for large Courant
numbers (Crmax � 4) using the unrestricted-time-step formula-
tions. Plotted as in Fig. 1.
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For monotonicity, we have examined an extension of
the Smolarkiewicz (1989) renormalization approach
mentioned in Durran (1999) and the universal limiter
described in Thuburn (1996) originally developed for
1D applications as described in Leonard (1991). The
renormalization approach is extended by using nonzero
upper and nonzero lower bounds, (�t��t�min,max), on �*
in (7). Here �min,max are the minimum and maximum
values of �t sampled from the updated cell and all cells
that contribute to the flux divergence calculation in (6).
Additionally, the renormalization (8) is replaced by

f j
* � f j

 |����t 	 ��t��t�min,max� |��t �
i�1

n

�xi
� fi �

�	1

.

�9�

The positive option in (9) is for the lower bound and
the negative option is for the upper bound, and f 

i are
incoming and outgoing fluxes, respectively. Results for
this monotonic renormalization for the 2D test problem
are given in Fig. 4c. The results are similar to that pro-
duced with the positive-definite limiter (Fig. 4b) except
that the solutions are slightly more diffuse and the so-
lution peak values are more damped. The L2 errors
have also increased because of the increased damping
in the monotonic renormalization.

Thuburn (1996) presents an algorithm for a universal
multidimensional monotonic limiter, and we have
adapted this limiter for the 1D version of our time-split
transport scheme (4) and the Courant-number-
unlimited extension (6). The Thuburn limiter uses up-
wind-based bounds, and we use lower and upper

FIG. 4. Results for the positive-definite limiter for Courant numbers (a) Crmax � 1 and (b) Crmax � 4. Monotonic
test results for Crmax � 4 using (c) flux renormalization and (d) the modified Thuburn limiter. Plotted as in
Fig. 1.
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bounds determined upwind relative to the fractional
flux faces for extension to the Courant-number-
unlimited scheme. In our tests we find that the resulting
transport scheme is no longer monotonic, rather small
overshoots and undershoots are produced. This behav-
ior is similar to the findings in LLM96 who used a dif-
ferent scheme and limiter; because of the generation of
very small over- and undershoots they called their
scheme essentially monotonic. LR96 also note that their
version of PPM, using the standard PPM limiters (see
the appendix in LR96), is no longer exactly monotonic
for Courant numbers greater than 1.

Examination of the Thuburn limiting process reveals
that monotonicity can be lost when the integer flux
counts K differ on two successive cell faces in our 1D
application. We have found that monotonicity can be
restored if two additional constraints are applied. First,
in Thuburn’s computation of the computed minimum
and maximum outwardly fluxed mixing ratios for cell k
(using Thuburn’s notation), we bound (q̂ (out)

k )max [Eq.
(43) in Thuburn (1996)] by (q̂ (in)

i )min (the minimum of
the cell value and all fractional upwind flux compo-
nents), and we bound (q̂ (out)

k )min [Eq. (44) in Thuburn
(1996)] by (q̂ (in)

i )max (the maximum of the cell value and
all fractional upwind flux components). Additionally, if
this bounded maximum outwardly fluxed mixing ratio
for cell k, (q̂ (out)

k )max, is less than the bounded mini-
mum, (q̂ (out)

k )min, the limits are erroneous because of
the integer fluxes and we replace the flux-face values
for the kth cell face by their upwind values [i.e., we use

upwind values q̂i , q̂j in Thuburn’s scalar update Eq. (9)
for the fluxes associated with this cell].

Results for the 2D test problem using this limiter
with the time-split scheme (4) and the Courant number
extension (6) are shown in Fig. 4d. The results are not
identical to those using renormalization, but they are
very similar; the solution peak is slightly more damped
at Crmax � 4 compared with the monotonic renormal-
ization scheme.

b. Convergence tests

A comparison of results using the Thuburn mono-
tonic limiter (Fig. 4d) with results from the positive-
definite limiter (Fig. 4b) illustrates the increased damp-
ing generally associated with monotonicity. For smooth
solutions such as those for our 2D test problem, mono-
tonic schemes can degrade the solution accuracy rela-
tive to solutions produced by other schemes. The de-
graded solution accuracy is quantified in Fig. 5, which
depicts the L2 and L� error norms for the 2D test prob-
lem using different space and time steps for the non-
monotonic and monotonic schemes. For the L2 error
norm,

L2 � ��
i�1

N

��exact 	 ��i�� �N�1�2

,

where N is the number of grid points, there is a notice-
able drop in solution accuracy using the monotonic
scheme although the convergence rate remains almost

FIG. 5. Convergence rates in the (left) L2 and (right) L� norms for the 2D test problem. Monotonic flux renormalization is used
where noted.
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second order. The L� norm (the absolute value of the
maximum error) shows a more dramatic drop in solu-
tion accuracy and in the convergence rate when using
the monotonic scheme. The L2 error-norm results illus-
trate the overall second-order accuracy of the time-split
scheme. The nonmonotonic results using Courant num-
bers of 1 and 4 produce L2 error norms that are almost
indistinguishable, suggesting that the time-truncation
error is small for this scheme and test problem configu-
ration.

c. Three-dimensional test with a discontinuity

Monotonic schemes tend to damp more, are less ac-
curate, and are more expensive than their nonmono-
tonic counterparts, and for these reasons they are not
used in many applications. Monotonic schemes are
most often used for problems where sharp discontinu-
ities exist in the solutions; nonmonotonic schemes may
produce undesirable nonphysical over- and under-
shoots in the vicinity of the discontinuities.

To further test the schemes we use the 3D test prob-
lem described in Leveque (1996) that is outlined in the
appendix. This test features a strong deformational
flow and a discontinuity that is advected by the 3D flow
field. Results for the test problem are given in Fig. 6.
The time-split scheme produces similar results for
maximum Courant numbers of 1 and 4. The Crmax � 4
solution even appears to be slightly less diffuse at the
end time, likely because the Crmax � 1 solution has
effectively 4 times as many limiter applications given it
needs 4 times as many time steps than the Crmax � 4
solution to reach the end time. Not shown are results

from the renormalization-based monotonic scheme; the
results are almost identical to those from the Thuburn-
based limiter at both maximum Courant numbers of 1
and 4. The present results are also very similar to the
results given by Leveque (1996, section 11.2, Fig. 11.2)
that were computed with a fully 3D scheme using
Crmax � 1. The limiter used by Leveque does not guar-
antee monotonicity—small over- and undershoots are
present in his solution.

4. Summary

We have developed formulations for universal limit-
ers that are positive definite or monotonic that work for
unrestricted-time-step schemes. Specifically:

1) Positive-definite limiters using renormalization (fol-
lowing Smolarkiewicz 1989) can be extended for use
with Courant-number-unlimited formulations. The
positive-definite limiter retains exact positive-
definite behavior (to machine roundoff).

2) Monotonic limiters using renormalization [Durran
(1999) extension of Smolarkiewicz (1989)] and a
Thuburn (1996) monotonic limiter can be applied to
the Courant-number-unlimited schemes with minor
modifications. Monotonicity is exact (to machine
roundoff).

Our motivation for examining time-split multidimen-
sional transport schemes is the recognition of the high
computational cost of unsplit schemes (compared to
split schemes) for 3D transport along with the difficulty
encountered formulating positive-definite and mono-

FIG. 6. Three-dimensional test results using Strang-split mass-corrected PPM scheme
with the Thuburn monotonic limiter. The contour interval is 0.1 beginning at 0.05. These
results should be compared with Leveque (1996, Fig. 11.2).
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tonic versions of the fully multidimensional schemes.
The latter difficulties are exacerbated when schemes
are extended to Courant-number-unlimited formula-
tions such as LR96 and LLM96. The positive-definite
and monotonic renormalizations that we have tested
can be used with fully multidimensional schemes (such
as those in LR96 and LLM96). The renormalization
Eqs. (8) and (9) (for positive-definite and monotonic
applications, respectively) are valid for transport prob-
lems of any dimensionality. Additional effort may be
needed to identify the appropriate bounds �min,max in
multidimensional applications and in Courant-number-
unlimited formulations such as LR96 and LLM96.

APPENDIX

Test Cases and PPM Scheme

a. Two-dimensional test problem

A two-dimensional test problem for advection of a
passive tracer in a nondivergent deformational flow
field is presented in Durran (1999, section 5.7.4). The
computational domain is the unit square (0 � x � 1;
0 � y � 1) and the initial mixing ratio is

��x, y, t � 0� �
1
2

�1 � cos��r��,

where

r�x, y� � min�1, 4��x 	
1
4�2

� �y 	
1
4�2�1�2�.

The velocity fields are given by

u�x, y, t� � sin2��x� sin�2�y� cos��t�5�

��x, y, t� � 	sin2��y� sin�2�x� cos��t�5�.

The velocity fields, initial condition, and solution at
time t � 2.5 is given in Fig. A1. The velocity fields are
such that the tracer field evolves from the initial smooth
state to the highly deformed state (at t � 2.5) and then
back to the initial state at time t � 5. Further details are
given in Durran (1999).

b. Three-dimensional test problem

A three-dimensional test problem for scalar trans-
port in a nondivergent deformational flow field is pre-
sented in Leveque (1996, section 11, example 11.2) for
the unit cube. The test problem is designed in a manner
similar to the previous 2D test problem in Durran
(1999) in that the velocity fields are constructed such

that the initial state is contorted but, after a flow rever-
sal at time T/2, returns to its initial state at time T. The
initial tracer field differs from the 2D test in that a
discontinuity is present in the initial state,

��x, y, z, t � 0� � 1 x 

1
2

,

� 0 x 
1
2

.

FIG. A1. Solution for 2D test problem at (top) t � 0 and 5 and
(bottom) t � 2.5. Plotted as in Fig. 1 except for the t � 2.5 solution,
which is contoured with an interval of 0.1.
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The velocity fields are given by

u�x, y, t� � 2 sin2��x� sin�2�y� sin�2�z� cos��t �T �

��x, y, t� � 	sin�2�x� sin2��y� sin�2�z� cos��t �T �

w�x, y, t� � 	sin�2�x� sin�2�y� sin2��z� cos��t �T �.

Solutions at the midtime T/2 and the end time T are
given in Fig. 6 and are very similar to that presented in
Leveque (1996, section 11.2).

c. PPM advection scheme

The PPM scheme used herein is the nonmonotonized
PPM advection described in Carpenter et al. (1990).
PPM advection provides the fluxes fi�1/2 used to evalu-
ated the flux divergence operator Fx in (4) or to com-
pute the perturbation flux f � in (6), which, combined
with the integer fluxes, are used in (4) in the Courant-
number-unlimited formulation. Defining �i as the con-
trol-volume average mixing ratio for cell i, zone edge
values �̂ can be defined as

�̂ i�1�2 � �7�� i�1 � � i� 	 �� i�2 � � i	1�� �12.

The flux through the i � 1⁄2 face can be written as

f���i�1�2 � �ui�1�2��̂ i�1�2 	 Cr��̂ i�1�2 	 � i�

	 Cr�1 	 Cr���̂ i	1�2 	 2� i � �̂ i�1�2��

for Cr � 0 and

f���i�1�2 � �ui�1�2��̂ i�1�2 � Cr��̂ i�1�2 	 � i�1�

� Cr�1 � Cr���̂ i�1�2 	 2� i�1 � �̂ i�3�2��

for Cr � 0. The Courant number Cr � (ui�1/2)�t /�x.
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