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HIGH ORDER FINITE DIFFERENCE AND FINITE VOLUME WENO SCHEMES AND

DISCONTINUOUS GALERKIN METHODS FOR CFD

CHI-WANG SHU�

Abstract. In recent years high order numerical methods have been widely used in computational uid

dynamics (CFD), to e�ectively resolve complex ow features using meshes which are reasonable for today's

computers. In this paper we review and compare three types of high order methods being used in CFD,

namely the weighted essentially non-oscillatory (WENO) �nite di�erence methods, the WENO �nite volume

methods, and the discontinuous Galerkin (DG) �nite element methods. We summarize the main features

of these methods, from a practical user's point of view, indicate their applicability and relative strength,

and show a few selected numerical examples to demonstrate their performance on illustrative model CFD

problems.

Key words. weighted essentially non-oscillatory, discontinuous Galerkin, �nite di�erence method, �nite
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1. Introduction. In recent years high order numerical methods have been widely used in computational

uid dynamics (CFD), to e�ectively resolve complex ow features. In this paper we refer to high order

methods by those with order of accuracy at least three. Traditionally, �rst and second order numerical

methods are often preferred in practical calculations, because of their simplicity and robustness (i.e. one can

always get some output, although it may not be very accurate). On the other hand, high order methods

often give the impression of being complicated to understand and to code, and costly to run (on the same

mesh compared with lower order methods), and less robust (the code may blow up in tough situations when

the lower order methods still give stable output). In this paper, we hope to at least partially dispel this

impression about high order methods, using three typical types of high order methods as examples.

Before we move on to the details of high order methods, let us point out that, at least in certain

situations, the solution structures are so complicated and the time of evolution of these structures so long

that it is impractical to use low order methods to obtain an acceptable resolution. Often such problems

involve both shocks and complicated smooth region structures, calling for special non-oscillatory type high

order schemes which are emphasized in this paper. A very simple example to illustrate this is the evolution

of a two dimensional periodic vortex for the compressible Euler equations, which was �rst used in [41]. One

could add a shock to this problem so that it becomes a problem of shock interaction with a vortex, which

is very typical in aeroacoustics. However we will consider the solution without a shock here as it admits

an analytically given exact solution, making it easier to compare numerical resolutions of di�erent schemes.

The Euler equations are given by a conservation law

ut + f(u)x + g(u)y = 0; (1.1.1)
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where

u = (�; �u1; �u2; E);

f(u) = (�u1; �u
2
1 + p; �u1u2; u1(E + p)); g(u) = (�u2; �u1u2; �u

2
2 + p; u2(E + p));

Here � is the density, (u1; u2) is the velocity, E is the total energy, p is the pressure, related to the total

energy E by

E =
p

 � 1
+

1

2
�(u21 + u22)

with  = 1:4 for air. The periodic vortex problem is set up in a computational domain [0,10]�[0,10]. The

boundary condition is periodic in both directions. The initial condition is given by

(u1(x; y; 0); u2(x; y; 0)) = (1; 1) +
�

2�
e0:5(1�r2)(�y; x);

T (x; y; 0) = 1�
( � 1)�2

8�2
e1�r2 ; S(x; y; 0) = 1;

where the temperature T and the entropy S are related to the density � and the pressure p by

T =
p

�
; S =

p

�
;

and (x; y) = (x� 5; y � 5), r2 = x2 + y2, and the vortex strength � = 5.

It can be readily veri�ed that the Euler equations with the above initial conditions admit an exact

solution which is convected with the speed (1; 1) in the diagonal direction. Because of the periodic boundary

condition, we can simulate this ow for a very long time. We �rst show the simulation results at t = 10,

namely after one time period. When we perform the simulation with a second order �nite di�erence MUSCL

type TVD scheme and a �fth order �nite di�erence WENO scheme with the same uniform mesh of 802 points,

for this relatively short time, although the second order scheme gives inferior results comparing with that

of the �fth order scheme, Fig. 1.1, it may be argued that the second order scheme still gives an acceptable

resolution. If we increase the number of mesh points for the second order scheme to 2002 points, see Fig. 1.3,

left, then the resolution is roughly comparable to that of the �fth order WENO scheme using 802 points in

Fig. 1.1, right. A two dimensional time dependent simulation with a 2002 mesh has 2:53 = 15:6 times more

space time mesh points than a 802 mesh. Considering that the CPU time of a �fth order �nite di�erence

WENO scheme is roughly 3 to 8 times more than that of a second order TVD scheme on the same mesh

(depending on the speci�c forms of the schemes and time discretization), we could conclude that the second

order TVD scheme has a larger but still comparable CPU cost than the �fth order WENO scheme to reach

the same resolution, for this problem with relatively short time. When we look at the result at t = 100,

namely after ten time periods, the situation changes dramatically. On the same 802 mesh, one can see in

Fig. 1.2 that the second order �nite di�erence TVD scheme has a much worse resolution than the �fth order

�nite di�erence WENO scheme. Clearly the result of the second order scheme with this mesh for this long

time is completely unacceptable. This time, even if one increases the number of mesh points to 3202 for the

second order scheme (which makes the CPU time for such a run magnitudes more than that of a �fth order

WENO scheme on a 802 mesh), it still does not provide a satisfactory resolution, Fig. 1.3, right. A more

re�ned mesh would not be practical for three dimensional simulations. Clearly, in this situation the second

order scheme is inadequate to provide a satisfactory resolution within the limit of today's computer.
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Fig. 1.1. Vortex evolution. Cut at x = 5. Density �. 802 uniform mesh. t = 10 (after one time period). Solid: exact

solution; circles: computed solution. Left: second order TVD scheme; right: �fth order WENO scheme.
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Fig. 1.2. Vortex evolution. Cut at x = 5. Density �. 802 uniform mesh. t = 100 (after 10 time periods). Solid: exact

solution; circles: computed solution. Left: second order TVD scheme; right: �fth order WENO scheme.

There are many high order methods being used in CFD. In this paper we only discuss three types of

them:

1. The weighted essentially non-oscillatory (WENO) �nite di�erence methods;

2. The WENO �nite volume methods;

3. The discontinuous Galerkin (DG) �nite element methods.

These are methods suitable for solving hyperbolic conservation laws, such as the compressible Euler equations

(1.1.1), or convection dominated convection di�usion problems, such as the compressible Navier-Stokes

equations with high Reynolds numbers. For such problems shocks and other discontinuities or high gradient

regions exist in the solutions, making it di�cult to design stable and high order numerical methods.
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Fig. 1.3. Vortex evolution. Cut at x = 5. Density �. Second order TVD scheme. Solid: exact solution; circles: computed

solution. Left: 2002 uniform mesh, t = 10 (after one time period); right: 3202 uniform mesh, t = 100 (after 10 time periods).

Let us �rst give some historical remarks about these methods.

WENO schemes are designed based on the successful essentially non-oscillatory (ENO) schemes in [19,

43, 44]. The �rst WENO scheme is constructed in [31] for a third order �nite volume version in one space

dimension. In [23], third and �fth order �nite di�erence WENO schemes in multi space dimensions are

constructed, with a general framework for the design of the smoothness indicators and nonlinear weights.

Later, second, third and fourth order �nite volume WENO schemes for 2D general triangulation have been

developed in [14] and [20]. Very high order �nite di�erence WENO schemes (for orders between 7 and 11)

have been developed in [2]. Central WENO schemes have been developed in [25], [26] and [27].

Both ENO and WENO use the idea of adaptive stencils in the reconstruction procedure based on the

local smoothness of the numerical solution to automatically achieve high order accuracy and non-oscillatory

property near discontinuities. ENO uses just one (optimal in some sense) out of many candidate stencils

when doing the reconstruction; while WENO uses a convex combination of all the candidate stencils, each

being assigned a nonlinear weight which depends on the local smoothness of the numerical solution based

on that stencil. WENO improves upon ENO in robustness, better smoothness of uxes, better steady state

convergence, better provable convergence properties, and more e�ciency. For more details of ENO and

WENO schemes, we refer to the lecture notes [41, 42].

WENO schemes have been widely used in applications. Some of the examples include dynamical response

of a stellar atmosphere to pressure perturbations [13]; shock vortex interactions and other gas dynamics prob-

lems [17], [18]; incompressible ow problems [47]; Hamilton-Jacobi equations [21]; magneto-hydrodynamics

[24]; underwater blast-wave focusing [28]; the composite schemes and shallow water equations [29], [30], real

gas computations [32], wave propagation using Fey's method of transport [33]; etc.

Discontinuous Galerkin (DG) methods are a class of �nite element methods using completely discontin-

uous basis functions, which are usually chosen as piecewise polynomials. Since the basis functions can be

completely discontinuous, these methods have the exibility which is not shared by typical �nite element

methods, such as the allowance of arbitrary triangulation with hanging nodes, complete freedom in changing

the polynomial degrees in each element independent of that in the neighbors (p adaptivity), and extremely
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local data structure (elements only communicate with immediate neighbors regardless of the order of ac-

curacy of the scheme) and the resulting embarrassingly high parallel e�ciency (usually more than 99% for

a �xed mesh, and more than 80% for a dynamic load balancing with adaptive meshes which change often

during time evolution), see, e.g. [4]. A very good example to illustrate the capability of the discontinuous

Galerkin method in h-p adaptivity, e�ciency in parallel dynamic load balancing, and excellent resolution

properties is the recent successful simulation of the Rayleigh-Taylor ow instabilities in [36].

The �rst discontinuous Galerkin method was introduced in 1973 by Reed and Hill [35], in the frame-

work of neutron transport, i.e. a time independent linear hyperbolic equation. A major development of the

DG method is carried out by Cockburn et al. in a series of papers [6, 7, 8, 9], in which they have estab-

lished a framework to easily solve nonlinear time dependent problems, such as the Euler equations (1.1.1),

using explicit, nonlinearly stable high order Runge-Kutta time discretizations [43] (see section 2) and DG

discretization in space with exact or approximate Riemann solvers as interface uxes and total variation

bounded (TVB) nonlinear limiters to achieve non-oscillatory properties for strong shocks.

The DG method has found rapid applications in such diverse areas as aeroacoustics, electro-magnetism,

gas dynamics, granular ows, magneto-hydrodynamics, meteorology, modeling of shallow water, oceanogra-

phy, oil recovery simulation, semiconductor device simulation, transport of contaminant in porous media,

turbomachinery, turbulent ows, viscoelastic ows and weather forecasting, among many others. For more

details, we refer to the survey paper [12], and other papers in that Springer volume, which contains the

conference proceedings of the First International Symposium on Discontinuous Galerkin Methods held at

Newport, Rhode Island in 1999. The extensive review paper [11] is also a good reference for many details.

This paper is written from a practical user's point of view. We will not emphasize the discussion of

theoretical properties of the schemes. Rather, we will indicate the practical aspects in the implementation

of the algorithms, their applicability in di�erent situations, and their relative advantages, and present a few

selected numerical examples to demonstrate their performance on illustrative model CFD problems.

2. Time discretizations. Before discussing the spatial discretizations, let us �rst discuss the time

discretization. For all three types of spatial discretizations discussed in this paper, we shall use the same

time discretization, namely a class of high order nonlinearly stable Runge-Kutta time discretizations. A

distinctive feature of this class of time discretizations is that they are convex combinations of �rst order

forward Euler steps, hence they maintain strong stability properties in any semi-norm (total variation norm,

maximum norm, entropy condition, etc.) of the forward Euler step. Thus one only needs to prove nonlinear

stability for the �rst order forward Euler step, which is relatively easy in many situations (e.g. TVD schemes),

and one automatically obtains the same strong stability property for the higher order time discretizations

in this class. These methods were �rst developed in [43] and [40], and later generalized in [15] and [16]. The

most popular scheme in this class is the following third order Runge-Kutta method for solving

ut = L(u; t)

where L(u; t) is a spatial discretization operator (it does not need to be, and often is not, linear!):

u(1) = un +�tL(un; tn)

u(2) =
3

4
un +

1

4
u(1) +

1

4
�tL(u(1); tn +�t)

un+1 =
1

3
un +

2

3
u(2) +

2

3
�tL(u(2); tn +

1

2
�t):

All the numerical examples presented in this paper are obtained with this Runge-Kutta time discretization.
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3. Finite di�erence WENO schemes. A conservative �nite di�erence spatial discretization to a

conservation law such as (1.1.1) approximates the derivative f(u)x by a conservative di�erence

f(u)xjx=xj
�

1

�x

�
f̂j+1=2 � f̂j�1=2

�

where f̂j+1=2 is the numerical ux, which typically is a Lipschitz continuous function of several neighboring

values ui. g(u)y is approximated in the same way. Hence �nite di�erence methods have the same format

for one and several space dimensions, which is a big advantage. For the simplest case of a scalar equation

(1.1.1) and if f 0(u) � 0, the �fth order �nite di�erence WENO scheme has the ux given by

f̂j+1=2 = w1f̂
(1)
j+1=2 + w2f̂

(2)
j+1=2 + w3f̂

(3)
j+1=2

where f̂
(i)
j+1=2 are three third order uxes on three di�erent stencils given by

f̂
(1)
j+1=2 =

1

3
f(uj�2)�

7

6
f(uj�1) +

11

6
f(uj);

f̂
(2)
j+1=2 = �

1

6
f(uj�1) +

5

6
f(uj) +

1

3
f(uj+1);

f̂
(3)
j+1=2 =

1

3
f(uj) +

5

6
f(uj+1)�

1

6
f(uj+2);

and the nonlinear weights wi are given by

wi =
~wiP3

k=1 ~wk

; ~wk =
k

("+ �k)2
;

with the linear weights k given by

1 =
1

10
; 2 =

3

5
; 3 =

3

10
;

and the smoothness indicators �k given by

�1 =
13

12
(f(uj�2)� 2f(uj�1) + f(uj))

2 +
1

4
(f(uj�2)� 4f(uj�1) + 3f(uj))

2

�2 =
13

12
(f(uj�1)� 2f(uj) + f(uj+1))

2 +
1

4
(f(uj�1)� f(uj+1))

2

�3 =
13

12
(f(uj)� 2f(uj+1) + f(uj+2))

2
+

1

4
(3f(uj)� 4f(uj+1) + f(uj+2))

2
:

Finally, " is a parameter to avoid the denominator to become 0 and is usually taken as " = 10�6 in the

computation.

This �nishes the description of the �fth order �nite di�erence WENO scheme [23] in the simplest case.

As we can see, the algorithm is actually quite simple and there are no tunable parameters in the scheme.

We summarize the properties of this WENO �nite di�erence scheme. For details of proofs and numerical

veri�cations, see [23] and [41, 42].

1. The scheme is proven to be uniformly �fth order accurate including at smooth extrema, and this is

veri�ed numerically.

2. Near discontinuities the scheme behaves very similarly to an ENO scheme [19, 43, 44], namely the

solution has a sharp and non-oscillatory discontinuity transition.

3. The numerical ux has the same smoothness dependency on its arguments as that of the physical

ux f(u). This helps in a convergence analysis for smooth solutions and in steady state convergence.
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4. The approximation is self similar. That is, when fully discrete with Runge-Kutta methods in section

2, the scheme is invariant when the spatial and time variables are scaled by the same factor.

We then indicate how the scheme is generalized in a more complex situation:

1. For scalar equations without the property f 0(u) � 0, one could use a ux splitting

f(u) = f+(u) + f�(u);
df+(u)

du
� 0;

df�(u)

du
� 0;

and apply the procedure above to f+(u), and a mirror image (with respect to j + 1=2) procedure

to f�(u). The only requirement for the splitting is that f�(u) should be as smooth functions of

u as f(u) is and as the order of the scheme requires (e.g. if the scheme is �fth order, f(u) and

f�(u) should all have �ve continuous derivatives with respect to u). In most applications the simple

Lax-Friedrichs ux splitting

f�(u) =
1

2
(f(u)� �u); � = maxujf

0(u)j

where the maximum is taken over the relevant range of u, is a good choice.

2. For systems of hyperbolic conservation laws, the nonlinear part of the WENO procedure (i.e. the

determination of the smoothness indicators �k and hence the nonlinear weights wi) should be carried

out in local characteristic �elds. Thus one would �rst �nd an average uj+1=2 of uj and uj+1 (e.g.

the Roe average [37] which exists for many physical systems), and compute the left and right

eigenvectors of the Jacobian f 0(uj+1=2) and put them into the rows of R�1j+1=2 and the columns

of Rj+1=2, respectively, such that R�1j+1=2 f
0(uj+1=2)Rj+1=2 = �j+1=2 where �j+1=2 is a diagonal

matrix containing the real eigenvalues of f 0(uj+1=2). One then transforms all the quantities needed

for evaluating the numerical ux f̂j+1=2 to the local characteristic �elds by left multiplying them

with R�1j+1=2, and then computes the numerical uxes by the scalar procedure in each characteristic

�eld. Finally, the ux in the original physical space is obtained by left multiplying the numerical

ux obtained in the local characteristic �elds with Rj+1=2.

3. If one has a non-uniform but smooth mesh, for example x = x(�) where �j is uniform and x(�)

has at least �ve continuous derivatives for the �fth order method, then one could use the chain

rule f(u)x = f(u)�=x
0(�) and simply use the procedure above for uniform meshes to approximate

f(u)�. The metric derivative x0(�) should be either obtained through an analytical formula (if the

transformation x = x(�) is explicitly given) or by a �nite di�erence approximation which is at least

�fth order accurate, for example again by a WENO approximation. Using this, one could use �nite

di�erence WENO schemes on smooth curvilinear coordinates in any space dimension.

4. WENO �nite di�erence schemes are available for all odd orders, see [23] and [2] for the formulas of

the third order and seventh through eleventh order WENO schemes.

We present two numerical examples to illustrate the capability of the �nite di�erence WENO schemes.

Both are obtained with the �fth order WENO schemes.

The �rst example is the double Mach reection problem, originally given in [45] and later used often in

the literature as a benchmark. The computational domain is [0; 4]� [0; 1], although typically only the results

in [0; 3]� [0; 1] are shown in the �gures. The reecting wall lies at the bottom, starting from x = 1
6 . Initially

a right-moving Mach 10 shock is positioned at x = 1
6 ; y = 0 and makes a 60� angle with the x axis. For the

bottom boundary, the exact post-shock condition is imposed for the part from x = 0 to x = 1
6 and a reective

boundary condition is used for the rest. At the top boundary, the ow values are set to describe the exact

motion of a Mach 10 shock. The computation is carried out to t = 0:2. At a very re�ned resolution, the
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Fig. 3.1. Density contours, double Mach reection, �fth order �nite di�erence WENO scheme. Left: uniform mesh with

�x = �y = 1

960
; Right: non-uniform moving mesh with 1/4 as many 2D mesh points (480 points in y).
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Fig. 3.2. A \zoomed in" version of the density contours, double Mach reection, �fth order �nite di�erence WENO

scheme. Left: uniform mesh with �x = �y = 1

960
; Right: non-uniform moving mesh with 1/4 as many 2D mesh points (480

points in y).

slip line induced instability and roll-up can be observed, see, e.g. the adaptive mesh simulation in [3]. The

capability of a numerical method to simulate these roll-ups is an indication of its small numerical viscosity

and high resolution. In Fig. 3.1, left, we give the density contours of the simulation result with the �fth

order WENO scheme on a �xed, uniform mesh with �x = �y = 1
960 . In Fig. 3.1, right, we give the density

contours of the simulation result with the �fth order WENO scheme on a non-uniform and moving mesh,

which is smooth and concentrates its points near the shock and the region under the double Mach stem, with

only half the number of points in each direction (480 points in y). The mesh movements were determined

by a given smooth transformation which follows the structure of the solution. Fig. 3.2 gives a \zoomed in"

picture. We can clearly see that the resolutions are comparable while the moving non-uniform mesh version

uses only 1/4 as many 2D mesh points as the uniform one, hence saving a lot of computational e�ort.

The second example is the problem of a supersonic ow past a cylinder [23]. In the physical space, a

cylinder of unit radius is positioned at the origin on the x-y plane. The computational domain is chosen to

be [0; 1]� [0; 1] on the �-� plane. The mapping between the computational domain and the physical domain

is:

x = (Rx � (Rx � 1)�) cos(�(2� � 1)); y = (Ry � (Ry � 1)�) sin(�(2� � 1));

where Rx = 3; Ry = 6 and � = 5�
12 . Fifth order �nite di�erence WENO and a uniform mesh of 60 � 80

points in the computational domain are used. The problem is initialized by a Mach 3 shock moving towards

the cylinder from the left. Reective boundary condition is imposed at the surface of the cylinder, i.e. at

� = 1, inow boundary condition is applied at � = 0 and outow boundary condition is applied at � = 0; 1.

We present an illustration of the mesh in the physical space (drawn every other grid line), and the pressure

contour, in Fig. 3.3. We can clearly see that the �nite di�erence WENO scheme can handle such curvilinear
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Fig. 3.3. Flow past a cylinder. Left: physical grid drawn on every other grid line; right: pressure contours with 20 contour

lines.

meshes very well.

In summary, we can say the following about �nite di�erence WENO schemes:

1. They can only be used for regular geometry that can be covered either by uniform or smooth

curvilinear meshes. The smoothness of the mesh must be comparable with the order of accuracy of

the scheme in order to obtain a truly high order result.

2. If the computational problem allows for such meshes, then the �nite di�erence WENO schemes are

good choices as they are easy to code and fast to compute, especially for multi dimensional problems.

Usually the �fth order WENO scheme is the best choice, unless the nature of the problem asks for

higher orders of resolution.
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3. The �nite di�erence WENO schemes can also be used in an adaptive mesh environment, provided

that a smooth (in space and time) mesh can be generated. To generate such meshes is not easy,

especially for higher order schemes where the requirement for the smoothness of the meshes is

stronger.

4. Finite volume WENO schemes. A �nite volume scheme for a conservation law such as (1.1.1)

approximates an integral version of it. Thus, the computational domain is partitioned into a collection of

cells 4i, which in 2D could be rectangles, triangles, etc., and the cell averages of the solution u

�ui(t) �
1

j4ij

Z
4i

u(x; y; t)dxdy

are the numerically approximated quantities. If 4j is a control volume, the semi-discrete �nite volume

scheme of equation (1.1.1) is:

d

dt
�uj(t) +

1

j4jj

Z
@4j

F � n ds = 0 (4.4.1)

where F = (f; g), and n is the outward unit normal of the cell boundary @4j. The line integral in (4.4.1) is

typically discretized by a Gaussian quadrature of su�ciently high order of accuracy,

Z
@4j

F � n ds � j@4jj

qX
k=1

!kF (u(Gk; t)) � n

and F (u(Gk; t)) � n is replaced by a numerical ux (approximate or exact Riemann solvers). For example,

one could use the simple Lax-Friedrichs ux, which is given by

F (u(Gk; t)) � n �
1

2

��
F (u�(Gk ; t)) + F (u+(Gk ; t))

�
� n� �

�
u+(Gk ; t)� u�(Gk; t)

��

where � is taken as an upper bound for the eigenvalues of the Jacobian in the n direction, and u� and u+

are the values of u inside the cell 4j and outside the cell 4j (inside the neighboring cell) at the Gaussian

point Gk.

Clearly, the success of the �nite volume scheme depends crucially on a good \reconstruction" procedure,

which is the procedure to obtain high order and non-oscillatory approximations to the solution u at the

Gaussian points along the cell boundary, u�(Gk; t), from the neighboring cell averages. Usually, this recon-

struction problem is handled in the following way: given a stencil of R = (r+1)(r+2)
2 cells, �nd a polynomial of

degree r, whose cell average in each cell within the stencil agrees with the given cell average of u in that cell.

This gives a linear system of R equations and R unknowns (the coe�cients of the polynomial when expanded

in a certain basis), and, if it has a unique solution, the polynomial can be evaluated at the Gaussian point

to get the approximation to u�(Gk; t). In practice, there are a lot of complications in this procedure, as not

all stencils result in a solvable or well conditioned linear system. One would often resort to a least square

procedure with more than the necessary number of cells in the stencil to solve this problem, see, e.g. [20]. If

the cells are rectangles rather than triangles, then a tensor product polynomial and a tensor product stencil

would be much easier to work with [38].

A typical WENO �nite volume scheme is constructed as follows:

1. We identify several stencils Si, i = 1; :::; q, such that the control volume 4j belongs to each stencil.

We denote by T =
qS

i=1
Si the larger stencil which contains all the cells from the q stencils.
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2. We obtain a (relatively) lower order reconstruction polynomial, denoted by pi(x), associated with

each of the stencils Si, for i = 1; :::; q. We also obtain a (relatively) higher order reconstruction

polynomial, denoted by P (x), associated with the larger stencil T .

3. We �nd the combination coe�cients, also called linear weights, denoted by 1, ... , q , such that for

a Gaussian point Gk on the cell boundary,

P (Gk) =

qX
i=1

ipi(Gk)

for all possible given cell averages in the stencil. These linear weights depend on the mesh geometry,

the point Gk, and the speci�c reconstruction requirements, but not on the given cell averages in the

stencil.

4. We compute the smoothness indicator, denoted by �i, for each stencil Si, which measures how

smooth the function pi(x) is in the target cell 4j . The smaller this smoothness indicator �i, the

smoother the function pi(x) is in the target cell. These smoothness indicators are obtained with the

same integral formulas as in the �nite di�erence WENO schemes. The details can be found in [20]

and [38].

5. We compute the nonlinear weights based on the smoothness indicators:

wi =
~wiP
k ~wk

; ~wk =
k

("+ �k)2

where k are the linear weights determined in step 3 above, and " is again a small number to avoid

the denominator to become 0 and is usually taken as " = 10�6 in the computations. The �nal

WENO reconstruction is then given by

u�(Gk) =

qX
i=1

wipi(Gk):

We summarize the properties of this WENO �nite volume scheme. For more details, see [20] and [38].

1. For 2D triangulation with arbitrary triangles, third and fourth order �nite volume WENO schemes

are available, [20], [38]. The third order scheme is quite robust. The fourth order scheme, however,

seems to have more restrictive requirements on the triangulation for stability for solving systems of

conservation laws.

2. For 2D triangulation with tensor product rectangle meshes, which could be non-uniform and non-

smooth, the �fth order WENO scheme in [38] is quite robust and gives very good numerical results.

We will again use the double Mach reection problem to illustrate the behavior of the �nite volume

WENO schemes. To save space we will show only the results obtained with the �fth order �nite volume

WENO scheme on a tensor product mesh, with a uniform mesh of �x = �y = 1
480 [38], in Fig. 4.1. Results

obtained with the third and fourth order WENO schemes on triangular meshes can be found in [20].

In summary, we can say the following about �nite volume WENO schemes:

1. They can be used for arbitrary triangulation. However they are much more complex to code and

much more expensive in CPU cost than �nite di�erence WENO schemes of the same order of

accuracy. This is because they have to rely on multidimensional reconstructions (polynomials of 2

or 3 variables in 2D or 3D), and the ux integrals on the cell boundaries must be performed by multi

point Gaussian quadratures. As a rule of thumb, a �nite volume WENO scheme is at least 4 times

more expensive in 2D and 9 times more expensive in 3D, compared with a �nite di�erence WENO
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Fig. 4.1. Double Mach reection, �fth order �nite volume WENO scheme, uniform mesh with �x = �y = 1

480
. Left:

density contours; Right: a \zoomed in" version of the density contours.

scheme on the same mesh and of the same order of accuracy, see, e.g. [5] for such a comparison for

ENO schemes.

2. Finite volume WENO schemes on a tensor product mesh are more robust and can be constructed

for higher order of accuracy than �nite volume WENO schemes on arbitrary triangulation.

3. Finite volume WENO schemes should be used in the situation when it is impossible to apply a

smooth curvilinear mesh.

5. Discontinuous Galerkin methods. Similar to a �nite volume scheme, a discontinuous Galerkin

(DG) method for a conservation law such as (1.1.1) also approximates an integral version of it. The compu-

tational domain is again partitioned into a collection of cells 4i, which in 2D could be rectangles, triangles,

etc., and the numerical solution is a polynomial of degree r in each cell 4i. The degree r could change

with the cell, and there is no continuity requirement of the two polynomials along an interface of two cells.

Thus, instead of only one degree of freedom per cell in a �nite volume scheme, namely the cell average of

the solution, there are R = (r+1)(r+2)
2 degrees of freedom per cell for a DG method using piecewise r-th

degree polynomials in 2D. These R degrees of freedom are chosen as the coe�cients of the polynomial when

expanded in a local basis. One could use a locally orthogonal basis to simplify the computation, but this is

not essential.

The DG method is obtained by multiplying (1.1.1) by a test function v(x; y) (which is also a polynomial

of degree r in the cell), integrating over the cell 4j , and integrating by parts:

d

dt

Z
4j

u(x; y; t)v(x; y)dxdy �

Z
4j

F (u) � rv dxdy +

Z
@4j

F (u) � n v ds = 0

where the notation and the treatment of the line integral are the same as in the �nite volume scheme (4.4.1).

The extra volume integral term
R
4j

F (u) � rv dxdy can be computed either by a numerical quadrature or

by a quadrature free implementation [1] for special systems such as the Euler equations (1.1.1). Notice that

if a locally orthogonal basis is chosen, the time derivative term d
dt

R
4j

u(x; y; t)v(x; y)dxdy would be explicit

and there is no mass matrix to invert. However, even if the local basis is not orthogonal, one still only needs

to invert a small R�R local mass matrix (by hand) and there is never a global mass matrix to invert as in

a typical �nite element method.

When applied to problems with smooth solutions, the DG method, as briey described above, can

already be used as is. For problems containing discontinuous solutions, however, a nonlinear total variation

bounded (TVB) limiter might be needed. For details, see [39, 6, 8, 9].

We summarize the properties of the DG method here. For more details, see [11].
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Fig. 5.1. Double Mach reection, third order (P 2 polynomials) discontinuous Galerkin method, rectangular uniform mesh

with �x = �y = 1

480
. Left: density contours; Right: a \zoomed in" version of the density contours.

1. The DG method has the best provable stability property among all three methods discussed in this

paper. One can prove a cell entropy inequality for the square entropy [22], which implies L2 stability

for the full nonlinear case with possible discontinuous solutions, and any converged solution is an

entropy solution for a convex scalar conservation law. This cell entropy inequality holds for all scalar

nonlinear conservation laws, all orders of accuracy of the scheme, all space dimensions, arbitrary

triangulation, and without the need to use the nonlinear limiters.

2. The DG method can also be used on problems with second derivatives (di�usion terms such as those

from the Navier-Stokes equations), [10], [34]. It can even be used on problems with third derivative

terms [46]. Theoretical results about stability and rate of convergence are very similar to those for

the �rst derivative PDEs. Unlike the traditional mixed method, such local discontinuous Galerkin

methods for higher derivatives are truly local (the auxiliary variables introduced for the derivatives

can be eliminated locally) and share with the discontinuous Galerkin method all the exibility and

advantages such as a tolerance of arbitrary triangulation with hanging nodes, parallel e�ciency,

easiness in h-p adaptivity, etc.

We will again use the double Mach reection problem to illustrate the behavior of the DG methods. We

present the result of the third order method (piecewise quadratic polynomials) on a rectangular mesh with

�x = �y = 1
480 [9], in Fig. 5.1.

In summary, we can say the following about the discontinuous Galerkin methods:

1. They can be used for arbitrary triangulation, including those with hanging nodes. Moreover, the de-

gree of the polynomial, hence the order of accuracy, in each cell can be independently decided. Thus

the method is ideally suited for h-p (mesh size and order of accuracy) re�nements and adaptivity.

2. The methods have excellent parallel e�ciency. Even with space time adaptivity and load balancing

the parallel e�ciency can still be over 80%.

3. They should be the methods of choice if geometry is complicated or if adaptivity is important,

especially for problems with smooth solutions.

4. For problems containing strong shocks, the nonlinear limiters are still less robust than the advanced

WENO philosophy. There is a parameter (the TVB constant) for the user to tune for each problem.

For rectangular meshes the limiters work better than for triangular ones. Other limiters are still

being investigated in the literature.

6. Concluding remarks. We have discussed three classes of typical high order numerical methods

used in CFD, especially for problems containing both shocks or high gradient regions and complex smooth

region structures. These are �nite di�erence WENO schemes, �nite volume WENO schemes and discontin-
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uous Galerkin methods. All three methods use the same nonlinearly stable high order Runge-Kutta time

discretizations [43], hence their di�erence is only in spatial discretizations. Finite di�erence WENO schemes

have the advantage of simplicity and lower CPU cost, especially for multi dimensional problems, but they

can only be applied on smooth structured curvilinear meshes. If a computational problem allows the usage

of such meshes, �nite di�erence WENO schemes are good choices. In this class the one used most often is

the �fth order WENO scheme in [23]. Finite volume WENO schemes are more expensive than their �nite

di�erence counter parts. However, they do have the advantage of allowing arbitrary triangulation, at least

in principle. For two dimensional triangulation with arbitrary triangles, WENO �nite volume schemes of

third and fourth order accuracy are available [20], [38]. The third order version is quite robust, however the

fourth order version seems to have more restrictive requirements on the type of triangulation for stability.

Higher order versions and three dimensional cases are still under development. For structured meshes, �nite

volume WENO schemes of �fth order accuracy [38] are very robust and allow for arbitrary, non-smooth mesh

sizes, hence they can be used in more general situations than the �nite di�erence WENO schemes. Finally,

the discontinuous Galerkin method is the most exible in terms of arbitrary triangulation and boundary

conditions. It is ideally suited for problems with smooth solutions. For problems containing shocks, the

total variation bounded limiter [39, 6, 8, 9] works quite well for rectangular meshes, and reasonably well for

arbitrary triangulation. However they are still less robust than WENO schemes as they contain a tuning

parameter. An active research direction now is the search for a more robust and high order preserving limiter

for general triangulation.
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