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Abstract

A numerical solver is presented of the modified time-independent mild-slope equation, which incorporates energy dissipation.

Using a second-order parabolic approximation, the following external boundary conditions are modelled: open and fully

transmitting to both incoming and outgoing waves; partially reflecting, and; fully absorbing. Discretisation of the governing

equation and boundary conditions is by means of a second-order accurate central difference scheme. The resulting sparse-banded

matrix is solved using an inexpensive banded solver with Gaussian elimination. The numerical predictions are in excellent

agreement with the analytical solution for the interaction of non-breaking waves with an array of vertical surface-piercing circular

cylinders on a horizontal bed. Results are compared with those for the same array on various seabed topographies. The model is

robust and can be used for wave propagation in complex geometries. It has fewer restrictions associated with wave obliqueness at

boundaries than traditional models based on the mild-slope equation.
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1. Introduction

Accurate prediction of water wave transformation

over an irregular bed topography on which structures

may be sited is important to engineers who plan,

design, construct, and maintain coastal facilities. When
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a wave train propagates from deep to shallow water

several transformations take place, such as shoaling,

refraction, reflection, diffraction, resonance, and

energy dissipation induced by bottom friction, turbu-

lence and wave breaking. Various theoretical approx-

imations have been derived in recent decades, under the

assumption of linear wave theory. One way to model

these kinds of phenomena is through the well-known

mild-slope equation.

The basic mild-slope equation provides a means of

estimating the transformation of linear waves in water

over a slowly varying impermeable bottom, and was
(2005) 391–407
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originally derived by Berkhoff (1972) and Smith and

Sprinks (1975). Although various studies have attemp-

ted to apply the mild-slope equation to wave prop-

agation over steeply varying impermeable bed

topographies, Booij (1983) proved that the mild-slope

solution is formally only valid for slopes of 1:3 or less.

Massel (1993) presented a mild-slope approximation,

which includes the effect of evanescent modes.

Chamberlain and Porter (1995) derived a modified

version of the mild-slope equation that retains second-

order terms, and Porter and Staziker (1995) derived a

solution that takes into account the terms associated

with the evanescent modes with depth-averaged mass

flux and pressure boundary conditions for the case of

unidirectional wave transformation.

Following Maa et al. (2002), numerical solvers of

the mild-slope equation are based on:

(1) The parabolic approximation, which is only

valid when reflection is negligible and wave

diffraction is weak (e.g. Kirby and Dalrymple,

1994).

(2) The hyperbolic approach, whereby the elliptic

equation is converted to a pair of transient

relations (e.g. Copeland, 1985; Suh et al., 1997),

offers the advantage of reduced computing time

compared with alternative elliptic solvers, such

as the alternating direction implicit (ADI)

algorithm (e.g. Madsen and Larsen, 1987) and

the conjugate gradient method (e.g. Panchang et

al., 1991).

(3) An iterative approach for solving the elliptic

equation, which normally does not require a

large amount of computer memory and has a

rapid convergence rate, but can be unstable and

involves complicated computer algorithms mak-

ing program maintenance difficult (e.g. Oliveira

and Anastasiou, 1998).

(4) Direct matrix equation solvers, which are

sufficiently robust to handle very complex

configurations (e.g. Maa et al., 1997).

When solving the extended mild-slope equation,

Maa et al. (2002) implemented a special book-

keeping procedure for Gaussian elimination with

partial pivoting that transforms the (large) memory

requirements from core to hard disk. The method is

direct and computationally economical. However,
the solution presented by Maa et al. (2002) includes

the lowest parabolic approximation for the open

boundaries and consequently is only valid when the

angle of approach of the wave to the boundaries is

less than 308, and so only partially reflecting lateral

boundaries are allowed.

The mathematical model used here is based on

the modified version of the harmonic mild-slope

equation derived by Chamberlain and Porter (1995).

To take into account energy losses from breaking

and bottom friction, the modified mild-slope equa-

tion is altered to incorporate an energy dissipation

term, in a similar way to Kirby and Dalrymple

(1994) and Dingemans (1997). Boundaries are

assumed to be either open (fully transmitting to

both incoming and outgoing waves), or partially

reflecting, or fully absorbing through the second-

order parabolic approximation, Kirby (1989). A

central difference technique of second-order accu-

racy is used to discretise the governing equation.

Limitations of the present model are: its linear

character; neglect of evanescent modes; numerical

restrictions intrinsic to the finite difference techni-

que; and artificial absorption or reflection into the

numerical domain introduced by the approximation

used for the open and partially transmissive

boundary.

To the best of the authors’ knowledge, it is the first

time that the steady-state modified mild-slope equation

has been solved using a finite difference scheme

together with a second-order parabolic approximation

to represent the external boundary conditions. In all

cases, the numerical predictions are in excellent agree-

ment with analytical solutions. The model has fewer

restrictions associated with wave obliqueness at boun-

daries than traditional models based on the mild-slope

equation.

Although the present model is applicable to totally

reflective lateral boundaries, such cases are not

considered herein. This is because the present model

reduces to that of Maa et al. (2002) for reflective

boundaries, which has previously been validated.
2. Theoretical background

Consider a homogeneous incompressible fluid with

irrotational motion travelling over an impermeable
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bottom with spatially varying water depth h(x,y). For

the three-dimensional problem, the governing equation

is derived from the continuity equation and can be

expressed (see, e.g. Dingemans, 1997) in terms of the

velocity potential U, as:

j2
hU þ B

2U
Bz2

¼ 0 � h x; yð ÞVzV0; ð1Þ

where (x,y) represents the horizontal coordinates, z is

the vertical coordinate measured positively upwards

with the undisturbed free surface at z=0, and jh=(B/

Bx,B/By) is the horizontal gradient operator.

The mixed free surface boundary condition,

obtained by combining the linear dynamic and kine-

matic free surface boundary conditions for variable

depth, is:

g
BU
Bz

þ B
2U
Bt 2

¼ 0; z ¼ 0: ð2Þ

The kinematic boundary condition at the impermeable

bottom, z=�sh is

BU
Bz

þjhhdjhU ¼ 0 z ¼ � h x; yð Þ ð3Þ

where t is time and g is acceleration due to gravity.

The velocity potential U can be expressed as:

U x; y; z; tð Þ ¼ Re u x; y; tð Þf zð Þf g; ð4Þ

where Re is the real part of the argument and u is the

complex amplitude of the water surface. The depth

dependency, corresponding to a horizontal bottom

jhh=0, is provided by

f zð Þ ¼ coshk hþ zð Þ
coshkh

: ð5Þ

The wavenumber k is determined from

r2h

g
¼ kh tanhkh; ð6Þ

where r is the angular frequency (r=2k/T) and T is

the wave period.

Following Smith and Sprinks (1975), application

of Green’s second identity to f(z) and U gives

Z 0

�h

f
B
2U
Bz2

dz�
Z 0

�h

U
B
2f

Bz2
dz� f

BU
Bz

� U
Bf

Bz

� �0
�h

¼ 0

ð7Þ
Substituting Eqs. (1) and (4) in the first term of Eq.

(7), Eqs. (4) and (5) in the second term of Eq. (7) and

Eqs. (2) and (3) in the last term of Eq. (7), the

modified time-dependent mild-slope equation is

obtained as:

jh I1juð Þ þ k2uI1 þ ur hð Þ ¼ 1

g

B
2u
Bt2

þ u
r2

g
; ð8Þ

where

r hð Þ ¼ I2j
2
hhþ jhhð Þ2 BI2

Bh
� I3

� �
; ð9Þ

I1 ¼
Z 0

�h

f 2dz; ð10Þ

I2 ¼
Z 0

�h

f
Bf

Bh
dz; ð11Þ

and

I3 ¼
Z 0

�h

Bf

Bh

� �2
dz: ð12Þ

To obtain the time-independent version of the mild-

slope equation, the velocity potential is written in

separated form as:

u x; y; tð Þ ¼ / x; yð Þe�irt: ð13Þ

Finally, substituting Eq. (13) into Eq. (8), the modified

time-independent mild-slope equation is expressed.

jh I1j/ð Þ þ k2/I1 þ /r hð Þ ¼ 0: ð14Þ

It should be noted that Chamberlain and Porter

(1995) derived Eq. (14) using Hamilton’s variational

principle.

In a similar way to Dingemans (1997), Eq. (14) is

modified to incorporate an energy dissipation term,

which takes into account dissipation due to wave

breaking and bottom friction,

jhd I1jh/ þ k2 þ irD
� �

I1 þ r hð Þ
� 	

/ ¼ 0; ð15Þ

where D is the dissipation factor. In this paper, only

wave breaking and bottom friction dissipation are

considered, and so

D ¼ fD þ fB : ð16Þ
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The breaking dissipation factor, fD, may be expressed

(Dally et al., 1985):

fD ¼ kCk

rh
1� CGh

HB

� �2" #
; ð17Þ

where HB is the wave height at the breaking point,

(easily evaluated through HB=ch , with c=0.8),
Ck=0.15, and CG=0.4.

In practice, the wave-induced bottom boun-

dary layer is usually turbulent. The dissipation
term is given by (Kirby and Dalrymple,

1994),

fB ¼ 4

3p
Cfar2

ng sinh3kh
; ð18Þ

where Cf is the Darcy–Weisbach friction factor, a is

the local wave amplitude (H/2), r is the angular

frequency and

n ¼ 1

2
1þ 2kh

sinh2kh

� �
: ð19Þ
3. Numerical implementation

Without loss of generality, the modified time-independent mild-slope equation, Eq. (15) can be written in its

Helmholtz form (Radder, 1979) as

j2
hw þ K2

cw ¼ 0; ð20Þ

where,

w ¼ I1ð Þ1=2/; ð21Þ

and

K2
c ¼ k2 þ irD

� �
þ r hð Þ

I1
� j2

ffiffiffiffi
I1

pffiffiffiffi
I1

p : ð22Þ

To solve Eq. (20) a numerical scheme with appropriate boundary conditions has to be implemented. Two types of

boundary conditions are considered herein: (a) an open boundary; and (b) a partially reflecting boundary condition.

The open boundary allows full transmission of both incoming and outgoing waves. At its extremes, the partially

reflecting boundary condition tends to either a totally reflecting or a fully absorbing boundary condition.

For simplicity and convenience, the seaward boundary condition is treated as an open boundary of constant

depth, the landward boundary as partially reflecting, and the lateral boundaries as open or partially reflecting. The

exterior bathymetry varies only in the cross-shore direction, as shown in Fig. 1.

For the case of an open boundary condition, Kirby (1989) demonstrated the advantages to be gained by

adopting the parabolic approximation as a radiation boundary condition for the finite difference solver. Following

Dingemans (1997), an equivalent way of writing Helmholtz Eq. (20) is

B
2w
Bx2

¼ � K2
c 1þ 1

K2
c

B
2w
By2

� �
: ð23Þ

Propagation in the positive x-direction can be described by means of pseudo-differential operators as

Bw
Bx

¼ iKc 1þ 1

K2
c

B
2

By2

� �1=2
w: ð24Þ
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Fig. 1. Coordinate system and grid alignment for the computing domain.
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A parabolic approximation of Eq. (24) can be obtained,

Bw
Bx

¼ iKc a0w þ a1

K2
c

B
2w
By2

� �
� a2

K2
c

B
3w

BxBy2
; ð25Þ

where the values of the parameters a0, a1 and a2 depend on the maximum directional aperture and the degree to

which the condition of exact transmission at normal incidence is met. The parameters can be estimated by means of

a Padé approximant or the approximation given by Kirby (1986).

For the seaward boundary condition, the total potential is the sum of incident and scattered waves. Using Eq.

(25) as an approximation for the scattered waves,

Bws

Bx
¼ B w � wið Þ

Bx
¼ � iKc

 
a0 w � wið Þ þ a1

K2
c

B
2 w � wið Þ
By2

!
þ a2

K2
c

B
3 w � wið Þ
BxBy2

: ð26Þ

In Eq. (26) the scattered waves travel towards the seaward boundary in directions that partially oppose the incident

waves. Hence, the incident velocity potential is defined as

wg ¼ iHg

2r

ffiffiffiffi
I1

p cos hk hþ zð Þ
cos hkh

exp ik xcosh þ ysinhð Þ½ 
: ð27Þ

Substituting Eq. (27) into Eq. (26), we obtain

Bw
Bx

¼ � iKca0w � i
a1

Kc

B
2w
By2

þ a2

K2
c

B
3w

BxBy2
þ i

 
Kca0 �

k2a1sin
2h

Kc

þ k3a2sin
2hcosh

K2
c

þ kcosh

!
wi

c�
 
iKca0w þ i

a1

Kc

B
2w
By2

þ a2

K2
c

B
3w

BxBy2

!
þ i k þ Kcð Þwgcos h:

ð28Þ

An analogous procedure can be given for the y-direction, if it is assumed that the lateral boundaries have constant

water depth and reflections from the landward side can be disregarded. In practice, however, the depth usually

decreases in the landward direction. Moreover, the plane wave formulation does not include the effects of

breaking. When this procedure is used in conjunction with the governing Eq. (20) in the interior of the domain with

wave breaking, a discontinuity along the open boundary results from incorrect forcing. To overcome this
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limitation, it is therefore assumed that the depths at the lateral boundaries change solely in the x-direction (as also

implemented by Zhao et al., 2001).

Under the assumption that the problem becomes one-dimensional at the lateral boundaries, the governing

equation simplifies to give,

B
2w
Bx2

þ K2
cw ¼ 0: ð29Þ

At the offshore boundary, it is assumed that the total velocity potential wl is composed of the sum of incident and

reflected waves,

wl ¼ wg þ wr: ð30Þ

The incident velocity potential is given by Eq. (27), and the reflected velocity potential may be expressed as

wr ¼ iHRg

2r

ffiffiffi
Il

p coshk hþ zð Þ
coshkh

exp � ik xcosh � ysinhð Þ½ 
; ð31Þ

where R is the reflection coefficient. Neglecting diffraction and dissipation effects, and assuming constant water

depth at the seaward boundary, Eq. (28) simplifies to give

Bwl

Bx
¼ ik cosh 2wi � wð Þ: ð32Þ

The landward boundary condition is obtained using the assumption that the wave field may be decomposed into

wave trains that approach and are reflected from the coast (Steward and Panchang, 2000),

wl ¼ A exp ikxcoshl½ 
 þ Rexp � ik xcoshl � bð Þ½ 
ð Þ; ð33Þ

where A is the amplitude of the approaching waves, b is the phase shift, and hl is the local angle at which

approaching waves intersect the boundary. Evaluating the partial derivative in the x-direction,

Bwl

Bx
¼ ikAcoshlðexp ikxcoshl½ 
 � Rexp � ik xcoshl � bð Þ½ 
Þ: ð34Þ

Without loss of generality the x-coordinate is located at x=0, and after substituting Eqs. (27) and (31) into Eq. (30),

the right-hand side of this equation can be multiplied by wl and divided by the expression for wl, obtaining

Bwl

Bx
¼ ikclwl coshl; ð35Þ

where

cl ¼
1� Rexp ikb½ 

1þ Rexp ikb½ 
 : ð36Þ

The value of the phase shift b is difficult to determine, hence it is normally set as b=0. Assuming that it is valid to

use Snell’s law, the local angle hl may be estimated from

sinhl ¼
k0

kl
sinh; ð37Þ

where k0 is the wave number at the seaward boundary and kl is the local wave number at the location of interest.
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The lateral boundary conditions can be established through the following equation,

Bw
By

¼ F iKca0w þ i
a1

Kc

B
2w
Bx2

þ a2

K2
c

B
3w

ByBx2

� �
þ 2iklwlcoshl; on F y boundary: ð38Þ

Since the breaking parameter and bottom friction dissipation term are functions of the local wave height and are

unknown beforehand, Eq. (29) has to be solved by an iteration procedure. In the first iteration no dissipation term

is considered, and the resulting velocity potential is used as the initial local incident velocity potential. In the

second iteration the dissipation terms are evaluated using the local wave height, and so on.

For the case of a partially reflected boundary condition, consider a linear wave train travelling from the interior

to the exterior of the domain. When this wave reaches the boundary it is partially reflected into the domain and

partially transmitted outside the domain. Following the same procedure as that described above, the partially

reflected boundary conditions can be expressed as:

Bw
Bx

¼ c iKc a0w þ a1

K2
c

B
2w
By2

� �
� a2

K2
c

B

Bx

B
2w
By2

� �� �
; onþ x boundary; ð39Þ

and

Bw
By

¼ Fc iKc a0w þ a1

K2
c

B
2w
Bx2

� �
� a2

K2
c

B

By

B
2w
Bx2

� �� �
; on F y boundary: ð40Þ

Eqs. (39) and (40) represent a total reflection boundary condition when c=0, a radiation boundary condition when

c=1, and a partial boundary condition when 0bcb1.
Using second-order accurate central differences, the governing equation, Eq. (20), may be written in discretised

form as:

wi; j�1 � 2wi; j þ wi; jþ1

Dy2
þ

wi�1; j � 2wi; j þ wiþ1; j

Dx2
þ K2

cwi; j ¼ 0: ð41Þ

In order to obtain a second-order approximation to the boundary condition, it is necessary to consider a fictitious

cell point located one grid increment outside the study domain. For example, using forward and central differences,

the seaward boundary condition, Eq. (28), can be expressed as,

wiþ1; j � wi�1; j

� �
2Dx

¼ i k þ Kcð Þwgcosh � iKca0wi; j � i
a1

Kc

wi; jþ1 � 2wi; j þ wi; j�1

Dy2
þ a2

K2
c

�
3 wi; jþ1�2wi; jþwi; j�1

� �
�4 wiþ1; jþ1�2wiþ1; jþwiþ1; j�1

� �
þwiþ2; jþ1�2wiþ2; jþwiþ2; j�1

2DxDy2
ð42Þ

Using Eqs. (41) and (42) to eliminate wi�1,j at the fictitious point, the discretised boundary equation becomes,

i
a1

Kc

2Dx� 3
a2

K2
c

þ Dx2
� �

wi; j�1 � 2

�
Dy2 þ Dx2 þ Dy2Dx2K2

c 1þ 2ia0ð Þ � 2i
a1

Kc

Dxþ 3
a2

K2
c

�
wi; j

þ i
a1

Kc

2Dx� 3
a2

K2
c

þ Dy2 þ Dx2
� �

wi; jþ1 þ 4
a2

K2
c

wiþ1; jþ1 Dy2 � 8
a2

K2
c

� �
wiþ1; j þ 4

a2

K2
c

wiþ1; j�1

þ a2

K2
c

wiþ2; jþ1 � 2
a2

K2
c

wiþ2; j þ
a2

K2
c

wiþ2; j�1 ¼ 2DxDy2i k þ Kcð Þwgcosh

ð43Þ

At corner points of the grid, second-order finite difference expressions are derived from Eqs. (20), (28) and (38).
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Eq. (41) and the boundary finite difference equations are applied to all water grid points in the domain.

The resulting banded matrix equation is solved using an inexpensive banded solver, in a similar way to that

of Maa et al. (1997), with the main difference that the present scheme involves 49 diagonals instead of 5.

To conserve computer memory, the spare matrix is stored in two matrices; one contains the complex

coefficients and the other contains the locations of each unknown. The solver constructs a small-banded

matrix equation and then, follows the standard Gaussian elimination method with partial pivoting for forward

elimination. Intermediate results are saved on the hard disk, and information is transferred between the two

matrices during the procedure. This continues until the entire banded matrix equation is processed. Back

substitution begins by reading the last saved data entry, one block at a time, and repeated until all saved

blocks have been read and processed. Maa et al. (2002) have demonstrated the efficiency of this procedure.
Fig. 2. Total dimensionless wave amplitude distribution: (a) analytical result; (b) Kirby (1986); (c) Padé approximation; (d) lowest parabolic

approximation (kh=2k, h=08).
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4. Results

The model is validated for the case of interaction of

a monochromatic wave train with a group of four

vertical surface-piercing cylinders located on a hori-

zontal bed. Linton and Evans (1990) present an

analytical solution for this problem. Each cylinder

has radius, r=L/2, where L is the wavelength of the

incident waves. In plan, the centres of the cylinders

are located at the vertices of a square of side

dimension equal to 2L. The origin of the global

horizontal Cartesian coordinate system is at the

geometric centre of the array, with x and y as defined

in Fig. 1. The undisturbed relative water depth is

everywhere set to kh=2k.
Analytical and numerically predicted total dimen-

sionless wave amplitude fields (combined incident

and scattered fields) have been obtained for

normally incident waves where h=08. Fig. 2a

presents the results using Linton and Evans ana-

lytical solution. Fig. 2b–d show the numerical

results obtained on a square grid of resolution

Dx=Dy=L/40, for different boundary approximation

parameters. The results in Fig. 2b correspond to the

parameter values derived by Kirby (1986) for

maximum directional aperture (MDA) equal to 708
whereby a0=0.994733030, a1=0.890064831 and a2=

0.451640568. Fig. 2c is obtained using the Padé

approximant [1/1] (PA) values: a0=1; a1=0.75 and

a2=0.25. Fig. 2d gives the wave amplitude field

when the lowest parabolic approximation (LPA) is
-4.0 -3.0 -2.0 -1.0 0
x

0.0

1.0

2.0

3.0

4.0

a L
/a

i

-4.0 -3.0 -2.0 -1.0 0
y

0.0

1.0

2.0

3.0

4.0

a L
/a

i

Analytical

Kirby's parameter
x/L = 0

y/L = 0

Fig. 3. Total dimensionless wave amplitude a
used, such that a0=1, a1=0.5 and a2=0. This last

set of parameters corresponds to the model pre-

sented by Maa et al. (2002). Although the structure

of the scattered wave field in this case is

complicated, it is clear that all the numerical

predictions are in close agreement with the ana-

lytical solution. However, there are certain discrep-

ancies. The predictions based on the parameter

values associated with an MDA equal to 708 are

affected by a small amount of artificial reflection at

the external boundaries. The results obtained with

the PA and the LPA parameter values have energy

damping near the external boundaries. Fig. 3 plots

the dimensionless wave amplitude profiles along the

longitudinal x/L=0 and transverse y/L=0 lines that

pass through the centre of the general coordinate

system. The numerically predicted profiles obtained

using the parameter values corresponding to an

MDA equal to 708 are slightly closer to the

analytical profiles than the predictions based on

the PA parameter values, and significantly closer

than the profiles for the LPA parameter values. For

this reason, the parameter values for the following

examples are set to those for an MDA equal to 708.
Figs. 4 and 5 illustrate the total dimensionless

wave amplitude distribution for waves that are

obliquely incident to the cylinder array at an angle

of h=308. The equivalent results for an incident wave

angle of h=458 are given in Figs. 6 and 7. In both

cases, the numerical predictions and analytical sol-

ution are in excellent agreement. Almost no effect is
.0 1.0 2.0 3.0 4.0
/L

.0 1.0 2.0 3.0 4.0
/L

Lowest Parabolic

Pade [1/1]

long x/L=0 and y/L=0 (kh=2k, h=08).



Fig. 4. Total dimensionless wave amplitude distribution: (a) analytical solution and (b) numerical model (kh=2k, h=308).
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discernible from artificial reflections at the external

boundaries of the domain.

Next, the interaction of a monochromatic wave

train with a square array of four cylinders each of

radius r=L/4 in a relative water depth of kh=k is

considered in order to study the performance of the

model for a case of longer relative wavelength. The

cylinders are again located at the vertices of a square,

with their centres spaced a distance L apart. Fig. 8

shows the total dimensionless wave amplitude for

incident waves of direction h=08. As in Fig. 2b, the
-4.0 -3.0 -2.0 -1.0 0
x

0.0

1.0

2.0

3.0

4.0

a L
/a

i

-4.0 -3.0 -2.0 -1.0 0
y

0.0

1.0

2.0

3.0

4.0

a L
/a

i

x/L = 0

y/L = 0

Fig. 5. Total dimensionless wave amplitude a
results are influenced by noise generated by artificial

reflections of the scattered waves at the open

boundaries. The profiles in Fig. 9 indicated that the

noise is at a very low level compared with the local

wave amplitude.

The open boundary conditions used here are

parabolic approximations to the mathematically ellip-

tic boundary conditions. From the analysis carried out

by Dingemans (1997), it can be deduced that use of

parameter values proposed by Kirby (1986) for the

parabolic approximation will always induce noise in
.0 1.0 2.0 3.0 4.0
/L

.0 1.0 2.0 3.0 4.0
/L

Analytical

Kirby's parameter

long x/L=0 and y/L=0 (kh=2k, h=308).



Fig. 6. Total dimensionless wave amplitude distribution: (a) analytical solution and (b) numerical model (kh=k, h=458).
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the wave amplitude field. However, this noise has a

relatively small influence on the results presented

above. Moreover, the discrepancies between the

analytical and numerical results are partly due to the

Cartesian stepped approximation to the curvature of

the cylinder walls, as well as numerical errors inherent

in the finite difference scheme.

With the development of offshore renewable

energy devices such as wind turbines, it is likely

that arrays of vertical surface-piercing cylindrical

structures will be sited in shallow coastal waters.
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Fig. 7. Total dimensionless wave amplitude a
The wave-structure interaction simulations under-

taken using the present model are therefore

extended to consider cases where the cylinder array

is mounted in shallow waters with uniform and

non-uniform local bed topographies. Here, an array

of four cylinders each of radius r=L/4 is config-

ured so that the cylinder centres coincide with the

vertices of a square of side length L. In the absence

of local bed non-uniformity, the relative water depth

is kh=k/5. The incident wave direction is h=08.
Fig. 10a presents the predicted total dimensionless
.0 1.0 2.0 3.0 4.0
/L

.0 1.0 2.0 3.0 4.0
/L

Analytical

Kirby's parameter

long x/L=0 and y/L=0 (kh=2k, h=458).



Fig. 8. Total dimensionless wave amplitude distribution: (a) analytical solution and (b) numerical model (kh=k, h=08).
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wave amplitude field for the case when the bed is

everywhere horizontal. Fig. 10b and c show the

equivalent results for cases where the otherwise

horizontal bed contains a circular hump and a scour

hole, respectively, where the non-uniform change to

the bed elevation is d=D(1�r/L) for rVL. The

effect of undulating beds is shown in Fig. 10d and

e, where the deviations of the bed to the horizontal

are given by d=Dsin(4kx/L) and d=Dcos(4kx/L),
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Fig. 9. Total dimensionless wave amplitude
respectively. Fig. 10f gives results for the horizontal

bed over a distance of 3L followed by a plane

beach of slope 0.1. In this last case, the incident

wave amplitude of 1 m and dissipation induced by

breaking were considered. In all cases D was

chosen to be equal to 2 m. From Fig. 10 it is

evident that the wave pattern is strongly dependent

on the bed topography, which partly determines

where minimum and maximum wave amplitudes
0.0 1.0 2.0
x/L

0.0 1.0 2.0
y/L

Analytical

Kirby's parameter

along x/L=0 and y/L=0 (kh=k, h=08).



Fig. 10. Total dimensionless wave amplitude distribution: (a) horizontal bottom; (b) hump; (c) hole; (d) sinusoidal undulation; (e) cosinusoidal

undulation; (f) in front of plane beach.
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occur. Taking the results for the horizontal bed as

reference values, the presence of the hump inside

the four-cylinder array causes wave energy to

concentrate in front of and between the two

seaward cylinders and in the area surrounding the

cylinder array. The presence of the scour hole

produces less energy concentration. From Fig. 10d

and e, it would appear that an undulated bed could

cause considerable concentration or damping of

wave energy. It is reasonable to anticipate that

local wave energy focusing or damping would

depend on the relative magnitude and phase of

the bed undulations and incident wavelength. Wave

reflections at other cylinders in the array structures

and at the beach obviously also influence the wave

energy distribution, as can be seen in Fig. 10f. The

dimensionless wave amplitude profiles along the y/

L=0 line, shown in Fig. 11, contain nodes close to

x/L=�1.2, �0.2, 0.9 and 1.45 in all cases, and

have similar overall behaviour. The largest discrep-

ancies occur at the local wave maxima, where the

variation in dimensionless wave amplitude exceeds

50% for the sinusoidally undulating bed.

In order to study the performance of the model

for a case of a very large domain, the interaction of a

monochromatic wave train with a rectangular array

of 46 cylinders (23�2) each of radius r=L/2 in a

relative water depth of kh=0.4k is considered. The

cylinders are located at the sides of a rectangle, with
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Fig. 11. Total dimensionless wave amplitude along
their centres spaced a distance (4.5)1/2 L apart in the

x- and y-directions. The analytical and numerically

predicted dimensionless wave amplitude fields have

been obtained for waves that are obliquely incident

to the cylinder array at an angle of h=458. The

numerical grid covers an area of 52L�8L of

resolution Dx=Dy=L/50 (2601�401 nodes). Fig.

12(a) and (b) present the analytical and numerically

predicted total dimensionless wave amplitude fields

using Linton and Evans (1990) solution and the

MDA approximation, respectively. Fig. 12(c) shows

the equivalent results for the case where an undulat-

ing bed was superimposed on the horizontal bed.

The deviation of the bed from the horizontal is given

by d=Dsin(4kx/L) with D=5 m. Fig. 12(d) plots the

total dimensionless wave amplitude profiles along

the longitudinal y/L=4 line that passes through the

centre of the general coordinate system. In this case,

the numerical predictions and analytical solution are

in excellent agreement. From this figure it is clear

that the wave pattern is strongly dependent on the

bed topography. Furthermore, with this example it

has been shown that using double precision in the

program code, the round-off error is negligible for

solving a large banded matrix with up to 106

unknown variables. Based on a 2.8-GHz Pentium-

IV PC with 1 GB of RAM memory and running the

Windows XP operating system, the computing time

(in seconds) necessary to solve the banded matrix is
.0 1.50.3 0.6 0.9 1.2
/L

y/L = 0

y/L=0 for different sea bottom configurations.



Fig. 12. Total dimensionless wave amplitude distribution: (a) analytical result (horizontal bottom); (b) MDA approximation (horizontal bottom);

(c) MDA approximation (undulating bed); (d) dimensionless wave amplitude along y/L=4 (kh=0.4k, h=458).
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approximately equal to a1X1X2
m, where a1=4�10�6,

X1=max(NX,NY), X2=min(NX,NY) and m=2.8. For

this example, the computing time required was

almost 5.5 h.

Xu and Panchang (1993) and Chamberlain and

Porter (1999) considered wave scattering by a circular

island using a direct numerical approach to approx-

imate the mild-slope and the modified mild-slope
equations. The island is of radius ra=10 km with a

shoal in the form h(r)= ár2 (with a=hb/rb). At

horizontal distances greater than rb=30 km from the

centre of the island, the depth is constant and equal to

hb=4 m. The grid resolution used for the numerical

results was Dx=Dy=rb/40. Fig. 13 presents results for

regular waves of period 240 s. The left-hand side of

Fig. 13 shows the total dimensionless wave amplitude



Fig. 13. Total dimensionless wave amplitude amplification factors.

Left-hand side, Chamberlain and Porter (1999); right-hand side,

present model.
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results reported by Chamberlain and Porter (1999),

and the right-hand side shows predictions obtained

with the MDA approximation. The MDA approxima-

tion results are in very close agreement with those of

Chamberlain and Porter (1999).
5. Conclusions

A second-order accurate central difference

scheme has been described for solving the modified

time-independent mild-slope equation with an

energy dissipation term. Special attention has been

paid to the treatment of open and reflecting

boundary conditions by means of a second-order

parabolic approximation. An efficient direct solver

has been implemented for the discretised equations,

which form a sparse banded matrix with 49

diagonals. The direct solver is essentially an

extension of the method applied by Maa et al.

(1997) to a sparse banded matrix with 5 diagonals.

Numerical predictions of the wave amplitude field

are in close agreement with the analytical solution of

Linton and Evans (1990) for the interaction of non-

breaking regular waves with an array of vertical

surface-piercing circular cylinders on a horizontal sea
bed. Slight differences between the analytical and the

numerical model results are due to the stepped

approximation of the circular boundary of the

cylinders as well as numerical errors in the finite

difference scheme. Parameter values for the parabolic

approximation to the elliptic radiation boundary

condition have been investigated. Values based on a

maximum directional aperture of 708 (Kirby, 1986)

give more accurate results than those based on the

Padé approximant [1/1]. Although the MDA approach

induces spurious reflections or dissipation at the

boundaries, the inaccuracies are of extremely small

magnitude. This finding is in agreement with the

conclusions presented by Kirby (1989).

Further model tests for non-uniform bed top-

ographies including a hump, a scour hole and bed

undulations indicate that wave energy focusing or

damping can be greatly affected by the local

bathymetry in shallow coastal waters. This is

obviously important in the design of array-type

coastal structures, such as offshore wind farms.

The model is robust, and applicable to wave

propagation in cases involving complicated geo-

metrical configurations. At the boundaries, the

present model has fewer restrictions associated with

wave obliqueness than other mild-slope equation

models, and does not require absorbing sponge

layers. The CPU time for a simulation involving

40,000 water cells takes about 40 min on an 800-

MHz desktop PC.
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