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[1] The infragravity wave (periods between roughly 20 and 200 s) energy balance in
shallow, nearshore waters is believed to be effected by generation by groups of sea and
swell, dissipation, shoreline reflection, and refractive trapping. Observations obtained with
alongshore oriented arrays of current meters or pressure gauges have been previously used
to identify concentrations of energy at the frequency-alongshore wavenumbers of
refractively trapped edge waves, but seaward and shoreward propagating waves were not
differentiated. Surfzone dissipation theoretically limits edge wave growth, and a different
analysis (using the approximation of shore-normal propagation) shows that the energy flux
of shoreward propagating infragravity waves decreases owing to surfzone dissipation.
Here an estimator is developed that yields the alongshore wavenumber-frequency spectra
of seaward and shoreward propagating waves, using the WKB approximation and
observations from an alongshore-oriented array of pressure and velocity sensors. Example
spectra, estimated using data from the spatially sparse and relatively short SandyDuck
arrays, suggests that strong dissipation of shoreward propagating infragravity waves
occurs over a wide range of alongshore wavenumbers, effectively suppressing the
excitation of edge wave modes.
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1. Introduction

[2] Infragravity waves, with periods (between roughly 20
and 200 s) longer than sea and swell (between about 2–
20 s), are ubiquitous on ocean shorelines. Generation by
groups of sea and swell, dissipation, shoreline reflection,
and refractive trapping have all been suggested to contribute
significantly to the infragravity energy balance in shallow,
nearshore waters [e.g., Munk, 1949; Longuet-Higgins and
Stewart, 1962; Gallagher, 1971; Suhayda, 1974; Huntley et
al., 1981; Herbers et al., 1995a, 1995b; Ruessink, 1998;
Henderson and Bowen, 2002, 2003; Janssen and Battjes,
2003; Battjes et al., 2004]. A new method is presented here
for analyzing the wave energy balance using array measure-
ments of pressure and velocity.

[3] Some earlier studies of the infragravity energy bal-
ance assumed approximately shore-normal propagating
long waves. In this approximation, collocated observations
of pressure ( p) and cross-shore velocity (u) can be com-
bined to estimate the time series of sea surface elevation
associated with shoreward and seaward propagating waves
(h±, respectively)

h� ¼ 1

2
p� u

ffiffiffiffiffiffiffiffi
h=g

p� �
; ð1Þ

where h is the depth and g is gravitational acceleration
[e.g., Guza et al., 1984; Elgar and Guza, 1985; List,
1992]. Frequency spectra of shoreward and seaward
directed energy fluxes can be expressed as functions of
the p, u auto- and cross-spectra. A case example from the
SandyDuck experiment (Figure 1), conducted on a
straight, gently sloped beach near Duck, North Carolina,
shows the expected significant decrease in shoreward sea-
swell energy flux within the surf zone (Figure 2a, x less
than �230 m), and low energy levels of seaward
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propagating sea-swell waves. In contrast, the shoreward
infragravity wave energy flux first increases (consistent
with trapping and/or generation, Figure 2b) followed by a
decrease in the inner surf zone (suggesting dissipation). A
significant fraction of the shoreward infragravity energy
reaches the shoreline and is strongly reflected, resulting in
a mix of progressive and standing waves at all cross-shore
locations (Figure 2c).
[4] Cross-shore patterns of energy flux variation qualita-

tively similar to Figure 2 are observed often during the
SandyDuck experiment [Sheremet et al., 2002]. Phase
differences between pressure (or cross-shore velocity) ob-
served at different cross-shore locations also suggest that
sea-swell waves are predominantly shoreward progressive
whereas infragravity waves are a mix of standing and
shoreward progressive waves [Henderson and Bowen,
2002; Sheremet et al., 2002].
[5] Alongshore wavenumber-frequency (k � f ) spectra of

p, u, or v (v is the alongshore velocity) often have been
estimated using coherent analysis of observations obtained
with an alongshore-oriented linear array [e.g., Munk et al.,
1964]. The k � f spectra of p estimated using the MEM
(Maximum Entropy Method, Figure 3a), is elevated at
f < 0.02 Hz for k within the theoretical range of low
mode (<5) edge waves (Figure 3a). Edge waves, the normal
modes of gravity waves undergoing complete, multiple
reflections between the shoreline and the turning point
(where jkj = kg = f/

ffiffiffiffiffi
gh

p
) have been hypothesized to be

preferentially excited relative to k � f modes that are off the
edge wave dispersion curve [Gallagher, 1971]. Indeed,
previous observations of alongshore velocity close to the
shoreline sometimes show concentrations of energy at the
k � f of low mode edge waves [Huntley et al., 1981;
Oltman-Shay and Guza, 1987]. Dissipation at edge wave
k � f theoretically reduces their resonant excitation
[Henderson and Bowen, 2003], and the analysis using
individual collocated p, u pairs (Figures 2b and 2c) suggests
that a significant fraction of the shoreward propagating
infragravity energy flux is dissipated.
[6] Two-dimensional arrays can provide estimates of the

seaward and shoreward energy fluxes of directionally
spread waves, but most existing methods assume a spatially
homogeneous wave field [Elgar et al., 1994; Herbers et al.,
1995b]. Inhomogeneity associated with phase coupling of
seaward and shoreward propagating waves (standing wave
patterns) can be neglected only if the array is located
sufficiently far offshore of any reflector (e.g., the shoreline).
This condition is often violated in surfzone experiments
where measurements are collected within a few hundred
meters of the shoreline. Phase-coupling between shoreward
progressing and reflected waves is accounted for in the

Figure 1. (top) Plan view of SandyDuck instrument array
[Feddersen et al., 2000; Elgar et al., 2001]. Collocated
pressure (p) and horizontal velocity (u, v) sensors are
indicated (instruments were occasionally nonfunctional).
The Field Research Facility coordinate frame is used, with x
and y the cross-shore and alongshore directions. (bottom)
Depth relative to MSL versus x is similar in August,
September, and November (solid curves). The x origin is a
fixed onshore point, so the location of the mean shoreline
varied with tide level and wave conditions.

Figure 2. Results for 10 September 1997, 0100–0400 EST
(Eastern Standard Time). The incident sea-swell peak period
was about 12 s, with significant height of about 1 m.
Assuming near-normal incidence (1), p and u sensors
collocated at cross-shore locations along y = 828 m
(Figure 1) are used to estimate frequency-band integrated
seaward and shoreward energy fluxes for (a) sea swell
(0.05–0.30 Hz), and (b) infragravity (0.01–0.05 Hz)
waves. (c) Infragravity flux reflection coefficients (ratio of
seaward to shoreward flux). (An erroneous date was given
in the caption of Figure 3 [Sheremet et al., 2002]. The data
presented in the group of panels on the right of that figure
were collected on 12 October 1997, 1300–1600 EST.)
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estimators of Isobe and Kondo [1984], but this method is
designed for two-dimensional arrays of pressure gauges in
uniform water depth.
[7] Here a method is developed that yields estimates of

k � f spectra of shoreward and seaward energy fluxes in
the k � f region of (theoretically) refractively trapped
infragravity waves. An extension of an existing method for
a single p � u gauge, the estimator uses the WKB
approximation and observations from an alongshore (on
a constant depth contour) array of p � u gauges (Figure 1).
The estimates are independent of phase-coupling between

shoreward and seaward propagating waves. A few exam-
ple spectra, estimated using data from the spatially sparse
and relatively short SandyDuck arrays, suggest that dis-
sipation of shoreward propagating infragravity waves
occurs over a wide range of alongshore wavenumbers,
including those of (theoretically) refractively trapped edge
waves.

2. Cross-Shore Energy Fluxes in K ��� f Space

[8] The net cross-shore flux F of linear waves across a
vertical section of unit width, oriented perpendicular to the
wave propagation direction, is equal to the time-averaged
(overbar), vertically integrated covariance of p and u [e.g.,
Stoker, 1947],

F ¼
Z 0

�h

pudz; ð2Þ

where for the long waves considered here, p and u are
independent of the vertical coordinate z.
[9] With P, U, and V the double Fourier-Stieltjes trans-

form from (x, y, t) space to (x, k, f ) space, of pressure,
cross-shore, and alongshore velocities, for example,

p x; y; tð Þ ¼
Z1

�1

Z1

�1

e2pi kyþftð ÞdP x; k; fð Þ; ð3Þ

the distributions of the variances and covariance of p, u, and
pu in k � f space are

SPP dfdk ¼ 2E dPj j2
h i

;

SUU dfdk ¼ 2E dUj j2
h i

;

SPU dfdk ¼ 2E dPdU*½ �;

ð4Þ

where E [ ] denotes the expected value, and the factor 2
arises from folding negative onto positive frequencies. The
k � f spectral densities of pressure and cross-shore velocity
(SPP and SUU) are real and positive, whereas the cross-
spectrum SPU is complex.
[10] The k � f spectra (4), that can be estimated with an

alongshore array of p � u gauges (section 3), can be
combined into expressions for the distribution of wave
energy and energy flux in the four quadrants defined by
the shore-seaward and up-down coast directions. Assume a
directionally spread wave field composed of onshore and
offshore propagating WKB long waves [e.g., Herbers et al.,
1995a, 1995b; Sheremet et al., 2002],

dP x; k; fð Þ ¼ 1

2
Aþ x; k; fð Þ eiqþ x;k;fð Þ
h

þ A� x; k; fð Þ eiq� x;k;fð Þ
i
;

ð5Þ

where A± are the slowly varying, complex, local amplitude
of shoreward (+) and seaward (�) propagating modes.
Phase changes associated with propagation between the
array location and the shoreline, and back to the array, are
incorporated into the phase functions q±.

Figure 3. Alongshore wavenumber-frequency (k � f )
infragravity pressure spectra SPP, for 10 September 1997
(0100–0400 EST), using the alongshore array of p sensors
at x = 260 m (Figure 1) and (a) Maximum Entropy Method
[Wu, 1997], and (b) new Hermite expansion method. Solid
curves are edge wave dispersion relations for modes 0, 5,
and 10, and dashed curves define turning points in the WKB
approximation (jkj = kg= f/

ffiffiffiffiffi
gh

p
) that separate oscillatory

and exponentially decaying cross-shore variations. The
dash-dotted curves k = 2pf 2/g separate trapped from
leaky waves, assuming deep water offshore. Pressure time
series (3 hours long) were sampled at 2 Hz, quadratically
detrended, divided into 448-s-long demeaned ensembles with
50% overlap, and each ensemble was tapered with a Hanning
window, yielding cross-spectra with about 48 degrees of
freedom and frequency resolution of 0.002 Hz.
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[11] Using (5) and the WKB relationship between pres-
sure and horizontal velocities U = �(ig/f )  @P/@x yields

SPP dkdf ¼ E
1

2
Aþj j2 þ A�j j2

h�
þ 2Re AþA�*e

i qþ�q�ð Þ
n oi�

;

ð6Þ

SUU dkdf ¼ E
C2
x

2h2
Aþj j2 þ A�j j2

h�
� 2Re AþA�*e

i qþ�q�ð Þ
n oi�

;

ð7Þ

SPU dkdf ¼ E
Cxj j
2h

Aþj j2 þ A�j j2
h�

� 2iIm AþA�*e
i qþ�q�ð Þ

n oi�
;

ð8Þ

where the superscript asterisk indicates complex conjugate,
Re and Im are the real and imaginary part of a complex
variable, and the (x, k, f ) dependence of A, Cx, and q are
dropped for brevity. Cx and Cy are the cross-shore and
alongshore components of the modal phase velocity C,
given by the shallow water dispersion relation

C ¼ f =kð Þ k=k ¼
ffiffiffiffiffi
gh

p
k=k; ð9Þ

where kx and k are the cross-shore and alongshore
components of the wavenumber vector k, and satisfy
jkj2 = k2 = k2 + kx

2.
[12] Up- and down-coast propagation in SPP and SUU are

differentiated by the sign of k, but shoreward and seaward
propagating energy are not distinguished (SPP and SUU are
symmetric in A+ and A�). However, Re{SPU} is propor-
tional to differences in shoreward and seaward energy
fluxes (jA+j2 � jA�j2) (8), and equals the net cross-shore
energy flux density in k � f space. The co-spectrum of
collocated p � u sensors is equal to the cross-shore energy
flux at frequency f, integrated over k. The integral of the
p � u co-spectra over all f is equal to the net flux (2).
[13] Combining (6)–(8) yields, at each f and k, the vari-

ance density of shoreward and seaward propagating modes,

E� ¼
E 1

2
A�j j2

h i
dfdk

¼ 1

4
SPP � h

Cxj j 2Re SPUf g þ h2

C2
x

SUU

� 
ð10Þ

and the corresponding cross-shore energy fluxes

F� ¼ h

4

Cxj j
h

SPP � 2Re SPUf g þ h

Cxj j SUU
� 

: ð11Þ

The variance (10) and flux (11) estimates are independent of
the phase coupling between shoreward and seaward
propagating components. The sense of alongshore and
cross-shore propagation is given by the signs of k and F±.
For example, F+ with k > 0 corresponds to shoreward and
up-coast propagation. Alongshore energy fluxes in k � f
space can be obtained by multiplying (10) by jCyj. These
results for long waves are readily extended using linear
theory for finite depth.
[14] Gravity wave energy flux spectra can be estimated

(using (11)) at locations where shear waves are energetic

because shear and gravity wave energies are concentrated in
different regions of k � f space. Shear waves propagate
relatively slowly and satisfy jkj > kg, where kg = f/

ffiffiffiffiffi
gh

p
is

the theoretical maximum alongshore wavenumber for grav-
ity waves [e.g., Oltman-Shay et al., 1989; Howd et al.,
1991]. In contrast, shear waves degrade estimates of sea-
ward and shoreward gravity wave fluxes (1) based on time
or frequency domain analysis of collocated p � u gauges
(cases with energetic shear waves were excluded from
Sheremet et al. [2002]).
[15] Waves incident from deep water onto a shelf

with plane parallel contours maintain constant k, where
0 < jkj < 2pf 2/g. Waves with jkj slightly less than 2pf 2/g
propagate onto the shelf with highly oblique deep water
angles, and waves with k � 0 are approximately normally
incident. If excited in shallow water, waves with jkj <
2pf 2/g can radiate (i.e., ‘‘leak’’) energy to deep water,
reversing the ray path of waves incident from deep water,
and are known as leaky waves [Munk et al., 1964]. Waves
with jkj > f 2/g cannot propagate in deep water, and if
excited in shallow water, may undergo multiple, construc-
tive reflections between the shoreline and an offshore
turning point, where k = kg =

ffiffiffiffiffi
gh

p
/f. These are refractively

trapped edge waves. Edge waves are trapped (e.g., have a
turning point) shoreward of the array if k > kg. The curves
separating leaky from trapped waves (k = 2pf 2/g), and
separating edge waves trapped shoreward of the array from
motions extending seaward of the array (k = kg), are
shown in Figure 3.

3. Application to Short Arrays

[16] At each frequency, spectral densities in k space and
cross-spectra (as observed with an alongshore array of
sensors) form a Fourier pair, for example,

SPP kð Þ ¼
Z1

�1

XPP Dð Þe�2pikDdD; XPP Dð Þ ¼
Z1

�1

SPP kð Þe2pikDdk;

ð12Þ

where D is the alongshore lag and X is the cross-spectrum.
However, because the arrays usually deployed (e.g., Figure 1)
are relatively short compared with the alongshore
wavelengths of interest, a direct Fourier transform of
observed cross-spectra yields S(k) with unacceptably
low resolution. For example, in 4-m water depth with
f < 0.03 Hz the alongshore wavelength of the shortest
free gravity wave (e.g., the maximum gravity wavenumber
k = kg = f/

ffiffiffiffiffi
gh

p
, indicated with a dashed line in Figure 3) is

longer than the 200-m alongshore span of the array. (Shorter
gravity waves with larger k, for example mode zero, are
trapped shoreward of the array.) Thus the lowest Fourier
k band contains the entire range of theoretically possible
free gravity wave k, including trapped and ‘‘leaky’’ waves
incident from deep water [Munk et al., 1964].
[17] Increased k resolution requires additional assump-

tions that essentially extend the array length by extrapolat-
ing the observations. Widely used, ‘‘high-resolution’’
spectral estimators such as IMLE (Iterative Maximum
Likelihood Estimator [Pawka, 1983]) and MEM (Maximum
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Entropy Method, Figure 3a) are constrained to return
positive-definite S(k) and thus are not useful for estimating
Re{SPU}, that can have either sign.
[18] The alternative approach developed here is based on

the assumption that the true cross-spectra decay at lags
larger than those in the array, and that the true S(k) are
smooth. The cross-spectra are expressed as a series of
normalized Hermite functions, which form a complete and
orthonormal basis [Weaver, 1989; Folland, 1992]. Hermite
functions hn of order n have a strongly localized oscillatory
domain with n zero crossings separated by turning points
from an outer region of rapid exponential decay (Figure 4).
In addition to simple recursive properties, Hermite func-
tions, like the Gaussian function (the lowest-order Hermite
function), are self-reciprocal under the Fourier transform

Z1

�1

hn Dð Þe�2pikDdD ¼ �ið Þnhn kð Þ; ð13Þ

simplifying considerably the procedure for finding solutions
that satisfy simultaneously constraints in lag (fit the
observed cross-spectra) and k (smooth S(k)) spaces.
[19] Since the estimate for F± (equation 11) uses only

the real part of SPU (SPP and SUU are real), only the
Hermitian part of the observed cross-spectra is needed.
The Hermitian part of X = Co + iQu, where Co and Qu are
co- and quad-spectra, are approximated by sums of Her-
mite functions,

Co Dmð Þ ¼
X
n

cnhn Dm=Lð Þ þ � Dmð Þ; n ¼ 0; 2; . . . ; 2 N � 1ð Þ

Qu Dmð Þ ¼
X
n

cnhn Dm=Lð Þ þ � Dmð Þ; n ¼ 1; 3; . . . ; 2N � 1;

ð14Þ

where � is the misfit, and L is a scale factor used to
nondimensionalize the lag variable of the Hermite func-
tions, and the index m identifies the alongshore spatial lag
(there are M lags). Even and odd Hermite orders are used to
represent the (even) co- and (odd) quad-spectra, and the
number N of even and odd Hermite modes are equal.

[20] The finite number of cross-spectral observations can
be fit closely with different sets of coefficients cn (14), and
some fits to the statistically noisy data result in wildly
oscillating and nonphysical S(k). Following Constable et al.
[1987] and Herbers and Guza [1990], the total ‘‘badness’’
of the solution is minimized by solving

@

@cj
aRþ ���������T���������
� �

¼ 0; ð15Þ

where the badness (aR + ���������T���������) is the sum of a measure of the
solution roughness aR, and the data misfit ���������T��������� with ��������� the
column vector of misfits at different lags and the superscript
( )T denotes the transpose. Straightforward algebra yields an
analytic expression ((A11) in Appendix A) for the rough-
ness R, characterized as the norm of the second derivative of
S(k) ((A1) in Appendix A). The Co or Qu spectra observed
at M lags are fit with a given tolerance using N Hermite
coefficients cn that simultaneously minimize the roughness
of the estimated S(k) (Appendix B). The contribution of
Hermite mode n to the estimate roughness R grows roughly
like n2 (equation (A12) in Appendix A), so increasing the
contribution of higher order Hermite modes improves the fit
to the observed cross-spectra (e.g., decreases the misfit
variance ���������T���������), but increases R. Straightforward algebra
yields a pair of equations for the coefficients c, for example,
for Co,

HTHþ aR
� �

c ¼ HTCo; ð16Þ

where c is the column vector (dimension N ) of Hermite
coefficients, and Co is the column vector (dimension M ) of
observed co-spectral values (14). The matrix H (dimension
N � M ) has elements

H½ �lm¼ hn Dm=Lð Þ; ð17Þ

where (from (14)) n = 2(l � 1) for co-spectra and n =
2l � 1 for quad-spectra. The roughness matrix R
(dimension N � N ),

R ¼ cTRc; ð18Þ

(R is given in (A11)) has elements

R½ �li ¼
qk

qk�4

dn;k�4 þ
qk

qk�2

dn;k�2 þ
q2k
q2k�2

þ 2k þ 1ð Þ2þ
q2kþ2

q2k

� �
dn;k þ

þ qkþ2

qk
dn;kþ2 þ

qkþ4

qk
dn;kþ4; ð19Þ

where qn
2 = n!, and for cospectra n = 2(l � 1) and k =

2(i� 1), and for quad-spectra n = 2l� 1 and k = 2i� 1 (14).
[21] Equations (16), (17), and (19) form the basis of the

method. Equation (16) can be solved using singular value
decomposition methods [Strang, 1988] to obtain the coef-
ficients cn of the decomposition (14) of the observed XPP,
XUU, and XPU. From the self-reciprocity (13), the decom-
position coefficients of the corresponding spectra (the
Fourier transform of the cross-spectrum 12) are (�i)ncn,

Figure 4. Hermite functions (A2) for n � 3.
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so estimates of the corresponding (k � f ) densities SPP,
SUU and SPU are readily available. For example,

SPU kLð Þ ¼
XN�1

k¼0

�1ð Þk c2kh2k kLð Þ þ c2kþ1h2kþ1 kLð Þ½ �: ð20Þ

With SPP, SUU and SPU known, equation (11) provides the
four-quadrant cross-shore fluxes.
[22] The scale factor L (17) maps the dimensional lag

space observations into the space of the nondimensional
Hermite variable. For each frequency the optimal values of
L and the trade-off parameter a (15) are defined as those
yielding, with a fixed number of Hermite modes, the
Hermite-based k-spectrum with minimum roughness that fits
the observed cross-spectra with a given error (Appendix B).
Results are not sensitive to the number of Hermite modes
(here, N = 15), nor to details of the procedure for selecting L
and a.

4. Results

[23] MEM estimates are positive, so MEM cannot be
used to estimate SPU, or energy flux spectra that depend on

SPU (11). MEM and Hermite estimates of SPP are qualita-
tively similar at all frequencies (infragravity frequencies are
shown in Figure 3). The cross-spectra associated with both
MEM and Hermite estimates fit the observed cross-spectra
closely (Figure 5, left), so their differences (Figure 5, right)
reflect how each estimator resolves uncertainty (both statis-
tical and arising from the limited array length) inherent in
the basic cross-spectral observations. The estimates differ
most at the lowest frequency (Figure 5b) because the long
wavelength motions (Figure 5a) severely limit the array
resolution. The MEM estimate is narrower than the
Hermite-based estimate, reflecting the different properties
of each method: high peak resolution in MEM and
estimated smoothness in the present method. The estimate
similarity increases at higher frequencies because the
shorter wavelengths are better constrained by the obser-
vations, decreasing the importance of differences in the
estimator extrapolations.
[24] Example full (four-quadrant) cross-shore energy flux

density spectra (Figures 6–8) are shown at the alongshore
array located x = 260 m (in about 4-m depth) for three 3-hour
runs with much different incident sea-swell significant
heights (in 8-m water depth, about 1 km offshore, Hsig,8m =

Figure 5. Comparison of MEM (solid curves) and Hermite (dashed curves) estimators at x = 260 m at
frequencies (a, b) 0.01, (c, d) 0.025, (e, f ) 0.05, (g, h) 0.08 (spectral peak), and (i, j) 0.12 Hz. (left)
Estimated pressure co-spectra XPP versus alongshore lag D (observations are shown as circles). Quad-
spectrum estimates show similar features. (right) Estimated k � f spectra SPP of pressure. The spectra are
normalized to unit area, integrated over k. Dashed vertical lines mark the turning-point limits of the WKB
validity domain (jkj = f/

ffiffiffiffiffi
gh

p
). Note that the k scales vary by a factor of 10 between Figures 5b and 5j.
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0.3, 0.9, and 1.7 m for 15 August, 10 September, and
17 October, respectively (Table 1). The observed cross-shore
variation of sea-swell energy fluxes (similar to Figure 2a)
suggests that the array at x = 260 m is located many
surfzone widths offshore, near the outer edge of the surf-
zone, and in the inner surfzone, respectively. On 15 August
and 10 September, wave breaking seaward of the array is
minimal, and the wave height observed at the array in 4-m
depth Hsig,4m is slightly greater than Hsig,8m, whereas
breaking reduces Hsig,4m on 17 October to 1.1 m, only
slightly larger than Hsig = 1.0 m on 10 September (Table 1).
In all cases, shoreward propagating sea and swell is strongly
dissipated in the surfzone shoreward of the array. The
seaward sea-swell flux is less than 3% of the seaward sea-
swell flux at the array on 10 September and 17 October

(Figures 7b and 8b). Stronger reflection, �10%, is observed
on 15 August (Figure 6b) with small incident waves at high
tide, when the water line intersects a steep portion of the
beach face, consistent with previous observations at this site
obtained with a two-dimensional array of pressure sensors
in 13m water depth [Elgar et al., 1994].
[25] At infragravity frequencies, the flux reflection coef-

ficient Rig
2 (ratio of seaward to shoreward fluxes) is influ-

enced by generation shoreward of the array, as well as
dissipation occurring during both propagation and shoreline
reflection [Herbers et al., 1995a, 1995b]. If, onshore of the
array, generation exceeds dissipation, then Rig

2 > 1, whereas
if dissipation exceeds generation, Rig

2 < 1.
[26] Estimates of four-quadrant infragravity energy flux

allow calculation of the k � f distribution of the flux
reflection coefficient. To avoid spurious reflection values
at k � f where fluxes are low and the estimates are
inaccurate, and to increase the statistical stability of the
estimates, fluxes are integrated over each of the k � f
regions of elevated shoreward flux. Seaward fluxes are
integrated over the same regions of k � f space consistent
with the observed specular reflection. For example, on

Figure 7. Cross-shore energy flux density in k � f space
at x = 260 m, for 10 September 1997, 0100–0400 EST for
(a) infragravity and (b) sea-swell frequencies. Densities are
normalized by the total shoreward flux (sea swell and
infragravity fluxes are 3.4 � 105 and 1.4 � 104 cm3/s,
respectively). Figure is same format as Figure 6.

Figure 6. Cross-shore energy flux density in k � f space
at x = 260 m, for 15 August 1997, 0100–0400 EST for
(a) infragravity and (b) sea-swell frequencies. Edge wave
dispersion curves for modes 0, 5, and 10 are solid curves, and
dashed lines are the limit of validity for the WKB
approximation (jkj = kg= f/

ffiffiffiffiffi
gh

p
). Densities are normalized

by the total shoreward flux (sea swell and infragravity fluxes
are 2.6 � 104 and 5.8 � 102 cm3/s, respectively) so the
integrated shoreward flux is 1.0, and the integrated seaward
flux is R2. The maximum color scale value is determined by
the maximum normalized density. In Figures 6a and 6b, at
fixed f, seaward and shoreward fluxes havemaxima at similar
k, consistent with specular reflection.
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10 September, Rig
2 are between about 0.3 and 0.6 for

frequency bands centered at f = 0.013, 0.019, 0.028, and
0.040 Hz (Figure 7). Flux spectra at other alongshore arrays
also show negligible sea-swell reflection, and suggest
specular, partial reflection of infragravity waves.
[27] The other case examples have Hsig,8m about a factor

of 2 larger (17 October) and smaller (15 August) than on
10 September. In all three cases, infragravity wave reflection
is specular and incomplete. On 17October, the large sea-swell
waves are closer to normal incidence than on 10 September

(i.e., the energy maxima is closer to k = 0) and so are the
infragravity waves (compare Figure 8 with Figure 7). The
Rig
2 � 0.5 are similar (Table 1). With the smallest waves

(10 September), Rig
2 � 0.7 is higher, but dissipation is still

significant. Edge wave growth is apparently suppressed by
significant dissipation within a wave cycle, supporting
earlier work by Henderson and Bowen [2002, 2003].
Results from these case examples and the entire data set
will be explored further elsewhere.

5. Discussion

[28] The WKB-based estimator (6–8) assumes that grav-
ity waves, either leaky or refractively trapped, dominate the
motions observed in the band jkj < kg = f/

ffiffiffiffiffi
gh

p
. In the WKB

approximation, observed alongshore velocities are theoret-
ically redundant with p and u,

SVV ¼
C2
y

h2
SPP; SPV ¼ Cy

h
SPP; SUV ¼ Cy

h
SPU : ð21Þ

Estimates of SVV based directly on v, and on p measurements
using (21), are similar (Figures 9a, 9b, 9d, and 9e), as are
the corresponding v energy spectra (Figures 9c and 9f,
estimated by integrating SVV over k), supporting the
underlying assumptions. Differences are largest at infra-
gravity frequencies (Figures 9a and 9b), where the directly
measured SVV (Figure 9a) is less concentrated along k = kg
than the estimate based on the measured SPP and WKB
theory. The present WKB-based theory is problematic when
k � kg and cross-shore flux estimates are not shown near
the dashed curve in Figures 6–8. However, directly
measured infragravity pressure spectra SPP, estimated with-
out WKB theory, usually have maxima at k < kg and
relatively low energy when k � kg (Figure 3). Considering
all the arrays operational during the three case example
runs, the variance with k � kg accounts for an average of
7% and a maximum of 9% of the total pressure variance
(integrated over k and infragravity f ).
[29] The WKB relationship between p and u (6–8),

critical to the estimator, is based on the assumption of
slowly varying depth, with the wave amplitude given by
energy conservation and the wavenumber by constant-depth
solutions. The linear shallow water equations relax the
slowly varying assumption, and the bottom slope appears
explicitly. Comparison of WKB wavenumbers and ampli-
tudes with those obtained numerically from the shallow
water equations for a normally incident shoreward progres-
sive wave (Figure 10) indicates less than 10% error in WKB
theory for all frequencies considered here ( f > 0.01 Hz)

Figure 8. Cross-shore energy flux density in k � f space
at x = 260 m, for 17 October 1997, 0100–0400 EST for
(a) infragravity and (b) sea-swell frequencies. Densities are
normalized by the total shoreward flux (sea swell and
infragravity fluxes are 4.2 � 105 and 1.8 � 104 cm3/s,
respectively). Figure is same format as Figure 7.

Table 1. Wave Characteristics for the Case Examples, Measured at the FRF Array in 8-m Depth, and in About 4-m Depth at x = 260 ma

Run,
Eastern Standard Time

Hsig,8m

Sea Swell,
m

Hsig,4m

Sea Swell,
m

Hsig,4m

Infragravity,
m

urms,4m
Sea Swell,

m/s

urms,4m
Infragravity,

m/s
Rig
2

Infragravity

15 August 1997, 0100–0400 0.3 0.3 0.06 0.1 0.03 0.7
10 September 1997, 0100–0400 0.9 1.0 0.3 0.4 0.1 0.5
17 October 1997, 0100–0400 1.7 1.1 0.3 0.5 0.2 0.5

aSee Figure 1. Estimates of the significant wave height Hsig, root-mean square velocity fluctuation urms, and flux reflection coefficient R2 are based on
band-passed time series (infragravity 0.01–0.05 Hz, sea swell 0.05–0.33 Hz).
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for x > 210 m, and for f > 0.022 Hz at the shallowest
alongshore array (x = 160 m).

6. Summary

[30] A new method for estimating wave energy fluxes
from array observations is described. Under the WKB
approximation, pressure and cross-shore velocity measured
on an alongshore-oriented transect yield the distribution of
onshore and offshore energy fluxes in alongshore wave-
number-frequency space. Preliminary analysis of data from
the spatially sparse and relatively short SandyDuck arrays
shows that dissipation of shoreward propagating infragrav-
ity waves occurs over a wide range of alongshore wave-
numbers, including those of (theoretically) refractively
trapped edge waves.

Appendix A: Roughness

[31] We derive an exact analytic expression for the
roughness R of the f � ky spectrum S( f, k). The analytical
form greatly simplifies the solution of the equations for the
coefficients cn.
[32] The roughness of S( f,k) is [Constable et al., 1987]

R fð Þ ¼
Z1

�1

d2S f ; kð Þ
dk2

����
����
2

dk: ðA1Þ

Hermite functions of mode n are [Weaver, 1989]

hn tð Þ ¼ �1ffiffiffiffiffiffi
4p

p
� n

ept
2 dn

dtn
e�2pt2 ; ðA2Þ

with the first four modes

h0 tð Þ ¼ e�pt2 ; h1 tð Þ ¼
ffiffiffiffiffiffi
4p

p
t e�pt2 ; h2 tð Þ ¼ 4p t2 � 1

� �
e�pt2

h3 tð Þ ¼
ffiffiffiffiffiffi
4p

p
t

h i3
�

ffiffiffiffiffiffi
4p

p
t

� �
e�pt2 ðA3Þ

and the recursive relation

hnþ1 tð Þ ¼ 2
ffiffiffi
p

p
t hn tð Þ � nhn�1 tð Þ; ðA4Þ

where hj = 0, j < 0.
[33] Hermite functions are also solutions of the Sturm-

Liouville differential equation

h
00
n tð Þ ¼ 2p 2pt2 � 2nþ 1ð Þ

� �
hn tð Þ; ðA5Þ

where h
00
n is the second derivative of Hermite mode n.

Combining (A4) and (A5) yields

h
00
n ¼ p hnþ2 � 2nþ 1ð Þhn þ n n� 1ð Þhn�2

� �
: ðA6Þ

Figure 9. Alongshore velocity k� f spectra SVVat x = 260 m for 10 September (estimated using Hermite
transforms) based on (a, d) v cross-spectra, and (b, e) p cross-spectra (WKB theory, SPP Cy

2/h2, (21)),
for (top) infragravity and (bottom) sea-swell frequencies. Solid curves are edge wave dispersion
relations for modes 0, 5, and 10, and dashed curves define turning points in the WKB approximation
(jkj = kg = f/

ffiffiffiffiffi
gh

p
). Results are shown for (jkj < f/

ffiffiffiffiffi
gh

p
). (c, f) Alongshore velocity frequency spectra

Ev at x = 260 m estimated by integrating (over jkj < f/
ffiffiffiffiffi
gh

p
) SVV (Figures 9a and 9d) and SPPCy

2/h2

(Figures 9b and 9e) (solid and dashed lines, respectively).
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Using

Z1

�1

h
2

ndt ¼
n!ffiffiffi
2

p ðA7Þ

to normalize, the set of orthonormal Hermite functions is

hn ¼
4
ffiffiffi
2

p
ffiffiffiffi
n!

p hn; with

Z1

�1

hn tð Þhm tð Þdt ¼ dm;n; ðA8Þ

where d is the Kronecker symbol.
[34] Using (13), the Fourier transform g(t) of a function G

decomposed into Hermite functions G = Scnhn is

g tð Þ ¼
X1
n¼1

�ið Þncnhn tð Þ: ðA9Þ

The roughness (A1) is

R ¼
Z1

�1

g00 tð Þ g00 tð Þ½ �*dt; ðA10Þ

where the superscript asterisk denotes complex conjugate.
After some straightforward algebra using (A2)–(A6),

R ¼ p2
X
n

cn
qn

qn�4

cn�4 þ qn

qn�2

cn�2

�

þ q2n
q2n�2

þ 2nþ 1ð Þ2þ
q2nþ2

q2n

� �
cn þþ qnþ2

qn
cnþ2 þ

qnþ4

qn
cnþ4

�
;

ðA11Þ

where qn
2 = n!, the range of n is given by (14), and terms

vanish if they contain qn or cn with negative n. For example,

qn=qn�4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n n� 1ð Þ n� 2ð Þ n� 3ð Þ

p
; for n � 4

0; otherwise:

8<
: ðA12Þ

Appendix B: Parameters A and L

[35] The scale factor L (B1) maps the dimensional lag
space observations into the nondimensional Hermite vari-
able space (14). Optimal values of L match the spatial scales
of Hermite functions and the observed cross-spectra, and
thus fit the observations efficiently (e.g., using low modes
with low roughness). Values of L that are too large squeeze
the entire lag domain of the observations into a small
interval near the Hermite origin, and too small values spread
the observed lag domain far out into the Hermite exponen-
tial decay region (Figure 4). Here L is related to a fixed
point characterizing the Hermite functions, the turning point
tT ’ 0.40 of the Gaussian h0(t), and the maximum lag DM,

L ¼ s
DM

tT
; ðB1Þ

where s is the fraction of DM mapped into the Hermite
interval [0, tT]. A typical value of s = 0.4 yields DM/L =
2.5tT ’ 1; that is, in (14) the observed cross-spectra are fit
with Hermite functions spanning the range t � 1 (see
Figure 4).
[36] For simplicity, for each frequency the optimal values

of s (and hence L) and the tradeoff parameter a (15) are
defined as those yielding the Hermite-based k-spectrum
with minimum roughness and fitting the observed cross-
spectra within a given error. More rigorous approaches,
based on the statistical confidence level of the fit [Long and
Hasselmann, 1979], are more complex and require esti-
mates of the error-covariance matrix. Optimal (s, a) values
were found for each cross-spectral combination of p and u,
at each array, and each frequency. Large a values have
smooth S(k) but large misfit (15). For a given s, the optimal
a (denoted as) is the maximum value of a (e.g., smoothest
S(k)) for which the misfit is within 1% of the cross-spectral
norm. For a given frequency, the optimal (minimum rough-
ness) solution is found by searching (s, as) pairs over s in
the interval of [0.1–10]. Optimal values of s are usually
between 0.1 and 0.6, and are frequency dependent, with the
largest values (and hence smallest DM/L) at low frequency
where the observed cross-spectra are most slowly varying
(i.e., spatial scales are longest).

Figure 10. Contours of fractional errors in WKB estimates
of (a) amplitude and (b) wavenumber based on comparison
with exact solutions to the linear shallow water equations
for a shoreward propagating, normally incident wave using
(c) depth h versus cross-shore coordinate x observed on
10 September.
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