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Model equations for three-dimensional, inviscid flow between two arbitrary, time- 
varying material surfaces are derived using a ‘direct ’ or variational approach due to 
Kantorovich. This approach results in a hierarchy of approximate theories, each of a 
higher level of spatial approximation and complexity. It can be shown that the 
equations are equivalent in substance to ‘the theory of directed fluid sheets ’ of Green 
& Naghdi (1974, 1976). 

The theory can be used to study the propagation of long waves in water of finite 
depth and, as such, competes with theories derived using the classical Ray- 
leigh-Boussinesq perturbation methods. In order to demonstrate that there is an 
advantage to the present approach, we compare predictions for steady, two- 
dimensional waves over a horizontal bottom. Numerical solutions indicate that the 
direct theory converges more rapidly than the perturbation theories. Also, the 
equations of the higher-order direct theories contain singularities related to waves of 
limiting height, and indeed such waves can be predicted with relative accuracy. 
Finally, the range of applicability of the direct theory is far greater : waves as short 
as three times the water depth can be modelled. This is essentially a deep-water 
condition, well beyond the range of convergence of the Rayleigh-Boussinesq 
approach. 

1. Introduction 
Flows which may be characterized as thin or ‘sheet-like’ occur throughout nature 

and include, for example, lubrication and coating flows, jet and free-sheet flows (such 
as the flow over a waterfall), and the propagation of fairly long waves in a fluid of 
finite depth. I n  this paper we discuss an approximate nonlinear theory for treating 
such phenomena, focusing on wave propagation in an incompressible, inviscid 
medium as the primary application. We shall be concerned with problems of 
considerable generality : model equations appropriate for unsteady, three- 
dimensional flow with variable bathymetry will be derived. Our approach is very 
different from classical approaches to this problem, and results in equations that 
differ as well. Thus our primary objective has been to determine if the present theory 
has any advantage over these other more well-known methods. 

Before describing the contribution of this paper, it seems appropriate to review 
briefly the classical approaches. There are two main approximation schemes 
commonly used, both based on expansions in a small parameter. The best known is 
that of Stokes (1847) where this parameter is the leading coefficient in a Fourier 
expansion of the wave profile, appearing in dimensionless form as a ,  k ,  where k is the 
wavenumber. Stokes carried out this procedure to the third order for the problem of 
two-dimensional waves propagating steadily over a horizontal bed. He noted that 
the approximation is most accurate when the wave height is not too large compared 
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with the length (i.e. a,k 4 1 )  and that the convergence is slowed as the ratio of 
wavelength to depth increases. Fifth-order Stokes-type expansions have been given 
by De (1955), Skjelbreia & Hendrickson (1961) and Fenton (1985). Using numerical 
techniques, Schwartz (1974) and Cokelet (1977) carried out similar approximations 
to very high order, obtaining highly accurate solutions for all but the longest waves. 
Low-order Stokes’ theory is most appropriate in deep-water wave problems. For the 
complementary case of long waves (or shallow water) a different procedure, usually 
associated with the works of Rayleigh (1876) and Boussinesq (1871, 1877), offers a 
better simple approximation. This procedure is a perturbation method based on two 
non-dimensional parameters: E ,  the ratio of wave height to water depth, and LT, the 
ratio of depth to wavelength. Both parameters are assumed small and, as was 
clarified by Ursell (1953), relate to one another in such a way that €/az  = O( 1) .  The 
theory differs from that of Stokes in that the lowest-order approximation results 
in a nonlinear differential equation for the wave profile. This equation possesses 
analytic solutions in terms of the Jacobian elliptic function cn, hence the 
approximation has become known as ‘ cnoidal wave theory ’. Higher-order cnoidal 
approximations have been obtained, most notably the second-order theory of 
Laitone (1960), the third-order theory of Grimshaw (1971) and the computer- 
extended, high-order theories of Fenton (1972, 1979). 

The general procedure of these shallow-water approximations is not limited to the 
case of steady waves, but can be extended to time-dependent problems as well. The 
simplest such ‘evolution equation ’ is the Korteweg-de Vries (KdV) equation, which 
has been studied extensively. More complicated, higher-order models are also 
possible, such as a pair of equations attributed to Boussinesq. More recently, Su & 
Mirie (1980) have shown that i t  is possible to derive similar equations a t  any order 
of approximation. Within the framework of the theory one may also include the 
effects of variable bathymetry. Different approaches to this problem are represented 
by the works of Peregrine (1967), Madsen & Mei (1969), Miles (1979) and many 
others, including Wu (1981) who presents a complete unsteady, three-dimensional 
theory. 

Perturbation methods are not, however, the only approach available for these 
problems. Using fundamental principles of continuum mechanics and making use of a 
special continuum model called a Cosserat or ‘directed’ surface. Green, Laws & 
Naghdi (1974) and Green & Naghdi (1976) developed a ‘theory of directed fluid 
sheets’. This nonlinear theory models inviscid flow between two smooth, non- 
intersecting, time-varying material surfaces. Specializing the theory for the case of 
a fixed lower surface and a free upper surface, one obtains equations for surface- 
wave propagation over fixed bathymetry. The theory is most appropriate in the 
shallow-water or long-wave regime and, as such, competes most directly with the 
Rayleigh-Boussinesq- type approximations. 

Yet another approach for sheet-like flows has been introduced by Russian workers. 
Levich & Krylov (1969, pp. 313-314) describe a variational or ‘direct’ method of 
approximation which they compare to the well-known moment method in the theory 
of laminar boundary layers. Although the ensuing applications appear to have been 
primarily for viscous and surface-tension-driven flows, the resulting equations are 
equivalent to an Eulerian version of the directed-fluid-sheet theory for a Newtonian 
fluid, presented by Green & Saghdi (1984). We note, however, that  although one 
obtains the same equations for this special fluid, there is no guarantee that this will 
always be the case. In particular, the approach of Green & Naghdi forms a 
framework for treating fluids with complex rheology. This feature and other 
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differences between these two similar, yet distinct approaches are discussed by 
Antman (1972) in the context of the theory of rods. 

Like the perturbation methods, the Cosserat surface approach (or, equivalently for 
Newtonian fluids, the variational approach) also yields a hierarchy of approximate 
theories, each of increasing complexity. Convergence of this hierarchy has not been 
established, nor even demonstrated numerically. Previous applications in inviscid- 
flow problems have thus far used only the lowest level of approximation in this 
hierarchy, the so-called ‘restricted theory of a directed fluid sheet ’ (Green & Naghdi 
1976). These applications include the transition to planning of a boat (Naghdi & 
Rubin 1981 a ) ,  the flow over a waterfall (Naghdi & Rubin 1981 b ) ,  soliton generation 
by a moving pressure disturbance (Ertekin 1984 ; Ertekin, Webster & Wehausen 
1984, 1986), and the downstream flow past an obstacle, (Naghdi & Vongsarnpigoon 
1986). 

Miles & Salmon (1985) have provided an alternative means of obtaining the 
‘ restricted-theory ’, basing their derivation on Hamilton’s principle. They also 
explore the relationship between the restricted theory and earlier theories and show 
that, for the case of uniform depth, the equations are equivalent to  a generalization 
of Boussinesq’s equations (due to Whitham 1967) in which dispersion, but not 
nonlinearity, is assumed to be weak. The Boussinesq equations themselves may be 
obtained after a formal expansion (this has also been shown previously by Ertekin 
1984). While the relationship between the Green-Naghdi and Boussinesq theories is 
certainly of interest, such results do not provide compelling reasons to prefer the 
former theory, especially since convergence of the Green-Naghdi approach remains 
an unanswered question. 

This paper begins with a new derivation of the ‘direct theory ’ (as we shall call it) 
for unsteady, inviscid flow. Our derivation, presented in $3, follows the approach of 
Levich & Krylov, but we find it possible to describe this more formally within the 
framework of a variational method due to Kantorovich (given in Kantorovich & 
Krylov 1958). We also introduce a special mapping that results in simplification of 
the fluid equations. It has been shown by Shields (1986) that these may be 
algebraically transformed to the Green-Naghdi ( 1984) equations, and are therefore 
equivalent in substance. 

Premising that the worth of an approximate theory should be measured by its 
ability to describe the physical system it attempts to model, it is our intent to show 
that the direct theory does have a definite advantage over the theories of the 
Rayleigh-Boussinesq class. Thus, the remainder of the paper is devoted to a 
comparison of the predictive capability of the direct theory with the classical 
theories. I n  order to make this assessment, we note that the overall accuracy of a set 
of model equations can be no better than their accuracy for relatively simple, steady- 
state problems. With this in mind, we restrict attention to two-dimensional waves of 
permanent form in @4-7, and use this problem as a benchmark for evaluating the 
two different types of approximation. We consider the first three hierarchical levels 
of the direct theory. specializing the equations for steady two-dimensional flow over 
a horizontal bottom. Solitary and periodic wave solutions for each level are obtained 
and are compared with a similar hierarchy of steady-state solutions from the 
competing Rayleigh-Boussinesq approximation. These include the results of 
Boussinesq (1871), Laitone (1960), Grimshaw (1971) and Fenton (1972, 1979). Exact 
and high-order numerical results of Stokes, Longuet-Higgins & Fenton (1974), 
Byatt-Smith & Longuet-Higgins (1976) and Cokelet (1977) provide an appropriate 
standard for this comparison. 



174 J .  J .  Shields and W .  C. V'ehster 

Our numerical solutions suggest that  the direct theory converges much more 
rapidly than t3he Rayleigh-Roussincsq t.heory, and that the range of applicability is 
far greater as well. In  parbicular, the third-level approximation compares well with 
high-order nurnerical results cven for rather short waves (c M i). This is v~e l l  beyond 
the range of applicability of cven high-order cnoidal theory (a < Q according to 
Fenton 1979). Finally, it is found that the phenomenon of limiting waves is implicit 
in the second and higher-level approximations ; a singularity associated with waves 
of limiting height can be identificd in the governing equations. In numerical solutions 
the predicted wave profiles become increasingly sharp crested as this singularity is 
approached, but eventually t>he numerics break down and no solution can be 
obtained. For the third-level approximation the point at which this occurs is very 
ncar to high-order numerical results for limiting wave height and speed. 

2. Problem statement 
Let (x'. x 2 ,  x 3 )  be a system of fixed, rectangular Cartesian coordinatcs with base 

vectors (el, e,. e3), where e, is oriented vertically upwards. With reference to figure 1, 
we consider thc motion of a sheet-like body of incompressible, inviscid fluid in a 
gravitational field -ge,. The fluid is assumed to be bounded from above and below 
by two smooth, non-intersecting, time-varying material surfaces 

x3 = a(x', x2. t ) .  x3 = p(x1, r2. t ) ,  p > a. (2-1) 

T ( X 1 . 5 2 ,  t )  = p-a, <(xl, x2, t )  = t(P+a). ( 2 . 2 )  

The local thickness q and mid-surface location < are defined by 

In the following we shall use standard Cartesian-tensor notation. with the summation 
convention implied for repeated indices. Latin indices are used for quantities having 
three spatial components and takc the values 1 , 2 . 3 ;  Greek indices takc the values 
1 , 2  only. 

Thc cquations of motion for the fluid body are the continuity cquation and Euler's 
equations 

7 P t  = 0, (2.3) 

and 
1 

P 
v ,+v'u,~ = - - ~ , ~ e , - g e , ,  (2.4) 

rckspectively, where u = oz(xl, x2, x 3 ,  t )  e, is the fluid velocity and where p(x ' .  x2, x 3 ,  t )  is 
the pressure. 

The principal of equivalence of external and internal pressures at the surfaces a 
and /3 yields dynamic boundary conditions 

PI,J+ = $, P I ~ L ~  = P ,  (2.5) 

where @ and p arc' the pressures acting on the upper and lower surfaces, respectively. 
Kinematic boundary conditions follow from the hypothesis that  a and p are material 
surfaces, which imposes the constraint that  the vertical velocity of surface particles 
is identical to that of the surfaces themselves. Thus, 

[?J3-E, t -2 'Yd,y] lz?=a  = 0, ( 2 . 6 ~ ~ )  

and [ V 3 - ~ , t - . U Y p , y l l z ? = p  = 0. ( 2 . 6 b )  

This problem statement is completed by additional boundary conditions on the (as 
yet unspecified) vertical control surfaces closing the domain. 
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Lower surface, x3 = a(x’, x2, t )  

X’ 

FIGURE 1. Definition sketch : a thin fluid body bounded by two material surfaces. 

3. Derivation of approximate equations by the method of Kantorovich 
bTe wish to take advantage of the sheet-like geometry of the fluid body in order 

to obtain model equations that depend on only two spatial coordinates, x1 and x2. 
Our approach follows the ‘method for reduction to ordinary differential equations ’ 
of Kantorovich, given by Kantorovich & Krylov (1958). This approach is a 
variational method similar to that of Ritz and Galerkin, but seeks to  reduce the 
dimensionality of a system of partial differential equations, rather than to replace 
the system with algebraic equations. The fundamental idea is to assume a form for 
the solution in the spatial direction to be eliminated (in the present case, e3). This 
form must be chosen such that the boundary conditions can be satisfied, and must 
incorporate coefficients that are undetermined functions of the remaining 
independent variables ( i s .  the horizontal coordinates). A variational procedure is then 
used to  minimize the error when this constrained solution is introduced into the 
original equations, yielding equations for the undetermined coefficients. 

In  the present application, we select a solution for the velocity field which assumes 
a finite power-series form for the variation in the vertical direction. Before writing 
this explicity, it  is advantageous to  first introduce the following transformation : 

s(x1. x2, x3, t )  = ( 2 / 7 )  (x3 - 5). (3.1) 

As defined, the function s maps the physical fluid body to a region between two 
parallel planes in the coordinate system (xl, x2, s), given by 1st < 1. In particular, the 
upper surface of the fluid (x3 = /I) is mapped to s = + 1,  the lower surface is mapped 
to s = - 1, and the midsurface is mapped to s = 0. 

Let us now assume a solution for the velocity field of the form 

K 

v(xl, x2, x3, t )  = c W,(x’, x2, t) sn ,  
n=o 

where the coefficients W, ( = Wi(xl, x2, t )  e,) are unknown time-dependent vector 
fields defined over the (x*, x2)-plane. The number of terms in the series, and hence the 
complexity of the spatial representation, is determined by the positive integer K ,  
which we leave unspecified. Each choice K 2 1 will yield a complete set of equations 
forming one member of a hierarchy of approximate theories. In  this paper we shall 
refer to a particular member of this hierarchy as the ‘i th level approximation’ or 
simply ‘Theory i ’  for K = i in (3 .2 ) .  
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We now must find cquations to determine the W,. To begin, we require that the 
kinematic boundary conditions be satisfied. Introducing the approximation (3 .2 )  
into ( 2 . 6 ) ,  we obtain the following two equations: 

K K K 
2 c w3, = r , t+r,r  c wy,+2Y,y  c wr,, ( 3 . 3 ~ )  

n = l ,  3 n=o, z n=1 ,3  

K K K 

2 c w3, = 25,,+7,, c Wy,+25,y c wr,. (3 .36 )  
n=o, 2 n=1 ,3  n=o, 2 

We also shall require that mass be conserved at each point in the domain. Thus we 
substitute ( 3 . 2 )  into the continuity equation ( 2 . 3 ) ,  and equate coefficients of powers 
of s to zero, obtaining 

1 
C,yW;++~,yW$-I-W3, = G ( ~ W ; - ~ ) , ~  for n =  1 ,2  ,..., K ,  ( 3 . 4 a )  

and W & = O  ( 3 . 4 6 )  

(Equation ( 3 . 4 b )  states that  the Kth  term in the expansion has components in the 
e3 direction only. Green & Naghdi refer to such a component as a ‘restricted 
director ’.) 

Prom the foregoing we see that the prescribed form for the velocity field (3 .2)  is 
capable of satisfying the kinematic requirements of an inviscid flow. However, when 
we substitute ( 3 . 2 )  €or u in the Euler equations a difficulty arises. Taking ( 3 . 4 b )  into 
consideration, the left-hand sides of the el and e, components of (2.4) will be 
polynomials in s of degree 2K - 2. If the equations are to hold everywhere within the 
fluid, the right-hand sides imply that the pressure p must also be a polynomial in s 
of degree 2K - 2.  

Now consider the e3 component of (2.4). After using (3.2) for v3 the left-hand side 
will be a polynomial in s of degree 2K- 1. The right-hand side of this equation, in 
turn, implies that  p must be a polynomial of degree 2K. Thus, a contradiction is 
encountered as to the dependence of p on s. This demonstrates that  the kinematic 
assumption ( 3 . 2 )  is generally incapable of satisfying both the kinematic and dynamic 
requirements. 

At this point we make the approximation. We shall seek equations such that 
momentum will be conserved in an approximate sense, using the ‘ weak ’ variational 
formulation of Kantorovich. In particular, we construct depth-averaged moments of 
the Euler equations, using the basis functions of the series ( 3 . 2 )  as weighting 
functions. These equations may be written as 

[u,,+viu,i]SndX3 = -- I b, ei +pge,] sn dx3. I P 

for n=0 ,1 ,  ..., K. 

( 3 . 5 )  

The above K + 1 vector-valued relationships are sufficient to close the system of 
equations, and to determine all of the unknown Wn. We now transform these 
equations into a more convenient form. 
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First using (3.2) in the left-hand sides of (3 .5) ,  and rearranging the right-hand 
sides, we have 

for n = 0 , 1 ,  ..., K 

Leibnitz's rule is applied to the e,, components of the first integral in the right-hand 
side of the above, and the e,  component can be integrated directly. After carrying out 
these operations and rearranging both sides, we obtain 

psndx3 -fi2jps,+(-)"fia, y - n  
= "i I,, 

-[n 

for n = 0 , 1 ,  ..., K .  

From the definition (3.1) we note that 

(3 .7)  

and the material time derivative of the mapping s may be written 

S, ,+ViS, i  = (2/7) [ V 3 - - , t - Z ' Y Y , , , - ( s / 2 ) I , t - ( s / 2 ) V Y 7 , , , I .  

We introduce the expansion for the velocity (3 .2)  into the above and also make use 
of the kinematic boundary conditions (3 .3) .  After algebraic manipulation, the 
resulting expression may be further simplified with the use of (3.4). The final 
expression is 

where 
0, neven 

n(n') = [ 1 ,  n odd 1' (3.9) 

(Note that (3.8) implies that a particle on the top or bottom surface ( s  = 1 )  remains 
on the surface, ( s , , + v ~ s , ~  = 0 ) ,  as required by the kinematic surface conditions.) 

We can now eliminate all dependence on x3 from the momentum conditions (3.6). 
We use (3 .3)  once again to eliminate VY from the left-hand sides, (3 .7 )  and (3 .8)  to  
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eliminate all derivatives of s. After interchange of the orders of summation and 
int,egration, the resulting expressions may be written as 

K K - 1  

c [ a o m + n [ w m , t +  W; w,,,I+ r = l  c om+n+r[7W; wm,y+mp~+n(7~;),y KI] 
m=o 

for n = 0 , 1 ,  ..., K ,  

where we have denoted the integrals in (3.6) involving pressure terms by 

Pi Ei psi dz3 = +7 1:: psi ds, 
a 

and have defined two sets of constants: 

I l / ( i+  1) i even 
0 i odd 

+1 

Bi = 7-l = d d s  = [ 
and 

1 / i  

r / [ ( r +  1 )  ( i+ I)] r even 
p? = 

(3.10) 

(3 .11)  

(3.12) 

(3 .13)  

Note that the 'integrated pressure' PK only appears in the e,, components of the 
Kth momentum condition ((3.10) with n = K ) .  These two equations effectively define 
the gradients of PK in the el and e, directions. We shall not concern ourselves with 

and will omit it along with these associated equations from further developments. 
Also eliminating W', by (3 .4b) ,  what remains is a system of 4K+3 scalar equations 
in 4K + 5 variablcs for each choice of K 2 1. The variables are the 3K + 1 velocity 
components ( W,, for n = 0,1,  . . . , K - 1 and W",, K integrated pressures (c, i = 0, 1 , 
. . . , K - l) ,  pressures on the upper and lower surfaces 1; and $i, the fluid thickness 7,  
and the midsurface location 5 (recall that  7 and 5 are related to 01 and p by the 
relations ( 2 . 2 ) ) .  The equations are the two kinematic boundary conditions (3 .3) ,  K 
continuity conditions (3 .4a) ,  K vector momentum equations ((3.10), n = 0,1, ..., 
K -  1) and 1 scalar momentum equation ((3.10), n = K ,  e3 component). Different 
physical situations, including fixed, free or prescribed-motion boundaries, are 
specified by fixing any two values of surface pressure (@,p) or surface location (a, p). 
This completes the system, which may then be reduced to a smaller, more convenient 
set of governing equations. 

The foregoing derivation can be further generalized by delaying any constitutive 
assumption and using the general Eulerian equations for conservation of mass and 
momentum as a starting point, rather than (2 .3)  and (2.4). This derivation is given 
by Shields (1986) in which it is shown that the resulting equations may be 
transformed to those of Green & n'aghdi (1984). 

Before proceeding, it is worth mentioning some important features of these 
equations. In  contrast to perturbation theories, we have made no a priori restrictions 
on the sizes of any parameters and all nonlinear terms arising in the derivation 
process have been retained. One result is that  the equations, like the physical laws 
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from which they are derived, remain invariant with respect to coordinate frame. 
Destruction of invariance frequently occurs in perturbation schemes when one 
neglects ‘small’ parameters. Green & Naghdi (1977) discuss this in detail and cite the 
Boussinesq and KdV equations as examples. 

On the other hand, since the approximation scheme is not based on a ‘smallness’ 
assumption, thc parameter range where it might bc appropriate (i.e. small wave 
height, weak dispersion, etc.) is not immediately apparent. However, since the 
solution is guaranteed to satisfy kinematic boundary conditions, conservation of 
mass and depth-averaged conservation of momentum (conservation of depth- 
averaged energy may also be demonstrated, but we shall not do this here), we might 
expect reasonable predictions in situations where the assumed form for the velocity 
field does not differ significantly from physical reality. 

4. Equations for steady two-dimensional waves 
In order to assess the accuracy of this approximation, it is desirable to compare its 

predictions with those from competing approximate schemes by using exact and/or 
high-order numerical solutions as a standard of comparison. This is the objective we 
shall now pursue, restricting attention to the problem of symmetric, progressive 
gravity waves in water of uniform depth as a ‘test case ‘. 

At this point it is convenient to drop the Cartesian-tensor notation. Let us 
den0t.e 

I 5 , x 3 x3, 

u, = w;, w, = Iff‘;, 
and also non-dimensionalize the variables by choosing units of length, mass and time 
such that 

where L is some characteristic length, to remain unspecified for the time being. 
We now specialize the general equations of 8 3 for steady two-dimensional flow over 

a horizontal bottom. We choose coordinate axes ( x , z )  to be translating in the x- 
direction a t  wave speed such that the flow is independent of time. The x-axis is taken 
to lie on a level bottom so that the location of the bottom surface of the fluid is 
simply 

The upper surface P(x) is the free surface. With our choice of reference frame its 
location is numerically equal to the fluid thickness, and the midsurface location is 
half of this value, i.e. 

g = L = p = l ,  (4.2) 

a(x) = 0. (4.3) 

(4.4) PCX, = r(@ 
a x )  = M4. (4.5) 

Like the exact formulation for an incompressible fluid, the equations are 
indeterminate to within a constant additive pressure. Thus the free-surface condition 
may be effected by setting 

without loss of generality. 
$(x) = 0 (4.6) 

4.1. Theory I equation fo r  steady two-dimensiond flow 
We first obtain explicit equations for the first level of approximation, corresponding 
to K = 1 in the general equations. The result will be equivalent to the steady-state 
form of the ‘restricted theory of a directed fluid sheet’ of Green & Naghdi (1976). 
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By (3.2) and (3.46), this level of approximation corresponds to  a depth-independent 
horizontal velocity and a linear profile for the vertical velocity, given by 

(4.7u) 

(4.7b) 

Making use of the two-dimensional steady-flow assumptions set fortJh above, and 
settingK = 1 in (3.3), (3.4) and (3.10), we obtain a system of seven coupled equations. 
First, from (3.3) and (3.4b) we may write the two kinematic boundary conditions 
as 

and from ( 3 . 4 ~ )  we obtain a continuity condition 

l;/uoz + 2w, = 0. (4.9) 

Conditions for conservation of momentum are obtained from (3.10). We write these 
in component form as follows : 
n = 0,x-component : 

r[~ouosl = -poz> (4.10a) 

n = 0, z-component : 

T l ~ o ~ o z l  = P - T >  (4.10b) 

n = 1 ,  z-component : 

T[Suowlzl = --y5+2/7po. (4.10c) 

Let us now simplify the remaining system of equations. First, eliminating w 1  
between (4.86) and (4.9) and integrating the resulting expression, we obtain 

uo = Q I T ,  (4.11) 

where Q is a constant of integration. From the form of the above, it is clear that this 
constant is the mass flux per unit span, consistent with the kinematic assumption of 
the theory. From (4.8u, b )  and (4.11) it follows that 

wo = ~1 = + Q a z / r .  (4.12) 

With the use of (4.11), the first momentum equation (4.10a) becomes 

which may be integrated to obtain 

Q'r-' z= -Po + S ,  (4.13) 

where S is a constant of integration. This equation represents conservation of depth- 
integrated horizontal momentum and we may identify the constant S with the 
momentum flux per unit span (corrected for pressure force and divided by the 
density), as defined by Benjamin & Lighthill (1954). Eliminating j~ between (4.106) 
and ( 4 . 1 0 ~ )  and using (4.11) and (4.12), we obtain 

W ( r z / r ) ,  = -7  + 2/7po. (4.14) 

Eliminating P between the above and (4.13) yields 

Q2~r-2++Q'(~z.~)z = r-'S-$7. (4.15) 
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Upon multiplying the above by yZ/7, each term may be integrated and. after 
rearranging, the resulting expression is 

(4.16) %Q 1 2 2  r5 + 7 3  - 2 ~ ~ 2  + 2x7 - ~2 = 0, 

where R is a third constant of integration. It is remarkable that this equation is 
identical to the governing equation of classical cnoidal-wave theory (see for example 
Benjamin & Lighthill 1954), especially when one considers the vast difference 
between the direct and the perturbation approaches. There are significant differences 
between the solution for the velocity field associated with (4.16) from the two 
different approaches, however. Examination of these differences lends insight into 
the differences between the two theories. 

For the direct theory the form of the velocity field was specified a priori, the 
horizontal component being constant through the depth and the vertical component 
varying linearly. Equations relating these components were obtained by insisting 
that mass be conserved and kinematic boundary conditions (on both the bottom and 
free surface) be satisfied. It is interesting that the very simple form chosen for the 
velocity can satisfy the kinematics of the cnoidal wave, while a t  the same time 
conserving depth-averaged horizontal and vertical momentum. We note, however, 
that the flow is not necessarily irrotational. In  particular, it follows from (3.76), 
(4.1 1)  and (4.12) that the vorticity St( = ui -uz) varies linearly through the depth, 
given by 

(4.17) 

Thus the maximum vorticity is a t  the surface (s = 1) and it is always zero a t  the 
bottom (s = - 1) .  The vorticity is zero everywhere when the upper surface is 
horizontal, i.e. uniform flow. 

The fact that the solutions of this theory will generally be rotational highlights the 
unusual nature of the approximation. It is not surprising, since we made no formal 
requirement that the flow be irrotational in the derivation process. We recall that 
irrotationality is not an intrinsic property of an inviscid flow. It is conservation of 
circulation (the Hankel-Kelvin Theorem) which results from the Euler equations 
that is often used together with an additional assumption of an initially irrotational 
fluid field to postulate irrotational flow. This, in turn, allows one to take advantage 
of the mathematical simplifications afforded by potential theory. 

Such an approach is taken by Benjamin & Lighthill (1954) in their derivation of 
classical cnoidal theory. Irrotationality is assumed in order to guarantee the 
existence of a harmonic stream function. This is expanded in an infinite series 
containing unknown functions of the horizontal coordinate, and is constructed in 
such a way that the bottom boundary condition is satisfied by each term. The series 
is substituted into the free-surface boundary condition and an equation defining the 
momentum-flux per unit span. In  the process of solving these equations, the series is 
truncated after N terms. Computation of the vorticity reveals a non-zero contribution 
arising from the Nth term. Thus, strictly speaking, neither momentum, the free- 
surface boundary condition nor irrotationality is satisfied exactly unless an infinite 
number of terms is used. Rather, they are all approximated in a consistent sense. One 
result is that the solution for the wave profile is not guaranteed to be a streamline 
of the flow described by the solution for the velocity field. Since the stream function 
is expanded about a uniform flow, we expect this sort of error to increase with the 
wave height. 
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Unlike the perturbation theory, the direct theory gives certain physical 

requirements greater importance than others. In  particular. the solution for the 
velocity field is guaranteed to  satisfy both conservation of mass and the free-surface 
boundary conditions on the solution for the wave profile exactly for all wave heights. 
In this sense, one might say that the direct theory produces a 'self-consistent' 
solution. This is only possible by placing more importance on satisfaction of these 
specific kinematic requirements and allowing the Euler equations to be satisfied only 
in a depth-averaged sense (in a fashion which assures, however, that  the model 
conserves total mechanical energy). 

In  summary, it might be said that the perturbation approach is motivated by the 
belief that it is of primary importance to satisfy all equations to the same order of 
approximation. In this sensc it is a mathematical approximation to the 'exact' 
equations. In contrast, the direct approach concentrates on satisfaction of the 
fundamental kinematics and averaged momentum, in order to develop a model that  
is self-consistent and physically reasonable. Thus, the direct approach might be 
thought of as a physical approximation. Although it is interesting to debate the 
relative merits of the foundations of these two approaches, it is probable that a 
definitive answer can be obtained only by comparing predictions of the two theories. 
as we shall undertake in $95 and 6. 

4.2. Theory I I  equations for steady t w o - ~ i r n e n ~ ~ i ~ ~ , ~ ~ ~  $ow 

The second level of approximation of the direct theory is obtained by setting K = 
2 in the general equations of $3. By (3.2) and (3.46), a linear profile for the horizontal 
velocity and a parabolic profile for the vertical velocity are assumed. These are 

?I1 = uo+u ,s ,  (4.18a) 

v3 = wo+w1s+w2s2. (4.18 b )  

Again making use of steady two-dimensional flow assumptions, we obtain a system 
of ten coupled equations, First, from (3.3) and (3.4b) we may write the two kinematic 
boundary conditions as 

2w,+2w2 = y,(uo+ul), 

2w, = y,(uo+u1), 

and from ( 3 . 4 ~ )  we obtain two continuity conditions: 

?uoz - yZ u1 4- 2?a1 = 0, 

yUlz - y, u1 + 4w, = 0. 

vluouos+5u1 u1x+iu1 v-1(v74)zl = -pox. 

TlUo woz + &1 q, ++wl ?/-I( )j7l& + $u0 w,,] = p- ?I, 

T l ~ " o ~ ~ 1 5 f 5 ~ 1 ~ 0 z l  = -plz-4s/4(~: +Po), 

T[&o u'l,+iu.l u.'oz+;ul W2,+&u'r )j7-1(?p1)z] = -p+%/?/P,. 

From (3.10) we obtain five momentum equations as follows: 
n = 0, x-component : 

n = 0, z-component : 

n = 1,x-component : 

n = 1 ,  z-component : 

(4.19a) 

(4.196) 

(4.20 a )  

(4.206) 

(4.21 a )  

(4.21 6) 

(4.21 c.) 

(4 .2 ld )  
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n = 2, z-component : 

This rather cumbersome system is now reduced to a more convenient system of 
two equations. IJsing (4.19) and (4.20), the velocity components u,,w, are all 
expressible in terms of the free-surface height 7, the linear component of the 
horizontal velocity ul, and the mass flux Q ,  which again arises as a constant of 
integration. The relations are 

uo = Q/7, wo = i ( ~ u i ) z + $ ( Q ~ z / ~ ) ,  (4.22a, b )  

w1 = k z ( u l + Q / r ) ,  w2 = i(rzu1-7ulz). (4.22c, d )  

With the use of (4.22a), the first momentum equation ( 4 . 2 1 ~ ~ )  becomes 

-Q2rz/r2 +5(~u1 u i z + u i ( ~ i ) z )  = -Po,, 

which may be integrated to obtain 

Q'7-'+ $ 7 ~ :  = -Po +S, (4.23) 

where S arises as a constant of integration and has the same physical significance as 
before. 

Taking suitable algebraic combinations of (4.23), (4.21 b-e), and derivatives 
thereof, we can eliminate all of the unknown integrated pressures Pi and bottom 
pressure p from the system. After using the relations (4.22) in the resulting equations, 
we arrive a t  a pair of coupled, ordinary differential equations for the free-surface 
height 7 and the linear component of horizontal velocity, ul. These are 

r9.I r3 + 25QU1 r2 + 20Q2r1 rzz + [u, r4 + 5Qr31 ulzz + (6G r2 - 5Qu1 71 - 20Q') (vz)' 
+ ( 15u1 r3 + 25Q7') ulz T~ - 7 4 ( ~ 1 z ) 2  + 30y3 + 2 0 ~ ;  7'- 6087 + 60Q2 = 0,  (4.24) 

and 

[ - 4 v4 - 4Qu, r3 - 5Q2r21 rzZz - [2Qr41 ulzsz + ( ( 2 ~ ;  r3 + 15Qu1 7' + 25Q2r) rz 
+ (-5% r4 - 11'2~~) ulz) T~~ + ( - 2% r4 - f4Q73) 7, ulzz + ( 2 ~ :  7' - 6&u, 7 - 20@) (71,)~ 

+ (2u1 r3 + loQ7') ulS(?jz)' 4- ( -4r4(u1,)2 -20&u1 r )  Ys+ 20&9'Ulz = 0. (4.25) 

Upon setting u1 to zero in (4.24) one recovers the first-level equation (4.16). It may 
be shown that the second equation, (4.25), is an additional requirement which cannot 
be satisfied by the more restricted velocity field associated with the first-level 
approximation, excepting trivial cases. 

The depth-vorticity distribution of Theory I1 is determined by taking the curl of 
the velocity field defined by (4.18) and (4.22). The result is parabolic in the coordinate 
s, given by 

0 = -[( u1 r2rzz -2ul ~ ( 7 ~ ) ~  +2ulz v2vz - ulzz r3 } s2  
+{(2rrzz-4(rz)') &+2u1~'~, , -4ul  r(1/d2 +4ul,r27,)s 
+ ( 2 ~ ~ ~  -4(rz)') Q + u1 T ' J ~ ~  - 2ul r(rz)' + 2ulz r2rz + ulzz r3 - 8% rl/(4r2). 

(4.26) 
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4.3. Theory I I I  equations for steady two-dimemional $ow 
The equations for the third-level approximations are obtained by direct extension. 
We shall not dwell on this process, but record here only the results ; a system of three 
coupled equations : 

[(567u: + 336u, u1 + 132~:) q3 + ( 1575&u1 + 210&u,) 7' + 1260&'7] y,, 

+[(63~l-42~z)~4+315&~3]~l,,+[(42~l+4~z)~4+42&~3]~z,, 
+ ( ( 3 7 8 ~ ~ + 3 3 6 ~ , ~ , +  120~;)7'+ ( - 3 1 5 & ~ , - 4 2 & ~ , ) ~ -  1260Q') (7,)' 

+ ((  (945u1 + 294u2) v3  + 1575&y2) ulz + ( ( 3 7 8 ~ ~  + 252u2) v3  + 210Q7') uzs) 7, 
- 6 3 ~ ~ ( ~ ~ , ) '  -4v4(u2J2 + 1 8 9 0 ~ ~  + (1260%; + 3364)  7' - 378087 + 3780Q' = 0, 

[( - 6 3 ~ ;  - 20%;) r4 + ( - 252&u1 + 8 4 & ~ , )  r3 - 315&'7'] 7sxs + [24u, 75 
(4.27) 

- 126&74] ulsz, - [ 12u1 q5] uzzzz + (( ( 1 2 6 4  + 240u, u1 + 2 4 ~ ; )  r3 + (945&u1 

- 8 4 ~ 2 )  r4 + 126&r3) uZz)  7,, + (( ( - 1 2 6 ~ ~  + 7 2 ~ ~ )  r4 - li04Qv3) qx + 1275~,,) ulZz 
+ ((  ( - 72u1 - 4 0 4  q4 + 84&q3) 7, - 24y5uls) uzZz + (( 1264 + 2 4 0 ~ ~  u1 

+ 7 2 ~ : )  q2 + ( - 378Qu1 - 84&u2) 7 - 1260Q2) ( v , ) ~  

+ 294&u2) 7' + 1575Q27) 7, + ((  - 3 1 5 ~ ~  + 1 8 ~ ' )  v4 - 693&r3) ulZ + (( - 66u1 

+ ((( 126u1 + 300~') q3 + 630&y2) ulS + (( 1 3 2 ~ ~  + 7 2 ~ ~ )  r)3 + 252&y2) u ~ ~ )  ( T , ) ~  
+ ( - 25274(~1,)2 - 96v4u2, ulZ - 4874(~2x)2 + 6 7 2 ~ ~  u1 7'- 1260&u1 7)  7, 

+ ( 8 4 0 ~ ~  q3 + 1260&7') ulZ + 504u1 v3u,, = 0, (4.28) 
and 

[(477u; + 312u2 u1 + 124~:) q4 + ( 1323&u1 + 162&u,) r3 + 1134&272] y z S x  
+ [ ( 2 7 ~ ~ - 4 2 ~ ~ ) ~ ~ + 3 1 5 & ~ ~ ] ~ 1 , , , + [ ( 4 2 ~ ~ + 4 ~ , ) ~ ~ +  18&74]~zszz 
+ (( (22144 + 1 7 2 8 ~ ~  u1 + 5844)  r3 + (2079&u1 + 882&u2) 7' - 1890&'7) 7, 

+ (( 1773u1 + 522u2) r4 + 2772&r3) uls + ( ( 6 5 4 ~ ~  + 47624 r4 + 288&y3) u22) T,, 
+ ((  ( 9 5 4 ~ ~  + 144~ ' )  q4 + 1953&v3) 7, - 2 7 ~ ~ ~ ~ ~  - 42q5uZz) ulZs 

+ ((  ( 4 8 0 ~ ~  + 248~ ' )  v4 + 198&r3) 7, + 42r5u1, - 4r5uZ,) u~~~ 
+ ( ( 2 7 0 4  + 4 3 2 ~ ~  u1 + 168~:) 7' + ( - 756&u1 - 360&u2) 7 + 756Q') (7,)3 
+ (((2826u1+ 1188u2)q3+ 1512&~2)u1,+((1212u1+856u2)~3 

+ 576&7') u2,) (rX)'+ (684q4(u1,)2 +48Oy4u2, ul, + 20874(u2,)2 + 3 7 8 0 ~ ~  
+ (756~ :  + 4324)  7'- 1008Qu, 7 - 3780Q2) 7, + 3 0 2 4 ~ ~  r3ulz 

+ ( 9 6 0 ~ ~  v3 + 1008Qq2) u,, = 0. (4.29) 

The velocity field is given by 

v1 = u,+u1s+u2s', (4.30 a )  
v3 = w,+ w1 s+ w 2  s2+ w3 s3, (4.30 b ) 

where ~0 = &/7 - &z, (4.31 a) 

wo = i&(7z/7)-+21;/,+a.l7,++~l57' (4.31 b )  

(4.31 c) 

(4.31 d )  

w3 = +u2 7, - Quzx 7. (4.31 e )  
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From (4 .30 )  and (4 .31)  it  follows that the vorticity distribution is given by 

Q = - W2 r2r5, - 12u2 r(rx)2 + S=zx r2rx - 2u2,, r3) s3 
+ { ( 6 u 2 + 3 u l ) r 2 r x , +  ( - 2 4 u 2 - ~ u 1 ) r ( r x ) ' +  ~ ~ 2 ~ , , + ~ ~ , , ~ r 2 r , - ~ ~ l x x ~ 3 $ ~ 2  

+ { m r x x  - W r x ) ' )  Q + 6% r ' r x x  

+ (Wrxx - W ~ , ) ' )  Q + ( - 2 ~ 2  + 3u1) r2rxx - 6 ~ 1 r ( ~ ~ ) ~  
+ ~ - ~ ~ , , + ~ ~ l , ~ r 2 r x + ~ ~ l , , r 3 - ~ ~ ~ l r l / ~ ~ ~ r 2 ~ .  (4 .32)  

The algebra involved in obtaining the above equations is of course formidable, but 
is easily handled by computer programs capable of symbolic manipulation. The 
progam MACSYMA (developed a t  the Massachusetts Institute of Technology) was 
used extensively in this research. 

+ ( - 1 2 ~ 2  - 1 2 ~ ~ )  ~(7,)' + 1 2 ~ , ,  r2rx + 2 ~ ~ , ,  r3 -4%' 7) s 

4 .4 .  Linearized equations 

We now obtain linearized forms of the foregoing equations for a stream of 
undisturbed depth d.  The linearized Theory I equation has been given previously by 
Green & Naghdi (1974) and is 

c 2 d 2 h X x + ( 3 d - 3 ~ ' )  h = 0, (4 .33)  

where h represents the height of a small steady disturbance relative to the still water 
level, and c is its speed of propagation. 

Linearized forms of the governing equations for the second and third levels of 
approximation are obtained by setting ~ ( x )  = d + h(x)  in (4 .24)-(4.25)  and (4.27)- 
(4 .29 ) ,  respectively, where h(x)  and the velocity components u, are assumed 
small, along with their derivatives. Retaining only first-order terms in small 
quantities, we obtain the following forms for the Theory I1 equations : 

( -  12S+ 18d') h + 4 d Q 2 h , x + d 3 Q ~ l , , -  12(dX-Q2) + 6 d 3  = 0, 

- 2d 4Q~, , , ,  - 5d 'Q2hXx, + 20d 'Qu,, = 0. and 

Eliminating u1 from these two equations yields the single equation 

3d 3Q2hxxxx + ( - 24d - 80dQ2 + 36d ') h,, 
+(240X-3360d2)h+240dS-240Q2- 120d3 = 0. (4 .34)  

Consistent with the present assumption of a small disturbance, the integrated 
pressure may be taken to be hydrostatic and the flow velocities negligible compared 
with the velocity of wave propagation. Hence, the mass flow rate and momentum 
flux take on values appropriate to uniform flow, 

Q = -  cd, S = c2d+@'.  

Using the above in (4 .34 ) ,  we obtain the linearized Theory 11 equation 

3 ~ ~ d ~ h , , , ~  + (24d3 - 104c2d2) h,, + ( - 240d + 2 4 0 ~ ' )  h = 0. (4 .35)  

A similar procedure applied to (4 .27)-(4.29)  yields a sixth-order linear equation for 
Theory 111: 

~ 2 d 6 h x x x x x x  + ( 15d5 - 135c2d4) h,,,, + ( - 780d3 + 2880c'd') h,, 
+(6300d-6300c2)h = 0. (4.36) 
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5. Solitary wave solutions 
We now obtain solutions to the above equations, first considering the problem of 

a solitary wave. Before proceeding, we recall some previous results. Stokes (see Lamb 
1932, p. 425) showed that the asymptotic solution for the wave profile is exponential, 
i.e. 

where h is the wave height above an undisturbed depth of unity and a,  sometimes 
called the ‘straining parameter ’, is a solution of the transcendental relationship 

(5.1) h(x) x eZaX as z + k a3, 

tan 2a 
2a 

= F 2 ,  

where F is the depth Froude number. This result is exact for an ideal fluid. 
Grimshaw (1971) was the first to carry out the Rayleigh-Boussinesq approxi- 

mation to the third order for solitary waves. His solutions for the speed and 
surface profile of the solitary wave are given by Fenton (1972) in the non-dimensional 
form 

~2 = 1 + € - + 2 - + 3 ,  (5.3) 

012 = $ - 3 ! 9 + @ 3 ,  (5.4) 

~ ( x )  = 1 +e[sech2 (ax)] + eZ[ -: sech2 (ax) tanh2 (ax)] 

+e3@ seeh2 (ax) tanh2 (ax)-% sech4 (ax) tanh’(ax)], (5.5) 

where E is the wave height, ~ ( x )  represents the profile measured from the bottom. and 
the undisturbed depth is taken to be unity. Like the exact solution, the asymptotic 
behaviour of this solution is exponential, where the term a is an approximation to the 
straining parameter as defined in (5.2). The solution (5.3)-(5.5) reduces to the second- 
order result of Laitone (1960) after dropping terms of O(e3) ,  and to the first-order 
result of Boussinesq (1871) after dropping terms of 0 ( e 2 ) .  

In figure 2 Stokes’ relationship between straining parameter and Froude number 
is plotted, along with the predictions from the first three orders of shallow-water 
theory (given by (5.3) and (5.4)). We see that the agreement is good only for Froude 
numbers near unity, corresponding to waves of small height. Even a t  the third order, 
the results do not compare well beyond a Froude number F z 1.10, which 
corresponds to a wave-height of about E z 0.2, or less than one-fourth of the known 
maximum. It can also be seen that for Froude numbers near the maximum (Fmax z 
1.3) the higher-order approximations diverge wildly. Using numerical methods, 
Fenton (1972) extended the perturbation solution to the ninth order. Although the 
range of validity increased with higher order, i t  was found that this erratic behaviour 
continued, all approximations eventually diverging within the regime of realistic 
wave speeds. Fenton was able to increase accuracy with the use of convergence- 
improvement techniques, but still was not able to predict the highest waves. 

The direct theory predictions for the asymptotic wave profile are obtained from 
the linearized equations given in $4.4. We put c = F and d = 1 in (4.33), (4.35) and 
(4.36) and assume solutions of the form h = h, e2ax. The resulting characteristic 
equations may be solved for F2 and read 

(5.613) 
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FIGURE 2. Variation of the straining parameter a wit.h Froude number as predicted by the first. 
three orders of classical shallow-water theory. Predictions are compared with Stokes’ (exact) 
result. 
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FIGURE 3. Variation of the straining parameter a with Froude number as predicted by the first 
three orders of the direct theory. Predictions of Theory I1 and Theory I11 cannot be distinguished 
from Stokes’ result at this scale. 

and 

(5.66) 

(5.6~) 

for Theories I, 11, and 111, respectively. 
In contrast to the perturbation results, the relationships between F and a 

predicted by the above equations, figure 3, are remarkably well behaved. Only the 

7 FLM 197 
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FIGURE 4. Surface profile of the solitary wave as predicted by the first three orders of classical 
shallow-water theory. Wave celerity is F = 1.266. 

Theory I prediction differs significantly from the exact result; for Theory I11 the 
error is less than thus indistinguishable at this scale. Most importantly, all 
results seem to possess a uniform validity, with little increase in error as the Froude 
number increases. 

This improvement might be attributed to the general superiority of the rational 
approximants for F2 which arise from the direct theory. (5.6). as opposed to the series 
approximations one obtains from the perturbation methods, (5 .3)  and (5.4). In fact, 
it may be verified that ( 5 . 6 ~ )  is the [0, 21 Pad6 approximant to the exact relation for 
F2 given in (5.2). Similarly ( 5 . 6 ~ )  is the [4,6] Pad4 approximant to (5.2). Based on 
these results one might expect (5.66) to be the [2,4] Pad6 approximant ; however this 
is not the case. 

Let us now compare solutions of the full nonlinear equations. First, in figure 4 w7e 
plot the profile of a solitary wave of speed F = 1.266 predicted by the first-, second- 
and third-order shallow-water approximations and the numerically exact result for 
this Froude number (Byatt-Smith & Longuet-Higgins 1976). We note that the 
second-order result represents a substantial change from the first-order. and the 
third-order is a large change from this again ; although it is not far from the first- 
order. Only at  the wave crest does the solution appear to be converging regularly, 
increasing monotonically with higher order. The irregularity away from the crest is 
apparently related to the divergent behaviour of the straining parameter. 

Figure 5 shows the result from direct theories I, I1 and 111. and the numerically 
exact result (for the same Froude number). The Theory I solution is analytic and has 
been given previously by Green & Naghdi ; it is identical to the solution of Rayleigh 
(1876). Solutions for Theories I1 and 111 were obtained numerically from thc 
governing equations (4.24)-(4.25) and (4.27)-(4.29), respectively, using a finite- 
difference algorithm described in detail by Shields (1986). Here we see monotonic 
convergence not only a t  the crest but also far from the crest, reflecting the improved 
prediction for the straining parameter. For each successive level of approximation 
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FIGURE 6. Relationship between solitary wave height and speed as predicted by various orders of 
rlassiral shallow-water theory Predictions are rompared with the high-order numerical results of 
Longuet-Higgins & Fenton (1974). 

the wave is higher and less broad. Note that the Theory I1 result represents a 
relatively small change to the Theory I result, with the Theory I11 prediction being 
a yet smaller change to this. The maximum difference in the profile shape between 
Theory I11 and the numerically exact result is less than 0.0048. 

We now compare the various approximations to high-order numerical results. In  
figure 6 the relationship between wave height and speed given by Longuet-Higgins 
& Fenton (1974) is compared with that derived from the first-, second-, third-order 
perturbation theories, and also the (untransforined) ninth-order result of Fenton 

7-2 
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FIGURE 7 .  Relationship between solitary wave height and speed as predicted by the direct theory. 
Predictions are compared with the high-order numerical results of Longuet-Higgins & Fenton 
(1974). 

(1972). There is a monotonic convergence towards the high-order result, although it 
is rather slow; even the ninth-order theory does not agree well beyond F = 1.27. 

The same relationship is plotted in figure 7, this time giving the results from the 
direct theory. Clearly the direct theory converges much more rapidly to the high- 
order numerical result. In fact, Theory I11 is comparable in accuracy in the ninth- 
order perturbation solution. We also note that the Theory 111 result demonstrates a 
rapid upward curvature for higher Froude numbers, similar to the high-order 
numerical result. The curve terminates near F = 1.31, where wave height begins to 
increase rapidly with Froude number. The terminus of the curve represents a limit 
bcyond which the numerical solution proccdure would not converge. Similar 
behaviour was exhibited by Theory 11, although the limiting Proude number was 
higher. about F = 1.41. 

Near these values of F the Theory I1 and Theory I11 solutions wcre characterized 
by increasingly sharp crests, reminiscent of existing high-order numerical solutions 
and numerically exact solutions for the near-limiting wave. This behaviour seems 
related to certain singularities in the governing equations (4.24)-(4.25) and 
(4.27)-(4.29). h'oting that these two systems of equations are linear in their highest- 
order derivatives. let us write them as two matrix equations of the form 

for Theory I1 and, for Theory I11 

(5.7) 

where the cil are the coefficients enclosed in square brackets in the governing 
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equations (4.24)-(4.25) and (4.27)-(4.29), respectively, and the d] are the remaining 
terms. (In order to write the above forms it is formally necessary to first differentiate 
(4.24) and (4.27) with respect to x so that all equations are of the same order.) The 
determinant of the matrix in (5.7) is given by 

c11c22-c12c21 = - ~ ~ ( Q + u ~ 7 1 )  (15Q2+ 10u1rQ-u!r2), (5.9) 

and that in (5 .8)  is given by 

'll('22 '33-'23 c32)-c12(c21 c33-c23c31)  +c13(c21 '32-'22 '31) 

= - 48$'(3Q + 3u1 7 + 2u, 7)  ( - 5292Q3 - 1 1 3 4 ~ ~  7Q2 - 3969u1 yQ2 + 5 0 4 ~ :  y2Q 
+ 1 0 0 8 ~ ~  u2 q2Q + 1134~:  q2Q - 8 ~ :  q3 - 84u1 U ;  v3  + 1 2 6 ~ ;  U ,  v3  + 5 6 7 ~ :  q 3 ) .  

(5.10) 

Let us first consider the Theory 11 determinant, (5.9). Note that owing to the 
presence of the factor (Q+u, 7) this determinant may vanish (and the equations may 
become singular) when u1 J = - &. Consider now the horizontal fluid velocity a t  the 
surface of the wave for Theory 11, u ~ ~ ~ ~ ~ ~ ~ , ~ ~ .  Recalling that the free surface is 
specified by s = + 1, by (4.18~) and ( 4 . 2 2 ~ )  this may be written as 

(5.11) 

According to the above, the condition u1 J = - Q corresponds to usurface, II = 0. Since 
our reference frame is translating with the wave, this condition implies an 
equivalence of surface-particle velocity and wave speed. Interestingly, this is the 
exact requirement for particle velocity a t  the crest of a limiting wave. 

The horizontal component of the surface-fluid velocity corresponding to Theory 
111 is obtained by setting s = 1 in (4.30a) and using ( 4 . 3 1 ~ ~ ) .  This is given by 

(5.12) 

Similar to Theory 11, the Theory 111 determinant contains a factor (3Q + 3u, J + 
2u27) which vanishes when this velocity is zero. Thus again we may identify a 
singularity in the system of equations with the criterion of a limiting wave, 
Furthermore, i t  is evident from the form of the governing equations of both theories 
that as these singularities are approached, the curvature of the solution for the wave 
profile becomes unbounded. This explains the cusp-like solutions that were observed. 

This remarkable result is not present in Theory I, nor does it have any parallel in 
the comparable low-order perturbation theories. All of these latter theories yield 
analytic solutions, and these have no mathematical limitation for any choice of 
F 2 1. From the results for Theory I1 and Theory 111, we conjecture that all levels of 
the general theory for K > 1 contain a singularity associated with the limiting 
wave. 

Further light may be shed on this feature by considering a certain non-dimensional 
parameter w .  This parameter, introduced by Longuet-Higgins & Fenton (19$4), is 

[Ucrest12 (5.13) 
defined by 

w =  I-----.----. 

where Ucrest is the (dimensional) particle velocity a t  the wave crest, measured in 
wave-fixed coordinates. With this definition, w increases monotonically from 0 to 1 
as the wave amplitude varies from the infinestimal to its limiting value. Predictions 

gd 
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FIGURE 8. Variation of the parameter w = 1 - U2/gd  with Froude number. The results of 
Longuet-Higgins & Fenton (1974) are compared with the predictions of the direct theory. 

for w from the direct theories are plotted against Froude number in figure 8, along 
with the results of Longuet-Higgins & Fenton (1974). We note a rapid convergence 
for the successive direct theories. The results from Theory I1 and Theory 111 
demonstrate upward curvature throughout the range of F ,  tending toward the upper 
limit w = 1 at  a finite value of Froude number. In contrast, i t  may be shown that the 
prediction of Theory I approaches the limit w = 1 asymptotically as F --f a. 

The curves for Theories I1 and I11 terminate where the numerical solution 
procedure would no longer converge. Clearly, for Theory 111 this point corresponds 
to a rapid increase in w with F .  This occurs near w = 0.9, agreeing well with Longuet- 
Higgins & Fenton (1974). It is possible that the equations might yield two solutions 
for a certain range of wave speed, but this has yet to be verified. However, in addition 
to the wave speed, it is known that certain other wave properties reach maxima prior 
to the limiting wave. One in particular is the excess mass, defined as the non- 
dimensional fluid volume above the undisturbed free surface, 

+m 
M = / [v (~ ) - l ]dx .  (5.14) 

J -02 

Longuet-Higgins & Fenton (1974) found that this quantity, when plotted against w ,  
reaches a maximum before the maximum in Froude number is reached. In  figure 9 
we plot this relationship for the various direct approximations, along with the high- 
order numerical results. Note that Theory I predicts the mass to increase 
monotonically with w ,  but the Theory I1 and Theory I11 results clearly attain 
maximum values, the latter being in excellent agreement with the results of Longuct- 
Higgins & Fenton (1974). 

The foregoing results demonstrate that the theory is capable of predicting the 
‘gross’ properties of solitary waves quite well. It is of interest now to consider other 
properties of the solutions. In particular, the derivation of the theory guarantees 
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FIGURE 9. Excess mass of the solitary wave as a function of the parameter o. Predictions of 
the direct theory are compared with the results of Longuet-Higgins & Fenton (1974). 

that the predicted flow field is incompressible and that it satisfies kinematic 
boundary conditions. The situation with regard to vorticity in the flow is, however. 
different. In  classical approaches the assumption is made that the flow started from 
an initially quiescent (irrotational) state and was produced by the action of 
conservative forces on the fluid. As a result of the Hankel-Kelvin theorem, the flow 
in this case will remain irrotational. One can show (Shields & Webster 1988) that  it 
is possible to develop theorems similar in nature to the Hankel-Kelvin theorem for 
fluid sheets. These results show that :  Theory I does not conserve any circulation 
across the sheet and is, in fact, fundamentally rotational; Theory I1 conserves a 
weighted average of circulation across the sheet ; Theory I11 conserves two different 
weighted averages of circulation across the sheet, etc. The weighting functions are 
( 1  -s2), (1 -s2) s, . .. . As a result, the vorticity in a flow starting from rest does not 
remain zero (as in classical potential theory) but may become different from zero, as 
long as the corresponding weighted averages of the vorticity remain zero. Since all 
the weighting functions include the factor (1 - s'), zero vorticity is best preserved 
near the midsurface of the fluid sheet and, in particular, the depth-averaged vorticity 
may not be zero. 

The depth-integrated vorticity corresponding to the solitary wave solutions of 
figure 5 is plotted in figure 10. These results were calculated from the vorticity 
expressions corresponding to the three levels of approximation, given in (4.17), (4.26) 
and (4.32), respectively. We note that the error in each successive approximation is 
smaller, but that the improvement of Theory I11 over Theory I1 is not as large as one 
might expect, considering our earlier results for fundamental wave properties. 

Noting that in all three cases the maximum error occurs under the wave crest, 
figure 11 shows the depth-distribution of vorticity at this location for each solution. 
As noted in 54.1, the vorticity of Theory I increases linearly from the bottom. The 
Theory I1 vorticity follows a parabolic distribution and is not necessarily zero at the 
bottom. Like Theory 11, the vorticity distribution of Theory 111 seems to 
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Fro1 RE 11. The depth-distribution of vorticity under the crests of the solitary wave solutions 
of figure 5 s = 1 corresponds to thP wave surface; s = - 1 corresponds to the bottom. 

approximate a zero average value, but also has a smaller ‘local’ error; its maximum 
value is less than half of that  of Theory 11. These computed results are such that the 
applicable weighted moments of the vorticity are zero. 

In summary, convergence towards irrotational flow is indicated in figures 10 and 
1 1 ,  but appears to be somewhat less rapid and lacking the monotonic character of the 
convergence for gross wave properties. 
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6. Periodic wave solutions 
We now examine periodic waves, which is a larger undertaking since these are 

specified by two parameters rather than just one. Throughout this section we adopt 
the notation used by Cokelet (1977), choosing units of length such that the 
wavenumber is unity. Of immediate interest are the dispersion relationships for 
infinitesimal waves predicted by the direct theories. To obtain these, we seek a 
sinusoidal solution to the linearized equations of $4.4 by putting h = h,  elx. Solving 
the resulting characteristic equations for the wave velocity, we obtain 

and 

24d3 + 240d 
3d4 + 104d2 + 240 ' 

15d5 + 780d3 + 6300d 

c2 = 

c2 = d6 + 135d4 + 2880d2 + 6300 ' 

(6.2) 

for Theories I, 11, and 111, respectively. 

from linear wave theory. In  the same non-dimensional variables, this is given by 
These results can be compared with Stokes' result, the familiar dispersion relation 

c2 = tanhd. (6.4) 

Similar to the results obtained for the relationship between wave speed and the 
straining parameter for the solitary wave, (5.6), the relations (6.1) and (6.3) are Pad4 
approximants to (6.4). Again the result for Theory 11, ( 6 . 2 ) ,  does not fit' this 
pattern. 

The above four relations are plotted in figure 12, using Cokelet's parametrization 
for the abscissa so that the entire range of depth/wavelength ratios is spanned. The 
exact result is unity a t  the deep-water limit (where c2 = g / k ) ,  decreasing 
monotonically to zero at' the shallow-water limit (c2 = gd) .  All direct theories agree 
well for shallow water (i.e. long waves), and the range of validity is extended with 
increasing order, converging to the exact curve rapidly. In all cases the predict'ed 
celerity is positive for all finite water depths, but t'ends to zero as infinite depth is 
approached. The model is clearly inapplicable in the limiting deep-water case. 
However, it is a t  least physically reasonable for all finite water depths, and improves 
rapidly with increasing level of approximat'ion. 

It is important to note that the Theory 111 curve in figure 12 is accurate until very 
near the deep-water limit, attaining a maximum value just less bhan unity. This 
indicates that Theory I11 may be capable of modelling waves that are essentially 
deep-water waves, feeling very little effect) from the bottom. The peak of the Theory 
111 curve occurs for a depth-to-wavelength ratio of about 1 : 2, well beyond the range 
usually considered appropriate for a shallow-water approximation. For example, 
Fenton (1979) recommends against the use of even high-order cnoidal theory for 
waves short>er than 8 times the water depth, or ePdk z 0.46 in figure 12. 

Before attempting solutions, we recall that the direct theory was derived without 
any statement concerning the rotationality of the flow. In  general, steady flows of an 
inviscid fluid have no unique solution unless the vorticity is specified (unsteady flows 
require a specification of the vorticity a t  one instant in time). As discussed in $5, the 
fluid-sheet theory presented here does not preserve vorticity point-wise. As a result 
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FIGURE 12. 
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Dispersion relationship for infinitesimal waves. Predictions from Theories 
I11 are compared with the exact result. 

I, I1 and 

of the analogue of the Hankel-Kelvin theorem for these flows (Shields & Webster 
1988), an initially quiescent (irrotational) state implies only that the weighted 
average of the circulation around any segment of the fluid sheet be zero for Theory 
I1 and two such weighted averages be zero for Theory 111. 

We shall, however, approach the specification of vorticity from a different, but 
equivalent, point of view. Adopting Stokes’ (1847) first definition of velocity for 
irrotational waves, we require that the horizontal velocity averaged over one 
wavelength a t  any fixed depth (below the level of the wave trough) is a constant. If 
this average is not independent of depth, the flow contains a net shear. A statement 
of this condition is given by 

[c + u(x, z ) ]  dx = 0, (6.5) 

for any z ,  where c is the velocity of propagation. Using the Theory I11 velocity field 
(4.21) in the above, we obtain 

Recalling that s = 2 z / 7  - 1, we have 

If the above expression is to hold for all values of z ,  all three integrals must vanish 
identically. Setting the second two integrals equal to  zero can be shown to be exactly 
equivalent to  the two vorticity constraints discussed above. Setting the first integral 
equal to zero defines the wave speed, c. The same process applied to Theory I1 yields 
a definition for the wave speed and the one vorticity constraint discussed in $ 5 .  

The solution procedure used the same finite-difference algorithm as was used for 
the solitary wave solutions, plus an iteration step to satisfy the above irrotationality 
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FIGURE 13. Relationship between wave height and wave speed squared for various ratios of depth 
to wavelength. Predictions of Theory I11 are compared with the periodic (e-dL < 1) results of 
Cokelet (1977), and the solitary wave (e-d* = 1) results of Longuet-Higgins & Fenton (1974). Dots 
( *  1 indicate limiting wave heights predicted by the direct theory. Predictions from the fifth-order 
cnoidal theory of Fenton (1979) are shown for the one case e-dlc = 0.4. 

constraints ; details are given by Shields (1986). Figure 13 shows the resulting 
relationship between wave height and speed for various ratios of depth to wavelength. 
The definition of depth is that used by Cokelet (1977), i.e. d = Q / c .  The predictions 
of Theories I, I1 and I11 are compared to the numerically exact results of Cokelet for 
periodic waves. Results of Longuet-Higgins & Fenton for the solitary wave extreme 
(e-d = l.O), are repeated for completeness. Rapid convergence of the direct theory is 
clearly demonstrated. Also, the limiting waves predicted by Theory I11 (indicated by 
dots ( a  ) at the points where the numerical solution failed) are in reasonably good 
agreement with the high-order numerical results. 

Also sketched in this figure are the fifth- and ninth-order cnoidal solutions of 
Fenton (1979) for the single case ePd = 0.4, taken directly from his figure 2. 
Breakdown of the cnoidal approximation is clearly evident; as Fenton noted, the 
solutions ‘diverge disastrously’ when the wave height and water depth both increase 
beyond a certain point. Asymptotic behaviour is also demonstrated, as the ninth- 
order prediction is worse than the fifth-order. In  contrast, the third-level direct 
theory continues to yield good predictions, even for the essentially deep-water case 
of ePd = 0.1, where h/d % 3. 

7. Concluding remarks 
It is clear that the direct approach is superior to the Rayleigh-Boussinesq 

approach in its ability to predict fundamental wave properties for steady two- 
dimensional waves. The direct theory posesses a far greater range of applicability, 
extending from the solitary wave extreme to an essentially deep-water condition. 
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Wave peaking and limiting heights for steady waves are also predicted, and are 
implicit in the equations of the theory. 

The approach does not incorporate an assumption of irrotational flow. As a. result, 
solutions modelling irrotational waves generally contain non-zero vorticity . 
However, since an approximation is made to conservation of momentum, the 
solutions appear to minimize this vorticity as one proceeds to higher-order 
approximation. 

With these findings, we conjecture that the general unsteady, three-dimensional 
equations from which these results are derived provide a more accurate model than 
could be obtained by the competing Rayleigh-Boussinesq approach. Unfortunately 
there is a great deal of algebraic complexity in the higher-level theories. In  order to 
deal with such equations it seems that computer programs capable of symbolic 
manipulation are essential. It is the experience of the authors that with such a tool 
much progress can be made. Shields (1986) obtained the unsteady version of the 
Theory I1 equations (including arbitrary bottom topography) and used them in a 
numerical simulation of wave shoaling. It was found that the equations required very 
little additional computational effort relative to much simpler models, such as the 
Boussinesq-class equations of Wu (1981), and yielded solutions that agreed extremely 
well with experimental observations. Further research is currently underway along 
these lines, and will be reported elsewhere. 

This research was sponsored by the Office of Naval Research under contract 
NOOOO 14-84-K-0026. 
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