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a b s t r a c t

The performance of twowell accepted formulations for white capping and wind input of third generation
wavemodels, viz.,WAM-3 andWAM-4,were investigated using parallel unstructured SWAN (PunSWAN).
Several alternative formulations were also considered to evaluate the effects of higher order steepness
and wave number terms in white capping formulations. Distinct model configurations were calibrated
and validated against available in situ measurements from the Gulf of Mexico. The results showed that
some of the in situ calibrated models outperform the saturation level calibrated models in reproducing
the idealized wave growth curves. The simulation results also revealed that increasing the power of the
steepness term can enhance the accuracy of significant wave height (Hs), at the expense of a higher bias
for large waves. It also has negative effects onmean wave period (Ta) and peak wave period (Tp). It is also
demonstrated that the use of the quadratic wave number term in the WAM-3 formulation, instead of the
existing linear term, ameliorates the Ta underestimation; however, it results in the model being unable
to reach any saturation level. In addition, unlike Hs and Tp, it has been shown that Ta is sensitive to the
use of the higher order WAM-4 formulation, and the bias is decreased over a wide range of wave periods.
However, it also increases the scatter index (SI) of simulated Ta. It is concluded that the use of theWAM-4
wind input formulation in conjunction with the WAM-3 dissipation form, is the most successful case in
reproducing idealized wave growth curves while avoiding Ta underestimation of WAM-3 and a potential
spurious bimodal spectrum ofWAM-4; consequently, this designates another perspective to improve the
overall performance of third generation wave models.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Third generation wave models which solve the spectral form of
the action balance equation [1] are efficient tools for simulating
wave fields in medium- and large-scale domains [2]. Unlike earlier
generations, these phase-averaged models include nonlinear
wave–wave interaction, and dissipation terms without any prior
assumption of spectral shape [3,4]. Among source/sink terms in
deep water (wind input, quadruplet wave–wave interaction and
energy dissipation [5]), dissipation is widely considered to be the
least understood term [6]. Although several different formulations
have been proposed for energy dissipation in deep water [6–10],
the pulse-based quasi-linear model for the white capping term
proposed by Hasselmann [11] remains in use in third generation
wave models [12,13]. This approach successfully reproduces the
fully developed wind–sea when used in conjunction with efficient

∗ Corresponding author at: Coastal Studies Institute, Louisiana State University,
Baton Rouge, LA 70803, USA. Tel.: +1 225 578 4728; fax: +1 225 578 2520.

E-mail address: ssiada1@lsu.edu (S.M. Siadatmousavi).

0141-1187/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.apor.2010.12.002
quadruplet nonlinear wave interaction formulation referred to as
the Discrete Interaction Approximation (DIA) [14], and rescaled
wind input formulation of [15,16]. These sets of equations are used
in theWAM cycle 3model and are referred to asWAM-3 hereafter.

Advancements in understanding of wave growth in open
water led to a theoretical description of the wind input term,
which results in an acceptable level of agreement with in situ
measurements [17]. The WAM cycle 4 model (WAM-4) employs
wind–wave energy transfer parameterization based on quasi-
laminar theory, and also considered quadratic dependence of
dissipation on the wave number to provide more flexibility in the
formulation for white capping dissipation [18]. This formulation
also became part of many recent third generation wave models
[12,13,19].

The third generation model, Simulating Wave Nearshore
(SWAN) [12], has been well suited for both parameterizations,
WAM-3 and WAM-4, and hence provides a tangible platform to
compare and contrast their performance. Although originally de-
veloped for shallow water, SWAN incorporates all source and sink
terms for generation andpropagation ofwaves in deep and shallow
water, and has been verified for several geographic settings and for
different met-ocean conditions [2,8,20–25].
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The free coefficients of wave models, in this case SWAN, are
conventionally set so that themodel can reproduce saturation level
spectra, among which the one suggested by Pierson–Moskowitz
(PM) is probably the most popular [26,27]. However, Rogers
et al. [8] stated that the wave models reach the saturation energy
level too slowly. Moreover, it is not possible to calibrate the model
for all possible wind speeds, because the PM spectrum scales
with wind speed while the model formulations are scaled with
friction velocity. Finally, tuning the model for unlimited time and
fetch conditions may not be a realistic representation of wave
growth in real-world situations. Therefore, in this study, the free
parameters are determined by comparing the simulated significant
wave height (Hs), peak wave period (Tp) and averaged wave period
(Ta) with in situ observations.

Although a classical approach to adjust the model parameters
is implemented in this study, in which the model is calibrated
and verified using in situ measurements [28], as a reference, the
performance of the calibrated model is compared with the same
model tuned for the PM spectrum. In addition, Rogers et al. [8]
showed that using a higher order wave number term in white
capping formulation of WAM-3 enhances the model performance
when compared with in situ observations. An in-depth analysis of
thismodel performance alongwith similarmodifications toWAM-
4 are presented in this study. The same modifications are also
applied to the steepness term in the white capping formulation
of WAM-3 (see Section 2.2) which has been assumed to be
constant without any clear scientific explanation. Therefore, the
main objective of this study is to evaluate the effect of possible
modifications in WAM-3 and WAM-4 white capping formulations
when compared with known fetch-limited and fully developed
wave data as well as long term in situ measurements.

2. Model description

2.1. Wind input

The wind input source term in SWAN can be described by a
superposition of linear and exponential wave growth terms:

Sin(σ , θ) = A + BE(σ , θ) (1)

in which E is energy density over relative frequency σ and
propagation direction θ . The linear growth rate A, is based on
the expression proposed by Cavaleri and Rizzoli [29] and is
generally important during the early stages of wave growth.
There are two different formulations for the coefficient B in the
exponential wave growth term inWAM-3 andWAM-4. In WAM-3
the rescaled version of the experimental formulation of Snyder is
employed [15,16] whereas inWAM-4, a set of equations presented
by Janssen [17] is used. The latter formulation is based on the quasi-
linear theory of wave generation, and the energy exchange from
wind to wave is taken into account by interaction of atmospheric
boundary layer and sea surface roughness length [30].

It is not surprising that all of the aforementioned formulations
forwind input are a function ofwind speed. Thewind velocity com-
ponents for this study were extracted from the North American
Regional Re-analyzed (NARR) database from the National Center
for Environmental Prediction (NCEP/NOAA) server. The NARR data
grid 221 covers the entire continental US and the Gulf of Mexico
with a horizontal resolution of approximately 32 km. More details
regarding the wind data used in this study can be found in [31].

2.2. White capping

The White capping formulations implemented in SWAN for
WAM-3 and WAM-4 are given as
Swc_WAM3 ≡ −Cds
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in which k̃, σ̃ and Etot denote the mean wave number, mean
frequency and total energy respectively. Moreover, s̃PM =
√
3.02 × 10−3 denotes steepness of the PM spectrum. The

parameters n = 2 and m = 1 are fixed in the original model, and
themain tuning coefficients are Cds and δ which are conventionally
determined to reproduce Hs; resulted from a fully developed PM
spectrum. There are some recent studies that show WAM-3 can
perform better in terms of the Ta estimation, when m > 1. How-
ever, it also leads to overestimation of Hs [8,10]. In this study, a
similar investigation is made for WAM-4 to evaluate the effects
on the simulated bulk wave parameters, by using higher order
wave number terms in the white capping sink term. While having
some fair support from measurements [32,33], the original n = 2
in Eq. (2a) was originally introduced by Komen [16] for a fully
developed spectrum. Since the steepness of the spectrum would
not change in such an asymptotic condition, choosing any different
value for n was equivalent to redefining the coefficient Cds. This is
not the case for ‘‘young sea’’ in which the steepness of the wave
field is evolving. Thus the effect of higher order dependence of the
dissipation term on the steepness is also worthy of investigation.
Our initial numerical efforts showed that using n < 2 could initiate
numerical instabilities in shallowwaters, that persist for long time
periods; therefore only larger values of n were further pursued.

2.3. Other physical processes

Nonlinear quadruplet wave interaction plays an important role
in controlling the shape and evolution of the wave spectrum [14].
Although the accurate physical description of nonlinear energy
transfer is available [34,35], it is computationally intensive and
cannot be used in operational models. The DIA formulation is the
most common method for calculating nonlinear quadruplet wave
interactions and is used in phase-averaged wave models such as
SWAN, Mike21 and WAVEWATCH-III [12,13,19]. Although con-
sidered three orders of magnitude faster than best implementa-
tions of exact representation of nonlinear energy transfer, DIA is
criticized to be inaccurate in reproducing the full wave spectrum
[8,10]. Considering only a few possible configurations from the
complete set of quadruplet interactions, results in unrealistic shape
of the wave spectrum in the high frequency end of the wave spec-
trum, and also a broader spectrum near peak frequency [7,10,36,
37]. Since our focus was on operational use of wave models, and it
has been shown that DIA is capable of reproducing bulk wave pa-
rameters with sufficient accuracy [38], we used DIA for this study.

As the in situ measurements used in this study, to evaluate
the performance of Parallel Unstructured SWAN (PunSWAN), are
fromdeep to intermediate depths, the coastalwave transformation
processes are not expected to significantly influence the bulkwave
parameters. Therefore, the models with the least computational
requirements are employed for parameterization of coastal
processes: The nonlinear triad interaction is considered according
to Eldeberky [39], bed friction according to Hasselmann et al. [40],
and depth-induced wave breaking according to Battjes and
Janssen [41].

2.4. Mesh file

The computational grid requires enough resolution to accom-
modate the complex bathymetry of shallow water for accurate
coastal wave modeling [42]. In the recent versions, especially
since 40.72, SWAN employs a Finite Volume scheme, and affords
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Fig. 1. Mesh file and its different partitions for parallel computing using 70
processors. The calculations for the common vertices along the boundaries are
accomplished in both adjacent sub-grids. The locations of in situ met-ocean data
monitoring in deep water (NDBC Buoys) and shallow water (WAVCIS CSI stations)
used in this study, are also provided.

the use of the unstructured flexible mesh. In this study, the Bat-
Tri package [43] was used to generate the computational mesh
file. Although the use of the implicit numerical scheme in SWAN
ensures unconditional numerical stability, the accuracy of the re-
sult is highly dependent on mesh quality. Hence, additional pre-
cautions were taken during mesh generation to avoid a steep
element slope, very small vertex angles, or even significant change
in mesh size relative to the adjoining mesh elements [12]. The fi-
nal mesh file is shown in Fig. 1, which consists of 32,235 nodes and
59,258 triangles with the element lateral length varying from 1 km
nearshore to 50 km in deeper water. A higher mesh resolution is
assigned where a sharp change in the wave spectrum is expected,
such as shallow water. The unstructured flexible mesh approach
affords us the opportunity to reduce the overall computational cost
without compromising the accuracy along shallow waters.

In order to run PunSWAN, the mesh file was partitioned
into sub-grids using adcprep, the grid preparation module of
the circulation model ADCIRC [44]. The 70 mesh partitions are
presented in Fig. 1. A linear speedup for PunSWANwas established
on a Linux cluster with 35 nodes, each of them having two Intel(R)
Xeon(TM) CPU 3.06 GHz processors and 2GB RAM,which reaffirms
the optimized parallelization of the SWAN source code [45].

3. Methods

3.1. Model calibration

As stated earlier, the conventional process of calibrating the
model to be consistent with the PM spectrum, was critically revis-
ited in recent literature [8,46]. Building on these studies, the tun-
ing coefficients pertaining to white capping were determined by
comparing the bulkwave parameterswith in situ observations (see
Fig. 1 for station locations). Wave, wind and meteorological data
from the National Data Buoy Center (NDBC) and WAVCIS (Wave
Current Surge Information System, www.wavcis.lsu.edu) [47]
archives were used to evaluate the wind input data as well as
wave model outputs. Since wave hindcasting is critically depen-
dent on the accuracy of wind data [48,49], the quality of the in-
put model wind used in themodeling were carefully analyzed. The
NARR wind data for the period 15–31, March 2007 were shown to
be very consistentwithmeasuredwind at all available stations [50]
and used for the model calibration.

A total of 16 different configurations, as listed in Table 1, were
used to evaluate the performance of WAM formulations in SWAN.
For the WAM-3 formulation, the calibration was based on the
bisection method on the parameter Cds [51]. In order to compare
the simulations, the Hs Scatter Index (SI) was calculated which is
defined as follows [22,52]:

SI ≡
Root Mean Square Error of Hs

Mean observed Hs
=


1
N

N∑
i=1

(Hs,o − Hs,m)2

1
N

N∑
i=1

Hs,o

. (3)

In which Hs,o and Hs,m denote observed and measured Hs. The
average of SI (ASI) from all stations was used as a measure
of performance, and the calibration was terminated when ASI
changed less than 0.1%. TheWAM-4 formulation is a function of Cds
and δ. The parameter δ was changed from0.1 to 0.9 (0.1 increment)
and bisection method on the parameter Cds was used to determine
the minimal ASI. The optimal values of tuning parameters were
determined for each case and are presented in Table 1.

3.2. Model verification during cold front season

The simulated bulk wave parameters during an active cold
front season, from December 2007 to the end of April 2008 were
compared with NDBC buoys and WAVCIS stations. Several cold
front events as well as intermittent fair weather (calm) periods
provided a realistic verification environment for the performance
of SWAN using optimized tuning parameters already determined
from the calibration process discussed above.

3.3. Model validation using idealized wave growth measurements

It is interesting to compare the performance of the wave model
with generally accepted saturation spectra and asymptotic fetch-
limitedwave growth curves [7,8,10,46]. The idealizedwave growth
was performedwith the structured 1D non-stationary formulation
of SWAN. The reference depth was assigned as 3000 m to ensure
deep water condition for all resulting wave fields. In addition,
the wind speed was considered to be 15 m/s over the entire
computational domain. This was the average wind speed in the
database used to develop the PM spectrum. Moreover, the median
fetch relevant to the PM (MFPM) database was approximately
350 km [53].

There are several available formulations based on asymptotic
wave conditions. The growth curves of Young and Verhagen [54]
suggest a set of equations that compares well with available data
for both young and developed sea states, and are based on mea-
surements from Lake George, Australia. That database was revis-
ited by Breugem and Holthuijsen [55] and some outliers were
removed due to coastline effects. The resulting growth curves
are reduced to PM values for Hs for long fetches and those of
Kahma and Calkoen [56] in fetch-limited condition. The JONSWAP
experiment [40] also provides high quality fetch-limited wave
growth database. The data were carefully studied by Kahma and
Calkoen [56] and the highly variable wind data were removed
to decrease the scatter of the dataset around the regression line.
Kahma also provided another regression relationship for wave
growth parameters in unstable conditions, based on Bothnian Sea
measurements [57,58]. We took advantage of the revised formula-
tions by Breugem and Holthuijsen [55], Kahma and Calkoen [56],
and Kahma [57] as well as the saturation level data from the PM
spectrum to evaluate the performance of different WAM formula-
tions in the Gulf of Mexico.

4. Results and discussion

4.1. Calibration and verification

Quantitative calibration results of SWAN’s performance, based
on ASI for bulk wave parameters, are shown in Fig. 2. The cases

http://www.wavcis.lsu.edu
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Table 1
List of model setups and the optimal values used for tuning white capping parameters Cds and δ.

Parameter Case name
W3-1 W3-2 W3-3 W3-4 W3-5 W3-6 W3-7 W3-8 W3-9 W4-1 W4-2 W4-3 W4-4 W4-5 W4-6 W-Mix

n 2 2 2 3 3 4 4 5 5 – – – – – – 2
m 1 1 2 1 2 1 2 1 2 1 0.5 1 1.5 2 2.5 –
Cds 2.36 1.2 1.14 0.76 1.06 0.46 0.99 0.28 0.85 4.5 2.0 1.75 1.5 1.0 0.75 2.02
δ – – – – – – – – – 0.5 1.0 0.8 0.8 0.8 0.7 0.0
Fig. 2. Calibration result of SWANusingwhite capping parameterizations provided
in Table 1.

W3-1 and W4-1 composed of the conventional default values
suggested for WAM-3 and WAM-4 formulations respectively,
based on the ability of themodel to reproduce the PM spectrum [5].
The rationale in implementing all other model optimization
simulations was to reproduce the in situ Hs with minimum ASI.
Although all optimized Hs values are close, W3-2 and W3-5 cases
resulted in slightly better agreement with measurements. The
WAM-4 formulation performed significantly better in terms of Ta
which is consistentwith previously reported underestimation of Ta
usingWAM-3 [59]. Using the quadratic wave number term instead
of the linear form in the WAM-3 formulation, also suggested by
Rogers [8], addressed this problem considerably (e.g. comparison
ofW3-2 andW3-3). This is not surprising, because the higher order
wave number terms in white capping formulation dissipates more
energy in higher frequencies, resulting in lower mean frequency,
or equivalently, higher Ta. The changes in k̃ and σ̃ further enhance
this dissipation process.

Increasing the power of the steepness term in WAM-3 had
negative impacts on bulk wave parameters when n > 3 was used.
A slight improvement in Hs was attained, using n = 3 in Eq. (2a)
in conjunction with either a linear or second order wave number
term in the white capping sink term; however, it also resulted in
poorer results for Ta and Tp. Using higher orderwave number terms
in WAM-4, white capping formulation also yielded slightly better
Hs estimations (best result was found for W4-5), however, leading
to poorer results pertaining to Ta. Finally, the case W-Mix showed
the best Tp estimation, and also better Ta estimation than allWAM-
3 cases.

The performance of the model using different formulations
with well tuned calibration, were verified using an independent
time period that lasted for five months. The verification results
illustrated in Fig. 3 confirm that Eq. (2a) yields more realistic
simulated Ta using the second order wave number term. It also
validates the earlier conclusions regarding better performance
of WAM-4 formulation in simulating Ta, and slightly better
performance of W3-4 and W3-5 in simulating Hs. Similar to
calibration results, case W4-5 yields better Hs prediction among
WAM-4 formulations, and the W3-5 case shows the best Hs
prediction among all cases. The better performance of case W-
Mix than all WAM-3 runs, in terms of Ta, shows that a significant
portion of underestimation in wave period underscores inferior
performance of the wind input formulation used in WAM-3 when
compared with that used in WAM-4. Again, the case W-Mix also
demonstrates the best Tp estimation.
Fig. 3. Verification result of SWAN using white capping parameterizations
provided in Table 1.

Fig. 4. Scatter Indices of wind speed and significant wave height (based on case
W4-3) at different stations in Gulf of Mexico during the verification period. The
stations are ordered from left to right based on depth.

The SI of wind speed at 10 m above the surface (U10) at all in
situ stations and SI ofHs resulted from caseW4-3 is plotted in Fig. 4.
The stations are ordered based on their depth. A slightly higher SI
factor is obtained at shallow stations than at deep water stations;
however, even at stations with water depth deeper than 120 m,
which satisfy the deep water condition for Tp < 12 s, SI is high.
Therefore the ASI of Hs shown in Fig. 3 is not a critical function
of the depth of stations used in this study; and, therefore, shallow
water wave processes have minor effects on the model accuracy;
this appears to be mainly controlled by wind accuracy.

It is also worth to note that SWAN using the WAM-4 for-
mulation, is approximately 30% more computationally expensive
than the WAM-3 formulation. If the total time needed to perform
nonlinear interaction is considered as reference time tnl, the white
capping dissipation term requires slightly more than 0.3tnl using
theWAM-3 orWAM-4 formulation. However, thewind input term
inWAM-3 requires of the order of 0.2tnl whereasWAM-4, which is
10 times more computationally intensive, requires approximately
2.3tnl.

4.2. The effect of wave steepness on simulatedwave conditions/higher
order wave number

The effects of increasing the power of wave steepness as a
function of bias of bulk wave parameters are depicted in Fig. 5, for
several representative WAM-3 alternatives. Panel (A) shows that
caseW3-2 (default value for steepness power)workswell forwave
heights larger than 1.4 m. However, case W3-4 predictions are
slightly better for Hs smaller than 1.4 m which constitutes 68% of
wave records used in the analysis. Therefore, over the entire wave
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Fig. 5. The effect of increasing steepness power in white capping equation of
WAM-3 on the simulation of bulk wave parameters. Note that the bias of scatter
data were averaged over 0.05 m intervals for Hs , 0.3 s for Tp and 0.05 s for Ta , to
remove fluctuations and keep the trend.

record from all stations shown in Fig. 1, caseW3-4 outperforms the
other cases. Panel (B) shows that case W3-2 performs better over
a larger portion of the wave period range. As shown in Panel (C),
W3-2 also shows a significantly smaller bias for Ta than all other
cases. Therefore, increasing the coefficient n in Eq. (2a) consistently
increases the bias in bulk wave parameters.

The effects of increasing the power of the wave number term
in the white capping formulation of WAM-4, based on the bias of
simulated bulk wave parameters, are presented in Fig. 6. Panels
(A) and (B) show that the modification has minor effects on the
model performance in terms of Hs and Tp. The default valuem = 1
(caseW4-3)workswell forHs larger than 1m; however for smaller
wave heights, caseW4-2 leads to better model performance. Panel
(B) shows that Tp is only affected for Tp < 5 s and decreasing the
coefficient m in Eq. (2b) results in slightly less bias. Although case
W4-2 surpasses all other cases in Tp performance, case W4-5 has
much less bias for Ta from 3.5 to 6 s which constitutes 87% of the
wave record. It also performs well for longer wave periods; while
for smaller periods, W4-2 results in the minimum bias. Increasing
the coefficientm in Eq. (2b) can ameliorate Ta underestimation for
wave periods larger than 3.5 s although decreasing the coefficient
m can enhance the model results for smaller wave periods. Also,
it is noteworthy that the large relative errors in both Figs. 5 and 6
for Tp > 13 s were resulted from a limited number of samples (this
occurred only 6 times at all stations altogether) and can
be explained in terms of significant overestimation of energy
measured by buoys at the low end of the spectrum during calm
conditions; as was reported recently by Work [60].

4.3. Idealized wave growth

The simulated non-dimensional energy and peak wave fre-
quency using WAM-3 and WAM-4 formulations are skill assessed
with different in situ idealized wave growth datasets, as shown in
Figs. 7 and 8. It is apparent that all parameterizations overestimate
Fig. 6. The effect of increasing wave number power in white capping equation of
WAM-4 on the simulation of bulk wave parameters. Note that the bias of scatter
data were averaged over 0.05 m intervals for Hs , 0.3 s for Tp and 0.05 s for Ta , to
remove fluctuations and keep the trend.

the energy level for short fetches; and the overestimation is
generally more intense using WAM-3 than WAM-4 alternatives.
Moreover, all cases overestimate the peak frequency at MFPM.
Comparison between the default WAM-3 (case W3-1) and default
WAM-4 (case W4-1) parameterizations for wind input and white
capping terms show that defaultWAM-3 parameterization reaches
its saturation level at the fetch which is closer to MFPM; however,
the energy level is lower than PM. The saturated energy level and
also peak frequency, are very close to PMvalueswhen usingWAM-
4, although at a fetch which is one order of magnitude larger than
MFPM.

The models calibrated using in situ measurements show better
agreement with the PM energy level and peak frequency, while,
similar to W3-1 and W4-1, require longer fetch than MFPM to
reach the saturation energy levels. Except for W4-5, the rest of
WAM-4 formulations and also theW-Mix case, performbetter than
WAM-3 formulations in limited fetches. All cases except W3-3,
W3-5 and W4-5, lead to good agreement with peak frequency in
short fetches; and WAM-3 alternatives (excluding W3-3 and W3-
5) result in higher peak wave frequency than WAM-4 alternatives
in long fetches.

Comparing cases W3-2 and W3-4 reveals that increasing the
power of the steepness term can improve WAM-3 results in short
fetches significantly. The energy level computed for long fetches
is also in better agreement with the PM value; however, a longer
fetch is needed to reach the PM energy level. It is also interesting to
note that the caseW-Mix outperforms all in situ calibrated cases in
short fetches, and the energy level at MFPM is close to PM. The
saturation energy level for W-Mix is also close to that of the PM
spectrum. This again confirms that wind input parameterization
plays an important role on model performance, and part of
WAM-3’s poor to average performance may be a consequence of
oversimplifications in the wind input term.

Significant overestimation associated with short fetches and
high energy gradients over the entire fetch ranges, for the cases
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Fig. 7. Deepwater fetch-limited growth curve produced fromWAM-3 alternatives
and in situ measurements of Breugem and Holthuijsen [55] (BR07), Kahma and
Calkoen [56] (KC92), Kahma [57] (K81) and Pierson and Moskowitz [26] (PM).
The constant wind speed, U10 = 15 m/s is used in all cases. The fetch value of
X = 350 km is used for PM value which is the median of the database used to
produce PM spectrum. Note that the first moment of wave spectrum, Hm0 , is used
to calculate non-dimensional energy which is close to Hs is deep water.

Fig. 8. Deepwater fetch-limited growth curve produced fromWAM-4 alternatives
and in situ measurements of Breugem and Holthuijsen [55] (BR07), Kahma and
Calkoen [56] (KC92), Kahma [57](K81) and Pierson and Moskowitz [26] (PM). The
constant wind speed, U10 = 15 m/s is used in all cases.

with higher order wave number terms (cases W3-3, W3-5, W4-
5), reveal the inability of these models to reach a saturation level.
In addition, these models show peculiarly low peak frequency
for short fetch scenarios. The spectrum evolution (e.g. Fig. 9)
explains the reason for both of these abnormal behaviors. The
nonlinear wave interaction redistributes energy from peak fre-
quency towards lower and higher frequencies. Increasing the
power of the white capping term in Eqs. (2a) and (2b) results in
less dissipation in low frequencies, and part of this transferred en-
ergy may have been retained with time. The accumulation of the
Fig. 9. The evolution of wave spectrum at X = 35 km (X∗
≈ 1526) for the case

W4-5.

residual energy generates an unrealistic bimodal wave spectrum
for wind–sea conditions if the energy transfer from DIA contin-
ues (e.g. during steady wind conditions). Since the white capping
dissipation is small in low frequencies, there is no mechanism to
dissipate the energy of low frequency peak; therefore it continues
to grow slowly, and eventually becomes the dominant peak in the
wave spectrum as shown in Fig. 7 forW3-3 andW3-5, and in Fig. 8
for W4-5.

The time needed for each case to attain the wave growth
independent of wind duration, and for a fixed fetch of 350 km
(X = MFPM), is presented in Table 2. The values were determined
by seeking the first time step for which both Hs and Tp exceed
95% of their final values (after 30 days). The Moskowitz [53]
database used for the PM spectrum shows that the median time
equals 12 h; However, unlike the simulation, the initial conditions
were not calm. Hence, all cases except for W3-3, W3-5, and W4-
5 are considered to be in good agreement with the Moskowitz
measurements. The long durations determined for cases W3-3,
W3-5, and W4-5 reaffirm that the energy accumulation at low
frequencies deprives the model from reaching any equilibrium
stage.

5. Summary and conclusions

Based on thework presented above, the following summary and
conclusions are presented.

Parallel unstructured mesh implementation of the third gener-
ationwavemodel, SWAN,was used to compare the performance of
the most common formulations of white capping and wind input,
WAM-3 andWAM-4. Traditionally themodel parameterswere cal-
ibrated using bulk wave parameters of fully developed conditions
such as the PM spectrum; however, in order to avoid the recent
criticism associated with this approach, in this study the model
was first calibrated and validated using in situ Hs measurements
from NDBC buoys and WAVCIS stations from the Gulf of Mexico.
This process significantly enhanced the performance of SWAN in
the simulation of bulk wave parameters for the Northern Gulf of
Mexico.

The calibration process was repeated for several alternatives of
WAM-3 and WAM-4 with higher order steepness and wave num-
ber terms. Although all configurations resulted in a similar level
of accuracy for Hs, the performance of SWAN with each configura-
tion was different in simulating wave period and reproducing ide-
alized wave growth spectra.
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Table 2
Time needed for different cases at the fetch equal to MFPM to reach duration-unlimited saturation condition.

Case W3-1 W3-2 W3-3 W3-4 W3-5 W4-1 W4-3 W4-5 W-Mix

Time (h) 15 14 139 15 305 17 174 375 15
Increasing the power of the steepness term in the WAM-3 for-
mulation from 2 to 3 (case W3-4) slightly decreased the ASI of
Hs and also improved the resulting bias for small Hs and short
Tp; however, this was not apparent for Hs larger than 1.4 m. Over
the entire wave record, the bias effect was negligible for Hs and
Tp; although not the case for Ta hindcasting. Lower values for the
power of the steepness term than the default n = 2 in the WAM-3
formulation resulted in numerical problems in shallow water, im-
plying that n should be kept in the range 2–3. Surprisingly, the
use of n = 3 and parameters determined from in situ calibration
outperforms the original PM calibrated WAM-3 case in reproduc-
ing fetch-limited growth curves as well as the PM saturation level
for the wave spectrum.

The results show that allWAM-3 alternatives underestimate Ta.
Increasing the wave number power from 1 to 2 can considerably
address this problem by direct dissipation of energy in the high
frequency end of the wave spectrum, and indirect effects of
changing the mean wave number and wave frequency. However,
the model is unable to maintain any saturation level, and the
spurious energy transfer to the low frequency portion of the wave
spectrum could result in a bimodal wave spectrum for steady
wind–sea conditions. It is concluded that case W3-3 is more
successful than all other cases in the Gulf of Mexico; however,
it is not suitable for steady wind conditions; and case W3-4 is
recommended for such weather conditions.

The use of m = 2 instead of 1 in white capping formulation
of WAM-4 has negligible effects on Hs and Tp. It also enhances the
bias of Ta when Ta > 3.5 s; however, it slightly increases the ASI.
Incorporation of higher order wave number terms in WAM-4 also
results in the model being prone to developing a bimodal energy
spectrum and unlimited wave growth in unlimited fetch and time
duration conditions. Therefore case W4-3 is the recommended
model parameter in theWAM-4 formulation in the Gulf of Mexico.

AlthoughWAM-4wind input is 10 timesmore computationally
expensive than WAM-3 wind input formulation and results in
approximately a 30% extension in total computational time, it
enhances the overall performance of themodel. The use ofWAM-4
wind input formulation in conjunctionwithWAM-3white capping
formulation was the most successful combination in hindcasting
Tp. It also outperforms all WAM-3 alternatives in the estimation
of Ta, while avoiding the potential spurious bimodal spectrum
observed using in situ calibration of the WAM-4 dissipation term.
Indications are evident that the wind input formulation also plays
an important role in the performance of wave models, and part
of their below par performance can be resolved by modifying the
wind input term instead of the white capping term.
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