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The work suggests a simple qualitative model of the wind wave ‘horse-shoe’ patterns 
often seen on the sea surface. The model is aimed at explaining the persistent 
character of the patterns and their specific asymmetric shape. It is based on the idea 
that the dominant physical processes are quintet resonant interactions, input due to 
wind and dissipation, which balance each other. These processes are described at 
the lowest order in nonlinearity. The consideration is confined to the most essential 
modes : the central (basic) harmonic and two symmetric oblique satellites, the most 
rapidly growing ones due to the class I1 instability. The chosen harmonics are phase 
locked, i.e. all the waves have equal phase velocities in the direction of the basic 
wave. This fact along with the symmetry of the satellites ensures the quasi-stationary 
character of the resulting patterns. 

Mathematically the model is a set of three coupled ordinary differential equations 
for the wave amplitudes. It is derived starting with the integro-differential formulation 
of water wave equations (Zakharov’s equation) modified by taking into account small 
(of order of quartic nonlinearity) non-conservative effects. In the derivation the 
symmetry properties of the unperturbed Hamiltonian system were used by taking 
special canonical transformations, which allow one exactly to reduce the Zakharov 
equation to the model. 

The study of system dynamics is focused on its qualitative aspects. It is shown that 
if the non-conservative effects are neglected one cannot obtain solutions describing 
persistent asymmetric patterns, but the presence of small non-conservative effects 
changes drastically the system dynamics at large times. The main new feature is 
attructive equilibria, which are essentially distinct from the conservative ones. For 
the existence of the attractors a balance between nonlinearity and non-conservative 
effects is necessary. A wide class of initial configurations evolves to the attractors 
of the system, providing a likely scenario for the emergence of the long-lived three- 
dimensional wind wave patterns. The resulting structures reproduce all the main 
features of the experimentally observed horse-shoe patterns. In particular, the model 
provides the characteristic ‘crescent’ shape of the wave fronts oriented forward and 
the front-back asymmetry of the wave profiles. 

1. Introduction 
The work is motivated by the desire to find a theoretical explanation of a quite 

common phenomenon seen by everybody on the sea or river surface under the action 
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of a fresh wind: the so-called ‘horse-shoe’ or ‘crescent-shaped’ patterns. Despite their 
common character and easiness of observation quantitative experimental information 
is rather meagre. We briefly summarize the experimental evidence one can acquire 
with the unaided eye. The ‘horse-shoe’ or ‘crescent-shaped’ patterns : 

(i) are easily observed on the sea surface in the presence of a fresh wind at early 
stages of the wave development; 

(ii) occur in the range of short gravity waves and are relatively long-lived, i.e. their 
characteristic time of existence greatly exceeds the wave period; 

(iii) are rather steep with sharpened crests and flattened troughs; 
(iv) have front-back asymmetry: the front slopes are steeper than the rear ones. 

Their most distinct feature is the specific ‘horse-shoe’ or ‘crescent-like’ shape of the 
wave fronts, always oriented forward. An idea of how these patterns look in the sea 
is given by the photographs in figure 1. Similar patterns were also produced in wave 
tank experiments both in the absence of wind (Su et al. 1982; Su 1982; G. Caulliez 
1995, personal communication) and in its presence (Kusaba & Mitsuyasu 1986; G. 
Caulliez 1995, personal communication). 

No quantitative field experiment to investigate specifically this phenomenon has 
yet been carried out and, to our knowledge, no theory explaining it even qualitatively 
has been developed. The aim of our study is to fill, at least partially, the latter gap. 

The first guess was made by Su et al. (1982). They supposed that the structures 
observed in the tank are manifestations of five-wave processes of the type 3 3 2 
(decay of the plane Stokes wave into two oblique satellites) or the class I1 instability 
using the term of McLean (1982), who thoroughly investigated numerically the linear 
stability of the Stokes wave within the exact potential equations. The transverse scale 
of the class I1 instability is of the order of the basic wavelength, in contrast to the 
modulational (or class I) instability which contributes mainly to nearly longitudinal 
long-wave modulations. This makes the class I1 instability a very likely candidate to 
explain the incipience of the crescent-shaped wave structures. Nevertheless, this idea 
has not been checked quantitatively even in tank experiments, although it should 
be mentioned that Su (1982) provided a strong argument in its support. He re- 
ported a good agreement with McLean’s predictions of the predominant longitudinal 
modulational wavelength. 

If we accept this hypothesis, then the main questions to be answered are: Why the 
class I1 instability should evolve into steady or quasi-steady patterns? What physical 
mechanisms shape them in such a specific asymmetric manner? 

An attempt to find what happens with class I1 instability at the nonlinear stage was 
made by Shemer & Stiassnie (1985) and Stiassnie & Shemer (1987), who considered 
the nonlinear evolution of the three harmonics subjected to the five-wave resonant 
interaction. They integrated the resulting set of three complex ordinary differential 
equations and found periodic variations of the wave amplitudes. The class I1 instability 
proved to be reversible, when treated as isolated. No steady or quasi-steady patterns 
were found. 

Another hypothesis (Saffman & Yuen 1980; Meiron, Saffman & Yuen 1982, see 
also Saffman & Yuen 1985) starts from the opposite end. It relates the steady three- 
dimensional patterns to bifurcations from two-dimensional ones within the family of 
steady weakly nonlinear solutions. It was noticed that the three-dimensional wave 
has smaller energy than the Stokes wave of the same steepness. This idea has two 
principal shortcomings. First, these three-dimensional waves always have symmetric 
fronts for both weakly nonlinear and exact equations. Second, the three-dimensional 
steady waves are unstable as are the Stokes ones (no comparative examination of 
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FIGURE 1. Horse-shoe patterns generated by wind in the sea (photo by E. Mollo-Christensen). 
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instabilities has been carried out yet), therefore their possible role in wave field 
dynamics remains questionable. 

In the present work we study a problem resembling that of Stiassnie & Shemer 
(1987) based on the Zakharov equation for water waves modified by taking into 
account non-conservative effects. The use of a new specific technique of canoni- 
cal transformation applied to the Zakharov equation (see Badulin & Shrira 1996; 
Badulin et at. 1995) enables us to handle the problem analytically. Aiming to explain 
the phenomenon of the observed ‘horse-shoe patterns’ we first will investigate the 
possibility of the appearance of some preferentially stable three-dimensional patterns 
and, upon getting some success, compare their properties with the experimentally 
observed ones. 

The work is organized as follows. In $ 2  starting with the primitive equations and 
utilizing Zakharov’s (1968) approach we arrive at a greatly simplified description for 
a number of wave modes interacting through four- and five-wave resonances. The 
selection of the essential modes based upon an analysis of the linear stability problem 
for the Stokes wave allows us to confine our consideration to just three interacting 
modes : the Stokes wave itself and two fastest growing symmetric oblique satellites, 
whose frequencies specified by the class I1 instability are, in a linear approximation, 
3/2 times greater than that of the Stokes wave. 

In $ 3  we study the Hamiltonian dynamics of such symmetric triads, focusing our 
attention on the structure of the stationary points of the system. It was found that 
the system possesses two stationary states corresponding to the essentially three- 
dimensional wave patterns with two fixed values of the phase difference between the 
central harmonics and the satellites, namely nn and n(n + 1/2) ( n  is integer). We 
call them in-phase and out-of-phase states respectively. The in-phase equilibria are 
identical to those found numerically by Meiron et al. (1982); however even the fact of 
their proved stability in a certain range of wave amplitudes does not make them likely 
candidates to explain the horse-shoe patterns ~ their fronts are always symmetric. In 
the generic case the motion of this Hamiltonian system is periodic. The instantaneous 
shape of the wave was found to depend mainly on the phase shift between the basic 
wave and the satellites. In some parts of the trajectories the patterns do resemble the 
experimentally observed horse-shoes. However it is not possible to freeze the instant: 
the system passes through these states quite rapidly. Thus, to explain the existence 
of the persistent structures with curved asymmetric fronts one must go beyond the 
framework of Hamiltonian dynamics. 

In $4 we consider the dynamics of our triad with non-conservative effects due to 
wind and dissipation taken into account. The effect of even a small non-conservative 
perturbation results in qualitative changes in the long-time system behaviour. The 
elliptic stationary points of the conservative system turn into foci or saddles. The 
appearance of absolutely attractive foci and slightly unstable saddles can explain the 
occurrence of the corresponding three-dimensional wave patterns in real situations. 

In the Discussion we summarize our conclusions and argue that the stable steady 
three-dimensional patterns we obtained are indeed the experimentally observed horse- 
shoes. We also discuss some implementations of the results, as well as the ques- 
tions raised. 

2. Themodel 
For the problems our work deals with, the non-conservative effects although small 

nevertheless play the key role. These non-conservative effects are input due to wind 
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and wave dissipation due to viscosity and/or sometimes to microbreaking. However a 
description of particular mechanisms of wave generation and dissipation goes beyond 
the scope of our work. Fortunately in our context only the most robust facts, just 
the presence, mficient smallness and sign of non-conservative effects proved to be of 
relevance. 

We first concentrate our attention on the conservative dynamics to reveal its 
inherent limitations and build the basis for the further analysis. 

2.1. Basic equations: the Hamiltonian formulation 
Consider potential gravity waves on the free surface of an inviscid, incompressible 
fluid of infinite depth. The governing equations in the Cartesian frame (x, y ,  z }  having 
the z = 0 plane on the undisturbed water surface and the z-axis oriented upward 
are standard : 

where &x,y , z , t )  is the velocity potential and z = q ( x , y , t j  specifies the free surface; 
the gravitational acceleration is set to be unity. 

We shall deal with the Hamiltonian formulation of the Euler equations of motion 
(2.1) in Fourier space, proposed by Zakharov (1968). In terms of Fourier amplitudes 
the complex variables h(k)  are expressed by means of integral power series in Fourier 
amplitudes ~ ( k )  and y ~ ( k ) ,  free surface elevation and velocity potential at the free 
surface (see Appendix A). The basic equations (2.1 ) take the form (asterisk means 
complex conjugate) 

(2.2a) 

where the Hamiltonian H is expressed in terms of integral power series in complex 
amplitudes b(k )  : 

x. 

H = H ~ + ~ H ,  
n=4 

and 

Ho = w(k)h(k)h*(k)dk. 1 
(2.2b) 

(2.2c) 

Letting the wave amplitudes b(k )  in series (2.2h) be of the order of a small parameter 
E ,  a standard asymptotic approach to the general Hamiltonian equation can be 
developed in a formal manner. The first term in the expansion of the Hamiltonian 
Ho being quadratic in b(k)  gives the linear terms in the equations for h(k)  (co(k) is 
the linear dispersion law). The terms H,, being of power n in amplitudes b(k)  are 
responsible for nonlinear terms of order ( n  - 1) in the equations. The procedure 
for the systematic derivation of the equation was suggested by Zakharov (1968) and 
improved by Krasitskii (1 990, 1994). 

Confining ourselves to the first three terms in the series (2.2bj we arrive at the 
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2 P  

The indices of kernels and &functions designate their arguments, e.g. 
V O ~ ~ ~  = V(k,kl,k2,k3), SOfi-2-3 = 6(k  + kl - k2 - k3). The Hamiltonian five-wave 
reduced equation (2.3) preserves three basic conservation laws : the Hamilton function 
H and two components of the momentum (Krasitskii 1994) 

Z = kb*(k)b(k)dk. (2.4) .I’ 
We look for the solutions to the set of integro-differential equations (2.3) using 

the following trick (Badulin & Shrira 1996). There is a certain freedom in kernels 
V0/0123, w01234 and in the corresponding canonical transformation to variables b(k)  
allowing one to add an arbitrary function to the kernels obeying the symmetries and 
vanishing at the resonant curves. The solutions in physical variables remain the same. 
This enables one to simplify the equations and get the exact solutions to them in 
an extremely simple form, namely in the form of the superposition of a number of 
&pulses in the wavevector space 

Here b,(t), ki are amplitudes and wavevectors of fixed harmonics. In this case the 
integro-differential equation (2.3) exactly reduces to a set of N ordinary differential 
equations (ODES) for the complex amplitudes of modes bi(t). The key point in the 
construction of this set of N equations is that the N modes of (2.5) constitute an 
isolated system of four- and five-wave resonances (see Badulin & Shrira 1996). The 
term ‘isolated’ means here that there are no harmonics K which are in approximate 
four- or five-wave resonances with harmonics ki of the ansatz (2.5), i.e. K satisfying 
the following two sets of equations 

3 

4 4 

1 I 

Here wavevectors k j  with different j can be equivalent and s j  = +1. Provided there is 
no K satisfying the above system, the ansatz (2.5) is an exact solution of the reduced 
Zakharov equation. The evolution of the modes is described by a set of N ordinary 
differential equations. 

The procedure of construction of such exact solutions of the reduced Zakharov 
equation (2.3) can be summarized as follows (see Badulin & Shrira 1996). Starting 
with the initial conditions in the form (2.5) we require amplitudes b(K) of all possible 
combinations of the basic wavevectors k j  (2.6a,b) to remain plain zeros. These 
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conditions mean the zeroing of the corresponding kernels b’0lr.i and W01234. Owing to 
the above mentioned freedom these kernels are fixed only at the resonant curves and 
can be chosen arbitrarily outside these curves (provided the necessary symmetries are 
kept). Thus, we put the kernels for non-resonant harmonics K equal to zero by a 
proper choice of canonical transformation. This canonical transformation has to be 
sufficiently smooth within the weakly nonlinear paradigm, which requires wavevectors 
K to lie outside some proximity of the resonant curves - ‘resonant zones’. 

We note that only due to the ‘technical’ trick described above, which allowed us 
to get the exact solution in the extremely simple fortn, does the problem becomes 
tractable analytically without the use of symbolic manipulators. For example, the 
ansatz (2.5) for, say, just three delta-functions corresponds to 66 (!) items in terms 
of the Fourier modes of the original variables 4 and q .  For some applications 
lying beyond the immediate scope of this work it is also important that the adopted 
approach enables us to describe the wave field with accuracy up to the quartic terms, 
while the models used previously (Shemer & Stiassnie 1985; Stiassnie & Shemer 1987) 
do not describe properly the cubic terms of the solution and do not preserve the 
energy integral with this accuracy. 

2.2. Selection of the dominant resonant processes 
Being interested in the three-dimensional structures emerging from plane waves, 
consider first the available knowledge on the instability of a plane wave with respect 
to small perturbations (McLean et al. 1981; Craik 1986). A plane wave with a 
wavevector, say, k ,  is unstable with respect to perturbations having wavevectors kh,  
k ,  which obey approximately a resonance condition 

nk, = kh f kc ,  nco, = m h  + wc, (2.7) 
where integer n = 2,3,4,. . .  corresponds to quartet, quintet, sextet etc. resonant 
interactions having O ( P )  characteristic timescales. Strictly speaking, in the generic 
case to describe the evolution of the instability emerging from a Stokes’ wave with 
a superimposed noise one should deal with a continuum of coupled harmonics 
having in common the central (basic) harmonics which obey (2.7). Moreover, at the 
nonlinear stage of evolution one should take into account all the interactions among 
the harmonics generated or enhanced by the instabilities, which makes the problem 
tractable only via an extensive direct numerical simulation. 

To get an analytically feasible model we make an assumption which radically 
simplifies the problem. As is common in the theory of hydrodynamic stability we 
consider the evolution of a system composed of a minimal, in this context, number 
of harmonics: the basic wave and two modes corresponding to the fastest growing 
transversal perturbations. The physical arguments in support of the adequacy of such 
a model for the study of the pattern formation can be summarized as follows. 

The lowest-order instability of the plane deep water wave due to four-wave in- 
teractions (the Benjamin-Feir instability) is nearly one-dimensional and is confined 
to relatively large spatial scales of order c’. Obviously this process cannot be the 
dominant one in the formation of the three-dimensional patterns under considera- 
tion. The essentially transverse instabilities with the dominant scale of order of the 
basic wavelength appear owing to the five-wave and higher-order interactions. The 
instability domains in wavevector space due to these interactions are very narrow, 
generally O(d’ I. They have maximal width for the transversally symmetric wavevector 
configurations. This is a purely kinematic fact caused by vanishing of the corre- 
sponding derivatives of the group velocities. The maximal growth rates of linear 
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FIGURE 2. Selection of the dominant triad. (a) Instability rate diagram for the Stokes wave of 
steepness 0.3. ( b )  The dominant symmetric resonant triad in k-space. 

instability correspond to these symmetric patterns as well (McLean 1982; Kharif 
& Ramamonjiarisoa 1990). Their remarkable feature ensuring the possibility of a 
quasi-permanent form of the resulting patterns is that these perturbations are phase 
locked with the basic wave, i.e. they move with the same celerity as the basic wave 
while having standing-wave structure in the transverse direction. 

Weakly nonlinear theory predicts instability rates of the order of E". Thus it is 
natural to restrict our consideration to the lowest, the fifth-order, resonances of the 
type (2.7) with n = 3, which leads to the approximate ( E  + 0) resonance conditions 

wb = (;ba, kbx = ( i ) kax ,  kby = (2.8) 
We also note that for steepness exceeding 0.3 the maximal rates of the class I1 insta- 
bility exceed Benjamin-Feir instability rates and thus for steep waves the five-wave 
instability becomes the dominant process (see McLean 1982; Kharif & Ramamon- 
jiarisoa 1990). An illustration of the location of instability domains in k-space for this 
threshold steepness 0.3 is given in figure 2. The arguments above show an exceptional 
feature of transversally symmetric configurations. They enable one to expect their 
dominance at the nonlinear stages of the wave-field evolution as well. 

2.3. Three-mode equations 
2.3.1. Hamiltonian equations 

Consider a three-phase wave system (2.5) which is in five-wave resonance (2.7), with 
n = 3. Without additional approximations we get the following set of three ordinary 
differential equations for complex amplitudes of these modes, a, b, c, respectively: 

(2.9) 1 iat = w,a + [vaaaaIa12 + 21/,babIb12 + 21/,,,,Ic121a + 3Wbcaaabc(a2)*, 

ic, = w,c + [2VacacIa12 + 21/hcbclb12 + VccccIc12]c + Wbcaaac*a3. 
ibt = wbb + [21/,bab/a/2 + T/hbbblb12 + 2I/hcbc/C1*]b + Wbcaaab*a3, 

The so-called 'natural symmetry' conditions of kernels V ,  W are used here (see 
Krasitskii 1994). The set (2.9) corresponds exactly to the general Hamiltonian 
equation (2.3) and therefore it has the same basic laws of conservation of energy 
and momentum of our wave pattern. The conservation of the two components of 
momentum yields 

la12 + ;(lb12 + lc12) = 11, Z(lbl2 3 - /c12) = 12, (2.10) 
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where for II  we have used the form symmetric in b and c. 

a = A exp(-icc), h = B exp(-ip), c = C exp(-iy), (2.11) 

we reduce equations (2.9) to four equations for the real amplitudes A, B, C and the 
phase @: 

A, = 3 Whcaaa B C A’ sin @, 
B, = - WhcaaaCA3 sin @, 

C, = - Whc B A’ sin @, 1 (2.12a) 

(2.12b) 

(2.12c) 

H = w,A* + WhB’ f o>, c2 
f ( V a a u u A 4  f l/hhhhB4 -k T/,,,,C4 +4vab,bA2B2 $4VacacA2C2 f41/h,h,B2C2)/2 
f 6A3BCWh,nuo cos @. (2.13) 

The system can be easily reduced to a single ordinary differential equation by using 
the three conservation laws (2.10), (2.13) and, thus, be integrated (see Shemer & 
Stiassnie 1985). 

Bearing in mind the speculations of the previous subsection on the possible mode 
selection in multi-phase wave systems, we consider further the transversally symmetric 
three-wave patterns only, namely we put amplitudes and phases of the satellites equal, 
i.e. B = C, p = y. This results immediately (2.10), (2.12a), (2.13) in the very simple 
conservation laws 

(2.14) ;(B2 - C’) = 12  = 0, A’ + 3B’ = I !  = I 

and the governing equations in real variables in the form 

(2.15) I A, = wb(,aa(l  - A2)A’sin @, 

@r = 6 + MA2 + WhC,,,A(3I - 5A’) cos @, 

where the phase @ is now defined as 

@ = 3a - 28. ( 2 . 1 6 ~ )  

The parameter 6, defined as 

6 = 30 ,  -2uh +1[(12l/uhuh-2Vhhhh -4vhthc)/3], (2.16b) 

can be interpreted as the frequency shift due to linear frequencies mismatch and the 
constant part of the nonlinear frequency shift (in square brackets). The parameter M 

M = 3 V,UU - 8 I/uhah + f Vbhhh f $ vbthc 9 (2 .16~)  
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is the coefficient responsible for the nonlinear frequency modulation. The interaction 
coefficient WbCaao will be designated as W for brevity; the explicit expressions for 
I/, W are given in Krasitskii (1994), Badulin et al. (1995). The first integral of the 
system, the Hamiltonian, now takes the form (cf. (2.13)) 

H = 6 ~ 2  + ~ ~ 4 / 2  + 2w(1- A Z ) A ~  cos @. (2.17) 

Thus, the system (2.15) being an easy target for complete analysis provides a good 
starting point for understanding of much more sophisticated non-conservative dy- 
namics. 

2.3.2. Weakly non-conservative equations 
The dynamics of wind waves is not entirely Hamiltonian: the non-conservative 

effects of wind, viscous dissipation and other factors can strongly affect wave field 
evolution. Unfortunately, there is no clarity yet in the physics of wave generation. 
Even for two-dimensional small-amplitude waves there are a number of competing 
theories based on quite different approaches (see e.g. Miles 1994; Belcher & Hunt 
1993). For the steep three-dimensional waves we are concerned with there is no 
theory, numerical simulation or laboratory experiment. The situation is even worse 
with the understanding of the numerous mechanisms of wave dissipation. However, 
any analysis of physical mechanisms of wave dissipation/generation goes beyond the 
scope of this work. We shall adopt the following approach. We assume that energy 
input and sink do occur in the system under consideration, being of the order of the 
quartic nonlinear terms, i.e. of order c4 and shall focus our study on the fundamental 
aspects of the dynamics which do not depend or depend only very weakly on the 
specific features of the non-conservative terms. 

There are rather obvious grounds to take non-conservative effects of order c4. The 
smaller effects become important only at much larger timescales; stronger effects 
will prevail and make the nonlinear wave interactions negligible. It should be also 
mentioned that the chosen scaling does not contradict available experimental evidence. 
To take into account weak non-conservative effects in a systematic manner one should 
perform an asymptotic procedure in powers of E quite similar to that we performed 
for the conservative problem. The results can be easily anticipated if we let the linear 
dispersive law have a small imaginary part, that is 

co = o,(l+ iya); ra = maya; ya w o ( E ~ ) .  (2.18) 

Negative ya  (r, ) corresponds to dissipation and positive to generation of a harmonic. 
In generic situations any asymptotic expansion in wave amplitudes in the equations 
yields linear non-conservative term at the leading order. In principle we can allow 
generation and dissipation to depend on the wave amplitudes; however, having no 
well established theory for choosing the right nonlinear dissipation and generation 
we confine ourselves to the simplest case of linear dissipation and generation, i.e. to 
constant y .  Recall that constant y corresponds to the generic situation. The fact 
that the non-conservative effects are of order E~ means that they enter O ( E ~ )  dynamic 
equations in the additive way. 

In particular, for the case of symmetric three-inode wave patterns we are interested 
in, we get 

(2.19) 
A, = 3 WB*A* sin(@ + y a )  + T ~ A ,  
B, = -WBA3 Sin(@ - Y b )  + rbB,  
@, = 3Q2, - 252h + W [9AB2 cos( @ + Y a )  - 2A3 cos( @ - Y b ) ] .  
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These equations provide the framework for our further consideration. 
The essence of this section can be summarized as follows. All the assumptions made 

by now are embodied in equations (2.19). These equations constitute the mathematical 
model of the phenomenon under consideration. The model is based on the idea that 
the main processes are the quintet resonant interactions and input and dissipation 
due to wind and other factors. These processes are taken into account at the lowest 
possible order. Obviously being not identical to the very complex phenomenon of 
horse-shoe pattern formation, the model, as we show below, does describe some of 
its essential features. 

3. Hamiltonian dynamics of the transversally symmetric triad 
The system (2.12a) can be easily integrated and all the desired properties of the 

solutions surely could be readily found in this manner (see Shemer & Stiassnie 1985). 
However the investigation of this system in itself is not the goal of our study: we 
need it just to provide the basis for the analysis of the more complex non-conservative 
system. 

First we note that in the Hamilton function (2.17) there are terms of three different 
orders in amplitude. Taking into account all orders in the Hamiltonian becomes of 
over-riding importance when the sum of the two lowest-order terms is close to zero. 
In this case the highest-order term can give new physical effects. In the space of 
parameters 1,6 there are always domains where this balance holds. We recall that 
6 measures the mismatch between the frequencies while I roughly characterizes the 
nonlinearity of the problem. 

The basic equations for three-wave patterns (2.12a,h,c) and their symmetric simpli- 
fications (2.15) resemble those of the classical problem of three-wave interactions (see 
Weiland & Wilhelmsson 1977; Craik 1986). The comparison of these systems is useful 
to carry out in  terms of an analogy with the motion of a particle in a potential field. 
On using the conservation laws these systems (see Weiland & Wilhelmsson 1977, 
chapter 9) can be transformed into the form of a single second-order differential 
equation, quite similar to the Newton equation for a particle in a one-dimensional 
potential field 

d2A - dn,(A) 
dt2 dA ’ 
__ (3.1) 

where the amplitude A becomes an analogue of the particle coordinate, and the order 
m of the polynomial TI, equals the order of wave interaction ( m  = 3 for three-wave 
interactions, m = 5 for the problem under consideration). The total energy of the 
particle is constant, that is 

E = - +TI,(A). ( Y ) 2  
Depending on the initial total energy (or equivalently, on the initial wave amplitude) 
a number of stationary points (stable and unstable) can exist (see figure 3). In the 
case of the classical triad interactions we have no more than two stationary points, 
while in our case of five-wave interactions we can get four stationary points. Thus, 
there are grounds to expect essentially richer dynamics in our problem than in the 
classical three-wave one. 
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FIGURE 3. Wave pattern conservative dynamics in terms of particle motion in a potential field. 
(a) Three-wave resonant interactions. The potential energy ZI(A) is a cubic polynomial, two 
stationary points are possible. The particle motion occurs on the surfaces of constant total energy 
Eo. ( b )  Five-wave interaction potential. U ( A )  is a fifth-order polynomial. There are four stationary 
points and two finite regimes of motion are possible for the same energy level Eo. 

3.1. Stationary states 
3.1.1. ‘Trivial’ stationary states 

We start our analysis with the study of the simplest stationary states of the system 
(2.15) corresponding to zero amplitude of one of the harmonics. We shall call these 
states trivial. They include: 

( a )  the short-crested wave 

A0 =0,  Bi = I / 3 ,  6 = O ;  ( 3 . 2 ~ )  

(b )  the plane Stokes wave 

A i = I ,  Bo=0, ~ + M A ~ - ~ W A ~ C O S @ O = O .  (3.2b) 

Here the subscript 0 is used to designate the equilibrium parameters. We note 
that within the classical three-wave interactions (Craik 1986) there is no analogue 
of the short-crested wave state (3.2~).  As can be easily shown, the short-crested 
stationary waves we found are neutrally stable in the linear approximation, that is 
the corresponding linear stability problem is degenerate (all eigenvalues are plain 
zeros). For this state to occur certain conditions on the frequency mismatch should 
be satisfied, while there are no limitations on the phase shift GO. 

The second stationary state (3.2b) is the well-known Stokes plane wave. The 
evolution of infinitely small perturbations of amplitude B for this state depends on 
the phase @. It is easy to show that for 

@o = mn, m = 0,+1,&2 ... 

this stationary point is neutrally stable; for all other values of @O this state is unstable. 
The maximal growth rates are in agreement with the predictions of linear instability 
analysis (McLean et al. 1981; Zakharov 1968) and correspond to the extrema of the 
Hamilton function (total energy) (2.17). 

3.1.2. Non-trivial essentially three-dimensional stationary states 
We shall call essentially three-dimensional stationary points with non-zero ampli- 

tudes A0 and Bo ‘non-trivial states’. For these states to exist we have the necessary 
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condition in terms of the phase @o. 

sin @po = 0. 

Depending on the amplitude Ao,  two types of equilibria are possible : 
( a )  ‘in-phuse’ states 

6 + MA: + W’Ao(31 - 5 A i )  = 0, SDo = f 2 m 7 ~ ;  (3.3a) 

( h )  ‘out-qf-phase’ states 

6 + M A ;  - WAo(31 - 5 4 )  = 0, @o = f ( 2 m  + l ) ~ ,  (3.3b) 

where m is an arbitrary integer. We introduce the terms ‘in-phase’ and ‘out-of- 
phase’ because from the definition of SD (2.16a), @ = 3% - 2/3, it follows that the 
corresponding phase shifts between the central harmonic and the satellites, i.e. /3, are 
(m.) and ( m n  + 7~/2). 

The equilibria ( 3 . 3 ~ )  are identical to those found numerically by Meiron et al. (1982) 
within the exact equations, while another family (3.3b) is new, to our knowledge. 

Within the framework of our equations the analysis of the stability of these 
equilibria is straightforward. Linearizing (2.15) about equilibrium the ( 3 . 3 ~ )  and using 
the evident inequality 1 3 A,?, (see 2.10) we obtain a simple stability criterion for the 
‘in-phase’ equilibria, 

This condition can be easily satisfied for any small I (that is for any small wave 
steepness) by a proper choice of the mismatch parameter 6. 

Similarly obtained, the stability criteria for the ‘out-of-phase’ stationary states (3.3b) 

2 M A i  + WAo(31 - 15Ai)  < 0. 

2M.4; - WAo(31 - l5Aa) > 0 

can be satisfied for very steep waves only (the steepness should exceed N 0.7). 
We pay particular attention to the elliptic stationary points of the conservative 

problem, as one can expect a transformation of these states into stable or unstable 
foci when weak non-conservative effects are taken into account. For small and 
moderate wave amplitudes we find only one type of stationary point ( 3 . 3 ~ ) .  The 
second stationary point (3.3h) appears at wave steepness exceeding the extreme 
values for the Stokes deep water waves. It  should be noted however that generally 
three-dimensional waves usually have much higher extreme steepness and Zakharov’s 
equation even with only cubic terms retained, describes them with a good accuracy 
up to steepness Y 0.4 (see Badulin et al. 1995). 

It is important to note that both the ‘in-phase’ and ‘out-of-phase’ equilibria we 
have found are non-isolated, i.e. the condition of stationarity prescribes a curve in 
the phase space 

This indicates that the system is structurally unstable with respect to a small non- 
conservative perturbation. In particular, we show below that new stable equilibria 
can appear at much lower values of wave steepness. 

sin SDo = 0, f ( A o ,  Bo)  = 0. 

3.2. Discussion: Hamiltonian dynamics of  the triad 
Let us formulate again, now in terms of the chosen three-mode system, the require- 
ments of a theory attempting to explain the basic experimental evidence on horse-shoe 
patterns and consider from this viewpoint the Hamiltonian dynamics of the triad. 
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(a )  @In (b)  @In 
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FIGURE 4. Phase portraits of the system (2.15) for different values of wave steepness. (a) E = 0.25: 
elliptic stationary point at @ = 0 and hyperbolic point at @ = n. ( b )  E = 0.75: two elliptic stationary 
points at @ = 0 and @ = n. 

A theory must explain at least two main points: (i) the emergence of long- 
lived three-dimensional patterns from the instability of a Stokes’s wave. This means 
that there should be trajectories which begin in the vicinity of trivial equilibria 
corresponding to the Stokes wave and reach a stable equilibrium; (ii) the characteristic 
asymmetric crescent fronts and their permanent orientation forward, which means 
that the equilibrium should have a fixed value of phase Q0 lying within the interval 

A good idea of the dynamics of the triad could be acquired from the analysis of 
phase plane of the system. Some examples of phase portraits of system (2.15) for 
different values of governing parameters 6 and A;/I  (A0 is an initial wave amplitude 
which is proportional at the leading order in E to wave steepness) are shown in figure 4. 
Being primarily interested in the nonlinear stage of the McLean instability of the 
plane waves, we can see in figure 4 that the trajectories originating in the vicinity of the 
unstable stationary point ( A  = Ao, Bo = 0)  are always periodic and, unless the initial 
deviation from the plane wave is large enough, the phase @ inevitably varies from 0 to 
271. It is clear that within this conservative problem there is no way for the system to 
start in the vicinity of the plane wave and reach a stable equilibrium. The shape of the 
wave patterns corresponding to different points in a trajectory depends mainly on @. 

To illustrate this point some samples of the patterns taken along one typical 
trajectory are depicted in figure 5. While at some phases the resulting patterns do 
resemble the horse-shoe ones, they pass through these states pretty quickly. We note 
that the system could stay for a quite a long time in the vicinity of the saddle point. 
However these states are not the ones we are looking for, as they are structurally 
unstable and symmetric, contrary to the observations. 

Thus, it does not seem possible to explain the existence of persistent asymmetric 
patterns within the framework of purely Hamiltonian dynamics. 

[-n, 01. 

4. Weakly non-conservative three-dimensional patterns 
4.1. Equilibria of the non-conservative system 

We continue our line of study by focusing attention on the stationary states of the 
system. The ‘non-conservative’ equilibria are specified by the set of equations (2.19) 
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(b)  
1 .o 

0.5 

0 

-0.5 

-1 .o 
0 0.5 1 .o 1.5 2:o i, 0:5 1 :o 1 :5 2: 0 

(c> 
1 .o 

0.5 

0 

-0.5 

-1 .o 
0 0.5 1 .o I .5 2.0 0 0.5 1 .o 1.5 2.0 

x x 

389 

FIGURE 5 .  Samples of the three-dimensional wave patterns along a trajectory of figure 4 taken at 
different moments of time. Waves propagate rightward. (Maxima are white, minima are black.) The 
amplitude of the initial perturbation is 15% of the basic wave. ( a )  @ = 0 , ( b )  @ = n/2 ,  ( c )  @ = n, 
( d )  @ = 3n/2. 

with the left-hand side put to zero. These equations prescribe the ‘equilibrium’ values 
of the amplitudes Ao, Bo and the phase @O as functions of ‘external’ parameters 
of generation/dissipation Ta,  f 1, and the linear frequency mismatch 6 specifying the 
chosen triad. 

The set of equations (2.19) is greatly simplified by expanding in y and retaining the 
leading-order terms. Letting formally y u  = 0, y b  = 0 in the argument of the sine in 
(2.19) in the case of finite @o we have 

3WB,’Ai sin @O + TuAo = 0, -WBoAi sin Go + rbBo = 0. (4.1 ) 
We omitted the equation for the phase @O which can be assumed automatically 

satisfied, say by a proper choice of the linear frequency mismatch. Consider some 
conjectures that one can immediately see from equations (4.1). 

( a )  For the existence of an equilibrium it is necessary for the system to have a 
balance between energy input and dissipation. This implies the condition 

rorh < 0, (4.21 
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which means that either energy input into central harmonics is balanced by the 
dissipation of satellites or vice versa. 

( b )  The ‘trivial’ equilibria (3.2a,b) disappear, i.e. the stationary plane wave and 
short-crested wave patterns are not possible in the non-conservative system. This 
important fact has the same general physical basis. While any stationary state in 
the non-conservative system needs a balance of generation and dissipation, the zero 
amplitude of one of the harmonics means the absence of either the energy input or 
sink, thus forcing the former ‘trivial’ stationary states either to grow or to decay. 

(c) The ratio of the amplitudes of the satellites to the central harmonics is fixed by 
the simple relation 

We emphasize that this parameter of the stationary states is prescribed exclusively by 
the ratio of the system input/output. 

( d )  The non-conservative equilibria are essentially distinct from their conservative 
counterparts. While the conservative stationary points could have just two fixed 
values (zero and n) of the phase @, the phases of the non-conservative equilibria fill 
all the interval [0,2n]. 

Below we consider some properties of these equilibria in more detail, focusing on 
the two most interesting limiting cases: that of the infinitesimal non-conservative 
effects and that of the ‘maximal possible’ ones. The latter class of equilibria will be 
referred to as ‘saturated states’. 

4.1.1. Infinitesimal dissipation/generation 
We are particularly interested to trace the relations between the ‘non-conservative’ 

and Hamiltonian equilibria. To understand the role of non-conservative perturbations 
in the system dynamics we start with the case of infinitesimal dissipation/generation. 
We shall refer to the dissipation as very weak if it is small compared to the quartic 
nonlinearity. This means the scaling 

r <<  WE^ - W I ” ~ .  (4.4) 
Using the scaling (4.4) we easily find the approximate formulae for @O for the equilibria 
of the system (2.19): 

(4.5~) 

(4.5b) 

For the stationary amplitudes we arrive again at the approximate formula (4.3). We 
stress that the trivial stationary states (plane and short-crested waves (3.2a,b)) are 
structurally unstable with respect to any infinitely small non-conservative perturba- 
tions, i.e. they disappear as soon as any infinitely small dissipation/generation terms 
are incorporated into our dynamical model (2.19). 

The question of the modification of the non-trivial stationary states due to small 
non-conservative factors is not so simple as the previous one. The shift of stationary 
points in phase @O relative to the conservative problem is negligibly small (in that the 
dissipation is very weak in the sense (4.4)), but the amplitudes corresponding to these 
stationary points change drastically. These changes are due to the disappearance of 
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the conservative integrals of motion. As we consider the ultimate states of the system, 
the non-conservative system ‘forgets’ its initial ‘conservative’ parameters. The small 
effect being accumulated over a long period of time results in considerable changes 
in the stationary states. From the equation for the phase and (4.5a,b) we have for 
the stationary points (diO is small) 

i jnc  + A4,,?A; & WAi(9R - 2)  = 0, (4.6) 
where the mismatch is expressed in terms of linear frequencies of harmonics 

a,,,. = 3cuu - 20)h 

and the modulational parameter is 

Mnc = 3 v u a u o  - 8 V u b u h  + R( 1 o v u b u h  - 8f‘bcbc - 2 v h b b h ) .  

Subscript nc for ‘non-conservative’ values of parameters ij,,,. and Mnc is introduced to 
emphasize the fact that their values differ from those of the ‘conservative’ problem 
(3.3a,b). We can trace the links of these non-trivial stationary states in the conservative 
and the non-conservative problem in terms of specific ‘in-phase’ and ‘out-of-phase’ 
patterns of water waves as the changes in @O remain small. At the same time, we 
recall again that the values of the stationary amplitudes AO and Bo significantly 
change relative to their ‘conservative’ counterparts regardless of the smallness of the 
generation/dissipation. As we show below, these displacements of equilibria strongly 
change the stability properties of these ‘in-phase’ and ‘out-of-phase’ patterns. 

4.1.2. ‘Suturated’ states 

are of the same order of magnitude, that is 
We stated in previous sections that dissipative and nonlinear terms in our model 

to >> r -  WE^ - wP. 
It is of particular interest to consider the limiting case when we have maximal ratio 
of non-conservative to nonlinear terms while still permitting the stationary states 
to exist. Hereinafter we shall refer to these states as ‘saturated’. In this limit the 
equilibrium phase is fixed (see (4.1)) 

sin@, = f l .  (4.7) 
The minus sign in (4.7) corresponds to generation of the central harmonic and 
dissipation of satellites, the opposite sign means the opposite energy balance. The 
exceptional nature of these saturated states lies in the fact that they have the minimal 
amplitudes A,  B at given Tu,  rh. They are the most ‘non-conservative’ equilibria and it 
is difficult to find their direct counterparts in the conservative problem. I t  is interesting 
to note that from the purely ‘geometrical’ viewpoint the saturated equilibria are those 
exhibiting the most curved and asymmetric fronts. We shall discuss some of their 
properties below. 

4.2. Linear stability of the equilibria 
In the previous subsection we found that the taking into account of non-conservative 
factors gives us a wide class of wave patterns of permanent form of quite different 
types. To select the physically meaningful ones we first consider the stability of the 
patterns. 

The drastic difference in the characteristics of ‘conservative’ and ‘non-conservative’ 
equilibria at the first glance seemed to contradict to an intuitive understanding of the 
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weakly dissipative motion of a particle in a potential field. Indeed, the weak dissipative 
perturbation of one-dimensional potential motion can move slightly the coordinates 
of the stationary points; however the main qualitative features of this motion are 
evident: the particle moves near the stationary point losing its total energy and falling 
down into the potential hole (see figure 3), the centre just becomes the focus. 

The principal point in our analysis of the stability problem is that the taking into 
account of non-conservative effects increases the dimension of the system due to the 
disappearance of the conservative integrals of motion. As it was noted above, the new 
degrees of freedom allow the system equilibria to drift far from their conservative 
locations in the phase space, however small the non-conservative effects are. Having 
found these new equilibria specified by (4.1), one can perform a linear stability analysis 
in the vicinity of these points in rather general form. 

In a standard manner we arrive at the eigenvalue problem 

det(ilE + D )  = 0, 

where the matrix D is 

E is the unit matrix and 
di, = (6Vuau, - 8Vabab)& + W(9B; - 6Ai) COS @o, 
@b =z (24V0bab - 4I/bbbb - 8I/b&)BO + 18WAOBo cos die. 

In the problem (4.8) positive I I  corresponds to stability. The conditions of stationarity 
are used. The eigenvalue problem (4.9) can be easily analysed numerically for the 
generic case. However, in this paper we shall focus upon the two distinguished 
limiting cases of the balance of nonlinear and dissipation mechanisms in order to 
clarify the physical conditions when particular types of the three-dimensional patterns 
of permanent forms can prevail. 

4.2.1. Injinitesimal non-conservative perturbations 
First we consider the case of infinitely small non-conservative effects which allows 

an easy analytical treatment. The eigenvalue problem (4.8) can be analysed in this 
case by means of the simplest perturbation procedure. 

As the zero approximation we let 

Fa = rb = 0 

and get simple expressions for the eigenvalues at the zero-order approximation 

ily’ = 0, ( 4 . 1 1 ~ )  

(4.11b) 
where the signs plus/minus correspond to the in-phase/out-of-phase equilibria. The 
eigenvalues do not depend on dissipation rates but they are not the same as for 
the ‘conservative’ problem because of significant displacement of the stationary states 
themselves in the phase space. We can easily obtain simple criteria of stability in this 
approximation in terms of the interaction coefficients (see Appendix B). We note that 
instability criteria in this case are expressed in terms of wave amplitudes only and do 
not depend on non-conservative mechanisms. So, we can refer to this type of stability 
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as ’conservative’. The stable in-phase equilibria can exist at any wave steepness in 
contrast to out-of-phase states which have a threshold steepness of about 0.33. We 
emphasize the drastic decrease in the threshold wave steepness (more than two times) 
for these out-of-phase states compared to the ‘truly conservative’ equilibria of Q 3.2. 

Apart from the modified ‘conservative’ instability considered above there are new 
instabilities due to the dissipative terms in matrix D having growth rates of order of 
these terms. To complete the picture we give the formulae and the explicit stability 
criteria in Appendix B. 

Regardless of the smallness of these instabilities it seems very useful to analyse 
some of their specific properties. The appearance of ‘absolutely’ (with respect to both 
strong ‘conservative’ and weak ‘dissipative’ instabilities) stable states mainly depends 
upon the type of energy balance. If the central harmonic is generated and the satellites 
dissipate the in-phase states are absolutely stable in the above defined sense (see B 5a) 
for waves steeper than 0.18. 

While the absolutely stable in-phase states occur in a wide range of amplitude 
parameters, the corresponding stability criteria for the out-of-phase states (B 7 a )  are 
incompatible for realistic wave steepness regardless of the type of energy balance. 
Does this mean that the corresponding structures are of no physical importance? The 
answer in the general case is no. In fact a kind of meta-stable state is possible. The 
instability can develop in some directions in phase space, but be very weak in other 
directions. This is just the case for the problem under consideration. 

Indeed, let us calculate the eigenvector < = (<a,(j,,(G) (indices of components of 
this vector correspond to the variables of our problem) for the zero eigenvalue in 
our problem ( 4 . 1 1 ~ ) .  We found that its component ta  is zero in the zero-order 
approximation. In the further approximation this component becomes of the order 
of the dissipation/generation rates, while the first two components of the eigenvector 
are of the order of the nonlinear terms which is much greater in accordance with the 
adopted scaling (4.4). This means that the further corrections to the zero eigenvalue 
leading to the ‘non-conservative’ instability affect mainly the amplitude dynamics, 
but not the phase @ evolution. The resulting wave pattern will preserve its phase 
characteristics for a much longer period than the amplitude ones. The corresponding 
case needs the same type of energy balance as the stable in-phase states: energy going 
into the central harmonic and satellites dissipating. 

The domains of absolute stability, instability and meta-stability are depicted in 
figure 9, Appendix B. Qualitatively the effect of infinitesimal generation/dissipation 
upon stability can be briefly summarized as follows: 

( a )  The attractors (absolutely stable equilibria) are found for the realistic wave 
amplitudes. The attractors correspond to the in-phase states. 

(b )  The meta-stable equilibria corresponding to the saddle-type points with rela- 
tively large positive eigenvalues and infinitesimal negative ones are permitted to occur 
within the realistic range of parameters. Such equilibria will manifest themselves as 
the relatively long-lived wave patterns. Both in-phase and out-of-phase states might 
be meta-stable in the above defined sense. 

(c) The specific type of energy balance, namely energy going into the central 
harmonic and from the satellites, is more favourable to the appearance of persistent 
patterns. 
We have paid so much attention to the case of infinitesimal non-conservative per- 
turbations because of the fundamental importance of the concepts of attractive 
and meta-stable equilibria we formulated. For these effects to become apparent in 
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finite time one should consider non-conservative terms of the order of the dominant 
nonlinear ones. Such a situation will be analysed below. 

4.2.2. Stability of saturated states 
Linear stability of the saturated patterns corresponding to Qio = f n / 2  in (4.7) can 

be treated in a manner similar to that of the previous subsection. The eigenvalue 
problem (4.9) for this case reduces to the following extremely simple equation (see 
(4.8), (4.9)) : 

(n  + 3 r a  + 2rb)(L2 - ran - 3 r a r b )  = 0. (4.12) 
Its solutions give us explicit stability criteria in terms of dissipation coefficients 

r a  > 0, (4.13~) 

Bi 2 
9' 

(4.13b) 

(4.14) 

Condition (4.13~) means that stable saturated patterns are possible only if the input 
of energy goes into the central wave and the satellites are dissipating. It also selects 
the unique value of the phase @O that, as will be shown below, prescribes uniquely 
the orientation of the wave fronts: the crescents are oriented forward. 

Condition (4.13b) gives the most transparent form in terms of Ta, r b :  

(4.15) 

This means that the dissipation decrement should exceed the generation increment. 
On reformulation in terms of wave amplitudes (4.14) it ensures the fact of principal 
importance - a limitation of the satellites' amplitude in the stable patterns. 

4.3. Discussion 
In $4.1 we first found a family of stationary three-dimensional waves and later 
in $4.2 identified the patterns which are absolutely stable with respect to linear 
perturbations. The absolute stability in the linear approximation guarantees just that 
all the trajectories are attracted into the chosen stationary point that are originated 
close to this point. The study of the global properties of the trajectories requires a 
quite different approach and goes beyond the scope of the present work. However 
just to see whether the domains of attraction in the phase space are large and are 
not confined to the vicinity of the stationary points found we performed a number of 
numerical simulations of system (2.19) choosing initial states in a random manner. 

4.3.1. Simulations 
The simulations indicate (in no way we are claiming that they prove) the following. 

The equilibria we found may have vast domains of attraction in the phase space in the 
case of the very large amplitudes. For the waves of small and moderate amplitudes 
the domains of attraction proved to be rather small. An example of the trajectories 
in the phase space in the vicinity of a saturated equilibrium is given in figure 6. For 
better illustration we took a large amplitude corresponding to steepness of about 
0.35, although similar attractors are possible for the waves of moderate steepness of 
about 0.2 as well. The wave patterns corresponding to the limiting state of figure 6 
are depicted in figure 7. Discussion of other aspects of the numerical simulation is 
the subject of a separate work and will be reported elsewhere. 
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B A 
FIGURE 6. A typical scenario of the system evolution in the vicinity of the saturated state 
equilibrium. The wave steepness is about 0.35. (a) A trajectory in the three-dimensional phase space. 
(b ,  c )  Projections on  the planes (A ,  CP), ( B ,  @) 

4.3.2. Front-hack asymmetry 
It should be noted that the patterns given in figure 7 demonstrate noticeablefront- 

hack asymmetry: the maximal front slopes are steeper than the rear ones. We analysed 
a number of samples of stable equilibria with different parameters and found the same 
sign of such asymmetry everywhere. A common way to characterize the asymmetries 
of the random wave fields quantitatively is the use of some high-order odd statistical 
moments (see e.g. Elgar & Guza 1985). For the ‘front-back’ type asymmetry the most 
appropriate quantitative measure is (see Leykin et al. 1995) 

&!z = ((6 [yl 13) / ((6 hl I2Y2? 
where (. . .) is statistical averaging and 6 [ y ]  is the Hilbert transform of the elevation 
function y.  For all steady wave solutions of inviscid equations .d is identically zero. 
The vanishing of d is due to specific properties of water wave nonlinear interactions 
which can only provide harmonics with a zero phase shift. The presence of either 
generation or dissipation changes the situation : the phase shift between the harmonics 
becomes of the order of the generation/dissipation. The positive d corresponds to 
steeper rear slopes, negative .d means steeper fronts. We note that an interpretation 
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FIGURE 7. The saturated state pattern corresponding to the ultimate state of figure 6 

Y 

of d as a quantity specified by interactions between the harmonics is common in the 
use of bi-spectral analysis (see e.g. Elgar & Guza 1985; Leykin et al. 1995). 

We computed d for a number of patterns of steepness 0.25 with different phases @O 
in the range [O, -7~1. The asymmetry is negative in this range, it reaches its maximum 
in modulo, which is about 3%, at Q0 = -n/2, i.e. at the saturated state. It is nearly 
zero for the in-phase and out-of-phase equilibria, which correspond to infinitesimal 
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FIGURE 8. Equilibria us. the ‘initial’ plane wave. The curves correspond to different dissipa- 
tionlgeneration rates: (i) Ta = 0.002, rh = -0.001; (ii) r, = 0.008, rb = -0.004; (iii) r, = 0.032, 
rb = 0.016. (a )  The stationary state amplitude A. us. the stationary state phase angle @. ( b )  The 
stationary state amplitude A0 us. the amplitude of the ‘initial’ plane wave. 

generation/dissipation. Thus the asymmetry, at least within our model, is a statistical 
measure of the ratio of non-conservative effects to nonlinearity. It is interesting to 
note that the maximal contributions into asymmetry are due to second-order terms, 
while those due to both the leading- and higher-order terms are usually noticeably 
smaller. The absolute values of a? proved to be several times smaller than those 
available from the tank measurements by Leykin et al. (1995). The detailed analysis 
of asymmetry properties requires a special study. 

We note that to our knowledge our solutions are the first stationary ones for waves of 
gravity range exhibiting the front-back asymmetry typical of the experimental patterns.? 

4.3.3. On the selection of ultimate equilibria through initial daia 

The linear stability analysis allowed us to make a selection of the equilibria 
found. However based only on the stability analysis we cannot distinguish the most 
preferred states within the family of attracting equilibria. Being primarily interested 
in the equilibria resulting from the instability of a plane wave, we shall attempt to 
find the distinguished states by utilizing some additional assumptions on the initial 
stages of the instability. 

We recall that for the given Ta , rb  the equilibria within the family are specified by 
a single parameter, say the phase Q0. The phase in its turn is fixed by the parameter 
of the linear frequency mismatch &. The parameter 6,, is an ‘external’ one for 
our system; it is formally prescribed by the initial selection of the main interacting 
modes comprising our system. The reasoning behind our choice of the particular 
three modes was based on the results of linear stability analysis for a plane wave. We 
chose the configuration that was maximally unstable within the linearized theory. Let 
us specify a,, so that for a given initial amplitude A,, the mismatch provides maximal 
instability. Thus we can relate parameters 6,, and A,, and can express parameters of 
the equilibrium in terms of a hypothetical initial plane wave. Some of these depen- 
dencies are plotted in figure 8. Two three-dimensional steady patterns correspond to 

f We note that the ‘non-symmetric’ stationary gravity waves derived by Zufiria (1987) do not 
describe this property. Roughtly Zufiria’s solutions correspond to steadily propagating longitudinally 
modulated wave trains characterized by a non-symmetric distribution of the individual crests. 
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each initial plane wave. Figure 8(a )  indicates the somewhat exceptional character of 
the saturated states. Indeed, depicting the dependence of the phase of an equilibrium 
on the amplitude of the initial plane wave under the given dissipation/generation, it 
clearly shows that the first transition from two- to three-dimensional waves (i.e. the 
transition occurring at minimal amplitude of the plane wave) selects the vicinity 
of the saturated state (@,, = -7~/2). Although the valley is not sharp the effect is 
unambiguous. The dependence of the steady-state amplitudes on the initial amplitude 
in figure 8(b) illustrates this fact in a more expressive way: the minimal initial plane 
wave corresponds to the minimal amplitude of the three-dimensional structure in the 
vicinity of the saturated state. These arguments support the hypothesis that the satu- 
rated equilibria are the most distinguished ones in the following sense: if a plane wave 
evolves to an equilibrium owing to transverse instability and generation/dissipation 
it has more chance to reach the vicinity of the satuated steady state. We cannot prove 
this hypothesis now. Some additional arguments could be found in the fact that for 
the transverse instability to develop the plane wave should exceed a certain amplitude 
threshold, when dissipation of the satellites is taken into account. On the other hand 
to exclude breaking, the wave amplitudes should not exceed another threshold in the 
process of evolution. The requirement of compatibility of these restrictions gives a 
narrow gap between the initial and eventual amplitudes and thus selects the vicinity 
of the saturated states. At the moment, to provide more solid arguments in support 
of the hypothesis an extensive numerical simulation of the global properties of the 
trajectories seems to be the only available method. 

5. Discussion 
We shall discuss the results, focusing on the underlying assumptions. Some imme- 

diate implications will be briefly discussed as well. 
We start with a brief summary of the main points. Our basic idea was that the 

experimentally observed three-dimensional patterns including the horse-shoe ones 
correspond to certain distinguished states of a comparatively simple low-dimensional 
dynamical system. To pursue this idea, we first selected a single triad noting that 
the fastest growing modes of the five-wave decay process (class I1 instability), being 
transversally symmetric, are phase locked with the central harmonic, thus allowing 
quasi-steady patterns. The analysis of the triad Hamiltonian dynamics leads us to 
the conclusion that at least within the framework of this system it is not possible 
to explain the emergence of any long-lived three-dimensional patterns. Taking into 
account the non-conservative effects makes the system dynamics richer. Owing to 
the loss of the conservative integrals the dimension of the system increases. In our 
context the principal new elements are as follows. 

First, new three-dimensional equilibria appear that are essentially distinct from the 
conservative ones, however small the dissipation/generation. 

Second, some of these equilibria are always attracting. The attracting equilibria in 
the parameter space were identified within the linear stability analysis. 

Third, apart from the true attractors, meta-stable equilibria may appear. They 
are seen in the system dynamics as relatively long-lived patterns. The last step was 
the final selection of the ‘most distinguished’ steady state, based on some additional 
assumptions. The pattern which seems to be most likely to emerge from the class I1 
instability of the Stokes wave is the limiting configuration of the allowed patterns cor- 
responding to the minimal amplitude equilibria for the given dissipation/generation. 
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We called them the saturated states. These patterns do closely resemble the experi- 
mentally observed horse-shoes. 

Let us discuss in more detail the reasons why we believe that the patterns provided 
by the theory are indeed the experimentally observed ones. The ‘theoretical’ horse-shoe 
patterns: 

( a )  can appear only for waves steeper than a certain threshold (about 0.2) and are 
characterized by relatively weak symmetric satellites ; 

( h )  have flattened troughs and sharpened crests in the longitudinal cross-section; 
(c) are front-back asymmetric: the front slopes are steeper than the rear ones; 
(d) have asymmetric fronts : the fronts are crescent-shaped and always oriented 

forward. 
Thus, the model well reproduces, at least qualitatively, all the main features of the 
horse-shoe phenomenon by now experimentally established. At first sight there is a 
difficulty in interpreting the Su (1982) tank experiments where there was no wind 
input. However the patterns observed by Su had a relatively short (in our c3 
scaling) time of existence. Most likely the Su patterns can be interpreted just as the 
manifestation of the first maximum of the satellite oscillations at the initial stage of 
a quasi-periodic regime similar to that described by Stiassnie & Shemer (1987). 

It should be stressed that the model is aimed at providing just a qualitative 
description of the phenomenon. The extreme simplicity of the model brings not only 
advantages : it seems worth discussing again the main assumptions and limitations of 
the model. 

In our opinion the most crude assumption is the selection of just three basic 
harmonics in Zakharov’s variables and, in particular, neglect of the Benjamin-Feir 
modulation. Although there is experimental evidence that the modulational instability 
is suppressed by wind (Bliven, Huang & Long 1986), the principal question remains: 
what would happen if one considered many random harmonics subjected both to 
quintet and quartet interactions? Quite definitely the attractive equilibria we found 
will disappear. However it is possible that they may manifest themselves as some 
intermediate asymptotics. Say, if in the spirit of the Langevin approach we consider 
the evolution of our triplet with the interaction with the ambient wave field modelled 
by a random forcing, the system will tend to the old equilibria provided the domain of 
attraction is large enough. The main question of whether the attractors of the simple 
system we investigated would exhibit themselves in the realistic situations could be 
answered within such a model. The answer will depend only on the relative strength 
of attraction and random forcing due to all other interactions neglected in our model. 
In a favourable situation the system will often come into the vicinity of the old 
equilibria and the proportion of time it will stay there is considerable. Thus, this 
question could be in principle clarified by corresponding calculations and we may say 
that, at least, a priori, taking into account the realistic spectra of the wind-wave field 
and all their resonant interactions does not exclude manifestations of the attractors 
found, although in a somewhat modified manner. 

The second assumption requiring discussion is concerned with the specific form of 
the generation/dissipation (linear ones) adopted in the model. We do not exclude that 
the dominant non-conservative mechanisms for the steep wave under consideration 
can become strongly nonlinear due to, say, airflow separation above the crests and 
microbreaking. It also possible that the leakage of energy into other modes due 
to neglected nonlinear interactions with the ambient field could provide nonlinear 
damping. At present we have neither a reliable theory nor a quantitative experiment 
to acquire nonlinear generation/dissipation to use in the model. How crucial is the 
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assumption of linearity? The answer varies for the different results. The very fact of the 
existence of an attractive equilibrium is the most robust, it depends only on the type 
of energy balance: whether the energy goes into the central wave and dissipates in the 
satellites or vice versa. The location of the equilibrium in the phase space is also robust, 
it is not sensitive to the particular type of amplitude dependence of the coefficients 
in contrast to the bounds of the domains of attraction, which are expected to be very 
sensitive. Thus, the existence of the stable equilibria found within our simplest model 
is meaningful, while the bounds of the domains of attraction, most likely, are not. 

To get adequate wind input one should consider the self-consistent air-water 
problem: the airflow above waves is strongly affected by the three-dimensional 
steep sharp-crested patterns. This problem is among the first priorities of our 
further research. We note that one may expect the appearance of components of 
generation/dissipation phase-locked to the pattern. This type of non-conservative 
nonlinearity may result in especially non-trivial enrichment of the system dynamics. 

The arguments in favour of the hypothesis on the distinguished character of 
saturated equilibria were fully discussed in 9 4.3.3. The seemingly good agreement 
with the experiment has not been quantified yet and, in itself, does not prove anything. 
The problem needs special consideration. We hope to clarify the mechanisms of the 
equilibria selection through numerical simulations in the near future. 

Despite the number of open questions discussed above the principal fact of the 
existence of the horse-shoe patterns seems to be established and we can briefly discuss 
its most important implications. 

The dominating basic concept of present-day study of wind waves is the idea that 
the wave field can be well represented by continuum of weakly interacting Fourier 
components with random phases, while the description of field dynamics in terms of 
its statistical characteristics, mainly temporal or spatial spectra, remains the prime 
goal of the mainstream studies. The presence of the coherent or phase-correlated 
structures in the wave field means non-Gaussian probability distribution, the obvious 
invalidity of the random phase approximation and, eventually, the inapplicability of 
the kinetic Boltzmann-type equations for the description of the field evolution for the 
scales under consideration. Some experimental evidence supporting this view based 
upon analysis of wave tank data was quite recently reported by Leykin et al. (1995). 

In our opinion the presence of the three-dimensional sharp-crested coherent wave 
patterns should modify noticeably the drag characteristics of the sea surface and 
through this the air-sea momentum exchange. We also expect an important contribu- 
tion of these structures to radar scattering at grazing angles. These issues are at the 
top of our agenda for further research. To progress in quantifying these claims the 
development of an essentially new model of the wave field allowing one to describe 
the coherent structures imbedded in the ambient noise is necessary, which is a quite 
formidable and challenging problem. 

The tank experiments being conducted now at the large wind-wave facility of 
IRPHE-Luminy (Marseille) we hope will help to clarify many questions left unan- 
swered by the present work. 
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Appendix A. Relations among the canonical and physical variables 

surface velocity potential and surface displacement : 
Canonical variables a(k), a*(-k) are expressed in terms of Fourier amplitudes of 

y(k) = M(k)[a(k) + a*(-k)], y ( k )  = -iN(k)[a(k) - a*(-k)] (A 1) 
with 

where w(k) is the dispersion relation of linear waves defined by 

and 

y(k)eik'"dk, y (k )  = q*(-k), 

y ( x )  = - y(k)e%'"dk, y(k) = y*(-k). 27c 's 
Here k = (k , ,k , )  is the horizontal wave vector, integration with respect to k is 
extended over the entire k-plane, the asterisk denotes complex conjugate, and explicit 
dependence of y and y on t is suppressed for simplicity of notation. 

A canonical transformation to the new canonical variables b(k), b*(k) is 

a. = bo + f A:il,2blb?80-l-2dk12 

+ [ A ( 2 )  0,1,2 b8b 1 2 6 O+l-2dkl2 

f B~~,2,3b;b;bl60+1+23dk123 + B0,1,2,3 (4) b*b'b*d 1 2 3 0+1+2+3dk123 .I J 

J J 

The arguments k j  in a, o, U("),  V(")  and &functions are replaced by subscripts j ,  with 
the subscript zero assigned to k. Thus, for example, aj = a(kj,t), oj = w(kj). The 
reduced 'five-wave' Hamiltonian is 

H = Uob&dko + V0123b~b;bzb380+1--2-3dk0l23 

+ f W01234(bib;bZb3b4 + bOblb;b;b~60+1-2-3-4dkO1234. (A 6) 

The expressions for kernels V and W can be found in Krasitskii (1994) and contain 
'natural' symmetry conditions in the explicit form : 

V0123 = v1023 = v0132 = V2301, 
w01234 = w10234 = w01324 = w01423 = w01432. 

The surface elevation y of three-wave pattern under consideration given by the three- 
delta-functions ansatz (2.4) in terms of bk has 37 items in the Stokes-like expansion 
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under accepted 0(c4) accuracy. Here we give the expression for the elevation, confining 
ourselves to an (c2)  approximation: 

q = - AM(a)  cos(ax) + BM(b)[cos(bx - p )  + cos(cx - p)] 2.n 7 
+ A2[A(’)(2a,a,a) + A(3)(-2a,a,a)] cos(2ax) 

(cos((a + b)x - p )  + cos((a + c)x - p) )  
+ A(2)(a - b,a,b) cos(p)(cos((a - b)x) + cos((a - c)x))] 

(cos((c + b)x - p )  + cos((b + c)x - p) )  

+ A”(b - c,c,b) cos((c - b)x)] . (A 7) 

+ AB[(A(’)(a + b,a,b) + A ( 3 ) ( - U  - b,a,b)) 

+ B2[(A(I)(C + b,c,b) + A(3)(-C - b,c,b)) 

1 
The coefficients A@), B(’) for deep-water gravity waves could be found, e.g. in Badulin 
et al. (1995) and for finite depth gravity-capillary waves in Krasitskii (1994). 

Appendix B. Stability criteria for weakly non-conservative stationary states 
B. 1. ‘Conservative’ instabilities of non-conservative equilibria 

Formula (4.11b) yields an explicit expression for the growth rates of ‘conservative’ 
instabilities. The condition of stability (A > 0), which specifies the bounds of the 
instability domains, in terms of interaction coefficients takes the forms : 

(i) for the in-phase equilibria (Go m 2mn, m = 0, f l ,  f2 , .  . .) 
18V,,,, - 48vabab + 4vbbbb + 8Vbcbc + W(9R - 36)Ao < 0, 

( R  - 4)Ao - 6.06 < 0; 

ISV,,,, - 48vabab + 4Vbbbb + 8vbcbc - W(9R - 36)Ao > 0, 

(B la) 

(B 1b) 

(B 2a) 

that, upon inserting the values of interaction coefficients for deep-water waves?, yields 

(ii) for the out-ofphase equilibria ( Q0 m (2m + l).n, m = 0, f l ,  f2,  ...) 

which for the deep-water case reduces to 

( R  - 4)Ao + 6.06 < 0. 

The above inequalities for the in-phase equilibria are illustrated in figure 9 (see 
curve i). 

B.2. “on-conservative’ instabilities 
The taking into account of the small non-conservative terms in the eigenvalue problem 
yields both a new branch of small unstable eigenvalues and corrections to the already 
found ‘conservative’ eigenvalues. 

The first-order correction to the zero eigenvalue can be written as 

t The interaction coefficients are known for fluid of arbitrary depth; however for simplicity only 
we confine ourselves to consideration of deep-water waves. 
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by inequality (Blh) .  ( i i )  The domain of ‘purely non-conservative’ instability prescribed by (BS) is 
below the curw. The whole domain below curve ( i i j  is meta-stable. (iii} Mixed instability domain 
is abovc the curves given by (B6j). The domain oF  absolute stability is unshaded. 

It gives pure ‘non-conservative’ stability/instability. 

a mixed ‘conservative-dissipative’ instability 
The real value corrections to ‘conservative’ non-zero eigenvalues A:! can stimulate 

(B 4) A(1) - A(0) 3@a(R - 2)&& - @b(2R - 
3@,AoBo - @bA; 2,3 - 2,3 + rb  

The ‘pure non-conservative’ stability for the in-phase equilibria ( Q0 = 2n.m) yields 

rb [6vaaaa - 8 v a b a b  + t24vabab - 4vbbbb - 8vbcbc)R/3 + W(9R - ~ ) A o ]  > 0, (B 5a) 
that for deep water reads 

r b  [ (R - 2/3)Ao - 2.54 - 0.51RI > 0. (B 5b) 

The ‘mixed’ stability condition (real corrections to ‘conservative’ eigenvalues A!$) 
gives 

rb [(24vabab - 4vbbbb - 8 vbcbc (1 8 vaaaa - 24vabab)R + 9 W ( R 2  - 2R 2)AO] > 0, 
(B 6a) 

(B 6b) 

that for deep water results in 

rb [ (R2 - 2R + 2)Ao - 7.61R - 1.541 < 0. 

For the out-of-phase stationary points (@o = (2nm + 1)) the stability criteria can be 
expressed in a similar way The ‘pure dissipative’ stability is 

r h  [6vaaaa - 8 v a b a b  + (24vabab - 4vbbbb - 8vbcb,a)R/3 - W(9R - ~ ) A o ]  < 0 (B 7a) 
and 

rb [(R - 2/3)Ao + 2.54 -k 0.51RI > 0. 
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rb [(R2 - 2R + 2)Ao + 7.61R + 1.541 < 0. (B 7 4  
The set of the inequalities above specifies the domains of ‘absolute’, i.e. with respect 
to ‘conservative’ and ‘dissipative instabilities’. The instability domains are plotted 
in figure 9. 

The most crucial factor proved to be the type of energy balance. When energy 
enters the satellites and dissipates in the central harmonics the out-of-phase-state 
wave patterns proved to be always unstable, while stability of the in-phase equilibria 
is possible in a narrow parameter domain. Generation of the central wave and 
dissipation of the satellites, which is more realistic, allows wide class of the in-phase 
equilibria to be stable, while for the absolute stability of the out-of-phase states rather 
high amplitudes are necessary. 
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