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Abstract

A mode-splitting method is applied to the quasi-3D nearshore circulation equations in generalized curvilinear coordinates. The gravity wave
mode and the vorticity wave mode of the equations are derived using the two-step projection method. Using an implicit algorithm for the gravity
mode and an explicit algorithm for the vorticity mode, we combine the two modes to derive a mixed difference–differential equation with respect
to surface elevation. McKee et al.'s [McKee, S., Wall, D.P., and Wilson, S.K., 1996. An alternating direction implicit scheme for parabolic
equations with mixed derivative and convective terms. J. Comput. Phys., 126, 64–76.] ADI scheme is then used to solve the parabolic-type
equation in dealing with the mixed derivative and convective terms from the curvilinear coordinate transformation. Good convergence rates are
found in two typical cases which represent respectively the motions dominated by the gravity mode and the vorticity mode. Time step limitations
imposed by the vorticity convective Courant number in vorticity-mode-dominant cases are discussed. Model efficiency and accuracy are verified
in model application to tidal current simulations in San Francisco Bight.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

There is a growing need for an efficient nearshore circulation
model which can be used as a hydrodynamic module in modeling
of long time-scale nearshore processes such as coastal sediment
transport, morphology change, nearshore pollutant transport, and
the environmental coastal processes related to vegetation growth.
The typical time scale for nearshore sediment transport simula-
tions, for example, can be from months to years, even decadal
time scales for geomorphic long-term processes. The period re-
lated to a coastal vegetation growth simulations typically involves
at least a seasonal cycle. For simulations of these long time-scale
nearshore processes, model efficiency and numerical stability
become important issues.

Most of the existing nearshore circulation models reported in
the literature (e.g., Svendsen et al., 2002; Yu and Slinn, 2001; Shi
et al., 2003, and others) were developed under the CFL stability
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restriction relating the time step to the spatial discretization and to
the free-surface wave speed. The CFL stability restriction may
inhibit these models from being applied to long time-scale near-
shore circulation with a sufficiently fine grid to resolve complex
coastal geometry and nearshore flows. Therefore, seeking un-
conditionally stable and efficient numerical schemes for a near-
shore circulation model becomes very necessary.

Nearshore circulation models are often developed based on
depth-integrated and short-wave-averaged shallow water equa-
tions. The surface wave radiation stress concept is usually used as
the short-wave force for generation of wave-induced phenomena
such as wave set-up, set-down (Longuet-Higgins and Stewart,
1964; Bowen et al., 1968), longshore currents (Bowen, 1969;
Longuet-Higgins, 1970), rip currents (Haas et al., 2003), shear
waves (Sancho and Svendsen, 1998;Noyes et al., 2005) and infra-
gravity waves (van Dongeren and Svendsen, 2000). A Quasi-3D
nearshore circulation model SHORECIRC developed recently by
Svendsen et al. (2002), is an efficient approach to modeling of
wave-induced nearshore circulation with 3-D velocity profiles.
SHORECIRC first calculates 2-D wave-induced currents based
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on depth-integrated and time-averaged hydrodynamic equations
and then uses an analytical approach to evaluate the vertical
variation in current velocities. The three-dimensional dispersion
of momentum in wave-induced nearshore currents was discussed
by Svendsen and Putrevu (1994). They found that the vertical
structure of the currents leads to a mixing-like term in the depth-
integrated along-shore momentum equation, which is analogous
to the shear-dispersion mechanism found by Taylor (1953, 1954).
The lateral mixing caused by the shear-dispersion mechanism is
an order of magnitude larger than the turbulent lateral mixing and
is thus considered to be major contributor to the total lateral
mixing in the nearshore region. Smith (1997) also gave a more
general derivation of the shear-dispersion mechanism using a
multi-mode analysis of shallow water equations. Later studies on
shear waves (Sancho and Svendsen, 1998; Zhao et al., 2003),
using the same set of equations, showed that the 3-D dispersion
terms play an important role in vorticity generation and 3-D
vorticity structure. The 3-D dispersion terms, however, create a
significant burden on computations as shown in Putrevu and
Svendsen (1999). The curvilinear version of the SHORECIRC
model developed recently by Shi et al. (2003) gives rise to extra
computational time because of the coordinate transformation.
With the explicit schemes implemented in both the Cartesian and
curvilinear versions, the SHORECIRC model is computationally
expensive in large domains and long time-scale simulations.

Recently, mode-splitting techniques have beenwidely adopted
in three-dimensional ocean models in order to improve com-
putational efficiency (Bleck and Smith, 1990; Dukowicz and
Smith, 1994; Higdon and de Szoeke, 1997; Shchepetkin and
McWilliams, 2005). The basic idea of the technique is to sepa-
rate the external gravity (barotropic) mode and internal gravity
(baroclinic) mode equations and then solve each of them sepa-
rately at appropriate time steps dictated by the respective wave
speeds. The external mode equations are obtained by integrating
the continuity and momentum equations vertically over the water
column, and thus the mixing-like terms (also called dispersion
terms) appear in the 2-D momentum equations. The external
mode equations are less expensive to solve, though smaller time
steps may be needed due to the fast speed of the external gravity
waves. Alternatively, the external mode can be solved using an
implicit method (Oberhuber, 1993) with larger time steps. The
baroclinic equations governing the internal mode are more
expensive to solve but can be solved at much larger time steps
dictated by the slow speed of internal gravity waves. The principal
advantage of thismethod is significant savings in computing time.
However, some concerns were expressed about model stability
problems that may be caused by an inexactness in the mode-
splitting (Higdon and de Szoeke, 1997). If the splitting is inexact,
fast motions may be present in the baroclinic equations and
induce instability when large time steps are used. Higdon and de
Szoeke (1997) proposed a more precise splitting of the momen-
tum equations to solve the instability problem. Shchepetkin and
McWilliams (2005) found a combination of optimal numerical
algorithms for mode-splitting and designed a split-explicit
hydrodynamic kernel to prevent aliasing of unresolved barotropic
signals into the slow baroclinic motions so as to enhance internal
mode stability.
Following the mode-splitting idea, the SHORECIRC equa-
tions can also be split into twomodes, i.e., a fast mode and a slow
mode. The governing equations in SHORECIRC are essentially
2-D depth-integrated shallow water equations in which the 3-D
dispersion terms represent hydrodynamic mechanisms similar to
those in external mode equation 3-D ocean circulation models.
Although there are no baroclinic motions in the SHORECIRC
model, the 3-D dispersion effect caused by the vertical non-
uniformity of the currents plays a major role in dispersive
mixing. The vortical motion associated with lateral mixing and
radiation stresses is basically a slow motion which should be an
order of magnitude slower than gravity wave motion in shallow
water. Therefore, the gravity mode and the vorticity mode can be
split out from the SHORECIRC equations as the fast mode and
the slow mode, respectively. In contrast to the slow mode in 3-D
ocean models, the dispersion terms in the vorticity mode are
based on analytical formulations rather than a partial differential
equation in the vertical direction. It may be solved at the same
step as the gravity mode, using an implicit–explicit combined
scheme. Previous studies on such a combined numerical scheme
(Casulli and Zanolli, 2002) showed that the gravity mode can be
easily solved using a semi-implicit or fully implicit scheme
and that only a mild limitation on the time step is imposed by
the explicit form of the vorticity mode. The overall numerical
schemes are nearly unconditionally stable, and thus large time
steps are allowed in a computation.

The efficient ADI (Alternative Directional Implicit) scheme
has been widely used in solving horizontal 2-D parabolic/
elliptic/hyperbolic equations. It is easy to employ in rectangular
Cartesian coordinates or orthogonal curvilinear coordinates, as
the directionally-split 1-D equations lead to a diagonal dominant
matrix. In non-orthogonal curvilinear coordinates, the trans-
formed equations usually include extra terms associated with the
non-orthogonality of the coordinates, which may cause some
difficulties in using such a implicit scheme developed for the
diagonal dominant matrix. A typical example is that, after a
generalized coordinate transformation for shallow water equa-
tions, the pressure gradient terms in momentum equations may
include cross-directional derivatives in the new coordinates
(e.g., Shi et al., 2001; Shi et al., 2003). The off-diagonal terms
may become comparable in size to the diagonal terms if the
coordinates cannot be aligned along and across the flow (Fischer
1978).

In dealing with the off-diagonal terms, some extended un-
conditionally stable ADI schemes (or fractional step schemes
similar to ADI) have been derived by several authors such as
McKee and Mitchell (1970) for parabolic equations or Warming
and Beam (1979) for mixed hyperbolic–parabolic equations.
McKee et al. (1996) recently derived an effective uncondition-
ally stable ADI scheme for parabolic equations with mixed
derivative and convective terms. Their study was motivated
by the investigation of heat and mass transfer in a fluid in an
elliptical shaped domain. Generalized curvilinear coordinates
were used to allow the problem to be solved in a considerably
simpler rectangular geometry. After the coordinate transforma-
tion, the convection/diffusion equation gets two types of extra
terms caused by the non-orthogonality of the coordinates,
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including second-order cross derivatives and first-order advec-
tion-like terms. The transformed equation was solved using the
proposed extended ADI scheme with the inclusion of the
advection-like terms into the real advection terms.

In the present study, we start with the Quasi-3D nearshore
circulation equations in generalized curvilinear coordinates (Shi
et al., 2003). The mode-splitting technique is applied to the
curvilinear equations using a conventional two-step projection
method that is different from the mode-splitting method used in
typical three-dimensional ocean models. The resulting time
difference equation for the vorticity mode basically includes
lateral mixing, 3-D dispersion, advection, bottom friction and
wave forcing. It can be solved efficiently using an explicit
scheme due to its slow time-varying property. The gravity-mode
equations, which contain the pressure gradient terms and the
correction terms from the explicit form of the vorticity mode, are
further organized by substituting momentum equations into the
continuity equation. The final equation becomes a single para-
bolic type, mixed difference–differential equation with respect
to surface elevation. The parabolic equation in curvilinear co-
ordinates includes second order mixed derivative terms and
advection-like terms. McKee et al.'s. (1996) scheme is modified
and used in solving the equation.

To examine model convergence after the mode-splitting,
we test convergence rates with grid refinement and time step
refinement in two typical cases. The first case is the evolution of
waves in a rectangular basin, which may represent gravity-mode-
dominant motions. The convergence rates are tested in different
ranges of Courant numbers. The second case is shear waves on a
plane beach (Allen et al., 1996; Özkan-Haller and Kirby, 1999),
which represents motions dominated by the vorticity mode. A
limitation for use of large time steps in shear wave simulations is
investigated. Finally, the model efficiency and accuracy are tested
in a practical application to tidal current simulations in San Fran-
cisco Bight. We use different Courant numbers in the simulations
and compare the model results with field measurements.

2. Mode splitting

The SHORECIRC equations (Putrevu and Svendsen, 1999)
can be written in terms of contravariant components as (Shi
et al., 2003)
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where Qα and ς̃ represent contravariant component of depth-
integrated, short-wave-averaged horizontal flux and short-
wave-averaged surface elevation, respectively. Sαβ, τB

α, τS
α, and

Tαβ are radiation stresses, the bottom frictional stress, wind
stress, and lateral shear stresses. gαβ represents the metric tensor
defined by

gab ¼ AXg
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AXg
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ð3Þ

where Xγ represents horizontal spatial variables in rectangular
Cartesian coordinates. The 3-D dispersion effect caused by the
vertical variation of horizontal velocity is represented in the
terms containing the coefficients A, B, D and M (refer to Shi
et al., 2003 for details).

Eq. (2) can be split using the two-step projection method and
can be approximated as follows:
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where Qα(⁎) is the intermediate flux value computed from
incremental changes resulting from the vorticity mode and Fν

α
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Here, we assume the wave force and the variables associated
with wave–current interaction are slowly varying. The 3-D
dispersion terms containing the coefficients A, B, D and M are
evaluated using the analytical formulations given in Shi et al.
(2003) with the known values at the previous time step. The
turbulence-induced lateral mixing Tαβ and the bottom stress
term τB

α are also evaluated using the known values at the
previous time level. It should be mentioned that the bottom
friction term could be moved to the gravity mode and solved
implicitly in order to improve the numerical stability (Leen-
dertse and Gritton, 1971). In the present study, we still keep the
friction term in the vorticity mode in order to incorporate short-
wave effects into the bottom friction (Svendsen et al., 2002).
We do not find any numerical stability problems in our model
tests.

Eq. (5) presents the gravity mode of the equations with the
correction from the vorticity mode. We now call Eq. (5) the
gravity mode since Qα(⁎) is a known value obtained from the
previous time step. Substituting Eq. (5) into the continuity
Eq. (1) yields a mixed difference–differential equation,
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Fig. 1. Staggered Arakawa ‘C’ grid in x1–x2 plane (cross — ζ̃ point, circle —
Q1 point, box — Q2 point).
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Eq. (8) is a single parabolic equation with respect to the surface
elevation at the (n+1) time level. When it is solved the volume
flux at time level (n+1) can be calculated using Eq. (5) or

Qa nþ1ð Þ ¼ �ghDtgba
A 1̃
Axb

� � nþ1ð Þ
þQa nð Þ þ Fa nð Þ

m Dt: ð9Þ

It should be noted that Eq. (8) contains both the gravity mode
and vorticity mode. The gravity mode appears in implicit form
while the vorticity mode appears explicitly.

3. Numerical schemes

In order to use McKee et al.'s (1996) ADI scheme for
parabolic equations with mixed derivative and convective terms,
we rewrite Eq. (8) in a general form as
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aαβ is a symmetric array, and thus the mixed derivative terms in
Eq. (10) can be written as
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A
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Ax1Ax2

or
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A
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:

Compared to the general partial differential equation given in
McKee et al. (1996), Eq. (10) has an extra term c which can be
treated as a source term in the advection–diffusion equation. In
addition, there is no real advection term in the equation aside
from the advection-like term induced by the coordinate
distortion. We follow McKee et al.'s (1996) method to derive
the ADI scheme and get a similar scheme for Eq. (10). To get the
order of accuracy O(Δt, Δx 2α), we discretize the equation on a
uniform spatial mesh in the image plane with Δx1=Δx2 and use
a central difference scheme for the advection-like terms. A
staggered Arakawa ‘C’ grid (Arakawa and Lamb, 1977) as
shown in Fig. 1 is used for surface elevation and current flux.
The difference equations of Eq. (10) in the alternating direction
implicit schemes can be written as
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where r and p are ratios defined by

r ¼ Dt= Dx1ð Þ2¼ Dt= Dx2ð Þ2; p ¼ Dt= 2Dx1ð Þ ¼ Dt= 2Dx2ð Þ

and we define the discretization operations
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The scheme is the same as that in McKee et al. (1996) except that
the first-order derivatives are treated by a central difference.
McKee et al. (1996) mentioned that the order of accuracy decays
to O(Δt, Δxα) when the first-order up-winding scheme is used
for advection terms. Introducing the second order up-winding
scheme can increase toO(Δt,Δxα

2). We do not use the suggested
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scheme because of the fact that the first-order derivatives in our
equation are not the real advection terms. The grid distortion
caused advection-like terms are expected to have minor effect
on overall model accuracy under the condition of a smooth
curvilinear grid.

To facilitate the description of the boundary condition im-
plementation shown in next subsection, we give an extended
form of the difference equations. Eq. (13) can be written in a tri-
diagonal form as
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Eq. (15) can be written as
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with a corresponding definition for e1, e2, e3 and e4. Eqs. (16)
and (21) constitute linear tri-diagonal systems of equations for
ς̃(n+1)⁎ and ς̃i, j

(n+ 1), respectively and can be solved efficiently
using elimination method with proper boundary conditions.
Once ς̃i, j

(n+1) is achieved at every elevation point, the current flux
Qα(n+ 1) can be obtained immediately using Eq. (9) at current
flux points.

4. Boundary conditions

There are several types of boundary conditions implemented in
the SHORECIRC model. The use of the mode-splitting and the
implicit numerical scheme requires some changes in boundary
condition implementations. Here we concentrate on three fre-
quently used boundary conditions: flux, elevation, and periodic
lateral boundaries.
4.1. Specified flux boundary condition

A specified flux boundary condition in generalized curvilinear
coordinates can be easily expressed by using the contravariant
component of current flux:

Q1 ¼ Q1
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Q2 ¼ Q2
0 at south or north boundaries ð23Þ
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boundaries. Substituting the boundary conditions (22) and (23) in
Eqs. (9) and (10) results in some changes in the coefficients (d1,
d2, d3, d4) or (e1, e2, e3, e4) at the boundary points. At the west
boundary points,
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Corresponding changes in (d1, d2, d3, d4) can be made for the
east boundaries and changes in (e1, e2, e3, e4) for the south and
north boundaries.

4.2. Specified surface elevation boundary condition

On a staggered gird, only surface elevation points are dis-
tributed at the specified elevation boundaries. Substituting the
elevation boundary condition

1̃ ¼ 1̃0 ð28Þ

into Eq. (16) for east or west boundaries or Eq. (21) for south or
north boundaries directly yields the new tri-diagonal coefficients:
at the west boundaries, for example, we get d′1=0, d′2=d2, d′3=
d3, and d′4=d4−d1ς̃0 where ( )′ represents new coefficients.



Fig. 2. RMS differences with time refinement using two different grid spacings.

Fig. 3. RMS differences with grid refinement using different time steps.
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4.3. Periodic boundary condition

For spatially periodic boundary conditions, only surface
elevation points are defined at the boundaries. Linear periodic
tri-diagonal systems can be constructed using Eq. (16) for the
east–west periodic boundary and Eq. (21) for the south–north
periodic boundary. For applications using the periodic boundary
conditions, wave forcing, bathymetry, computational grid and
other spatial distributed variables should also have the periodic
properties related to the periodic boundary conditions.

5. Model applications

5.1. Tests on convergence rates in a gravity-mode-dominant
case

McKee et al. (1996) used the traditional von Neumann
method to prove that the scheme is unconditionally stable when
the coefficients in the parabolic equation are constant. Most
recently, in't Hout and Welfert (2007) derived new linear
stability results for ADI schemes applied to general parabolic
convection–diffusion equations with mixed derivative terms.
They also showed that the ADI schemes with cross-derivative
discretizations are unconditionally stable. Convergence rates
with time refinement were also investigated in their study. As a
specific application of this kind of ADI schemes, the discretized
equations in our study need to be tested on convergence rates
with both time and grid refinement. The convergence rates with
grid refinement are especially important for our model since
variable grid spacing is used in a grid system.

Following Shi et al. (2001), we perform simple tests of the
evolution of waves in a rectangular basin. The conditions used in
the numerical experiments are the same as in Shi et al. (2001),
including a basin dimension of 20×20 m, 0.5 m water depth and
a motionless Gaussian bump as the initial condition. To test the
convergence with time discretization, we use a sequence of time
steps, i.e.,Δt / i, whereΔt=0.5 and i=1, 2,…, 20. We choose two
different grid spacings, i.e.,Δx=0.1 m and 0.8 m, for all the time
steps. The convergence rates with time refinement are demon-
strated by the RMS differences of simulated surface elevations at
t=20 s. The RMS difference of surface elevation is defined by

RMSp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
1̃p i; jð Þ � 1̃pþ1 i; jð Þ� �2

m� nð Þ2

vuut ð29Þ

where ζ̃p represents the calculated surface elevations in the case
p and (m, n) are the grid dimensions. Fig. 2 shows the RMS
differences, from which the time convergence may be calculated.
To evaluate convergence rates, we apply the Cauchy conver-
gence rate defined by the following formula to convergence
measurements in all cases.

R ¼ log RMSp=RMSpþ1

� �
log Dxp=Dxpþ1

� � : ð30Þ

The averaged convergence rates for Δx=0.1 and 0.8 are 2.737
and 2.843, respectively. Fig. 2 also shows that the convergence
rates for the two different grid spacings are very close. Grid
spacing does not affect time convergence rates very much, which
is consistent with the results of in't Hout and Welfert (2007).

To test the grid convergence at different time steps, we choose
a series of time steps, i.e.,Δt=0.01, 0.1, 0.3 and 0.5 s. A sequence
of different grid spacing Δx / (pm−p), where Δx=0.8 m, pm=9
and p=1, 2, 3,…, 8, are adopted for eachΔt. The range of Courant
Numbers are from Cr=0.006 for the case of Δt=0.01 s and p=8
to Cr=2.26 for Δt=0.5 s and p=1. Fig. 3 shows the RMS
differences with grid refinement at different time steps. The RMS
difference of surface elevation is also calculated by Eq. (29) with
(m, n) as the grid dimensions in the case of p=8. It is found that, in
the cases with smaller time steps, the logarithmic RMS
differences vary linearly with respect to the logarithmic grid
spacing. The convergence tends to be slower as larger time steps
are adopted. The averaged Cauchy convergence rates are 2.66,
2.25, 1.83, and 1.42 for the cases ofΔt=0.01, 0.1, 0.3, and 0.5 s,
respectively. Compared to a value of 3.58 obtained from the same
case in Shi et al. (2003), the averaged convergence rate (2.66)
from the present test with Δt=0.01 is a little bit smaller because
only second order schemes are utilized in the model.
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In the development of the fully non-linear Boussinesq models
(Wei and Kirby, 1995; Shi et al., 2001), higher-order numerical
schemes in both space and time were used because the truncation
errors of a second-order approximation may contaminate the real
dispersive terms in the Boussinesq equations. This should not be a
problem in the present model because the SHORECIRC equa-
tions do not include terms involving higher-order derivatives.
However, it should be noted that the present numerical schemes,
with first-order accuracy in time and second order accuracy in
space, may cause numerical diffusion that may affect calculations
of physical diffusion caused by turbulent mixing. To examine the
accuracy of the second-order ADI schemes, wemake a numerical
test against the previous explicit scheme which is second-order in
time and fourth-order in space (Shi et al., 2003). The previous
model with the higher-order scheme is run in the same application
withΔx=0.4m andΔt=0.04 s. The result for surface elevation is
compared to the present model results with a sequence of time
steps. Fig. 4 shows the averaged (over all grid points) RMS errors
of surface elevation between the previousmodel result and results
from the present model at different time steps. It shows that the
accuracy of the present model with second-order schemes is
lower than the previous model. But it is acceptable for regular
hydrodynamic simulations. For simulations with complex geo-
metries, the Courant numbers are suggested not to exceed 10
because of the “ADI effect” (Casulli and Cheng, 1992).

5.2. Vorticity-mode-dominant case: modeling of nearshore
shear waves

Studies on surfzone dynamics have revealed the existence of a
variety of low-frequency motions including edge waves, surf beat
and shear waves at the shoreline (Noyes et al., 2005). Amongst
these low-frequency waves are shear waves, which are
manifestation of shear instability of the mean longshore current.
Shear waves are dominated by vorticity dynamics and have little
representation in the surface displacement signal. In numerical
models, the classic approach to “lateral mixing” is to specify a
Fig. 4. Averaged RMS differences of surface elevation between models with the
present second-order schemes and the previous higher-order schemes.
priori an empirical viscosity coefficient which is either constant
(e.g., Deigaard et al., 1994) or cross-shore varying (Özkan-Haller
and Kirby, 1999). Svendsen and Putrevu (1994) pointed out that
the 3-D dispersive mixing mentioned in Section 2 in this paper
should be the major part of the lateral mixing in longshore
currents. In the present numerical model, we assume that the
vorticity mode associated with the lateral mixing is a slowly
varying mode compared to the gravity mode, so that large time
steps could be applied according to the CLF-free schemes in the
gravity mode. However, because the vorticity mode becomes the
dominant mode in the modeling of shear waves, the explicit form
of the vorticity mode would restrict the time step used in the
model. For the vorticity mode, the vorticity convective Courant
number is related to the local convective velocity rather than the
gravity phase speed, and is expected to limit the time step.
According to the depth-averaged 2-D form of vertical vorticity
transport equation (Zhao et al., 2003), the vorticity convective
velocity is primarily the depth-averaged current velocity if
neglecting vorticity stretching. Therefore, the convective Courant
number for the vorticity mode can be approximately estimated as

Cvor
r ¼ jujDt

Dx
ð31Þ

where u represents the depth-averaged current velocity. To prove
our expectation, we carry out the simple test initially proposed by
Allen et al. (1996) who utilized the rigid lid assumption and
modeled the instability of an analytic longshore cur rent profile on
a sloping beach with slope of 0.05. Özkan-Haller and Kirby
(1999) repeated one of Allen et al.'s (1996) cases using general
two-dimensional shallow water equations with radiation stresses
as wave forcing. They found some similarities in vortex
interactions between the idealized plane beach test and practical
shear wave simulations associated with the SUPERDUCK field
experiment. Allen et al. (1996) pointed out that, in their numerical
solutions, shear wave behavior may vary over the full range from
periodic to chaotic with different bottom fiction coefficients and
domain size. For comparison, we conducted a shear wave
simulation on a plane beach which was used byÖzkan-Haller and
Kirby (1999). The computational domain is set to be 350 m and
3600 m in cross-shore and along-shore directions, respectively.
The grid sizes are chosen as 5 m in both directions. Wave forcing,
i.e., radiation stresses, is calculated from the REF/DIF-1 wave
model (Kirby et al., 2002). Periodic boundary conditions are used
in the along-shore direction. We use the quadratic-type bottom
stress formulation (Svendsen et al., 2002) with a constant bottom
friction coefficient fcw=0.003 with which we get a vorticity
pattern similar to that in Özkan-Haller and Kirby (1999). For
lateral mixing, there is no specification of a lateral mixing
parameter needed since the lateral mixing mainly depends on the
3-D dispersion evaluated by the local vertical profiles of the
calculated current velocities. To trigger shear waves on the long-
shore uniform plane beach, we used the same strategy as that used
in Özkan-Haller and Kirby (1999), and introduce small perturba-
tions in the initial longshore velocity v given by

v x;y;t ¼ 0ð Þ e
max fð Þ f ; ð32Þ



Fig. 5. Simulation of longshore currents on a plane beach. (Top) Bathymetry with a slope of 0.05, (middle) wave height from the REF/DIF-1 wave model, (bottom)
longshore current profile.

Fig. 6. Snapshot of current field (arrow) and vorticity (color, s−1) for a plane beach.
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where ε is a small parameter and the function f is given by

f ¼
XND
j¼1

cos
2pjy
Ly

þ 2p/j

� �
ð33Þ

in which, ND is the number of times the most unstable wave-
length fits into the modeling domain and ϕj is a random phase
function between −1 and 1. Ly represents the domain length in
the longshore direction. Following Özkan-Haller and Kirby
(1999), we adopted ND=16 that ensures the generations of the
most unstable wavelength as well as all longer wavelengths in
the modeling domain. We use ε=1×10−3 , which is orders of
magnitude larger than that used in Özkan-Haller and Kirby
(1999), in order to accelerate the process of shear wave
generation.

Fig. 5 shows the wave height distribution predicted by the
REF/DIF-1 wave model and the longshore current profile
(longshore-averaged) along with the water depth h for a mono-
chromatic wave with a frequency of 0.10 Hz and wave direction
of 20 at 17.5 m water depth. It is found that the longshore-
averaged current profile does not vary much when different time
steps are applied. In Fig. 6, we show a snapshot of the computed
wave-induced nearshore currents (arrows) and vertical vorticity
(color) distribution at 180 min. Compared with the vorticity
fields in Özkan-Haller and Kirby's (1999) case, the length of the
shear waves and vorticity patterns look comparable to their
results at the time before more vortices merge together.

We now concentrate on testing of numerical convergence in
shear wave simulations using different temporal resolutions. A
sequence of different time steps is selected, i.e., Δt×2p, where
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Δt=0.125 s and p=0, 1,…, 6. The corresponding gravity wave
Courant numbers (the maximum values in the computational
domain) for the sequence of time steps are from 0.16 to 10.48
according to

Cgra
r jmax ¼

ffiffiffiffiffiffiffiffiffiffiffi
ghmax

p
Dt

Dx
: ð34Þ

The maximum Courant numbers for vorticity convection can
be also evaluated based on (31):

Cvor
r jmax ¼

jumaxjDt
Dx

ð35Þ

where umax represents the maximum current velocity vector in
the whole computational domain. To characterize the strength of
shear waves in the numerical results, we use the enstrophy
integrated over the computational domain:

U ¼
Z Lx

0

Z Ly

0

xzxz

2
dxdy ð36Þ

where ωz is the depth-averaged vertical vorticity for shear
waves. Model convergence with time discretization in the shear
wave simulations can be evaluated by ΔΦ=Φp+1−Φp with
respect to Δt, Cr

vor or Cr
gra. The convergence rate with time step

refinement is shown in Fig. 7 in which the gravity wave Courant
numbers are labeled on the top axis while the corresponding
vorticity wave Courant numbers are labeled on the bottom axis.
The model is convergent with the time step refinement. The
shear waves can be modeled using larger gravity wave Courant
numbers, but time steps are still restrained by the vorticity wave
Courant numbers. It is found that vorticity wave Courant
numbers should be less than 1 in shear wave simulations using
the present model, otherwise, numerical instability would occur.

5.3. Application to San Francisco Bight

In ocean-exposed coastal regions, waves, nearshore circula-
tion and sediment transport are usually affected by large-scale
Fig. 7. Changes in integrated enstrophy with time step refinement.
motions such as tides, ocean circulation and storm surges. In
modeling of nearshore processes at open coasts, open boundary
conditions associated with the large-scale motions are needed
by the nearshore models and are usually unknown if without
measurements. It is a challenge how to incorporate far field data
into nearshore models. Besides model coupling techniques
performed between the nearshore models and large-scale models
to apply the far field data, one efficient method is to extend the
nearshore models for relatively larger scale applications. For the
nearshore circulation model, for instance, the model extension
can be made by approximately adding some large-scale forcing
components such as tidal boundary conditions, wind stresses and
the Coriolis force. The extended nearshore circulation model
will become more computationally expensive because all the
existing nearshore model features are included. The improve-
ment of computational efficiency for an extended nearshore
circulation model is therefore important. In the following model
application to San Francisco Bight, we demonstrate the capa-
bility of the present model to simulate tidal currents and near-
shore simulations in large-scale computational domains with
high efficiency.

San Francisco Bight is characterized by broad shoals and
narrow channels in a complicated estuary system. Because of
large variations of depth distribution at the ebb tidal delta and
the deep Golden Gate channel, the hydrodynamic conditions
involving wave-current interaction are extremely complicated.
Strong tidal currents at the entrance of the Golden Gate
significantly affect wave transformation and lead to a complex,
longshore-inhomogeneous wave climate which, in turn, leads to
variable sediment transport processes at the inlet and nearshore
regions. Recent studies on the beach evolution (Barnard et al.,
2004) indicated that the shape and location of the ebb tidal shoal
directly link to an erosional ‘hot spot’ on the southern end of
Ocean Beach. Previous systematic numerical studies on
hydrodynamics in San Francisco Bay have been carried out
with a focus on tidal currents and residual flows inside the bay
(Cheng and Casulli, 1982; Cheng et al., 1993, and others).
However, nearshore hydrodynamic processes were rarely linked
to the large-scale simulations.

As the first step to develop a model system predicting waves,
nearshore circulations and sediment transport in the San Francisco
coastal region, we concentrate on modeling tidal currents and
wave-induced nearshore circulations with an aim to examine the
model efficiency in such a large-scale computational domain.

Fig. 8 shows the computational grid generated using the
CoastGrid software (Shi, 2007). The maximum grid size is 1,
320 m at the offshore boundaries. Finner grid cells are applied at
the coastline and the inlet (see blow-up Fig. 9) with a minimum
grid size of 19 m. The computational domain covers the whole
San Francisco Bay and the adjacent Pacific shelf. Specifically,
the western offshore boundary is located at the shelf edge and
southern and northern boundaries are near Monterey Bay and Pt.
Reyes, respectively. The tidal boundary conditions are applied at
the western, southern and northern open boundaries. Eight
harmonic constituents, includingM2, K1, O1, S2, P1, N2, Q1 and
K2, are obtained from harmonic analysis of tidal data observed at
the Pt. Reyes Buoy and the Monterey Buoy. The constituents are



Fig. 8. Computational grid for the domain of San Francisco Bight.
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used to estimate the tidal elevations at the western, northern
and southern boundaries. Based on historical records, a river
discharge of 400 m3/s is specified for each of the Sacramento
River and San Joaquin River located at the north-west end of the
domain. Wind is taken into account using the wind data from the
NOAA San Francisco station 46026 uniformly over the whole
domain.
Fig. 9. Blow-up of the computational g
The bottom stress formulation (Svendsen et al., 2002) with a
constant bottom friction coefficient fw=0.0020 is adopted in the
tidal current simulation. The turbulent mixing coefficients in the
eddy viscosity formulation are chosen as the same values as in
Svendsen et al. (2002).

We carried out a six-month simulation of tides in which the
ADCP data are available at a location in the Golden Gate
rid at the inlet and Ocean Beach.



Fig. 10. Nearshore bathymetry and the measurement location (SITE).
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channel as shown in Fig. 10 (marked ‘SITE’). The simulation
time period is from January 1 to June 30, 1998. Different
Courant numbers are used in the tests. Surface wave forcing is
not taken into account in the case. It is found that the model/data
comparisons of surface elevation at the Golden Gate station are
satisfactory in the six-month time period except for a two-day
spin-up period. Fig. 11 shows the model/data comparisons
of surface elevation with Courant numbers of 10 and 100,
respectively. It can be seen that the two numerical results are
basically identical and both of them agree well with the data. An
evaluation of the correlation between model results and data
Fig. 11. Model/data comparison of surface elevations at a location (SITE) near
the Golden Gate channel.
shows that the regression coefficients R2 for surface elevation
are 0.945 for Cr =10 and 0.942 for Cr=100. Fig. 12 shows
comparisons of depth-averaged tidal currents modeled from
Cr =10 (solid line) and Cr =100 (dashed line) against the depth-
averaged ADCP data. It is shown that the tidal currents modeled
from different Courant numbers are basically close, with the two
line types undistinguished in the figure. The regression
coefficient R2, which is calculated using a discontinuous
ADCP data of depth-averaged velocity amplitude, is 0.550 for
Cr =100 and 0.553 for Cr =10 in the six-month time period.
Figs. 13 and 14 demonstrate snapshots of tidal current fields at
Fig. 12. Model/data comparison of depth-averaged tidal current magnitude at a
location (SITE) near the Golden Gate channel.



Fig. 13. Snapshot of tidal current field during flood tide.
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flood tide and ebb tide, respectively. Strong tidal currents, with
the maximum depth-averaged velocity of over 2 m/s, can be
found at the Golden Gate channel. Several vortex cells are
Fig. 14. Snapshot of tidal current field during ebb tide.
identified at upper Ocean Beach, Baker Beach and Marin
Headlands.

Wave-induced nearshore circulation can be modeled by
coupling a circulation model and a wave model. In the San
Francisco Bight application, we coupled the present circulation
model and the spectral wave model SWAN (Booij et al., 1999).
The non-stationary mode of SWAN was adopted in a two-way
coupling system. As a model test, wave-induced nearshore
circulation at Ocean Beach is simulated under common storm
wave conditions with 3 m significant wave height, and 15 s peak
period in deep water. A constant wind field with 10 m/s from
300°(Nautical) is used in the simulation. Fig. 15 shows wave-
induced longshore currents along the Ocean Beach. The current
magnitude is about 1 m/s which is comparable to the magnitude
of tidal currents in this region.

It should bementioned that, most recently, the U.S. Geological
Survey (USGS) began a seasonal surveying campaign at Ocean
Beach. Nearshore bathymetry data has been collected bi-annually,
with additional surveys to coincide with instrument deployments
in the offshore and surfzone regions. The SHORECIRC model
with the fast numerical schemes developed in this study has been
coupled with the wave model SWAN and a sediment model to
investigate waves, currents and sediment transport in San
Francisco Bight. The model results validated using the field
data will be reported in the near future, in conjunction with a more
detailed investigation of waves, nearshore circulations and
sediment transport in San Francisco Bight and its adjacent open
beaches.
Fig. 15. Wave-induced longshore currents under incident wave conditions of
3 m significant wave height, and 15 s peak period in deep water, and 10 m/s
wind from 300° over the whole domain.
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6. Conclusions and remarks

A mode-splitting method is used in the Quasi-3D nearshore
circulation model SHORECIRC with an aim to improve the
model efficiency. Using the two-step projection method, we
separate the gravity mode and the vorticity mode which
represent respectively the fast motions and the slow motions
in the nearshore hydrodynamic system. The vorticity mode of
the equations is used to compute the intermediate flux value
from incremental changes resulting from wave forcing, 3-D
dispersion effect caused by the vertical non-uniformity of
current velocity, the turbulence-induced lateral mixing and the
bottom friction. We use an explicit scheme for the vorticity
mode, especially, the 3-D dispersion terms are evaluated based
on analytical formulations and using the known values of
current velocity at previous time level. The gravity mode
includes the pressure gradient terms, which represents incre-
mental changes resulting from the pressure gradient. The final
equation for the combination of the gravity mode and vorticity
mode is derived by substituting the momentum equations into
the continuity equation and it becomes a single parabolic
equation with respect to surface elevation. The parabolic-type
equation can be solved implicitly using the traditional ADI
scheme, specifically in the present model, McKee et al.'s (1996)
ADI scheme for parabolic equations is used to deal with the
mixed derivative and convective terms caused by the coordinate
transformation.

To test the model convergence rates with the refinement of
grid spacing and time step, we carried out two typical cases, i.e.,
the evolution of waves in a rectangular basin which is a gravity-
mode-dominant case, and the simulation of shear waves on a
plane beach which is a case dominated by the vorticity mode.
The case of wave evolution shows that the averaged Cauchy
convergence rates with grid refinement are a little lower than the
previous SHORECIRC model (Shi et al., 2003) but are still
satisfactory considering the second order schemes utilized in the
model. In the case of the shear wave simulation, we found that
relatively larger time steps (gravity convective Courant num-
berN1) can be used but the time steps are restricted by the
explicit form of the vorticity mode. The vorticity convective
Courant number that is a function of the local convective
velocity rather than the gravity phase speed, limits the time
steps. The test shows the model is convergent with the time step
refinement and the vorticity wave Courant numbers should not
exceed 1 in shear wave simulations.

Model application to San Francisco Bight indicates that the
model has the capability of large-scale modeling with good
efficiency. For the present application grid with dimensions of
291×180, the time step is 10.8 s for Cr =10 or 108 s for
Cr =100. On a 64-bit linux system with a single processor of
2.0 GHz and a memory of 2 GB, the model with Cr=10 takes
about 60.8 h, or about 6 h with Cr =100, for a 365-day
simulation of tidal currents, without coupling of the wave and
sediment models. With the SWANmodel coupled in the system,
the efficiency of the coupled model system mainly depends on
the SWAN model set-up and may become computational
expensive, especially when a smaller Courant number is chosen.
However, it is obvious that the model efficiency is greatly
improved using the present numerical schemes compared to the
previous SHORECIRC model with a limitation of Crb1.

The model is validated using the ADCP data measured near
the Golden Gate channel in 1998. Model results of tidal surface
elevations and tidal currents are in good agreements with the
data. A test using different Courant numbers in the simulations
shows that the Courant number can be increased to 100 without
significant loss in accuracy. Finally, wave-induced longshore
currents along the open beaches are calculated by coupling the
present model and the wave model SWAN.

The basic hypothesis for the mode-splitting is that the
nearshore motions can be separated into fast motions dominated
by the gravity mode and slow motions dominated by the vorticity
mode. However, nearshore processes with wave–current interac-
tions are complex andmay involve a large range of time scales. In
some cases (e.g., rip current simulation using SHORECIRC,Haas
et al., 2003), the time scale for the current field variation to
respond to wave-current interaction may be small, which would
limit the use of larger time steps in the nearshore circulation
model.More tests for the time step limitation should be carried out
in a wide range of nearshore applications in the future.

In the extension of the present model to large-scale
applications, we neglect the baroclinic motions that may be
important in estuarine or some coastal regions. Therefore, the
usage of the model extension at this stage should be confined to
applications in which the barotropic tides are dominant far field
boundary conditions in the nearshore circulation modeling.

The CFL-free ADI scheme does not mean that large
Courant numbers could be used for gravity wave motions.
Because of the “ADI effect” caused by complex geometries
(Casulli and Cheng, 1992), the Courant numbers were sug-
gested not to exceed 10 to get accurate results. Although we
use Cr =100 in the case of San Francisco Bight with a good
accuracy, more numerical experiments may be needed for
different geometries.
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