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A B S T R A C T

This study evaluates the effect of El Niño and the Southern Oscillation (ENSO) and Madden Julian Oscillation
(MJO) events on 14-day mean significant wave height (SWH) at 3 weeks lead time (Wk34) over the Western
Pacific and Indian Oceans using the National Centers for Environmental Prediction (NCEP) Climate Forecast
System, version 2 (CFSv2). The WAVEWATCH-3 (WW3) model is forced with daily 10m-winds predicted by a
modified version of CFSv2 that is initialized with multiple ocean analyses in both January and May for
1979–2008. A significant anomaly correlation of predicted and observed SWH anomalies (SWHA) at Wk34 lead-
time is found over portions of the domain, including the central western Pacific, South China Sea (SCS), Bay of
Bengal (BOB) and southern Indian Ocean (IO) in January cases, and over BOB, equatorial western Pacific, the
Maritime Continent and southern IO in May cases. The model successfully predicts almost all the important
features of the observed composite SWHA during El Niño events in January, including negative SWHA in the
central IO where westerly wind anomalies act on an easterly mean state, and positive SWHA over the southern
Ocean (SO) where westerly wind anomalies act on a westerly mean state. The model successfully predicts the
sign and magnitude of SWHA at Wk34 lead-time in May over the BOB and SCS in composites of combined
phases-2-3 and phases-6-7 of MJO. The observed leading mode of SWHA in May and the third mode of SWHA in
January are influenced by the combined effects of ENSO and MJO. Based on spatial and temporal correlations,
the spatial patterns of SWHA in the model at Wk34 in both January and May are in good agreement with the
observations over the equatorial western Pacific, equatorial and southern IO, and SO.

1. Introduction

This is Part II of a two-part study on the sub-seasonal prediction of
significant wave height (SWH) in the Western Pacific and Indian Ocean
(WP-IO) region. The reader is referred to the first part of this study
(Shukla and Kinter, 2016; hereafter Part I) for the motivation of this
research and important references about sub-seasonal studies. In brief,
the sub-seasonal time scale is a very important one because it lies be-
tween the time scales of numerical weather prediction (NWP) and the
seasonal mean. This time scale (forecast range more than 2 weeks but
less than a season) traditionally has been considered a “predictability
desert” (Vitart et al., 2012; White et al., 2017). Many management
decisions in agriculture, transportation, water management, energy
resource management, and military operations are made on sub-
seasonal to seasonal (S2S) time scales, so development of more seamless
forecasts promises to be of great societal value. The U.S. Navy has ar-
ticulated requirements for forecast information about tropical cyclone
genesis and the magnitude of SWH at S2S time scales for use by first-

responder, humanitarian missions and other day-to-day naval opera-
tions. Recent studies (Lin and Brunet, 2009; Vitart, 2014a; Wang et al.,
2014; Li and Robertson, 2015) have demonstrated prediction skill of
the Madden-Julian Oscillation (MJO) on S2S time scales, and at least 10
international weather centers now have the capability to issue S2S
forecasts (Vitart, 2014b).

In Part I of this study, we found that the magnitude of SWH varia-
bility grows weaker with lead-time over the Southern Ocean (SO),
which may be related to weakening inter-annual variability of 10m-
winds over the course of weeks-1–4 in retrospective forecasts made
with the National Centers for Environmental Prediction (NCEP) Climate
Forecast System version-2 (CFSv2; Saha et al., 2014; CFSRR). The
magnitude and spatial structure of SWH in weeks-1–4 are well captured
in January and May cases; however, the magnitude of the bias increases
with lead-time. The prediction skill of SWH anomalies in weeks-3–4 is
statistically significant in certain sub-regions of the WP-IO in both
January and May initialized reforecasts.

Recently, Delsole et al. (2017) found forecasts of 14-day means at 3
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weeks lead time (Wk34, hereafter) of temperature and precipitation
over the contiguous United States (CONUS) using the CFSRR to be
skillful during 1999–2009, and the most predictable components of
temperature and precipitation are associated with ENSO. The Climate
Prediction Center currently issues a Wk34 outlook for CONUS tem-
perature and precipitation based on the NCEP CFSv2 (http://www.cpc.
ncep.noaa.gov/products/predictions/Wk34/). The same procedure
averaging weeks 3 and 4 is also employed to predict the Pacific–North
American pattern (PNA), North Atlantic Oscillation (NAO), and Arctic
Oscillation (AO), all of which strongly affect December–February sur-
face weather in the Northern Hemisphere (Black et al., 2017).

Many research programs have employed the WAVEWATCH-3 model
(WW3; Tolman et al., 2002 and Tolman, 2009) to study ocean surface
wave activity to advise shipping and coastal interests. The WW3 model
has been used for both global-scale wave activity (Fan et al., 2012;
Marshall et al., 2015) and regional wave activity (Chu et al., 2004;
Mirzaei et al., 2013; Bertin et al., 2013; Lopez and Kirtman, 2016;
Shukla and Kinter, 2016). Chawla et al. (2013) forced the WW3 with
Climate Forecast System Reanalysis (CFSR; Saha et al., 2010) 10m-
winds to reproduce the wave conditions for 1979–2009 and validated
the output against altimeter records and NDBC buoys, showing that the
computed wave climate from CFSR is in excellent agreement with the
observations at most buoys.

El Niño and the Southern Oscillation (ENSO) is the largest and most
important climate variation on seasonal–to-interannual time scales and
is a result of slowly varying interactions between the tropical ocean and
atmosphere. It occurs on a timescale of 2–4 years and is associated with
a band of warm ocean water that develops in the central and east-
central equatorial Pacific. During an El Niño event, the easterly trade
winds weaken across the equatorial Pacific, and warmer than
average sea surface temperatures (SST) across the central and east-
central Equatorial Pacific occurs. These conditions are associated with a
deepening of the thermocline in the central to eastern Pacific. La Niña is
the opposite phase of El Niño. Many researchers (Hemer et al., 2010;
Fan et al., 2012; Stopa et al., 2013; Lopez and Kirtman, 2016) have
studied the relationship between interannual variability of SWH and
ENSO on seasonal time scales. Based on the strong correlation between
SWH and the Southern Oscillation Index (SOI), Hemer et al. (2010)
found that ENSO variability has a strong influence on the wave climate
of the Pacific Ocean, and during El Niño years the eastward shift in
tropical cyclone activity leads to increases in SWH over the equatorial
Pacific. Lopez and Kirtman (2016) found that SWH variability over the
WP-IO region is influenced by ENSO and there is a potential for pre-
dicting SWH with several months lead-time in the northwest Pacific
Ocean and Bay of Bengal (BOB) depending upon initialization season.

The MJO (Madden and Julian, 1971; 1972) is the most important
mode of intraseasonal variability of atmospheric convection and cir-
culation in the tropical Indian and West Pacific Oceans. The MJO has a
typical period of 30–60 days and propagates eastward along the equator
from the western Indian Ocean to the eastern Pacific at approximately
5m/s. The EOF analysis is performed for daily outgoing longwave ra-
diation (OLR) anomalies during November to February (NDJF) to
identify 8 phases of MJO as discussed in Shukla (2014). MJO phases are
obtained by the principal components of the first two leading EOFs,
normalized by their standard deviation (Fig. S1a–h). In the NDJF
composite, negative OLR anomalies (enhanced convection) in the In-
dian Ocean and positive OLR anomalies (suppressed convection) over
the Maritime Continent are observed during phase 1 (Fig. S1a). As the
sequence progresses, negative OLR anomalies traverse the equatorial
Indian Ocean during phases 2–3 (Fig. S1b–c), and pass through the
Maritime Continent in phases 4 and 5 (Fig. S1d–e). During phases 6 and
7 (Fig. S1f–g), enhanced negative (positive) OLR anomalies are ob-
served in the western Pacific (Indian Ocean). During phase 8 (Fig. S1h),
an enhanced positive OLR anomaly over the Maritime Continent is
found and negative OLR anomalies may continue into the western
hemisphere. Some recent studied have demonstrated the impacts of

MJO on SWH variability (Stopa et al., 2013 and Marshall et al., 2015).
Stopa et al. (2013) identified the influence of MJO on SWH in the In-
dian and western Pacific Oceans using correlation analysis between
SWH and an MJO index (RMM1 and RMM2; Wheeler and Hendon,
2014). Marshall et al. (2015) detected MJO influences on the SWH
conditions in the tropics in composite analysis for the November–April
season during 1980–2009. Significant decreases in SWH anomalies
occur over the Maritime Continent, Java Sea, Bismarck Sea and Coral
Sea in phases 1, 2 and 3 of MJO, and during Phases 5, 6 and 7 there is a
significant increase in SWH anomalies of up to 30–40 cm over the
Maritime Continent, Bismarck Sea and Philippine Sea. Significant de-
creases and increases of the wave response are pronounced on the
north-west shelf of Australia during phases 1, 2 and 3 and phases 5, 6
and 7, respectively, where Marshall and Hendon (2014) identified a
direct influence of MJO on surface zonal stress, sea surface tempera-
ture, mean sea level, and generating coastally-trapped Kelvin waves.

In this paper, we evaluate the effects of the ENSO and MJO events
on sub-seasonal prediction of SWH over the Western Pacific and Indian
Oceans during 1979–2008 using the second-generation coupled
Forecast System (CFSv2; Saha et al., 2014) with four sets of ocean in-
itial conditions (OICs). First, we will discuss prediction skill of SWH at
Wk34 lead-time over the WP-IO in January and May initialized refor-
ecasts using revised version of CFSv2 (Huang et al., 2015), and second,
explore the impacts of the ENSO states and MJO events on SWH. Our
analysis relating SWH forecasts to contemporaneous ENSO states and
MJO events show that both seasonal and intra-seasonal atmospheric
variability exert strong influences on SWH in the WP-IO region at Wk34
lead-time in observations and the model.

This paper is organized as follows. Section 2 describes the models –
WW3 and CFSv2 – the experimental design, the verification dataset and
the analysis method. In Section 3, we describe the SWH prediction skill
in each of the four OICs and the grand ensemble mean (GEM) of four
OICs in both January and May cases, as well as the climatology and
variability of sea level pressure (SLP). The impacts of ENSO states on
SWH, SLP and 10m-winds at Wk34 are presented in Section 4. Section 5
documents the impact of MJO on SWH, 10m-winds, and SLP at Wk34.
The leading patterns of SWH at Wk34 and their relation to the ENSO
and MJO states are presented in Section 6. A summary and discussion
are given in Section 7.

2. Model description, experimental design and verification data
sets

In this study, we relied on the third-generation WAVEWATCH-3
(WW3; Tolman, 1998; 2002 and 2009) for wave modeling which is a
fully spectral ocean wind-wave model developed at NCEP. The daily
outputs 10m-winds from global coupled climate forecasts are applied as
input to the WW3 model as discussed in Part I. The coupled model used
in this study is the NCEP CFSv2 (Saha et al., 2014), which is composed
of interacting atmospheric, oceanic, sea ice and land-surface component
models. Huang et al. (2015) eliminated a coding error in the surface
fluxes between the ocean and atmosphere components at high latitude
and adjusted the specified sea ice albedo to a higher value, leading to a
significant improvement in the model fidelity, especially during boreal
summer. We have used the revised version of CFSv2 (Huang et al.,
2015), referred to herein as CFSv2_rev in this study. The CFSv2_rev
coupled model has been used successfully for studies of the mean state
of the Indian summer monsoon (Shukla and Huang, 2015b), Indian
summer monsoon prediction and predictability (Shukla et al., 2017),
and sub-seasonal prediction of SWH over WP-IO (Shukla and Kinter,
2016).

We have conducted 3-month re-forecast experiments with
CFSv2_rev and initial conditions (ICs) from the beginning of January
and May for the period 1979–2008. To sample uncertainty in the ocean
initial state, the ocean component was initialized with four different
sets of ocean initial conditions (OICs): the NCEP CFSR
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(Saha et al., 2010), the NCEP Global Ocean Data Assimilation System
(GODAS; Behringer, 2005), the ECMWF Ocean Reanalysis System 3
(ORA-S3; Balmaseda et al., 2008) and NEMOVAR (Balmaseda et al.,
2013). To sample uncertainty in the atmosphere and land surface state,
four ensemble members were generated for each OIC by using atmo-
spheric and land surface initial conditions taken from the instantaneous
fields at 0000 UTC of the first 4 days in January and May of each year.
The total number of ensemble members is 16=4 OICs X 4 AIC/LICs –
for both January and May cases. The computations were made on the
Extreme Science and Engineering Discovery Environment (XSEDE)
high-performance computing platform (Towns et al., 2014). January
was chosen as a focus, because the influence of ENSO is strongest at that
time of year in the western Pacific Ocean, maritime continent and In-
dian Ocean. May cases were selected, because at that time the large-
scale atmospheric circulation over the Australian-Asian is transitioning
from the Australian region to Southeast Asia and atmospheric condi-
tions associated with the monsoon over the BOB is beginning. The WW3
model is forced with daily 10m-winds from the CFSv2_rev reforecasts at
all lead times up to 42 days (six weeks). The combination of WW3 with
CSFv2_rev 10m-winds will be referred to as the CFSv2-WW3 system.
For each OIC, the ensemble mean of 4 ensemble members is formed to
evaluate the role of OIC in the CFSv2-WW3 system. Most of the results
discussed in this paper are based on the grand ensemble mean (GEM) of
16 forecasts of all OICs in both January and May cases.

The European Centre for Medium-Range Forecasts (ECMWF)
Interim Re-Analysis (ERA-Interim; Dee et al., 2011) for the 30-year
period (1979–2008) is employed for comparison in the present study.
The daily values were generated from the 6-hourly ERA-Interim data,
and the daily 10m-winds were used to force WW3 and produce SWH, a
system referred to below as ECMWF-WW3. Because the wind applied to
WW3 is a reanalysis product, the output of ECMWF-WW3 is referred to
as “ECMWF-WW3 SWH”. The WW3 model has been configured as in
Lopez and Kirtman (2016) and Shukla and Kinter (2016) over a portion
of the WP-IO (80–180°E; 60°S–40°N) with a grid resolution of 1°×1°,
including implementing the appropriate bathymetry, obstruction grids
and land-sea mask. From the daily SWH data, Wk34 data were gener-
ated for January and May cases, i.e., averages of 15–28 January and
15–28 May, respectively. Wk34 wave height anomalies were derived
with respect to that Wk34 climatology. The statistical significance of
these patterns is measured point-wise using a 2-sided student-t test,
given the sampling size (29 degree of freedom) the correlation values
for 90%, 95%, 98% and 99% significance levels are 0.30, 0.35, 0.41 and
0.45 in the analysis.

We have compared SWH in two reanalysis, namely the European
Centre for Medium-Range Forecasts (ECMWF) Interim Re-Analysis
(ERA-Interim; Dee et al., 2011) and the Climate Forecast System Re-
analysis (CFSR; Saha et al., 2010) during 1979–2008 in January and
May cases. The structure and amplitude of SWH in ECMWF-WW3 are in
good agreement with CFSR-WW3 output in both cases, except the
amplitude of SWH in ECMWF-WW3 is slightly weaker in both cases (not
shown). The inter-annual variability of SWH anomalies in Wk34 are
quite similar in both re-analyses but the amplitude of the SWH varia-
bility is slightly lower in ECMWF-WW3 than in CFSR-WW3 in both
January and May cases (not shown). The EOF analysis of SWH
anomalies at Wk34 in January (not shown) and May cases (not shown)
also finds a high degree of similarity between the two reanalysis. The
table (Table S1) provides the variance explained for Wk34 SWH
anomalies by the leading 3 principal components, and the pattern
correlation coefficient of the 3 leading EOFs between the CFSR-WW3
and ECMWF-WW3 reanalysis. Based on EOF analysis in both January
and May cases, we have found the leading modes of CFSR-WW3 and
ECMWF-WW3 are statistically significantly correlated, but these modes
are slightly different in the two reanalysis. We use the 10m-winds and
SWH from ECMWF in the manuscript.

3. General characteristics of Wk34 prediction skill

3.1. The impact of OICs on prediction skill of SWH at Wk34 Lead-time

Before discussing the impacts of ENSO and MJO events on SWH at
Wk34 lead-time, a brief discussion about the 1979–2008 climatology of
10m-winds and SWH at Wk34, and prediction skill of SWH at Wk34 in
both January and May cases in all OICs and GEM is required. Fig. S2
shows the climatological mean and corresponding model biases of 10m-
wind speed (colored shading) and direction (unit vectors) for Wk34 in
ERA-Interim and CFSv2 for the January (Fig. S2a, b, c) and May (Fig.
S2d, e, f) cases. As shown in Part I, the amplitude and pattern of the
flow over the Southern Ocean (SO), northwestern Pacific, Bay of Bengal
(BOB) and South China Sea (SCS) are well predicted by the CFSv2 in
both cases. The model has a negative bias over the SO and maritime
continent, and a positive bias in the BOB and northwestern Pacific
mainly equator to 17°N in January case (Fig. S2c). The model has po-
sitive bias over the BOB, maritime continent and northwestern Pacific
mainly 15°N to 25°N in May case, and depict negative bias over the SO
(Fig. S2f). Fig. S3 shows the climatological mean and bias of SWH at
Wk34 in observations and GEM, and corresponding model biases
(CFSv2-WW3 minus ECMWF-WW3). As shown in Part I, SWH is largest
in the SO in both January (Fig. S3a) and May (Fig. S3d) cases, with peak
amplitudes of 2.7 to 3.6 m (m). Qualitatively, the magnitude and spatial
structure of ECMWF-WW3 SWH (Fig. S1a, d) over the SO, the equa-
torial western Pacific, SCS and BOB is well captured by the model (Fig.
S3b, e) but a positive bias over SO and western Pacific occurs in both
January and May (Fig.S3c, f). The climatology computed separately for
each of the four OICs produces similar biases in the mean state of SWH
at Wk34 lead-time (not shown). We have used standard procedures to
calculate climatology. For example, for reforecasts initialized in
January, the climatology was obtained based on 30-year data at Wk34.
We have not corrected the model bias in climatology in either January
or May cases.

As in Part I, a 1-year cross-validation window procedure is used to
calculate the anomaly correlation coefficient (ACC) of SWH at Wk34
lead-time during 1979–2008. Fig. 1 shows the ACC between ECMWF-
WW3 and predicted GEM SWH anomalies at Wk34. For January cases
(Fig. 1a), the ACC is significant over the equatorial western Pacific, SCS,
BOB and southern Indian Ocean (IO). For May cases (Fig. 1b), the ACC
is significant over BOB, equatorial western Pacific (mainly 150–180°E,
20°S–5°N), the Maritime Continent and southern IO (mainly, 87–120°E,
47–25°S). There is large root mean square error (RMSE) at Wk34 in the
SO in both January (Fig. 1c) and May (Fig. 1d). Fig. 2 depicts the ACC
of the SWH at Wk34 in reforecasts initialized in January cases with
different ocean analyses. We have found that there are some differences
in prediction skill using different OICs over the western Pacific. For
example, the ORA-S3 (Fig. 2c) initialized reforecasts are more skillful
over the western Pacific (mainly, 130–150°E, 5°S–15°N) than those with
other OICs. The prediction skill over the BOB, SCS and northern wes-
tern Pacific are similar in all OICs (Fig. 2). The RMSE in all OICs have
similar magnitude over the region of significant skill of SWH anomalies
at Wk34 (not shown), with higher RMSE in the SO. The ACC at Wk34
(Fig. S4) in May cases shows that prediction skill over the BOB and
equatorial western Pacific is similar in all OICs, but there are substantial
differences in prediction skill with different OICs over the Maritime
Continent and southern IO. The GEM prediction skill at Wk34 is gen-
erally better than that for any individual OIC in both January and May
cases. Only the GEM will be analyzed in the remainder of this paper.

We have found that SWHA model ensemble spread (MES) at WK34
of January initialized reforecasts (Fig. 3c) is comparable to the variance
of SWH anomalies for Wk34 of January in ECMWF-WW3 (Fig. 3b). We
have found considerable variability in the Southern Ocean and north-
western Pacific regions and low variability within the region 20°N to
20°S in both MES and ECMWF-WW3 SWH variance. The model has less
bias (Fig. 3a) in the region where MES (Fig. 3c) is low. Fig. 3d shows the
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spatial distribution of MES versus the ensemble mean RMSE for SWHA
at Wk34 to identify the regions where there is potential predictability
(MES/RMSE ∼ 1) or over-confidence (MES/RMSE<1; Johnson and
Bowler, 2009; Palmer et al., 2004; Weisheimer et al., 2009). The MES/
RMSE ratio is larger than 1 in the Southern Ocean and northwestern
Pacific which may be a reflection of low potential predictability. The
MES/RMSE ratio is less than 1 within the region 20°N to 20°S, which
means the prediction tends to be over confident (Zhu et al., 2013).

In the May cases, it is also found that the SWHA MES at WK34
(Fig. 4c) is comparable to the variance of SWH anomalies in ECMWF-
WW3 (Fig. 4b), and there is large SWH variability in the Southern
Ocean and Bay of Bengal. It is also found that model has a large bias
(Fig. 4a) in the region where MES (Fig. 4c) is high. The MES/RMSE
ratio (Fig. 4d) is larger than 1 in the Southern Ocean, Southern Indian
Ocean, Southern Western Pacific and northwestern Pacific, which may
be a reflection of low potential predictability there. The MES/RMSE
ratio (Fig. 4d) is less than 1 within the region equator to 20°N, which

means the prediction tends to be over-confident in this region.
The Brier skill score (Mason, 2004) has been computed for six re-

gions in the Western Pacific and Indian Ocean (WP-IO) area as in
Shukla and Kinter (2016; see Fig. 11 of Part I). The regions are labeled
Southern Ocean (SO), Southern Indian Ocean (SIO), Southwest Pacific
(SWP), South China Sea (SCS), Northwest Pacific (NWP) and Bay of
Bengal (BOB). In each domain, the thresholds delimiting the upper and
lower thirds of the historical record (terciles) are calculated from the
observations (1979–2008). The 16 ensemble members are then sorted
into above-normal, near-normal, and below-normal categories ac-
cording to the tercile thresholds. As a result, the forecast probability is
defined by the percentage of ensemble members falling in each tercile
(i.e., the counting method). Following Mason (2004) and van den Dool
et al. (2017), the Brier skill score (BSS; Wilks, 2006) is defined by

= −BSS 1 BS /BS ,fcst control

where BScontrol is the Brier score (BS) of always predicting climatology,

Fig. 1. Anomaly correlation skill of grand ensemble
mean reforecasts of significant wave height anoma-
lies at Wk34 lead-time made using CFSv2-WW3 in-
itialized in (a) January and (b) May for 1979–2009
over the Western Pacific and Indian Ocean (WP-IO).
Correlation coefficients (CC) contours are shown for
90% (CC=0.30), 95% (CC=0.35), 98%
(CC=0.41) and 99% (CC=0.45) significance le-
vels. Root mean square error (RMSE) is shown for
(c) January and (d) May.
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which, in this case, means always predicting 1/3. The BSS value is
positive (forecasts better than climatology) over the BOB, SCS and SIO
in January cases (Table 1), and BOB, SCS, SIO and SWP for May cases
(Table 1).

3.2. The spatial distributions of SLP at Wk34

In order to understand the origin of variations in 10m-winds at sub-
seasonal time scales that drive the SWH anomalies, the climatology and
variability of the mean sea level pressure (SLP) at Wk34 over the WP-IO
region predicted by CFSv2_rev in both January and May cases is com-
pared to observations. In January, the CFSv2_rev (Fig. S5b) at Wk34
qualitatively captures the main observed SLP pattern (Fig. S5a) over the
WP-IO region. The SLP centers in the southern hemisphere (mainly,
between 45°S to 30°S) and northern hemisphere (mainly, between 20°N
and 35°N) are well predicted by CFSv2_rev. Quantitatively, the model
has a negative bias of up to 2 hPa within the tropical belt and a positive
bias in the southern hemisphere (mainly, between 60°S and 45°S) (Fig.
S5c). During May, the magnitude and pattern of SLP of observations
(Fig. S5d) over the SO, BOB, SCS and northwestern Pacific regions in

Wk34 are well predicted by the model (Fig. S5e) but there is a positive
bias over SO. The inter-annual variability (IAV) of SLP at Wk34 over
WP-IO are displayed in Fig. S6. The model (Fig. S6b, e) reasonably
predicts at Wk34 main features of IAV of SLP of observations (Fig. S6a,
d) in both January and May. For example, higher variability of SLP in
the SO is found in observations as well as model predictions at Wk34.
The magnitude of SLP variability in CFSv2_rev is underestimated
compared to observations over entire SO, with a deficit of up to 3.0 hPa,
but the predicted SLP variability is similar to observations within the
tropical belt.

4. Impact of the ENSO state on SWH, SLP and 10m-winds at Wk34

Many studies have shown that ocean and atmospheric conditions
over the Asian monsoon region are influenced by ENSO states (e.g.,
Alexander et al., 2002; Lau and Nath, 2003 and Shukla and Kinter, 2014
as well as many others). To explore the impact of El Niño and La Niña
states on SWH at Wk34 as well as the mechanisms for their influence, a
composite analysis of SWH, 10m-wind and SLP in the observations and
the CFSv2-WW3 GEM has been performed for the period 1979–2008.

Fig. 2. Anomaly correlation skill of reforecasts of
January SWH anomalies at Wk34 in the WP-IO re-
gion for (a) CFSR, (b) GODAS, (c) ORA-S3, and (d)
NEMOVAR OICs.
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We have selected four El Niño events (namely, 1983, 1987, 1992 and
1998), and four La Niña events (1989, 1999, 2000 and 2008) for our
analysis. We have only selected those El Nino and La Nina events in
January that persist until May. Fig. S7 shows the Year-to-year variation
of NINO3.4 index anomalies from the optimum interpolation analysis,
version-2 (OIv2) sea surface temperature (SST) dataset (Reynolds et al.,
2007) and January (Fig. S7a) and May (Fig. S7b) initialized CFSv2
reforecasts in Wk34. The model successfully captures the amplitude and
sign in both cases. Correlation coefficients between the observed and
predicted NINO3.4 anomalies are 0.99 for the January, and 0.91 for
May at 3–4 weeks lead-time. In both January and May cases, the model
successfully captures spatial structure and magnitude of SST anomalies
at Wk34 during El Niño and La Niña composites (Fig. S8).

In January, Fig. 5a and b shows the composite of SWH anomalies
(SWHA, hereafter) during the El Niño events in ECMWF-WW3 and
CFSv2-WW3, respectively, while the corresponding patterns of SLP
anomalies (SLPA) and 10m-wind anomalies are displayed in Fig. 6a and
b. The composite ECMWF SWHA pattern (Fig. 5a) has positive
anomalies in the SO (mainly, 120–165°E, 60–40°S) and equatorial
western Pacific, and centers of negative SWHA in the central IO. We
have found that the positive SWHA in the SO is aligned along the
northern flank of the below normal pressure anomaly (Fig. 6a; colored
shading) where westerly wind anomalies (Fig. 6a; vectors) act on a
westerly mean state, thereby increasing the total wind speed and hence
increasing the SWH. Conversely, negative SWHA over the central IO is
aligned along the southern flank of the enhanced pressure anomaly

where westerly wind anomalies act on an easterly mean state, thus
reducing the total wind speed and reducing the SWH (Fig 5a and
Fig. 6a). A band of strong westerly wind anomalies occurs near equator
from the western Pacific to the central Pacific Ocean, which is a typical
El Niño response. Almost all the important features of observed El Niño
events are well predicted by the model (Fig. 5b and Fig. 6b) at Wk34
lead-time, including negative SWHA in the central IO, and positive
SWHA over the SO and equatorial western Pacific (Fig. 5b). The model
also captures both reduced SLPA over the SO and enhanced SLPA over
the central IO, and the direction of the 10m-wind anomalies over the SO
and equatorial IO.

Figures 5c–d and 6c–d show the spatial patterns of SWHA, SLPA and
10m-winds anomalies in composite analysis during La Niña events in
both ECMWF-WW3 and CFSv2-WW3 in Wk34 of January. As expected,
the spatial pattern of ECMWF SWHA (Fig. 5c) has positive SWHA over
the western Pacific and SCS, and negative anomalies over the SO,
mainly around 50°S to 40°S, and northwestern Pacific, mainly around
30°N. It is observed that the positive SWHA in the western Pacific lo-
cates to be aligned along the northern flank of the below normal
pressure anomaly (Fig. 6c; colored shading) where an easterly wind
anomalies (Fig. 6c; vectors) act on an easterly mean state. Conversely,
negative SWHA over the SO is aligned along the northern flank of the
enhanced pressure anomaly where an easterly wind anomalies act on
westerly mean state (Fig 5c and Fig. 6c). A band of strong easterly wind
anomalies flow from the central Pacific Ocean to the western Pacific
near the equator in observations, as is typical during La Niña events. In

Fig. 3. (a) The climatological SWH model biases
(CFSv2-WW3 minus ECMWF-WW3; unit, m) at
Wk34 of January relative to ECMWF. The scale for
the magnitude in meter (m) is shown at middle right.
(b) Inter-annual standard deviation of SWH
anomalies for Wk34 of January in ECMWF-WW3.
The scale for the magnitude in (b) is shown below
these panels and this scale is also use for (c) and (d).
(c) SWHA model ensemble spread (MES) at WK34 of
January initialized reforecasts, and (d) spatial dis-
tribution of the MES-to-RMSE ratios for the pre-
dicted SWHA at Wk34 of January.
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general, the model (Fig. 5d and Fig. 6d) is able to predict the typical
features of observed La Niña events at Wk34 lead-time but the mag-
nitude of SWHA (Fig. 5d) is weaker in the SO and western Pacific. The
sign of SLPA is well predicted (Fig. 6d; colored shading) at Wk34 over
SO, IO and western Pacific, and also direction of 10m-wind anomalies
over the SO and near the equator in the equatorial western Pacific
(Fig. 6d).

Fig. 7 depicts the composite May SWHA during El Niño events and

La Niña events in ECMWF-WW3 and CFSv2-WW3, while the corre-
sponding patterns of SLPA and 10m-winds are shown in Fig. S9. During
El Niño events, negative SWHA (Fig. 7a) occurs in the BOB and SCS
where an easterly wind anomalies (Fig. S9a; vectors) act on a westerly
mean state, and positive SWHA occurs in the SO where westerly wind
anomalies (Fig. S9a; vectors) act on a westerly mean state in ECMWF-
WW3. The model (Fig. 7b) successfully captures the sign of SWHA over
the BOB and SCS but model erroneously produces dipole like structure
in the SO where ECMWF-WW3 depicts monopole. During La Niña
events, the ECMWF-WW3 (Fig. 7c) depicts positive SWHA at Wk34 over
the BOB where westerly wind anomalies (Fig. S9c; vectors) act on a
westerly mean state, and dipole kind of structure in the SO mainly
between 60°S and 35°S. The sign of SWHA and 10m-wind anomalies
over the BOB is captured by CFSv2-WW3 (Fig. 7c; Fig. S9d). The model
is not able to correctly reproduce SWHA and 10m-winds over the SO
during La Niña events.

5. Impact of the MJO events on SWH within weeks 3–4 lead-time

Recent studies (Stopa et al., 2013 and Marshall et al., 2015) dis-
cussed the observed MJO impacts on SWHA, as described in Section 1.
To evaluate the MJO impact on Wk34 predictions of SWHA, the com-
posite daily SWHA and 10m-wind in the ERA-Interim and GEM during

Fig. 4. Similar to Fig. 3, but for May case.

Table 1
Brier skill score of the 16-member ensemble reforecast for the wave height at Wk34 weeks
lead over 6 regions. We have chosen 6 regions, namely Southern Ocean (SO), Southern
Indian Ocean (SIO), Southern western Pacific (SWP), South China Sea (SCS), the north-
central western Pacific Ocean (NCWP) and Bay of Bengal (BOB).

January SO SIO SWP BOB SCS NWP

Above-normal −0.01 0.05 −0.04 0.12 0.16 −0.07
Near-normal −0.03 0.08 −0.08 0.17 0.23 −0.08
Below-normal 0.01 0.08 −0.09 0.11 0.2 0.01
May SO SIO SWP BOB SCS NWP
Above-normal −0.11 0.04 0.04 0.13 0.17 −0.07
Near-normal −0.07 0.05 −0.05 0.14 0.26 −0.04
Below-normal −0.1 0.01 0.04 0.19 0.25 −0.09
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1979–2008 are analyzed. The real-time multivariate RMM1 and RMM2
indices (Wheeler and Hendon, 2004) are used to construct composites.
On each day, the amplitude +RMM RMM( 1 2 )2 2 and phase

−( )( )tan RMM
RMM

1 2
1 , are computed. Strong, persistent MJO events are de-

fined when the RMM index amplitude is greater than 1.5 standard de-
viations and persists a minimum of 2 days. As shown by Neena et al.
(2014), the ensemble mean prediction skill of MJO in the CFSv2 model
is 18 days. Kim et al. (2014) have mentioned that the prediction skill of
MJO is 21 days in the CFSv2 model. The MJO eastward propagation
speed is slower and its amplitude is weaker in CFSv2 than observation.
Therefore, we have combined MJO “phases 8 and 1 (phase-8-1; western
Hemisphere and Africa)”, phases 2 and 3 (phase-2-3; Indian Ocean)”,
“phases 4 and 5 (phase-4-5; Maritime continent)” and “phases 6 and 7
(phase-6-7; western Pacific)”. We found that May initialized Wk3-4
reforecasts produce skillful predictions of SWHA during phase-2-3 and
phase-6-7 of MJO. We also found that January initialized reforecasts

are able to capture the tendency of SWHA within Wk3-4 during phase-
2-3 and phase-6-7 of MJO.

The EOF analysis is performed for outgoing longwave radiation
(OLR) anomalies at Wk34 and Wks3-4, in order to explore the predic-
tion skill of leading modes of OLR in both January and May as discussed
in Shukla (2014) and Shukla and Zhu (2014). The EOF analysis of OLR
anomalies is performed for Wk34 (Fig. S10a, b, c, d; 30 samples) and
within Wk3-4 (Fig. S10e, f, g, h; 420 samples) during 1979–2008 in
both ECMWF-WW3 and January initialized reforecasts. The two modes
together explain 44.4% (20.8%) and 46.47% (31.0%) of the variance in
ECMWF-WW3 and January initialized reforecast at Wk34 (within Wk3-
4). The amplitudes of the OLR perturbations at the major centers of
action of EOF-1 and EOF-2 range up to 19W m−2 per standard devia-
tion of the respective (standardized) principal coefficients (PCs) 1 and 2
in both cases (Wk34 and Wk3-4) of observations. In both cases, the
model is able to capture the sign of EOF-1 and EOF-2 but the amplitude

Fig. 5. (a) ECMWF-WW3 and (b) predicted compo-
site of January SWH (m) anomalies at Wk34 during
El Niño events. (c)-(d) as in (a)-(b) but for La Niña
events.
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of OLR anomalies is weaker in both cases. Correlation coefficients be-
tween observed and predicted PC1 are 0.80 (0.70) for the Wk34 (Wk3-
4) in January, and 0.31 (0.33) for PC2 in Wk34 (Wk3-4). The model is
not able to capture PC2 in both cases of January, which may imply that
the model is not correctly predicting the eastward propagation in
January cases.

We have also performed EOF analysis of OLR anomalies in Wk34
(Fig. S11a, b, c, d) and within Wk3-4 (Fig. S11e, f, g, h) in both ECMWF-
WW3 and May initialized reforecasts. The two modes together explain
32.4% (14.04%) and 43.0% (26.6%) variance in observation and May
initialized reforecast at Wk34 (within Wk3–4) respectively. The am-
plitudes of the OLR perturbations at the major centers of action of EOF-
1 and EOF-2 range up to 15W m−2 per standard deviation of the
standardized PC1 and PC2 in both cases (Wk34 and Wk3-4) of ob-
servation. The amplitude of OLR anomalies in EOF-1 and EOF-2 of
model is weaker in both Wk34 and Wk3-4. Correlation coefficients
between observed and predicted PC1 are 0.57 (0.35) for the Wk34
(Wk3-4) in May, and 0.73 (0.52) for PC2 in Wk34 (Wk3-4). We have
found that prediction skill of PC2 in May initialized reforecasts is
slightly better than January case.

Fig. 8 shows May composite SWHA during MJO phase-2-3, which is
based on 36 days, and phase-6-7 that is based 92 days in ECMWF-WW3
and CFSv2-WW3, respectively, while the corresponding composite
patterns of the 10m-winds anomalies is shown in Figs. 9. The ECMWF
composite SWHA (Fig. 8a) is negative over the BOB and SCS during
phase-2-3 and positive during phase-6-7 (Fig. 8c). Significant positive
(negative) SWHA occurs over the Maritime Continent, Timor Sea,
Arafura Sea, Bismarck Sea, Coral Sea and on the northwest shelf of
Australia during phase-2-3 (phase-6-7). Negative (positive) SWHA in
phase-2-3 (phase-6-7) over the BOB and SCS is associated with negative
anomalies of 10m-winds where an easterly wind anomalies act on a
westerly mean state (positive anomalies of 10m-winds where westerly
wind anomalies act on a westerly mean state) in ECMWF (Fig. 9a, c).
The composite of SWHA depicts dipole kind of structure in the SO in
both phase-2-3 and phase-6-7 of MJO, with negative (positive) SWHA
centers at 90°E and 140°E during phase-2-3 (phase-6-7). Consistent with
SWHA in the SO, the 10m-wind anomalies are negative and positive at
these centers in phase-2-3 and phase-6-7 (Fig. 9a, c). The CFSv2-WW3
successfully captures the sign and amplitude of SWHA at Wk34 over the
BOB and SCS in phase-2-3 and phase-6-7 of MJO (Fig. 8b, d). The model

Fig. 6. (a) ECMWF-WW3 and (b) predicted compo-
site of January SLP (colored shading) and 10m-
winds (vectors) anomalies at Wk34 during El Niño
events. (c) and (d) as in (a) and (b) but for La Niña
events. (For interpretation of the references to color
in this figure legend, the reader is referred to the
web version of this article).
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captures the sign of SWHA over the Timor Sea, Arafura Sea, Coral Sea
and southern IO mainly between 45°S and 33°S, 80°E and 110°E in both
phases. The model captures observed features of SWHA at locations
where there is significant skill in general at Wk34 lead-time (Fig. 1b).
The model predicts negative (positive) anomalies of 10m-wind (Fig. 9b,
d) over the BOB and SCS during phase-2-3 (phase-6-7).

A similar composite analysis for January in Wk3-4 was performed
during phase-2-3 and phase-6-7. The ECMWF SWHA (Fig. S13 and Fig.
S14) and 10m-wind anomalies show important characteristics in com-
posite analysis during phase-2-3 and phase-6-7 of MJO but the model
composite structures initialized in January are only able to capture
tendency of SWHA over the maritime continent at Wk3-4.

6. Leading patterns of SWH at Wk34

An empirical orthogonal function analysis (EOF; e.g.,
Thompson and Wallace, 1998) was used to identify robust spatial and
temporal patterns of SWH in the WP-IO region. There is significant
spatial variability of observed SWHA (not shown) in the WP-IO region,
ranging from 0.1 to 1.1 in both January and May cases. To remove the

effect of enhanced variability in the EOF analysis, the SWH biweekly
mean anomalies are first normalized as in Shukla and Huang (2015a,b).
Fig. 10(a, b, c) depicts the correlation between the May SWH anomalies
at Wk34 and the first three leading principal components (PCs) of SWH
anomalies in the WP-IO region in observation (ECMWF-WW3). The
correlation coefficient (CC) at or above 90%, 95%, 98% and 99%
confidence levels are shown. The three leading modes of SWHA in May
at Wk34 explain 16.86%, 12.64% and 12.34% of the variance respec-
tively. The leading EOF (EOF-1-May; Fig. 10a) is dominated by a sig-
nificant positive correlation over the western Pacific and BOB. EOF-2-
May (Fig. 10b) depicts statistically significance negative correlation of
SWHA over the SO and equatorial IO, and positive correlation in the
southern portion of western Pacific (mainly, 155–180°E, 30°–20°S). The
pattern of EOF-3-May has positive correlation over the BOB and SCS,
and negative correlation over the SO (Fig. 10c). PC1-May is sig-
nificantly correlated (cc=− 0.41) with the simultaneous NINO3.4 SST
index, and the other two modes are not significantly correlated with
ENSO in May.

To what extent are the leading modes of May SWHA in Wk34 as-
sociated with MJO? The correlation between real-time multivariate

Fig. 7. (a) ECMWF-WW3and (b) predicted compo-
site of May SWH anomalies (m) at Wk34 during El
Niño events. (c) and (d) as in (a) and (b) but for La
Niña events.
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RMM1 and RMM2 index averages of 15–28 May (Wheeler and
Hendon, 2004) and the first three leading PCs of May SWHA in ob-
servations are mentioned in Table 2. PC1-May and PC2-May are sig-
nificantly associated with MJO (Table 1). There are significant positive
correlations of PC1-May with both RMM1 and RMM2, suggesting a
relationship with phase 5 or 6 of MJO. Since PC1-May is also sig-
nificantly negatively correlated with NINO3.4, it may influence by
combined effects of the ENSO and MJO. Consistent with above re-
lationship EOF-1-May depicts positive SWHA over the western Pacific
Ocean and BOB (Fig. 10a). PC2-May is only significantly correlated
with RMM2.

For CFSv2-WW3 GEM reforecasts, we have projected the SWHA at
Wk34 on the ECMWF-WW3 EOFs by projecting the reforecast time
series onto each observed eigenvector (Straus and Shukla, 2002) and
then calculating the correlation of the reforecast at each grid point with
the projected time series. The correlations between May SWHA in Wk34
in CFSv2-WW3 with the first three projected PCs are shown in
Fig. 10(d, e, f). The spatial patterns of SWH variability in the model
(Fig. 10d, e, f) are in good agreement with the observations (Fig. 10a, b,
c) over the western Pacific, BOB, southern IO and SO. The pattern
correlation coefficients between the ECMWF and reforecasts are 0.72
for EOF-1-May, 0.81 for EOF-2-May and 0.73 for EOF-3-May. Correla-
tion coefficients between observed and predicted time series are 0.31
for PC1-May, 0.47 for PC2-May and 0.27 for PC3-May. Based on the
spatial and temporal correlations, CFSv2-WW3 is reasonably predicting
the leading modes of May SWHA at Wk34 lead times.

Fig. 11 shows the correlation between January SWH anomalies at

Wk34 with the first three leading PCs of SWH anomalies in the ECMWF-
WW3. The dominant modes of January SWHA explain 16.07%, 13.42%
and 10.26% of the variance, respectively. The leading EOF-1-Jan
(Fig. 11a) is dominated by a significant negative correlation over the
SO, central IO and equatorial western Pacific, and positive correlation
over northwestern Pacific, mainly around 30°N. EOF-2-Jan (Fig. 11b)
has a dipole pattern, with negative anomaly over the equatorial IO and
positive anomaly over the central western Pacific and SCS. The EOF-3-
Jan (Fig. 11c) is also a dipole pattern, with negative anomaly over the
central western Pacific and positive anomaly over the SO. Only PC3-Jan
of SWHA in Wk34 is significantly positively correlated (cc= 0.64) with
the simultaneous NINO3.4 SST index, which implies suppressed 10m-
winds and wave activity in the western Pacific and BOB.

To evaluate the effects of the MJO on the leading PCs, correlation
between first three PCs-Jan and the real-time multivariate RMM1 and
RMM2 index averages of 15–28 January are display in Table 3. Based
on Table 2, it is observed that PC1-Jan and PC3-Jan of SWHA at Wk34
are significantly associated with MJO. A significant negative correlation
is found between PC3-Jan and RMM1, we may conclude that the
combined effects of the ENSO and MJO influence EOF4-3-Jan.

For January CFSv2-WW3 GEM reforecasts, we have projected the
SWH anomalies at Wk34 on the observed EOFs (Straus and Shukla,
2002). The correlation between January SWHA reforecasts in Wk34
and the first three projected PCs are shown in Fig. 11(d, e, f). The
spatial patterns of SWHA in the model (Fig. 11d, e, f) are in good
agreement with the ECMWF-WW3 (Fig. 11a, b, c) over the equatorial
western Pacific, southern IO and SO. The CFSv2-WW3 reforecasts fail to

Fig. 8. Composite of SWH anomalies (m) for phase-
2-3 of MJO in (a) ECMWF-WW3 and (b) CFSv2-
WW3 for 15–28 May during 1979–2008. (c) and (d)
as in (a) and (b) but for phase-6-7 of MJO.
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reproduce positive anomaly over northwestern Pacific mainly around
30°N in EOF-1-Jan, and positive correlation over SCS in EOF2-Jan. EOF-
3-Jan of model has a large negative correlation over much of the central
IO than ECMWF-WW3. The pattern CCs of SWHA between the refor-
ecasts and the observations are 0.72 for EOF-1-Jan, 0.77 for EOF-2-Jan
and 0.72 for EOF-3-Jan. The CCs between reforecasts and observed
SWHA PC time series are 0.27 for PC-1-Jan, 0.54 for PC-2-Jan and 0.59
for PC-3-Jan. Based on the spatial and temporal correlations, we may
conclude that CFSv2-WW3 is able to predict the leading modes of
ECMWF-WW3 at Wk34 in January case.

7. Summary and discussion

We examined the capability of using a coupled model (CFSv2-rev) to
predict 10m-winds in order to force an ocean surface wave model
(WW3) to predict biweekly averages of significant wave height
anomalies (SWHA) at 3 weeks lead-time (Wk34) in January and May
cases over a 30-year period, 1979–2008. We also evaluated the effects
of ENSO and MJO events on SWHA, sea level pressure anomaly (SLPA)
and 10m-wind anomalies. The WW3 model was forced with daily 10m-
wind from the ECMWF reanalysis, as a proxy for SWH observations. The
CFSv2-rev model was initialized with four different sets of ocean initial
conditions OIC). The grand ensemble mean of 16 members – 4 OICs
each having 4 atmosphere and land surface initial conditions –was used
to provide more robust estimates of the predicted quantities. The
combined model, CFSv2-WW3, has significant skill in predicting SWHA
at Wk34 in January over several regions within the Indian and West

Pacific Oceans, notably the equatorial western Pacific, SCS, BOB and
the southern IO. For the May cases, there is prediction skill over the
BOB, equatorial western Pacific (150°E-180°E, 20°S-5°N), the Maritime
Continent and southern IO (87−120°E, 47−25°S).

Both El Niño and La Niña events have effects on SWH in the WP-IO
region in January and May. El Niño events in January are associated
with positive SWH anomalies in the SO aligned with below normal
pressure anomaly where westerly wind anomalies act on a westerly
mean state, therefore enhanced SWH. Negative SWHA in the central IO
aligned with enhanced pressure anomaly where an easterly wind
anomalies act on a westerly mean state, therefore suppressed SWH. The
model successfully predicts the ECMWF-WW3 features of SWHA at
Wk34. The model also predicts negative SLPA over the SO and positive
SLPA over the central IO, as well as the direction of 10m-winds
anomalies over the SO and equatorial IO. During La Niña events, the
observed SWHA is positive over the equatorial western Pacific and SCS
where an easterly wind anomalies act on an easterly mean state, and
negative over the SO, mainly around 50–40°S where westerly wind
anomalies act on an easterly mean state. The model is able to predict
the typical features of observed La Niña events at Wk34 but the mag-
nitude of SWHA is weaker in the SO and equatorial western Pacific in
January cases. During May, the model reproduces the sign of SWHA at
Wk34 over the BOB and SCS but produces erroneously dipole like
structure in the SO where ECMWF-WW3 depicts monopole during El
Niño events. During La Niña events, the model predicts positive SWHA
at Wk34 over the BOB as in ECMWF-WW3 but not able to capture
structure of observed SWHA over the SO.

Fig. 9. Composite of magnitude of 10m-winds
anomalies (m/s) for phase 2 of MJO in (a) ECMWF
and (b) reforecasts for 15–28 May during
1979–2008. (c) and (d) as in (a) and (b) but for
phase 6 of MJO.
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The model predicts the impact of MJO events on SWHA at Wk3-4 in
May cases, including the negative anomalies over the BOB and SCS
during phase-2-3 of MJO and positive anomalies during phase-6-7 of
MJO over the BOB. The negative (positive) anomalies of 10m-winds
over the BOB during phase-2-3 (phase-6-7) are also correct in model.
The sign of SWHA over Timor Sea, Arafura Sea, Coral Sea and southern
IO mainly between 45°S and 33°S is correctly predicted in both phases
of MJO. Model also able to predict tendency of SWHA at Wk3-4 of
January over the maritime continents during phase-2-3 and phase-6-7
of MJO.

The leading mode of ECMWF-WW3 SWHA variability in May is
dominated by positive anomalies over the western Pacific and BOB, and
the analysis shows that it is influenced by combined effects of the ENSO
and MJO. The spatial pattern of the first three leading modes of pre-
dicted SWHA variability in May are in good agreement with the ob-
servations over the western Pacific and BOB in EOF-1, southern IO in
EOF-2, and SO in EOF-3. The leading mode (EOF-1) of ECMWF-WW3
SWHA variability in January depicts negative anomalies over the SO,
central IO, and WPO, and positive correlation over northern western
Pacific. In January, the leading mode of SWHA variability is related to
MJO, while EOF-3-Jan is influenced both by MJO and ENSO. The re-
forecasts capture much of the variability of SWHA at Wk34 in leading
modes of ECMWF-WW3.

The sub-seasonal skill of reforecasts of significant wave heights is
degraded by the very consistent spatial pattern of bias in the mean 10m-
wind as a function of lead time. The bias, along with the error in var-
iance of the surface wind, which diminishes with lead time, can
therefore be corrected a posteriori. The ocean surface waves driven by
the corrected winds are likely to be more accurate than the SWH
forecasts described, a possibility that will be explored in subsequent
work.

Fig. 10. Correlation coefficient of May SWH anomalies at Wk34 with standardized PC1-May of SWH anomalies at Wk34 in (a) ECMWF-WW3 and (b) reforecasts during 1979–2008. (c)
and (d) as in (a) and (b) but for standardized PC2-May. (e) and (f) as in (a) and (b) but for standardized PC3-May. Correlation coefficients at or above 90% (CC=0.30), 95%
(CC=0.35), 98% (CC=0.41) and 99% (CC=0.45) significance levels are displayed.

Table 2
Correlation between real-time multivariate RMM1 and RMM2 index averages of 15–28
May (Wheeler and Hendon, 2004) and the first three leading PCs of May SWHA in ob-
servations.

May case Correlation coefficient

PC1-May PC2-May PC3-May

RMM1 0.56 −0.06 −0.18
RMM2 0.34 −0.54 0.07
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