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ABSTRACT

Interaction between thewind-driven shear current and the Stokes drift velocity inducedby surface gravitywaves

gives rise to Langmuir turbulence in the upper ocean. Langmuir turbulence consists of Langmuir circulation (LC)

characterized by a wide range of scales. In unstratified shallow water, the largest scales of Langmuir turbulence

engulf the entire water column and thus are referred to as full-depth LC. Large-eddy simulations (LESs) of

Langmuir turbulence with full-depth LC in a wind-driven shear current have revealed that vertical mixing due to

LC erodes the bottom log-law velocity profile, inducing a profile resembling a wake law. Furthermore, in the

interior of the water column, two sources of Reynolds shear stress, turbulent (nonlocal) transport and local Stokes

drift shear production, can combine to lead to negative mean velocity shear. Meanwhile, near the surface, Stokes

drift shear serves to intensify small-scale eddies leading to enhanced vertical mixing and disruption of the surface

log law. A K-profile parameterization (KPP) of the Reynolds shear stress comprising local and nonlocal com-

ponents is introduced, capturing these basic mechanisms by which Langmuir turbulence in unstratified shallow

water impacts the vertical mixing of momentum. Single-water-column, Reynolds-averaged Navier–Stokes sim-

ulations with the new parameterization are presented, showing good agreement with LES in terms of mean

velocity. Results show that coefficients in theKPPmay be parameterized based on attributes of the full-depth LC.

1. Introduction

Interaction between Stokes drift velocity generated by

surface gravity waves and the wind-driven shear current

gives rise to Langmuir turbulence in the upper ocean,

characterized by Langmuir circulation (LC) across a wide

range of spatial and temporal scales. LC consists of parallel

counterrotating vortices aligned in the direction of the

wind ranging in scale from centimeters to kilometers in the

downwind direction. The largest of the LC scales can ex-

tend down to the base of the upper-ocean mixed layer. In

shallow shelves, during times when the water column is

unstratified (such as during the passage of storms), the

largest scales of LC have been observed engulfing the

entire water column, serving as a dominant mechanism for

sediment resuspension (Gargett et al. 2004; Gargett and

Wells 2007; Savidge et al. 2008). Large-eddy simulations

(LESs) of Langmuir turbulence in unstratified shallow

water have revealed significant influences of this turbu-

lence regime on the dynamics of surface and bottom

boundary layers and the core (bulk) flow region (Tejada-

Martínez and Grosch 2007; Tejada-Martínez et al. 2012,

2013; Akan et al. 2013; Kukulka et al. 2011, 2012). For

example, Akan et al. (2013) and Tejada-Martínez et al.

(2013) have shown that Stokes drift shear (the mechanism

generating Langmuir turbulence) acts to intensify near-

surface, small-scale eddies, ultimately leading to enhanced

verticalmixing in this region and a departure from classical

surface log-layer dynamics. Furthermore, near-bottom

mixing induced by full-depth Langmuir cells can lead

to a departure from classical bottom log-layer dynamics

(Tejada-Martínez et al. 2012). Finally, as will be shown via

LESs in the current study, turbulent (nonlocal) trans-

port and local Stokes drift shear production of Reynolds

shear stress (i.e., turbulent vertical momentum flux) in
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the Langmuir turbulence regime can combine to lead to

negative vertical shear in the mean velocity in the in-

terior of the water column.

The previously described LES simulations have been

facilitated by the inclusion of the well-known Craik–

Leibovich (CL) vortex force (Craik and Leibovich 1976)

into the governing momentum equations in order to

account for the interaction between Stokes drift and the

wind-driven current generating Langmuir turbulence

without having to resolve surface gravity waves.

LES simulations of Langmuir turbulence in the upper-

ocean mixed layer (e.g., Skyllingstad and Denbo 1995;

McWilliams et al. 1997; Li et al. 2005) and in shallow

water (Tejada-Martínez andGrosch 2007; Kukulka et al.

2011) have revealed a Langmuir turbulence structure

vastly different than the classical shear-dominated tur-

bulence structure. These differences have underscored

the need to develop turbulence parameterizations for

ocean models able to capture the effects of Langmuir

turbulence. Efforts toward the inclusion of the effect of

Langmuir turbulence in parameterizations of vertical

mixing in upper-ocean models date back to the late

1990s and 2000s. D’Alessio et al. (1998) and Kantha and

Clayson (2004) included the CL vortex force in the

momentum equation of a single-water-column, upper-

ocean mixed-layer model and in the model’s two-

equation turbulence scheme, specifically, the turbulent

kinetic energy k and the kl equations (where l is the

turbulent length scale) . More recently, Harcourt (2013)

revisited these models and included the terms associ-

ated with the CL vortex force in the algebraic Reynolds

stress model equations used to derive the stability

functions that premultiply the eddy viscosity and eddy

diffusivity arising from k and l. McWilliams and

Sullivan (2000) proposed a K-profile parameterization

(KPP; Large et al. 1994) of turbulent vertical scalar flux

with an enhanced velocity scale and a nonlocal com-

ponent accounting for Langmuir turbulence. Parame-

ters associated with the velocity-scale enhancement and

the nonlocal component were calibrated by fitting the

KPP-predicted eddy viscosity with an LES-predicted

eddy viscosity. Smyth et al. (2002) extended the KPP of

McWilliams and Sullivan (2000) to the Reynolds shear

stress or turbulent vertical momentum flux.

The necessity of including the effects of Langmuir

circulation and turbulence in the mixing/dissipation

parameterization of global climate models has been

emphasized by Belcher et al. (2012), who showed that

parameterizations of turbulent mixing currently used in

these models lead to substantial and systematic errors in

the computed depth of the ocean surface boundary

layers. They concluded that surface-wave-forced Lang-

muir turbulence, which is not included in current

parameterizations, is an important physical process in

the ocean surface boundary layer and must be included

in the parameterization. Very recently, D’Asaro (2014)

showed that observations in the ocean are consistent

with Langmuir turbulence, not wave breaking, being the

dominant mechanism by which waves generate turbu-

lence in the ocean surface boundary layer and thus must

be included in the turbulence parameterization.

To build an accurate parameterization of the effect of

Langmuir turbulence on vertical mixing of momentum

and hence the mean streamwise velocity profile, the

changes in this profile must be known. More specifically,

the dominant effects, for example, the erosion of the log-

layer profile; the increase in the energy of small-scale near-

surface eddies; and changes in the nonlocal transport of the

Reynolds shear stress, by which Langmuir turbulence

modifies the mean streamwise velocity profile, must be

known in order to incorporate them into the model. For

this reason, this study reviews the mechanisms described

above bywhich Langmuir turbulence in shallowwater and

associated full-depth Langmuir circulation affect vertical

mixing in unstratified water columns, as uncovered via

LES. Then a KPP is formulated that is capable of repre-

senting these key mechanisms. The KPP is implemented

within a single-water-column model of Langmuir turbu-

lence in shallow water, andmean velocity predicted by the

model is shown to be in excellent agreement with LESs. It

is also shown that coefficients in theKPP can be calibrated

and may be ultimately parameterized using LESs or field

measurements, as they are linked to physical attributes of

the full-depth LC.

2. Governing LES equations

To understand core flow dynamics and near-bottom and

near-surface boundary layer dynamics in the presence of

Langmuir turbulence with full-depth LC, LESs of wind-

driven shallow water have been performed. Interaction

between Stokes drift velocity induced by surface gravity

waves and the wind-driven shear current leads to the

generation of Langmuir turbulence characterized by LC.

The governing equations for LESs of Langmuir turbulence

are the filtered continuity and Navier–Stokes equations

augmented with the CL vortex force (Craik and Leibovich

1976), the latter force serving to parameterize the gener-

ating mechanism for Langmuir turbulence without having

to directly resolve the surface gravity waves.

a. Spatially filtered Navier–Stokes equation
(CL equation)

The nondimensional, low-pass spatially and time-filtered

continuity and Navier–Stokes equations augmented with

the CL vortex force can be written as
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where «ijk is the totally antisymmetric third-rank tensor

and the overbar denotes the application of low-pass

space and time filters. The filter consists of the spatial

filter in traditional LESs compounded with a time filter

for the purpose of filtering out the surface gravity waves,

as per the CL (Craik and Leibovich 1976) formulation.

Variables ui and vi are the filtered ith component of

velocity and vorticity in a Cartesian coordinate system

(x1, x2, x3). The space and time-filtered modified pres-

sure is denoted asP. The exact expression forP in terms

of the original pressure and the Stokes drift velocity is

defined by McWilliams et al. (1997):
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where P is the space- and time-filtered pressure and Us
i

denotes the predetermined dimensionless Stokes drift

velocity induced by surface waves.

The CL vortex force is the last term in Eq. (2), con-

sisting of the Stokes drift velocity crossed with the flow

vorticity.

These equations have been made dimensionless with

water column half-depth d and friction velocity ut.

Friction velocity ut is associated with wind stress tw and

can be expressed as ut 5
ffiffiffiffiffiffiffiffiffi
tw/r

p
, where r is the density of

the water. Friction Reynolds number (Ret 5 utd/n,

where n is the molecular viscosity) is a measure of the

strength of advection relative to diffusion.

The turbulent Langmuir number Lat appearing in the

dimensionless CL equation [Eq. (2)] consists of the

ratio of friction velocity ut to characteristic Stokes drift

velocity U0 and is expressed as Lat 5
ffiffiffiffiffiffiffiffiffiffiffiffi
ut/U0

p
, where

U0 5 vka2, with v as the dominant frequency, k as the

dominant wavenumber (inversely proportional to the

dominant wavelength l), and a as the dominant ampli-

tude of the surface gravity waves generating Langmuir

turbulence [see Gargett and Wells (2007) for calculation

of these wave characteristics from field measurements].

Note that the dominant wavenumber of surface gravity

waves is k5 2p/l. The turbulent Langmuir number Lat is

inversely proportional to the strength of wave forcing

relative to wind forcing. Note that for the intermediate-

depth water waves considered in the present study,U0 in

the definition of Lat does not correspond to the Stokes

drift velocity at the surface, as it would for deep-water

waves (see Phillips 1967).

The nondimensional Stokes drift velocity appearing in

Eq. (2) is taken to be nonzero only in the downwind (x1)

direction and is defined by Phillips (1967) as

Us
1 5

cosh[2 ~k(x
3
1 1)]

2 sinh2(2 ~k)
and Us

2 5Us
3 5 0. (4)

In the previous expressions, ~k5 kd is the dimensionless

wavenumber, and the dimensionless vertical coordinate

x3 extends from 21 at the bottom of the water column

to 11 at the surface in the wind-driven shear flow simu-

lations, to be presented in upcoming sections. Further-

more, the Stokes drift velocity profile in Eq. (4) decays

with depth; its decay rate is inversely proportional to the

dominant wavelength of the surface waves, l.

The LES subgrid-scale (SGS) stress tLESij is generated

by spatial filtering of the momentum equation and is mod-

eled using the eddy viscosity-based dynamic Smagorinsky

model as

tLESij 5 2nLESt S
ij
, (5)

where the eddy viscosity is nLESt 5 (CsD)
2jSj, with CS

denoting the Smagorinsky coefficient; D denoting the

width of the low pass spatial LES filter; jSj denoting the

norm of the filtered strain-rate tensor, defined as

jSj5 (2SijSij)
1/2; and Sij denoting the filtered strain-rate

tensor Sij 5 (ui,j 1 uj,i)/2. Note that in practice, the low-

pass filter used to obtain the spatially filtered equations

in Eq. (2) is implicitly set by an undefined combination

of the numerical method and the grid discretizing the

filtered equations. Thus, typically D is representative of

the characteristic grid cell size. In this study, model co-

efficient (CsD)
2 is computed dynamically as described by

Lilly (1992).

All flow variables and equations have been specified

in dimensionless form for ease of presentation of im-

portant dimensionless parameters such as Ret and Lat.

Henceforth, all variables are taken as dimensional un-

less specified otherwise.

b. Flow configuration

The flow domain for the LES in this study is shown in

Fig. 1. The flow is subjected to constant wind shear

stress at the surface with zero normal flow. The surface

stress is prescribed in such a way that the friction

Reynolds number is Ret 5 395. Although in the coastal

ocean Langmuir turbulence occurs under much higher
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Reynolds numbers [of O(100 000)], Tejada-Martínez
et al. (2009) have shown that the turbulence simulated

at a lower Reynolds number such as Ret5 395 is able to

scale up favorably to the turbulence measured in the

field by Gargett and Wells (2007). This was done by

redimensionalizing the LES velocity solution with wind

stress friction velocity (ut) and water column half depth

(d) of the field measurements.

A no-slip boundary condition is applied at the bottom

wall of the domain in Fig. 1. For this configuration, the

mean wall shear stress computed at the bottom is equal to

the imposed wind stress at the top of the domain once the

flow has reached statistical equilibrium. Boundary con-

ditions are periodic in horizontal directions (x1 and x2).

The latter condition is representative of a costal shelf

region far from (unaffected by) lateral boundaries.

The domain size in x1 (downwind) and x2 (crosswind)

directions is 4pd and 8pd/3, respectively. In the vertical

(x3) direction, the water depth is H 5 2d. The crosswind

domain size 8pd/3 is expected to be sufficiently wide to be

able to resolve one full-depth Langmuir cell. This length

(8pd/3’ 4H) falls within the range of values reported for

spanwise (crosswind) length of one full-depth Langmuir

cell (3H–6H) during the field observations of Gargett

et al. (2004) and Gargett and Wells (2007).

TheLES computational grid for flows with andwithout

CL vortex forcing (i.e., with and without Langmuir tur-

bulence) contains 32, 64, and 97 points in the x1, x2, and x3
directions, respectively. This grid is uniform in the x1 and

x2 directions; however, in the vertical direction (x3) the

grid is highly stretched using a hyperbolic function in

order to resolve the bottom and surface viscous boundary

layers. The grid stretching is symmetric about middepth

in the vertical direction; thus, both surface and bottom

viscous boundary layers have the same resolution. In all

simulations the first grid point off thewall or the surface is

at a distance x13 5 1, so the viscous sublayers (0, x13 , 7)

are adequately resolved. Note that x13 is a measure of the

distance to the boundary (surface or bottom of the water

column) in wall units (i.e., x13 5 zRet), where z is the

dimensionless distance to the bottom or to the surface.

The governing equations in Eqs. (1) and (2) within

the previously described domain configuration were

solved using the hybrid spectral/finite-difference solver

of Tejada-Martínez and Grosch (2007), in which hori-

zontal (x1 and x2) directions are discretized using fast

Fourier transforms and the vertical (x3) direction is

discretized using fifth- and sixth-order compact finite-

difference schemes.

In the upcoming sections, results from wind-driven

flows with or without Langmuir turbulence (i.e., with or

without CL vortex forcing) in statistical equilibrium are

presented. The flow without LC or CL forcing is referred

to as Lat 5 ‘. Four simulations of flows with LC have

been performed and corresponding wind and wave forc-

ing parameters are summarized in Table 1. Main param-

eter inputs to the CL vortex force appearing in the LES

FIG. 1. Computational domain and boundary conditions.

TABLE 1. Summary of wind and wave forcing parameters in sim-

ulations. Here, NA indicates that a value is not applicable.

Case I Lat 5 ‘ l 5 NA

Flow without CL

vortex forcing

Case II Lat 5 0.7 l 5 6H Flow with CL

vortex forcingCase III Lat 5 0.4 l 5 6H

Case IV Lat 5 1.0 l 5 6H

Case V Lat 5 0.7 l 5 4H/3
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equations are the turbulent Langmuir number Lat, rep-

resentative of wind forcing relative to wave forcing, and l,

the dominant wavelength of surface gravity waves gen-

erating Langmuir turbulence. Case II in Table 1, with

Lat5 0.7 and l5 12d5 6H, corresponds to the wind and

wave forcing conditions during the full-depth LC field

measurements of Gargett et al. (2004) and Gargett and

Wells (2007). Note that wavelength l 5 12d 5 6H rep-

resents a shallow/intermediate surface wave and l5 8d5
4H/3 corresponds to a short (deep water) wave. Figure 2

shows depth profiles of the Stokes drift velocity (appear-

ing in the CL vortex force) and Stokes drift vertical shear.

Stokes drift shear is important because it serves as the

source for the generation of Langmuir turbulence, as can

be seen from the transport equation for downwind vor-

ticity derived from the momentum equation with CL

vortex forcing (Holm 1996).

3. LES results

a. Turbulence structure

In Langmuir turbulence in homogenous shallow wa-

ter, the largest, most coherent, andmost persistent scales

of this turbulence regime consist of full-depth LC. Next,

the largest structures in wind-driven flows with and

without Langmuir turbulence (i.e., with andwithout LC)

are described. Note that throughout the rest of this

study, the terminology ‘‘with LC’’ and ‘‘without LC’’ are

taken to be equivalent to ‘‘with Langmuir turbulence’’

and ‘‘without Langmuir turbulence,’’ respectively. This

is done here because historically Langmuir turbulence

has been referred to as Langmuir circulation.

Flow without LC is characterized by Couette cells.

Similar to full-depth Langmuir cells but weaker in co-

herency, Couette cells are parallel counterrotating vortices

aligned in the direction of the wind engulfing most of the

water column (Papavassiliou and Hanratty 1997; Tejada-

Martínez and Grosch 2007; Kukulka et al. 2012).

Couette and full-depth Langmuir cells are coherent in

the downwind direction (x1). This suggests averaging

velocity fluctuations over x1 in order to stress coherency

in this direction. This also helps reveal the crosswind

(x2)–vertical (x3) variation of these full-depth structures.

Figures 3–6 show the x2–x3 variation of all three

components of x1-averaged (partially averaged) velocity

fluctuations in wind-driven flows with and without CL

vortex forcing (i.e., with and without LC). All flows with

CL vortex forcing (Figs. 3d–f and Figs. 4–6) are char-

acterized by a full-depth, one-cell structure in close

agreement with the full-depth Langmuir cells observed

in the field measurements of Gargett and Wells (2007)

and Gargett et al. (2004). For example, the single-cell

structure in the flows with CL vortex forcing possesses a

crosswind width ’ 4H(8d) consistent with the field

measurements of Gargett and Wells (2007). Note that

although the computational domain size in the cross-

wind direction was chosen following the expected full-

depth Langmuir cell crosswind width as described

earlier, it has been confirmed that the crosswind length

of the domain does not set (or force) the crosswind length

of the resolved full-depth Langmuir cell. Confirmation

FIG. 2. (a) Stokes drift velocity and (b) Stokes drift velocity vertical shear.

DECEMBER 2015 S I NHA ET AL . 2873



was made by Tejada-Martínez and Grosch (2007) by

performing LES of wind-driven flow with CL vortex

forcing in which the crosswind length of the domain was

double the length of the one chosen here. In that simu-

lation they were able to resolve two full-depth Langmuir

cells, each with crosswind width consistent with the

measurements of Gargett and Wells (2007) and Gargett

et al. (2004). Other favorable comparisons between flows

with CL vortex forcing and field measurements during

episodes of full-depth LC are described by Tejada-

Martínez and Grosch (2007) and Tejada-Martínez et al.

(2009). Here we focus on the impact of wind and wave

forcing parameters (Lat and l) on the structure of the full-

depth Langmuir cell that had not been explored in the

earlier studies.

In flows with LC, the partially averaged crosswind

velocity fluctuation is intensified near the surface and

exhibits a surface convergence zone corresponding to

the surface convergence of the full-depth Langmuir cell

(e.g., see Figs. 4a,d). Surface convergence leads to the

generation of the LC full-depth downwelling limb,

characterized by negative vertical velocity fluctuation

(Figs. 4b,e). Furthermore, the downwelling limb co-

incides with a region of positive downwind velocity

fluctuation (Figs. 4c,f) that serves to enhance the mean

downwind current within this zone.

A decrease in turbulent Langmuir number from Lat5
1.0 down to Lat 5 0.7 while holding the wavelength of

surface waves constant at l 5 6H leads to an in-

tensification of the partially averaged velocity fluctua-

tions associated with full-depth LC, especially in terms

of crosswind velocity fluctuation at the surface and

bottom of the water column (Figs. 4a,d). A decrease in

Lat from 0.7 to 0.4 leads to a restructuring of the cell

reflected through higher-averaged vertical velocities

within the upwelling limb of the cell (Figs. 5b,e) as well

as more intense crosswind velocity fluctuation at the

surface, but less intense at the bottom (Figs. 5a,d) . Thus,

relative to the cell with (Lat5 0.7, l5 6H), the cell with

(Lat5 0.4, l5 6H) is deemedweaker in the lower half of

the water column and stronger in the upper half. This

will be quantified further below in terms of root-mean-

square (rms) of vertical velocity fluctuation.

A decrease in l from 6H to 4H/3 with Lat fixed at 0.7

leads to less coherent full-depth LC, characterized by

averaged velocity fluctuations weaker in magnitude,

especially in terms of crosswind and vertical velocity

fluctuations (see Figs. 6a,d and Figs. 6b,e, respectively).

This is consistent with the magnitude of the CL vortex

force and Stokes drift velocity shear decaying with depth

faster for smaller values of l (see Fig. 2). However, the

case with (Lat5 0.7, l5 4H/3) is characterized by higher

FIG. 3. Instantaneous velocity fluctuations averaged over the downwind (x1) direction (a)–(c) in flowswithout LC

and in flows (d)–(f) with LC with Lat 5 0.7 and l 5 6H. (Top) crosswind velocity fluctuation, (middle) vertical

velocity fluctuation, and (bottom) downwind fluctuation.
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Stokes drift shear near the surface than the case with

(Lat5 0.7, l5 6H; Fig. 2b). As will be described further

below, the higher near-surface Stokes shear in the for-

mer leads to intensification of near-surface, small-scale

vortices rather than intensification of the full-depth

Langmuir cells.

Finally, note that the flow without the CL vortex force

(i.e., flow without LC) is characterized by a two-cell

structure (Figs. 3a–c) that is weaker and less coherent

than the full-depth LC resolved in the flows with CL

forcing. The two-cell structure is similar in size and

structure to Couette cells resolved in the LES of Couette

flow of Papavassiliou and Hanratty (1997). As noted by

Papavassiliou and Hanratty, in Couette flow (flow be-

tween two parallel no-slip pates moving in opposite di-

rections), the mean streamwise velocity is asymmetric;

thus, production of turbulent kinetic energy by mean

velocity vertical shear is everywhere nonzero from wall

to wall. Such production favors the growth of near-wall

turbulent structures outward toward the core region,

and ultimately structures that extend from wall to wall.

A similar turbulent kinetic energy production mecha-

nism is also present in the wind-driven flow without LC,

giving rise to similar Couette cells.

SimulationswithLCpreviously describedwere initiated

by turning on the CL vortex force when the wind-driven

flow without LC (i.e., with Couette cells) was in statis-

tical equilibrium. The CL vortex force caused a merging

of the Couette cells, giving rise to the single full-depth

Langmuir cell previously described once the flow achieved

a new statistical equilibrium state (see Figs. 3a–c and

Figs. 4d–f). Alternatively, simulations with CL vortex

forcing were also initiated from rest. In these cases, the

final statistical equilibrium state is the same obtained

when the CL vortex force is turned on starting from the

wind-driven Couette flow.

To highlight the intensification of near-surface turbu-

lence intensity caused by increasing near-surface Stokes

drift shear, mentioned earlier, consider a comparison in

terms of rms of vertical velocity fluctuation hu0
3u

0
3i1/2 be-

tween the LC flows with different Lat and l. Figure 7a

shows that the flow with (Lat 5 0.7, l 5 4H/3) is char-

acterized by higher hu0
3u

0
3i1/2 near the surface, compared

to the flow with (Lat 5 0.7, l 5 6H). As originally noted

by Akan et al. (2013), this can be attributed to in-

tensification of small-scale, near-surface eddies in the

former case (seen in Figs. 8b,c), despite the weaker full-

depth cells in the l5 4H/3 case compared to the l5 6H

case (observed earlier in Fig. 6). Intensification of near-

surface eddies in the (Lat5 0.7, l5 4H/3) case relative to

the (Lat5 0.7, l5 6H) case is due to higher near-surface

Stokes drift shear in the former (seen in Fig. 2). This

FIG. 4. As in Fig. 3, but for (a)–(c) flows with LC with Lat5 1.0 and l5 6H and (d)–(f) flows with LC with Lat5 0.7

and l 5 6H.
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intensification of near-surface, small-scale eddies by

Stokes drift shear is ultimately responsible for increasing

near-surface mixing, suggesting that a parameterization

of Langmuir turbulence should be characterized by an

enhanced near-surface eddy viscosity, as will be de-

veloped in this study.

Comparing flow without LC and flow with LC with

(Lat 5 0.7, l 5 6H) in Fig. 7a and in Figs. 8a and 8b, it

can be seen that Stokes drift shear in the LC case is not

sufficiently high to increase the intensity of near-surface

small eddies and only serves to generate Langmuir tur-

bulence and thus full-depth LC.

Figure 7b shows hu0
3u

0
3i1/2CC defined as the contribution

from coherent cells (either full-depth Langmuir cells or

Couette cells) to overall vertical velocity rms hu0
3u

0
3i1/2.

The contribution hu0
3u

0
3i1/2CC is computed using a triple

decomposition of resolved velocity (Tejada-Martínez
and Grosch 2007; Akan et al. 2013), leading to

hu0
3u

0
3i1/2CC 5 hhu0

3it,x1hu
0
3it,x1i

1/2 . (6)

In this expression the interior brackets denote a partial

Reynolds averaging over time and downwind direction

(x1) (the latter being the same averaging used to define

the partially averaged fluctuations in Figs. 3–6). The

outer bracket in Eq. (6) denotes full Reynolds averaging

over time in the downwind (x1) and crosswind (x2)

directions.

Figure 7b shows that the vertical velocity rms associ-

ated with full-depth LC is much less in the case with

(Lat 5 0.7, l 5 4H/3) than in the cases with (Lat 5 0.7,

l5 6H) and (Lat 5 0.4, l5 6H). This is consistent with

Fig. 5 and 6 discussed earlier, showing that the strength

of full-depth LC in the case with l5 4H/3 is weaker than

in the two other cases with l 5 6H.

Comparing the cases with (Lat 5 0.7, l 5 6H) and

(Lat 5 0.4, l 5 6H) in terms of hu0
3u

0
3i1/2CC, it can be con-

cluded that the full-depth LC in the latter case is

stronger in the upper half of the water column and vice

versa in the lower half. This is consistent with the par-

tially averaged crosswind velocity fluctuations in Fig. 5

exhibiting a more intense (less intense) surface conver-

gence (bottom divergence) of the full-depth LC in the

(Lat 5 0.4, l 5 6H) case.

Although there are differences between the cases with

(Lat 5 0.7, l 5 6H) and (Lat 5 0.4, l 5 6H) in terms of

hu0
3u

0
3i1/2CC in Fig. 7b, these differences are not as pro-

nounced as the differences in terms of hu0
3u

0
3i1/2 seen in

FIG. 5. As in Fig. 3, but for (a)–(c) flows with LCwith Lat5 0.4 and l5 6H and (d)–(f) flows with LCwith Lat5 0.7

and l 5 6H.
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Fig. 7a. This suggests that a decrease in Lat from 0.7 to

0.4 with fixed l gives rise to intensification of Langmuir

turbulence scales of smaller size and less coherent than

the full-depth LC. Intensification of these smaller

Langmuir turbulence scales is due to the increase in

Stokes drift shear throughout the entire water column

induced by lowering Lat from 0.7 to 0.4 with l fixed at

6H; recall Fig. 2b).

Finally, Fig. 7b shows that the vertical velocity rms

associatedwithCouette cells ismuch less than the vertical

velocity rms associated with full-depth LC, consistent

with Couette cells being less coherent than full-depth LC,

as shown earlier through Figs. 3–6.

b. Mean velocity

1) DISRUPTION OF THE SURFACE LOG LAW

Next, the impact of shallow-water Langmuir turbu-

lence within the near-surface log layer is examined in

terms of mean velocity. In all flows with LC, the Lang-

muir turbulence and associated full-depth LC homoge-

nize momentum throughout most of the water column

(relative to flow without LC), which leads to near-

constant mean downwind velocity profiles, as seen in

Fig. 9a. Figure 9b shows mean downwind velocity deficit

in the upper half of the water column. Mean downwind

velocity deficit is defined as (husurfacei2 hu1i)/ut, where

usurface is downwind velocity u1 evaluated at the surface.

It is well known that the mean downwind velocity

deficit under a shear-driven air–water interface ex-

hibits behavior similar to the law of the wall in wall-

bounded boundary layers. This is the case for the flow

without LC, for which the mean downwind velocity

deficit is characterized by a well-developed log law

(Fig. 9b).

As can be seen in Fig. 9b, in flows with LC, the log-law

profile of the velocity deficit is disrupted or eroded. This

can be attributed in part to increased mixing induced by

intensification of near-surface, small-scale eddies rela-

tive to the flow without LC (seen in Fig. 8). As noted

earlier, this intensification of near-surface, small-scale

eddies is associated with near-surface Stokes drift shear.

For example, in Fig. 9b, comparing the case with Lat 5
0.7 and l5 6H to the case with Lat5 0.7 and l5 4H/3, it

is seen that a decrease in l while holding Lat fixed leads

to a more pronounced disruption of the log law. The

smaller value of l serves to increase Stokes drift shear

near the surface (see Fig. 2b), leading to higher levels of

mixing near the surface caused by intensified small-scale

eddies (see Figs. 8b,c) and thus greater disruption of the

surface log law. A decrease in Lat can also lead to

higher Stokes drift shear near the surface and thus

FIG. 6. As inFig. 3, but for (a)–(c) flowswithLCwithLat5 0.7 andl5 4H/3 and (d)–(f) flowswithLCwithLat5 0.7 and

l 5 6H.
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greater disruption of the surface velocity log law, as can

been seen comparing the case with Lat 5 0.7 and

l 5 6H to the case with Lat 5 0.4 and l 5 6H (see

Figs. 9b and 2b).

The impact of increasing Stokes drift shear on mean

velocity can also be seen in Fig. 9a, showing a zoomed-

in view of the near-surface velocity in regular units.

Here it can be seen that the flows with LC with greatest

near-surface Stokes drift shear [cases with (Lat 5 0.4,

l 5 6H) and (Lat 5 0.7, l 5 4H/3), respectively] are

characterized by thinner velocity boundary layers at

the surface.

Recall that in flows without (Lat 5 0.7, l 5 6H),

Stokes drift shear did not serve to enhance near-surface

small eddies relative to the flowwithout LC. Thus, in the

case with (Lat 5 0.7, l 5 6H) the disruption of the

surface log law seen in Fig. 9b is attributed to Langmuir

turbulence and associated LC.

2) DISRUPTION OF THE BOTTOM LOG LAW

The homogenizing action of LC induces a near-

constant mean downwind velocity profile over the

bulk region of the flow (see Fig. 10a). Furthermore, this

homogenizing action extends deeper into the water

column as the wavelength of the surface waves gener-

ating LC becomes larger (i.e., as l becomes larger).

This is expected based on the strength of full-depth LC,

as described in the previous section in terms of

crosswind and vertical velocity fluctuations (see, e.g.,

Fig. 6), and the form of the Stokes drift velocity shear in

Fig. 2b,which has a depth-decay rate inversely pro-

portional to l.

Figure 10b shows mean velocity in wall units for

flows with and without LC in the lower half of the

water column. The full vertical axis in this figure ex-

tends from x13 ’ 0 (denoting the bottom wall) up to

x13 5 790 (denoting the surface). To facilitate discus-

sion of results, we have zoomed into the bottom log-

layer region, showing only the part extending from

x13 5 40 up to x13 5 395 (the middle of the water col-

umn). In the region below the bottom log layer that is

not shown (0 , x13 , 40), the velocity profiles for all

cases are identical while satisfying the expected

u1
1 5 x13 theoretical profile within the viscous sublayer

in the range x13 , 7.

As seen in Fig. 10b, the flow without LC (Lat 5‘) is
characterized by a well-developed mean velocity log

law in the bottom half of the water column. In the flow

without LC, the log law extends from x13 ’ 50 up to

x13 ’ 200. In the flow with LC generated by deep-water

waves with l 5 4H/3, the mean velocity profile pos-

sesses a slight deviation from the log law. In the case

of flows with LC generated by longer (intermediate)

waves (l 5 6H), the effect of LC extends deeper into

the water column, causing a larger deviation or ero-

sion of the classical log law down to x13 ’ 90 and

FIG. 7. (a) The rms of resolved vertical velocity and (b) contribution to resolved vertical

velocity rms from full-depth LC.
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inducing a velocity profile closer to the law of the

wake (Pope 2000). This erosion is primarily caused by

the downwelling limbs of the full-depth cells that

bring well-mixed, high momentum closer to the bot-

tom, resulting in a shift from a well-developed log law

to a near constant profile for x13 . 100, as seen in

Figs. 11b–d.

In Fig. 10b, it can be seen that in the cases with l5 6H,

the case with Lat 5 0.7 is characterized by a more pro-

nounced deviation from the log law compared to the

case with Lat 5 0.4. The reason for this can be traced to

the stronger upwelling limb of the Lat 5 0.4 case, ob-

served by comparing Figs. 5b and 5e. This stronger up-

welling limb brings slower-moving fluid to the log region

(see Figs. 11b,c), serving to dampen the log-layer dis-

rupting effect of the downwelling limb when averaging

velocity over the crosswind direction (spanning both up-

welling and downwelling limbs). Overall, this suggests a

weaker full-depthLC in the lower half of thewater column

in the case with (Lat 5 0.4, l 5 6H) compared with the

(Lat 5 0.7, l 5 6H) case, consistent with the earlier

analysis of Figs. 5 and 7b.

FIG. 8. Instantaneous snapshots of vertical velocity fluctuations at x1 5 L1/2, where L1 is the downwind length of the computational

domain. These panels show the near-surface region extending from x3/d 5 0.75 through x3/d 5 1 (i.e., the upper one-eighth of the water

column). Recall that the bottom of the water column is located at x3/d 5 21 and the surface is at x3/d 5 1. These panels highlight the

downwellng and upwelling limbs of small-scale vortices near the surface.
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c. Reynolds shear stress and implications for its
parameterization

1) REYNOLDS SHEAR STRESS

The importance of full-depth LC in the generation of

Reynolds shear stress 2hu0
1u

0
3i (the dominant Reynolds

shear stress component for all flows studied here) can be

seen, for example, in Fig. 4, where the full-depth dow-

elling limb of the cell generally coincides with a full-

depth region of positive downwind velocity fluctuations

and vice versa, contributing toward 2hu0
1u

0
3i . 0. This

contribution can be measured through the quantity

FIG. 9. (a)Mean downwind velocity and (b) mean downwind velocity deficit in the upper half of the

water column in flows with and without LC; x13 measures the distance to the surface in wall units.

FIG. 10. As in Fig. 9, but for the lower half of the water column.
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hu0
1u

0
3iCC 5 hhu0

1it,x1hu0
3it,x1i, obtained in a similar fashion

to Eq. (6). In Fig. 12 it can be seen that 2hu0
1u

0
3iCC is a

significant portion of the overall Reynolds shear stress.

Coherent cells such as full-depth LC act as a nonlocal

source for turbulent vertical momentum flux [i.e., hu0
1u

0
3i;

Kukulka et al. 2012; Smyth et al. 2002). Furthermore,

as a result of the significant contribution toward Rey-

nolds shear stress (RSS) from full-depth LC, especially

in the interior of the water column as seen in Fig. 12,

nonlocal transport induced by LC is expected to play an

important role in the budgets of RSS.

2) RSS BUDGETS

Figure 13 shows budgets of the Reynolds shear stress

2hu0
1u

0
3i. These budget terms are defined in appendix A.

Within the surface log layer within the region

50, x13 , 100 in the flow without LC (not shown), the

only source is production by mean velocity shear. In

flows with LC (shown in Fig. 13), production by mean

velocity shear is a secondary source to production

by Stokes drift shear. In flows with LC, within

50, x13 , 100, production by mean velocity shear is

significant; however, this production diminishes at

depths x13 . 100 below the surface. In some of the LC

cases [e.g., the cases with (Lat 5 0.7, l 5 6H), (Lat 5
0.4, l 5 6H), and (Lat 5 1.0, l 5 6H)] the mean shear

source switches signs, becoming a sink at depths below

the 100# x13 # 150 range. In Fig. 14, in the upper-half

interior of the water column, it can be seen that for the

cases with Langmuir turbulence in which production

by mean shear becomes negative [i.e., the cases with

(Lat 5 0.7, l5 6H) and (Lat 5 0.4, l5 6H)], turbulent

transport (a nonlocal source) becomes an important

component in balancing the destruction by mean shear.

Furthermore, in these cases, turbulent transport [and

pressure transport for the case with (Lat 5 0.7, l5 6H)]

and Stokes drift shear production are the sole sources.

For example, in the (Lat 5 0.7, l5 6H) case, turbulent

transport attains a magnitude close to the magnitude

of Stokes drift production for x13 . 300. The trend of

turbulent transport becoming more significant as a

source helping to compensate for mean velocity shear

becoming a greater sink can be seen in Fig. 15 for all of

the flows with LC simulated.

FIG. 11. Mean velocity profiles within downwelling and upwelling limbs of (a) Couette cells and (b)–(d) full-depth LCs.
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The previous results indicate that a parameterization

of the Reynolds shear stress should contain a nonlocal

component and a local term based on the Stokes drift

shear, in addition to the usual local term based on the

vertical gradient of mean velocity. Furthermore, based

on previous results, the nonlocal term is deemed nec-

essary in order for the parameterization to be able to

lead to negative velocity shear under certain combina-

tions of wind and wave forcing parameters (Lat, l).

From the RSS budget terms plotted in the upper half

of the interior of the water column in Fig. 14, it can be

seen that destruction of RSS by negative mean velocity

shear occurs when the combination of local production

by Stokes drift shear (ST) and turbulent (nonlocal)

transport (T) is sufficiently large within this region of the

water column. A proxy for the strength of the combined

ST 1 T source can be taken to be the strength of full-

depth LC in the upper half of the water column mea-

sured through hu0
3u

0
3i1/2CC, as described earlier through

Fig. 7b. For example, in Fig. 14, it can be seen that in

flows with (Lat 5 1.0, l5 6H), the source ST1 T is not

as great as it is for the cases with stronger full-depth LC

(in this region) with (Lat 5 0.7, l 5 6H) and (Lat 5 0.4,

l5 6H). In the flow with (Lat 5 0.7, l5 4H/3), the full-

depth cells are weaker than in the other flows with LC

and, correspondingly, the ST 1 T source is less than in

the other flows. The previous information [on how the

strength of full-depth LC can serve as a proxy for the

(ST 1 T) source in the upper-half interior of the water

column] will prove useful for calibrating one of the co-

efficients in the proposed Reynolds shear stress param-

eterization presented further below.

3) RSS PARAMETERIZATION VIA EDDY VISCOSITY

Figure 16b shows that the Reynolds shear stress is

greater or equal to zero throughout the entire water

column despite the negative mean velocity shear in-

duced by Langmuir turbulence in some of the flows

with LC (Fig. 16a) at depths below the surface. This

suggests a breakdown of Reynolds-averaged Navier–

Stokes (RANS) turbulencemodels, which for the wind-

driven shear flows being considered here would model

the Reynolds shear stress 2hu0
1u

0
3i as

2hu0
1u

0
3i5 nRANS

t

dhu
1
i

dx
3

, (7)

where nRANS
t is an eddy viscosity. As previously de-

termined through the RSS budgets in Figs. 13 and 15, a

Reynolds shear stress model accounting for Langmuir

turbulence should also include a local term proportional

to Stokes drift shear because of its leading contribution to

the production of 2hu0
1u

0
3i. Furthermore, such a model

should also contain a nonlocal term (i.e., a term not

proportional to local velocity gradients) based on the

significant contribution by turbulent transport as a source

to the Reynolds shear stress budgets in cases when mean

velocity shear becomes negative in the interior of the

FIG. 12. (a) Resolved RSS and (b) contribution to resolved RSS from full-depth LCs.
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water column. The local term proportional to Stokes drift

shear and the nonlocal term together should overcome

the negative flux induced by the local term proportional

to mean velocity shear on the right-hand side of Eq. (7)

and thus should lead to a positive Reynolds shear stress

throughout the entire water column as expected from

Fig. 16b. This balance is analogous to the partial balance

between destruction of RSS by mean velocity shear

(sink), local production by Stokes drift shear (source) and

turbulent (nonlocal) transport (source), as seen pre-

viously in the RSS budget terms.

Although Langmuir turbulence can induce negative

mean velocity shear throughout the core region of the

water column, near the surface (approximately in the

uppermost one-eighth of the water column), mean ve-

locity shear is positive for all cases with LC, and thus the

ansatz in Eq. (7) holds in this region without the need to

add a local term proportional to Stokes drift shear nor a

nonlocal term. As noted earlier, in this region, in cases

with LC, Stokes drift shear can serve to enhance near-

surface, small-scale eddies (see Fig. 8), ultimately lead-

ing to greater near-surface mixing. This is reflected by

the near-surface rms of vertical velocity in Fig. 7a. This is

also reflected through the Reynolds shear stress profiles

shown in Fig. 16b. For example, in the upper one-eighth

portion of the water column, the Reynolds shear stresses

in flows with (Lat 5 0.4, l 5 6H) and (Lat 5 0.7,

l 5 4H/3) are greater than in the other flows with LC

characterized by lesser near-surface Stokes drift shear.

This behavior is similar to the behavior of the rms of

vertical velocity seen earlier in Fig. 10a and suggests an

amplified RANS eddy viscosity near the surface.

The need for an enhanced near-surface eddy viscosity

can be confirmed a posteriori based on LES fields. The

eddy viscosity is computed by dividing the LES-resolved

Reynolds shear stress by the LES mean velocity shear:

FIG. 13. Budget terms of2hu0
1u

0
3i (scaled by u2

t) in flows with and without LC near the surface

of the water column. Term x13 measures distance from the surface in wall units, P is production

by mean velocity shear, T is turbulent transport, TSGS is SGS transport,D is viscous diffusion,

« is viscous dissipation, «SGS is SGS dissipation, A is pressure transport, ST is production by

Stokes drift shear, and B is pressure–strain correlation.
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nRANS
t 52hu0

1u
0
3i
�

dhu
1
i

dx
3

. (8)

The predicted eddy viscosities for all flows studied are

shown in Fig. 17. As expected, the highest near-surface

eddy viscosities correspond to the flows with the highest

near-surface Stokes drift shear, that is, the flows with

(Lat 5 0.4, l 5 6H) and (Lat 5 0.7, l 5 4H/3), re-

spectively (see Fig. 2b). For a fixed value of Lat, a de-

crease in Lat (l) leads to an increase in near-surface

eddy viscosity, consistent with the trend in near-surface

Stokes drift shear in Fig. 2b.

4) ENHANCED NEAR-SURFACE EDDY VISCOSITY

To obtain an enhanced near-surface eddy viscosity

to account for Stokes drift shear-enhanced, near-

surface mixing in the KPP model, we proceed fol-

lowing Teixeira (2012). Analyzing the budget terms

of Reynolds shear stress2hu0
1u

0
3i shown in appendix A

(in dimensionless form), it can be seen that (in di-

mensional form) production by mean wind-driven cur-

rent velocity shear is hu02
3 idhu1i/dx3 while production

by Stokes drift shear is hu02
1 idhUSi/dx3, where US is the

depth-dependent Stokes drift velocity, and where

US 5vka2Us
1. In an effort to find the influence of

Langmuir turbulence on turbulent kinetic energy dis-

sipation rate in the upper ocean, Teixeira (2012) de-

composes the RSS as

2hu0
1u

0
3i52hu0

1u
0
3iwind 2 hu0

1u
0
3iStokes , (9)

where the first termon the right-hand side is a component

due to the wind-driven shear and the second term

is a component due to the Stokes drift shear. In Eq. (9)

nonlocal sources of RSS are neglected, consistent with

the near-surface region 50, x13 , 100 of theRSS budgets

in Fig. 13. Furthermore, assuming a constant shear stress

layer at the surface (Pope 2000), the total Reynolds shear

stress can be taken as

2hu0
1u

0
3i5 u2

tw (10)

within the usual surface log layer, where utw is wind

stress friction velocity. Note that for the flows con-

sidered here, integration of the Reynolds-averaged

FIG. 14. As in Fig. 13, but in the upper-half interior of the water column.
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downwind (streamwise) momentum equation yields

ndhu1i/dx3 2 hu0
1u

0
3i5 u2

tw throughout the entire water

column, where the first term on the left-hand side is the

molecular viscous shear stress. Thus, the approximation

in Eq. (10) neglects molecular viscous effects, which is

valid within the surface log layer where mean velocity

shear is relatively small compared to locations closer

to the surface. The decomposition in Eq. (9) and the

constant shear stress layer approximation in Eq. (10)

suggest that 2hu0
1u

0
3iwind , u2

tw. This, along with the as-

sumption that within the usual log layer the primary sources

of RSS are wind-driven shear production and Stokes

drift shear production (nonlocal sources are negligible),

leads to the following expression of Teixeira (2012):

FIG. 16. (a) Mean velocity in the upper half of water column and (b) RSS (2hu0
1u

0
3i) in flows

with and without LC.

FIG. 15. (a) Production by mean velocity shear and (b) turbulent transport budget terms of

2hu0
1u

0
3i (scaled by u2

t) in flows with and without LC. Term x13 measures distance to the surface

in wall units.
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2hu0
1u

0
3iwind 5

u2
tw

11
hu02

1 idhUS
i

hu02
3 idx3

=dhu
1
i

dx
3

. (11)

The time scale

g5
hu02

1 i
hu02

3 idhu1
i/dx

3

(12)

appearing in Eq. (11) may be parameterized via LES, as

will be discussed further below.

The wind-driven shear component of the total RSS is

modeled as

2hu0
1u

0
3iwind 5 n

t

dhu
1
i

dx
3

, (13)

with the eddy viscosity within the surface log layer taken

as nt5 kutwz (with z being distance to the surface). Note

that in the eddy viscosity in Eq. (13), the superscript

RANS [used earlier in Eq. (8)] has been dropped for

ease of notation. Equating Eqs. (11) and (13) and

making use of Eq. (12) leads to

n
t

�
11g

dU
S

dx
3

�
dhu

1
i

dx
3

5 u2
tw , (14)

implying an amplified near-surface eddy viscosity with

amplification factor (11 gdUS/dx3). More specifically,

equating Eqs. (10) and (14), it is seen that, for the total

RSS in Eq. (9) with amplified eddy viscosity,

2hu0
1u

0
3i5 n0t

dhu
1
i

dx
3

(15)

and

n0t 5 n
t

�
11 g

dU
S

dx
3

�
. (16)

This amplified eddy viscosity is consistent with LES re-

sults, showing that Stokes drift shear serves to enhance

near-surface mixing. For example, see intensification of

near-surface small-scale vortices in Fig. 8, enhanced

near-surface hu0
3u

0
3i and2hu0

1u
0
3i in Figs. 7a and 16b, and

enhanced surface log-law disruption and momentum

mixing (Fig. 9) with increasing Stokes drift shear.

Next, we discuss parameterization of the time scale

in Eq. (12) using LES results. Near-surface depth

profiles of the dimensionless time scale gutw/d are

plotted in Fig. 18. In this figure it can be seen that gutw/

d possesses a wide range of values near the surface;

thus, the question arises of how this result can be used

to parameterize the time scale in Eq. (18). First, recall

that Eq. (9), which together with Eq. (10) led to Eqs.

(11) and (12), is valid in the near-surface region where

nonlocal sources of Reynolds shear stress are negligi-

ble. Furthermore, recall that Eq. (10) is valid where the

molecular viscous stress is negligible. Looking at mean

shear in Fig. 16a and the Reynolds shear stress budgets

in Fig. 13, the neighborhood around x3/d ’ 0.75

(x13 ’ 100) is precisely where both Eqs. (9) and (10) are

valid. In this neighborhood, mean shear is positive and

relatively small (Fig. 16a; thus molecular viscous ef-

fects are negligible) and nonlocal sources are also

negligible (Fig. 13), all in accordance with Eqs. (9)–(12).

Hence, the time scale can be set to its corresponding

values at x3/d’ 0.75 in Fig. 18 for the different flows with

LC. These values lie within the approximate range 0.5,
gutw/d , 1. In the single-water-column simulations

performed in the upcoming sections with a newly pro-

posed RSSmodel based on Eqs. (11) and (12), we varied

the parameter gutw/d between 0.5 and 2.5 in flows with

LC and did not obtain significant sensitivity in mean

velocity predictions (not shown). In forthcoming sec-

tions, results with this model will be shown with gutw/

d 5 1.

4. A K-profile parameterization

LES results presented in the previous section in-

dicate that a Reynolds shear stress (RANS turbulence)

model able to represent shallow-water Langmuir tur-

bulence characterized by full-depth LC should include

the following:

1) an enhanced eddy viscosity near the surface to

account for intensification of near-surface, small-scale

vertical mixing induced by Stokes drift shear;

FIG. 17. A posteriori evaluation of the RANS eddy viscosity in the

upper one-eighth portion of the water column based on LES fields.
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2) a nonlocal flux accounting for the vertical transport

induced by Langmuir turbulence coherent eddies;

and

3) a local vertical flux down the gradient of Stokes drift

velocity, as suggested by budgets of the RSS.

Next, a KPP model will be introduced possessing these

characteristics.

a. A review of KPP

The RANS turbulence model developed is based on the

K-profile parameterization reviewed by Large et al. (1994).

The popularity of the KPP lies in its implementation sim-

plicity given that it is an algebraicmodel unlike theMellor–

Yamada and k–« models, which necessitate solutions of

differential equations.

In the traditional KPP, the dominant component [i.e.,

the downwind (x1)–wall-normal (x3) component] of the

Reynolds shear stress for the flows studied here (i.e., the

flows with LC studied via LES) is modeled as

2hu0
1u

0
3i5 n

t

dhu
1
i

dx
3

. (17)

Within the surface boundary layer the RANS eddy vis-

cosity is taken as

n
t
5 dw(s)G(s) , (18)

where d is the depth of the surface boundary layer, w(s)

is a velocity scale, and G(s) is a shape function. In

general, velocity scale w and shape function G are

functions of s, a dimensionless coordinate varying be-

tween 0 at the surface of the water column and 1 at the

base of the surface boundary layer. In the present im-

plementation [for the homogeneous (neutrally strati-

fied) flows studied here] the surface boundary layer is

taken to be the upper half of the water column. Di-

mensionless coordinate s is defined as s 5 z/d, where z

measures the distance to the surface. Shape functionG is

taken to be a cubic polynomial:

G(s)5 a
0
1 a

1
s1 a

2
s2 1 a

3
s3 . (19)

Velocity scale w and coefficients a0 and a1 are chosen so

that the resulting eddy viscosity matches scale-similarity

theory (i.e., log-layer dynamics; Pope 2000) near the

surface. Velocity w is taken as w5 kutw, where k5 0.41

is von Kármán’s constant and utw is wind stress friction

velocity. Thus,w is independent of s. Furthermore, a05
0 and a1 5 1. These two values together with w 5 kutw
ensure that nt goes as kutwz within the surface log layer

in accordance with similarity theory. In general, co-

efficients a2 and a3 are taken as

a
2
5221 3G(1)2 ›

s
G(1),

a
3
5 12 2G(1)1 ›

s
G(1) (20)

with

G(1)5
n
t0

dw(1)
,

›
s
G(1)5

›
z
n
t0

w(1)
2

n
t0
›
s
w(1)

dw2(1)
(21)

so as to allow for the eddy viscosity and its vertical de-

rivative to match a prescribed interior eddy viscosity nt0
and the latter’s vertical derivative at the base of the

surface layer (here corresponding to the middle of the

water column; Large et al. 1994). Eddy viscosity nt0 is

obtained via an interior parameterization typically de-

pendent on a Richardson number describing water col-

umn stability. For the homogenous flows considered

here, nt0 is independent of the Richardson number and is

taken as a constant [thus, ›znt0 5 0 in Eq. (21)]. In wind-

driven flow without Langmuir cells, nt0 is taken as the

eddy viscosity at the middle of the water column pre-

dicted by the k–« model. For flows with Langmuir

forcing and thus full-depth LC, determination of the

constant nt0 will be described further below. As will be

FIG. 18. Parameter g in Eq. (18) evaluated using LES fields within

the surface log layer.
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seen for these cases, nt0 is an eddy viscosity associated

with a nonlocal flux and a local flux down the gradient of

Stokes drift shear, both associated with Langmuir tur-

bulence. Finally, since nt0 is a constant and in the stan-

dard KPP w is also taken as constant as (w 5 kutw), the

coefficients in Eq. (20) become

a
2
5221 3

n
t0

dw
,

a
3
5 12 2

n
t0

dw
(22)

for the standard KPP.

In the bottom half of the water column, within the bed

log layer, the eddy viscosity is expected to behave sim-

ilar to the surface log layer but as kutbz, where utb is

bottom (bed) friction velocity and z is distance to the

bottom wall. Shape function coefficients are also chosen

so as to match the interior eddy viscosity nt0. Note that

for the wind-driven flows considered here, in the mean

utb 5 utw (i.e., the mean wall shear stress is equal to the

imposed wind stress). Thus, the shape function is sym-

metric about the middle of the water column.

b. Modification of KPP based on near-surface
Langmuir turbulence dynamics

Recall that in the standard KPP, velocity scale w in

Eq. (18) is taken independent of s as w 5 kutw, where

k5 0.41 is von Kármán’s constant and utw is wind stress

friction velocity. The amplified eddy viscosity in Eq. (16)

implies that the velocity scale should be

w0 5
�
11 g

dU
S

dx
3

�
ku

tw
(23)

for the modified KPP of the total Reynolds stress in Eq.

(9). Thus, the amplified eddy viscosity may be calculated

as in Eq. (18) but with w0 given in Eq. (23):

n0t 5 dw0(s)G0(s) . (24)

Note that the new velocity scale w0 affects the shape

function coefficients calculated in Eq. (20), giving rise

to a new shape function G0. More specifically, the new

velocity scale is no longer constant and is now a function

of s through the depth dependence of the Stokes drift

vertical shear, dUS/dx3. Thus, the shape function co-

efficients for the modified KPP are different than those

for the standard KPP appearing in Eq. (22). The co-

efficients for shape function G0 can be calculated from

the general expressions in Eqs. (20) and (21) with w

replaced by w0, where w0 is a function of s unlike w. In

the lower half of the water column, G0 is taken as its

mirror image from the upper half as is done in the case of

G, and thus G0 is symmetric about the middle of the

water column. However, the resulting eddy viscosity in

Eq. (24) is not symmetric about middepth given the

depth decay ofw0 through the Stokes drift shear [see Eq.

(23) and Fig. 2b]. In summary, the new KPP model is

taken as the original KPP model, but with the amplified

velocity scale given in Eq. (23). Note that McWilliams

and Sullivan (2000) proposed an amplified velocity scale

where the amplification is dependent on the turbulent

Langmuir number Lat rather than on Stokes drift shear

as is the LES-supported result from the analysis here.

c. Modification of KPP accounting for nonlocal
transport and local Stokes drift shear production

As shown earlier through analysis of Reynolds shear

stress budgets, the RSS model should account for tur-

bulent (nonlocal) transport in the interior of the water

column as well as local production by Stokes drift shear.

We proceed similar to McWilliams and Sullivan (2000)

and Smyth et al. (2002), who introduced a counter-

gradient term into the KPP to account for nonlocal

transport and Stokes drift shear production, both key

mechanisms of Langmuir turbulence:

2hu0
1u

0
3i5 n0t

�
dhu

1
i

dx
3

1G

�
, (25)

where G is a countergradient defined as

G5
u2
tw

n(s)d
, (26)

with n(s) as a velocity scale. Countergradients such as

this one have been proposed for the nonlocal transport

of scalars in the convective atmospheric boundary layer

(see, e.g., Frech andMahrt 1995, and references therein)

and have been extended to themomentum equations for

the upper-ocean mixed layer (see, e.g., Smyth et al.

2002). In the case of Smyth et al. (2002), the counter-

gradient was augmented with Stokes drift shear to ac-

count for local production by the latter. In the present

formulation this will not be needed, as the product n0tG in

Eq. (25) inherently possesses such a term, as will be

described further below.

In the current implementation, general velocity scale

n(s) in Eq. (26) is taken independent of s as simply

kutw. It is not taken as that given by Eq. (23) because the

latter is not representative of core (bulk) region dy-

namics, but rather of Stokes drift shear-enhancedmixing

in the near-surface region.

As per the discussion in the previous section, the KPP

eddy viscosity is designed to match the eddy viscosity at

the base of the surface layer (in this case n0t0). This eddy
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viscosity may be found by setting the countergradient

term in Eq. (25) at the middle of the water column

proportional to the wind stress:

n0t0G5Cu2
tw , (27)

where C is indicative of the strength of Langmuir turbu-

lence through nonlocal transport and local production by

Stokes drift shear of RSS at middepth. Calibration of C

will be demonstrated further below in the presentation of

single-water-column model results with the modified

KPP. As seen through the analysis of the RSS budgets in

Fig. 14, the combined source of Stokes drift shear pro-

duction (ST) and turbulent transport (T) can lead to

negative mean velocity shear. Results with the single-

water-column model will show that if wind and wave

forcing conditions are such that the ST and T sources are

sufficiently high to cause a negative mean velocity shear,

then C. 1; otherwise, C# 1. Furthermore, as originally

described earlier in section 3c(2), looking at the RSS

budget terms in Fig. 14, it can be seen that the combined

ST and T source increases with strength of full-depth LC

in the upper half of the water column as measured via

hu0
3u

0
3i1/2CC in Fig. 7b. Recall that the quantity hu0

3u
0
3i1/2CC

represents the contribution of full-depth LC to rms of

vertical velocity, hu0
3u

0
3i1/2. This presents a path for future

parameterization of C.

FLUX DOWN THE STOKES DRIFT GRADIENT

Inserting Eq. (16) into Eq. (25) and expanding reveals

that the modified KPP contains the term (ntGg)dUS/dx3.

This represents a local term in the form of flux down the

vertical gradient of Stokes drift. The RSS transport

equation derived from themomentum equation with CL

(Langmuir) forcing (serving to generate Langmuir tur-

bulence) possesses local production by vertical gradients

of mean downwind velocity and Stokes drift velocity,

dhu1i/dx3 and dUS/dx3, respectively. This, along with the

LES-based analysis of RSS transport equation terms

(i.e., the budget terms presented earlier), suggests that a

parameterization of the RSS should contain a vertical

flux down the gradient dUS/dx3, in addition to the usual

flux down the gradient dhu1i/dx3. Reynolds shear stress

parameterizations, including transport down the gradi-

ent dUS/dx3, have been postulated by Harcourt (2013)

andMcWilliams et al. (2012) for Langmuir turbulence in

the upper-ocean mixed layer. Note that Langmuir tur-

bulence in the upper-ocean mixed layer possesses a

number of differences from Langmuir turbulence in

shallow water, primarily associated with the coherency

of the full-depth LC in shallow water. In the shallow

water case, full-depth LC tends to be strongly coherent,

contributing greatly to turbulent (nonlocal) transport of

RSS and disrupting the bottom log layer. In the upper

ocean, the LCs are less coherent and do not interact with

the bottom log layer.

5. Evaluation of the modified KPP

Single-water-column RANS simulations of wind-

driven flows at Ret 5 395 (based on wind stress friction

velocity and water column middepth) with full-depth LC

were performed with the standard KPP, the k–« model,

and the newly proposed modified KPP for various com-

binations of wind and wave forcing. LES results of these

same flows were presented earlier. Recall that wind-

driven flows with LC are characterized by the dominant

wavelength of surface gravity waves (l) generating LC

and the turbulent Langmuir number (Lat), which is in-

versely proportional to the strength of wave forcing rel-

ative to wind forcing. Four cases have been simulated:

(Lat 5 0.7, l 5 6H), (Lat 5 0.4, l 5 6H), (Lat 5 1.0,

l 5 6H), and (Lat 5 0.7, l 5 4H/3).

RANS simulations consisted of solving the Reynolds-

averaged continuity equation and momentum equation

with CL vortex force solved using the ANSYS Fluent

software tool (release 14.0; http://www.ansys.com/

Products/Fluids/ANSYS1Fluent). [An alternate ap-

proach was developed (discussed in appendix B) and

yielded similar results to Fluent.] The domain was cho-

sen as in Fig. 1, but with two hexahedral elements in the

downwind direction and two hexahedral elements in the

crosswind direction. This coarse resolution in horizontal

directions prevents resolution of Langmuir cells result-

ing in a single (1D) water column model. In the vertical

direction, the domain was discretized with 33 equally

distant points; thus, the first grid point away from the

bottom (surface) was at a distance z11 5 25 from the

bottom (surface). As a result, these simulations do not

resolve viscous nor buffer sublayers, and resolution only

extends into the log layer. The surface boundary con-

dition consists of a prescribed wind stress, the same as in

the LES. The bottom boundary condition will be de-

scribed in detail further below.

Figure 19 compares mean downwind velocity pre-

dicted by LES (described earlier) and byRANSwith the

modified KPP, standard KPP, and k–« model. With re-

spect to LES, the RANS with modified KPP leads to a

better prediction than with standardKPP and k–«model

in representing 1) the mixing of momentum throughout

the bulk flow region and at the bottom of the water

column induced by Langmuir turbulence and associated

full-depth LC and 2) the near-surface mixing induced by

near-surface, small-scale vortices enhanced by Stokes

drift shear. In some cases, the simulations with modified

KPP tend to overpredict the near-surface mixing of
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momentum, such as in the flowwith (Lat5 0.7,l5 4H/3).

This is attributed to the coarse mesh that only provides

two grid points to resolve the rapid transition of themean

velocity at the surface.

Recall that the modified KPP coefficient C in Eq.

(27) was said to be representative of the strength of the

full-depth LC in the upper-half of the water column.

From the results in Fig. 19, it can be concluded that the

C coefficient is indeed dependent on the strength of

full-depth LC in the upper-half of the water column as

measured through hu0
3u

0
3i1/2CC (plotted in Fig. 7b for the

various cases of LES with LC). More specifically,

FIG. 19. Comparison between RANS and LES of flows with LC at Ret 5 395. RANS is performed with the

k–«model, the standard KPP, and themodified KPP accounting for Langmuir turbulence and associated full-depth

LC. Note that H 5 2d is the depth water column.
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Fig. 19 shows results with C 5 1 and with tuned values

of C so as to yield mean velocity profiles in closer

agreement with the LES. The tuned values of C are

consistent with the strength of full-depth LC in the

upper-half of the water column evaluated through

hu0
3u

0
3i1/2CC: for (Lat 5 0.4, l5 6H),C5 1.4; for (Lat 5 0.7,

l5 6H),C5 1.2; for (Lat5 1.0, l5 6H),C5 1.1; and for

(Lat 5 0.7, l 5 4H/3), C 5 0.7. Thus, as expected, a pa-

rameterization of the effect of a weaker full-depth LC in

the upper-half of the water column via the modified KPP

requires a smaller value of C. Future research should

focus on obtaining a parameterization of C via strength

of the full-depth LC (i.e., hu0
3u

0
3i1/2CC) in the upper-half of

the water column in terms of Lat and l by performing a

suite of LES simulations sweeping through a range of

these parameters.

In addition to being dependent on the Reynolds

shear stress model, the results of Fig. 19 are also

strongly dependent on the bottom boundary condition

of the simulations. The bottom boundary condition and

its modification to account for log-law disruption

caused by full-depth LC will be described in the detail

in the upcoming subsection.

Figure 20 shows momentum balances in the RANS

simulations of wind-driven flows with LC for the cases

(Lat 5 0.4, l 5 6H) with C 5 1.4, (Lat 5 0.7, l 5 6H)

with C5 1.2, (Lat5 1, l5 6H) with C5 1.1, and (Lat 5
0.7, l 5 4H/3) with C 5 0.7. The RANS equation gov-

erning these flows yield the following balance:

n
dhu

1
i

dx
3

2 hu0
1u

0
3i5 u2

tw , (28)

where the first term on the left-hand side is the local

molecular viscous stress. The RSS is modeled via the

modifiedKPP inEq. (25) [while using Eqs. (23) and (24)]:

2hu0
1u

0
3i5 n0t

dhu
1
i

dx
3

1hG1hGg
dU

S

dx
3

, (29)

where h 5 dkutwG
0(s). The first term on the right-hand

side is the local eddy viscosity stress or local flux down the

gradient ofmean velocity, the second term is the nonlocal

flux, and the third term is the local flux down the gradient

of Stokes drift. The latter was discussed earlier in section

4c. Figure 20 shows that the four stresses [local molecular

viscosity stress, local eddy viscosity stress, nonlocal flux,

and flux down the gradient of Stokes drift in Eqs. (28) and

(29)] sum to the square of the wind stress friction velocity

u2
tw, as expected given Eq. (28).

FIG. 20. Momentum balance for modified nonlocal KPP in flows with LC at Ret 5 395. Red

stars are nonlocal stress, pink triangles are local molecular viscous stress, purple diamonds are

local eddy viscosity stress, aqua squares are flux down the gradient of Stokes drift velocity, and

gray circles are sums.
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Looking at Fig. 20, in flows where the contribution of

the flux down the gradient of Stokes drift is lower [e.g.,

in the flow with (Lat 5 1.0, l5 6H)], the contribution of

the nonlocal stress is higher and vice versa. For example,

in the flow with (Lat 5 1.0, l5 6H), Stokes drift shear is

smallest compared to the other flows, leading to a rela-

tively small contribution from the flux down the gradient

of Stokes drift in themodifiedKPPmodel. Furthermore,

the presence of the full-depth LC in this case serves to

homogenize the entire water column, leading to small

contributions from the local stresses based on mean

velocity shear, especially in the middle of the water

column (which is expected given that these stresses are

proportional to vertical gradient of mean downwind

velocity). As a result, in the (Lat5 1.0, l5 6H) case, the

nonlocal stress is left to provide the bulk of wind shear

stress vertical transfer throughout the water column,

serving to explain why the nonlocal stress in this flow is

higher than in the other cases.

Finally, note that in Fig. 20, in some of the flows it is

seen that the local eddy viscosity stress becomes

negative throughout significant portions of the water

column [e.g., in the (Lat 5 1.0, l 5 6H) case]. This is

because of the negative vertical gradient of mean

downwind velocity induced by Langmuir turbulence

(through nonlocal transport and Stokes drift shear

production mechanisms), consistent with the LES re-

sults presented earlier.

Bottom boundary condition

In the single-water-column RANS simulations pre-

viously described, the bottom boundary condition

consists of a prescribed bottom stress. The reason for

this is that sole imposition of the no-slip condition

would require resolution of the buffer and viscous wall

regions below the log-layer. To avoid resolution of

these computationally expensive regions, the RANS

simulation performed relies on imposition of the bot-

tom stress in what is often referred to as near-wall

modeling. The bottom stress is defined in terms of the

bed stress friction velocity (which in these flows is equal

to the wind stress friction velocity utw). In near-wall

modeling (Pope 2000) the bed stress friction velocity is

obtained by assuming that the computed mean velocity

hu1i satisfies the log law at the first grid point away from

the bottom wall:

hu
1
i

u
tw

5
1

k
ln
�u

tw
z

y

�
1B , (30)

where B 5 5.5 for classical boundary layers. In tradi-

tional near-wall modeling, the previous equation is

solved dynamically (i.e., during the simulation) for utw,

with z set equal to the distance between the wall and the

first grid point away from the wall and hu1i set as the

computedmean velocity at the first grid point away from

the wall.

LES presented earlier has shown that full-depth LC

disrupts the bottom log-law velocity profile in Eq. (30)

(recall Fig. 10b). The behavior induced by the full-depth

LC can be approximated by varying the value ofB in Eq.

(30) depending on the strength of full-depth LC in the

lower half of the water column. For example, in flows

with (Lat 5 0.7, l 5 6H), the LES has shown that the

disrupted log law caused by full-depth LC may be ap-

proximated by resettingB to 7.5 in the log law inEq. (30)

(not shown). In flows with (Lat5 0.7, l5 4H/3) in which

the full-depth LC is weaker and less disruptive in the

lower half of the water column than in the (Lat 5 0.7,

l 5 6H) case, the LES has shown that the disrupted log

law may be approximated by resetting B to 6.5. Thus, a

more disruptive full-depth LC in the lower-half of the

water column requires a higher value of B. Similar

conclusions can be obtained by comparing the cases with

(Lat 5 0.7, l 5 6H) and (Lat 5 0.4, l 5 6H). This in-

dicates that B can be parameterized via the strength of

full-depth LC (i.e., hu0
3u

0
3i1/2CC) in the lower half of the

water column.

Figure 21 shows mean velocities obtained in RANS

simulations with the modified KPP with different values

of the B coefficient in the log law used for near-wall

modeling. For example, in the flow with (Lat 5 0.7,

l 5 6H), the log law in Eq. (30) with B 5 7.5 leads to a

velocity profile in better approximation of the LES ve-

locity profile than the traditional B 5 5.5, as expected.

The significant difference between using B 5 5.5 and

B 5 7.5 in the RANS single-water-column simulation

with modified KPPmodel can be seen in Fig. 21 in terms

of bulk downwind momentum and log-layer disruption.

The importance of the B coefficient in the near-wall

model is further demonstrated in Fig. 21 for the flow

with (Lat 5 0.7, l 5 4H/3). Following the LES results

and setting B5 6.5 in the near-wall model in the RANS

simulation with modified KPP leads to a better result

than B 5 5.5.

6. Summary and conclusions

Langmuir turbulence is generated by interaction be-

tween Stokes drift velocity induced by surface gravity

waves and the wind-driven shear. In homogeneous shal-

low water, Langmuir turbulence is often characterized by

full-depth LC engulfing the entire water column. LES of

Langmuir turbulence with full-depth LC in a wind-driven

shear current has revealed that mixing due to full-depth

LC erodes the bottom log-law velocity profile, inducing a
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profile resembling a wake law. Turbulent (nonlocal)

transport and local Stokes drift shear production sources

of Reynolds shear stress in Langmuir turbulence induce

negative mean velocity shear under certain combinations

of wind and wave forcing parameters. Meanwhile, near

the surface, Stokes drift shear serves to intensify small-

scale eddies, leading to enhanced mixing and disruption

of the surface velocity log law.

A K-profile parameterization (KPP) of the Reynolds

shear stress composed of local and nonlocal components

has been introduced capturing the previously summa-

rized basic mechanisms by which Langmuir turbulence

and associated full-depth LC impact the mean flow.

Single-water-column RANS simulations with the new

parameterization were presented showing good agree-

ment with LES in terms of mean velocity profiles. The

KPP introduced is characterized by two coefficients (C

andB) dependent on the strength of the full-depth LC in

the upper half of the water column and its strength in the

bottom half of the water column. Future research should

focus on parameterizing these coefficients as functions

wind and wave forcing parameters l and Lat by

performing a suite of LES over likely values of these

parameters. Alternatively, field measurements of full-

depth LC such as those of Gargett and Wells (2007)

could also be used to parameterize these coefficients. It

is important to realize the significance/benefit of having

linked these coefficients to the strength of full-depth LC,

as, for example, the C coefficient had been originally

tied to nonlocal transport in the Reynolds shear stress

budgets, which might not be accessible through field

measurements.
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APPENDIX A

Reynolds Shear Stress Budget Terms

Following the Reynolds decomposition of the LES-

resolved velocity ui 5 huii 1 u0
i and expanding the pres-

sure P following its definition in Eq. (3), the transport

equation for the Reynolds shear stress 2hu0
1u

0
3i for the

flows considered in statistical equilibrium can be shown

to reduce to

P
13
1Q

13
1T

13
1T

sgs
13 1D

13
1A

13
1B

13
1 «

13
1 «

sgs
13 5 0,

(A1)

where

P
13
5 hu0

3u
0
3i

dhu
1
i

dx
3

(mean shear production rate),

FIG. 21. Mean downwind velocity predicted in RANS with modified KPP and various different

values of B coefficient in the log law used for near-wall modeling.
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Q
13
5

1

La2t
hu0

1u
0
1i
dUS

1

dx
3

(Stokes drift shear production rate),

T
13
52

dhu0
1u

0
3u

0
3i

dx
3

(turbulent transport rate),

T
sgs
13 5

dhu0
3t

d0
13i

dx
3

(SGS transport rate) ,

D
13
5

1

Re
t

d2hu0
1u

0
3i

dx23
(viscous diffusion rate),

A
13
52

dhP0
u0
1i

dx
3

(pressure transport rate) ,

B
13
5 2hP00

S0
13i (pressure-strain redistribution rate) ,

«
13
52

2

Re
t

›u0
1

›x
3

›u0
3

›x
3

(viscous dissipation rate), and

«
sgs
13 52td

0
13

›u0
3

›x
3

2 td
0

33

›u0
1

›x
3

(SGS dissipation rate) .

APPENDIX B

Numerical Treatment of the Single-Water-Column
RANS Equation

The RANS equation governing the wind-driven flows

studied here with modified KPP introduced in section 4

yield the following:

n
du

dz
1 n0t

du

dz
1 n0tG5u2

tw , (B1)

where z denotes the vertical extent of the water column

ranging from z 5 0 at the bottom wall to z 5 2d at the

top surface. Recall that n0t is the depth-dependent (z

dependent) modified KPP eddy viscosity, G is the

countergradient flux accounting for nonlocal transport

induced by full-depth LC (introduced in section 4c),

and utw is the friction velocity associated with the im-

posed wind stress at the top of the domain. For this

configuration, in the mean, the bottom wall shear stress

is equal to the wind stress. Solving Eq. (B1) for the

mean downwind velocity gradient leads to an expres-

sion of the form

du

dz
5 f (z) . (B2)

Discretizing the z range [0, 2d] into N 1 1 uniformly

distributed grid points (and thus N grid cells of equal

length Dz) and integrating Eq. (B2) over a grid cell

extending from the point at z5 zi to the point at z5 zi11

leads to

u
i11

5 u
i
1

ðz5zi11

z5zi

f (z) dz . (B3)

The bottom wall at z5 z15 0 is characterized by no-slip

velocity; thus, u1 5 0. Furthermore, the number of grid

cells N is chosen such that the first grid point off the

bottom wall (z 5 z2) is located within the log layer.

Evaluation of the integral in Eq. (B3) for the first grid

cell adjacent to the wall (from z5 z1 to z5 z2) using the

standard wall-function method (i.e., the wall model)

described by Bredberg (2000) leads to direct specifica-

tion of the velocity within the log layer, u2, in accordance

with the log law:

u
2
5 u

tw

�
1

k
ln
�u

tw
z
2

n

�
1B

	
. (B4)

Note that discussion on the importance of the B co-

efficient in Eq. (B4) when modeling flows with full-depth

LC is given in section 5. The evaluation of the integral in

Eq. (B3) for grid cells above the first cell can be performed

numerically. For example, approximation of this integral

with Simpson’s rule leads to results nearly identical to the

ANSYS Fluent model results presented in section 5.
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