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Abstract 

This work presents the simulation of irregular waves interacting with submerged 

offshore structures.  By generating the incident irregular waves in a numerical wave 

flume and solving the unsteady two-dimensional Navier-Stokes equations with the fully 

nonlinear free surface boundary conditions for the fluid flows in the flume, the viscous 

flows are determined and the bed shear stress as well as vortex circulation can be obtained.  

Four topics were focus: irregular waves with the associated bed shear stress were studied 

linearly and nonlinearly, vortex formed beneath irregular waves around a submerged 

breakwater and ripples. 

Irregular waves were generated by the wavemaker adopting deterministic spectral 

amplitude method implemented using the fast Fourier transform algorithm.  The accuracy 

of the generated irregular waves and the viscous flows was confirmed by comparing the 

predicted wave spectrum with the target spectrum and by comparing the numerical transfer 

function between the shear stress and the surface elevation with the theoretical transfer 

function, respectively.  Additionally, characteristics of the wave spectra and the associated 

shear stress spectra were discussed in terms of the spectral frequency, the zeroth spectral 

moment and the spectral bandwidth parameter.  The maximum bottom shear stress caused 

by irregular waves, computed by this wave model, was compared with that obtained using 

Myrhaug’s model (1995).  The transfer function method was also employed to determine 

the maximum shear stress, and was demonstrated to be accurate. 
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Nonlinear properties of irregular waves are preliminary presented using the formula 

of the second-order bound waves, subharmonics and superharmonics, which deduced by 

Dean and Sharma (1981).  As the associated phases changed, bound waves of the 

synthesized results show irregularity in spectrum and form randomness in spatial-varied 

skewness.  Similar phenomena were found in the numerical results, although the 

magnitude of spectral higher harmonic components and the skewness are larger.  The 

spatial-varied skewness of the surface elevation and the bed shear stress shows bound 

components indeed present, and indicate that the phase difference of surface elevation and 

bed shear stress has to be considered for building the associated statistical model. 

Of the repeatable properties of the present numerical scheme, the incident waves and 

reflected waves from the submerged breakwater were separated without any assumption.  

A reliable time duration for analysis was confirmed by the comparison of reflected 

coefficients in order to ensure that the wave reflected from wavemaker would not affect the 

interesting duration.  A vorticity-based method with a vorticity threshold were developed 

and made the automatic recognition of vortex become possible, in which the threshold was 

confirmed for well describing the vortex region.  Both the circulations and the selected 

vortex region were shown in flow fields and vorticity contours.  The interaction of the 

vortices was evidenced and showed the succeed-formed vortices above breakwater 

increased the breakdown rate of the vortices next to the breakwater three times.  Of the 

irregular-wave train, the vortex of large wave followed by small one lasted longer. 

Applying body-fitted boundary, different hydraulic conditions were studied about on 
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and off equilibrium ripple pattern beneath regular and irregular waves.  While concerning 

only the region beneath twice the ripple wave height, the present numerical scheme was 

verified with the experiment and has a good agreement within the transitional regime.  

The vortices formed beneath regular waves reached a limited circulation if the 

bed-orbital-displacement amplitude is larger than the ripple wavelength.  The limitation 

can furthermore be evidenced by the trajectories of the vortex center.  The vortices 

formed beneath irregular waves were recognized automatically as well, although the 

number of the zero-upcrossing waves and the vortices was not matched.  

 

 

Keyword: Irregular wave; Viscous flow; Bed shear stress; Transfer function; Spectral 

property; Nonlinearity; Subharmonic; Superharmonic; Skewness; Submerged breakwater; 

Vortex ripple; vortex circulation; Vortex auto-recognition 
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Abstract in Chinese 

本文主旨為探討不規則波與離岸潛沒結構物之交互作用。藉由數值

水槽中生成不規則波與求解非線性自由液面邊界條件下之二維時變

Navier-Stokes 方程，可獲得不規則波動下完整黏性流流況、底床剪應力

與渦流環流。文中涵蓋四個主題：不規則波與其底床剪應力的線性與非

線性特徵；潛堤週圍渦流的性質；渦流砂漣所引致的渦流特性。 

本研究中生成不規則波的方式，係採用快速傅立葉轉換架構下的定

譜振幅模式決定成份波，再於黏性數值造波水槽中造出各波浪成份。以

此數值造波結果與靶譜比對下，證實本模式可精準地生成所要求的不規

則波波譜。線性條件下水位變化與底床剪應力間的轉換函數可由理論求

得，其與數值結果的一致性可知本黏性流模式可準確無誤的模擬黏性流

流況。此外，水位譜與其相對應之底床剪力譜分別以主頻、譜的零階動

差和譜寬參數討論之。數值結果的底床剪應力最大值則與 Myrhaug (1995)

的模式進行比對。黏性水槽所求得的底床剪應力與採用轉換函數所求得

的結果十分符合。 

為明瞭不規則波的非線性特徵，採用 Dean and Sharma (1981)所推導

的二階強制波模式─包含次諧波和超諧波─所合成的非線性不規則波進

行初步探討。變化合成波中各成份波的相位，其波譜與偏度的空間變化

都呈現出不規則的變動。數值模擬的不規則波在高非線性下，亦顯示出
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類似的現象。非線性條件下數值結果所求得的轉換函數與線性條件下的

理論解比對，可發現非線性效應對轉換函數的影響不大。線性條件下的

轉換函數仍可用於應床剪應力的推估。藉由數值結果，比較水位與底床

剪應力的偏度空間變化，可發現兩者有一相位差，同時意謂著兩者的相

位差在架構統計模式中不容忽視。 

由於數值模式可精準重複，本模式在沒有任何假設下便可以分離入

射波與反射波。從反射係數的分析中，可決定出一段不受造波板處二次

反射波浪影響的時段，並進行渦流分析。本文提出一渦流自動辨識系統，

其中以渦度為判斷為基礎，且須決定一適切的渦度門壏值。本文中以流

場和渦流場確認渦度門壏值能完整描述渦流的範圍。環流和所選取的渦

流區域以流場與渦度場的方式呈現出不同時間點的差異。從渦流的交互

作用中可以發現，生成於潛堤側的渦流受接續生成於潛堤上方渦流的影

響，其的衰減率提升為原來的三倍。不規則波作用下，大波後跟隨小波

時，大波所產生的渦流能持續較長的時間。 

運用邊界配適法，規則波與不規則波作用下與砂漣的互制分成平衡

態和非平衡態的情況進行探討。在二倍砂漣高度以內的區域（砂漣邊界

層），本數值模式模擬過渡段流況的結果與實驗有很好的一致性。前述的

渦流自動辨識模式在此用以判斷砂漣上方形成的渦流特性。平衡態或非

平衡態下，如果底床水粒子軌跡的振幅大於砂漣漣長，規則波下生成的

環流強度因受限於漣長而有一最大值。渦流中心的運動軌跡也反應出類

似的特性。不規則波下所生成的渦流數量與零上切所求得的波數並不一
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致，顯示並非任意大小的波動都能引致渦流的產生。 

 

 

關鍵字：不規則波；黏性流；底床剪應力；轉換函數；譜參數；非線性；

次諧波；超諧波；偏度；潛堤；渦流砂漣；環流；渦流自動辨識 
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* * *, ,  a b C  coefficient of finite-analytic method, in Eq. (3.16) ─ 

,e wa a , etc. finite-analytic coefficients for pressure and pressure- 

correction Equations, in Chapter 3 

─ 

n
ia  weighting area of point i in the Cartesian coordinate 

( ,  )x y  at the n -th iteration 

─ 

ka  amplitude of the k -th wave component m  

kB  the k -th Fourier component of bottom shear stress 1 -2kg m s−⋅  

*
kB  complex conjugate of kB  1 -2kg m s−⋅  

j
ib  i -th component of the j -th contravariant base vector ─ 

C  A closed curve m  

, ppC C , etc. finite-analytic coefficients ─ 

Cψ  admissibility coefficient of wavelet transform ─ 

c  wave phase velocity -1ms  

gc  group velocity -1ms  

oc  dimensionless phase velocity of long wave ─ 

D̂  source function in pressure Eq. (3.36) ─ 

*D  Mass source term in pressure-correction Eq. (3.43) ─ 
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1D  partial mass source term defined in Eq. (3.35) ─ 

Diff  difference between the values of maxτ  ─ 

50d  medium grain size m  

,e wd d , etc. finite-analytic coefficients for pressure and 

pressure-correction equations 

─ 

ke  amplitude of the k -th displacement function ( )k tξ  of 

the wavemaker 

m  

( ,  )i iF F k t=  energy for i -th wave component with wavenumber ik  2m  

Fr  the Froude number ─ 

dFr  the particle Froude number ─ 

( )f t  an arbitrary time series ─ 

fΔ  frequency interval -1s  

if  grid-control function, in Chapters 2 and 3 -1s  

cf  cut-off (Nyquist) frequency -1s  

kf  frequency of the k -th wave component -1s  

mf  frequency of wavelet energy density -1s  

pf  spectral-peak frequency -1s  
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pf τ  spectral peak frequency of shear stress spectrum -1s  

sf  sampling frequency -1s  

1 4( , ,  )G k k  the coupling coefficient of 1 4, ,  k k  ─ 

fG  source terms of the linerized convective-transport equation ─ 

g  gravitational acceleration -1s  

ijg  conjugate metric tensor in the general curvilinear 

coordinates 

─ 

1/3H  given significant wave height m  

iH  incident wave height m  

rH  ripple height m  

sH  measured significant wave height defined by IAHR m  

( )kHτ ω  transfer function between the shear stress and the surface  

, , ,e w n sh h h h′ ′ ′ ′  grid size for finite-analytic local element ─ 

oh  still water depth m  

J  Jacobian ─ 

BK  coefficient defined in Eq. (3.21) ─ 
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k  wave number -1m  

k  mean wave number -1m  

k  the directional wave number -1m  

pk  spectral-peak wavenumber 1m−  

sk  the Nikuradse roughness m  

sk ′  skin roughness m  

pL  spectral-peak wavelength  m  

rL  ripple wavelength m  

om  the zeroth spectral moment 2m  

2o DSm  the zeroth spectral moment of the bound waves 

determined by the model of Dean and Sharma (1981) 

2m  

oum  the zeroth spectral moment of bed orbital velocity 2m  

om η  the zeroth spectral moment of wave elevation 2m  

om τ  the zeroth spectral moment of shear stress 2 -2 -4kg m s  

rm  the spectral moment of order r  2 -rm s  

N  length of a discrete sequence ─ 
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MN  number of the maximum value in the time-series data of 

the shear stress 

─ 

wN  number of zero-upcrossing waves ─ 

, , , n s e w  describing four surrounding elements ─ 

in  a unit vector normal to the free surface in Eqs. (2.5) and 

(2.6). 

─ 

bO  guessed location of a vortex (m, m)  

( )P τ  cumulative distribution function of τ  ─ 

p  Pressure ─ 

p′  dimensionless hydrodynamic pressure, 2/ pp p uρ′ =  ─ 

op′  dimensionless hydrodynamic pressure at the free surface ─ 

*p  guessed pressure field ─ 

p  pressure-correction ─ 

sp′  dimensionless hydrostatic pressure ─ 

tp′  dimensionless total pressure ─ 

( )Q τ  exceedance probability of τ  ─ 

DSQ  the ratio of nonlinearity defined in Eq. (5.2) ─ 
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pQ  spectral bandwidth parameter ─ 

q  submergence ratio ─ 

Re  the Reynolds number of wave tank, /p oRe u h υ=  ─ 

BRe  the submergence Reynolds number, /B B BRe U A υ=  ─ 

dRe  the particle Reynolds number, 50 /d oRe U d υ=  ─ 

oRe  the bed orbital Reynolds number, /o o oRe U A υ=  ─ 

rmsRe  the bed-orbital Reynolds number of irregular waves, 

/rms rms rmsRe U A υ=  

─ 

sRe  coefficient of sponge layer, /s p o sRe u hρ μ=  ─ 

rΔ  the estimated pace of a vortex within a time step rtΔ  ─ 

( )S ω , ( )S f  spectral density function of a random series ─ 

oS  stroke of the wavemaker m  

*S  finite-analytic coefficients ─ 

kS  stroke of the wavemaker for generating the k -th wave 

component 

m  

,S sϕ ϕ  source terms, ,  u vϕ =  ─ 

Sη  spectral density of surface elevation 2m s  
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Symbol Quantity SI Unit 

   

Sτ  spectral density of shear stress 2 -2 -3kg m s  

s  specific density 2 -2 -3kg m s  

ws  dilation scale of wavelet transform s  

T  period s  

pT  spectral-peak period s  

RT  record length or time duration of an irregular-wave train s  

1 2,  ,  etc.R RT T  the time period with different beginning s  

Ta  Taylor number, 2 22o r rTa A H Lω υ=  ─ 

t  time s  

t′  dimensionless time ─ 

tΔ  time interval s  

rtΔ  the time step of vortex analysis s  

ot  non-dimensionalized parameter of time s  

nt  discrete time s  

wt  time translating range of wavelet transform s  

U ′ , V ′  mean values of u′  and v′  in a computational element ─ 
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Symbol Quantity SI Unit 

   

BU  the submergence-orbital-velocity amplitude at 

(1 ) oy q h= −  

-1ms  

oU  the orbital-velocity amplitude on the bed or the bed orbital 

velocity 

-1ms  

rmsU  root-mean-square of bed orbital velocity -1ms  

sU  significant bottom velocity, 1/24s ouU m=  -1ms  

u , v  Velocities m  

u′ , v′  dimensionless velocities, / pu u u′ = , / pv v v′ =  ─ 

*u , *v  velocities obtained from guessed pressure field *p  ─ 

û′ , v̂′  pseudo velocities ─ 

u , v  contravariant velocities ─ 

pu  velocity amplitude of wavemaker -1ms  

Ur  Ursell number ─ 

sUr  Ursell number defined by significant wave height and 

wave length of spectral peak wave 

─ 

BW  width of breakwater m/s  

( ,  )w wWf t s  wavelet transform of ( )f t  m  
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Symbol Quantity SI Unit 

   

( ,  )w mWS t f  the time-frequency wavelet energy density 2m  

sw  settling velocity m/s  

x , y  Cartesian coordinates m  

xΔ , yΔ  grid size in a computational element ─ 

x′ , y′  dimensionless cartesian coordinates, / ox x h′ = , 

/ oy y h′ =  

─ 

cx , cy  center of vortex circulation m  

minx  location of the piston-type wavemaker m  

1 2,  ,  s s sx x x  the width of spatially varying region of a sponge layer m  

ixΩ , iyΩ  the location of an element within a vortex m  

α  spectral shape parameter in Goda-JONSWAP spectrum ─ 

δ  Stokes layer thickness of regular wave m  

ijδ  Kronecker delta ─ 

pδ  Peak spectral characteristic thickness of the bottom 

boundary layer 

m  

kφ  phase of k -th wave component ─ 

95 99, , Γ Γ Γ  vortex circulation 2 -1m s  
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iΓ  vortex circulation of an element 2 -1m s  

γ  peak enhancement factor ─ 

1γ  skewness ─ 

1DSγ  skewness of the synthesized results using the DS model ─ 

( ),  ( , )t x tη η  water wave elevation m  

( )ntη  discrete wave elevation m  

(1)η  the linear component of nonlinear random waves m  

(2)η  the second-order component of nonlinear random waves m  

DSη  the nonlinear irregular wave obtained by the DS model m  

(2)
DSη  the second-order component of nonlinear irregular waves 

obtained by the DS model 

m  

kη  the k -th wave component m  

ϕ  stand-in quantities. ( ,u vϕ = ) ─ 

μ  dynamic viscosity of fluid -1 -1kg m s⋅  

3μ  the skewness of surface elevation ─ 

3DSμ  the skewness of results of the DS model ─ 
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rμ  the r -th moment, ( ) ( )r
r x x p x dxμ = −∫  [ ]rx  

sμ  damping factor of a sponge ─ 

maxsμ  maximum damping factor of a sponge ─ 

υ  kinematic viscosity of fluid 2 -1m s  

θ ′  the maximum Shields number ─ 

cθ ′  the critical Shields number ─ 

rθ ′  the ripple-adjusted Shields number ─ 

ρ  density of water -3kg m⋅  

sρ  density of sand particle -3kg m⋅  

ijσ  the i -th component of the stress tensor acting on the 

surface with constant jx  

─ 

τ  bottom shear stress -1 -2kg m s⋅  

( )ntτ  discrete bottom shear stress -1 -2kg m s⋅  

τ  normalized shear stress, max / rmsMτ τ τ=  ─ 

iτ  a unit vector normal and tangential to the free surface ─ 

maxτ  maximum bottom shear stress -1 -2kg m s⋅  
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max 1/( )
MNτ  maxτ  which is exceeded by the probability 1/ MN  -1 -2kg m s⋅  

max Mτ  maximum bottom shear stress determined by Myrhaug’s 

model 

-1 -2kg m s⋅  

maxTτ  maxτ  obtained using transfer function -1 -2kg m s⋅  

sτ  significant shear stress -1 -2kg m s⋅  

,  iΩ Ω  vorticity -1s  

max
Ω  the global MAV -1s  

TΩ  the threshold for determing the region of a vortex -1s  

ω  angular frequency -1s  

kω  discrete angular frequency of k -th wave component -1s  

pω  angular frequency of spectral peak -1s  

zω  zero-crossing frequency of bed displacement -1s  

ψω  frequency of mother wavelet -1s  

ξ , ζ  curvilinear coordinates ─ 

( )tξ  displacement function of a piston-type wavemaker m  

ξ ′ , ζ ′  dimensionless curvilinear coordinates ─ 
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Symbol Quantity SI Unit 

   

* *,ξ ζ  coordinate-stretching functions of ξ  and ζ  ─ 

oξ  the shape factor used to describe the ripple shape m  

( )k tξ  displacement function of a piston-type wavemaker for 

generating k -th wave component 

m  

Ψ  Fourier transform of the mother wavelet ─ 

ψ  mother wavelet ─ 

*ψ  complex conjugate of the mother wavelet ψ  ─ 

mψ  mobility parameter ─ 
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Chapter 1 Introduction 

 

1.1 Research Background 

On a natural sea, waves are irregular with high uncertainty.  The researchers in about 

1960 were tried ensuring the equilibrium state for wind-wave spectrum and establishing 

some simple parameterizations using “equivalent parameters”, e.g. the significant wave 

height, the significant-associated period, and wavelength.  Many experiments, theories 

and numerical studies were done by applying equivalent parameters as the realistic sea 

state in practical applications.  However, taking equivalent parameters as true sea state 

leads to some misunderstandings about the realistic sea state, because multi-component 

introduced properties (e.g. wave-wave interaction, phase difference, and the occurrence of 

freak waves) were ignored when only significant wave properties are considered.  

Simulation and studying the effects of irregular waves interacting with itself or structures 

is inevitable for coastal study. 

“Science is organized knowledge. Wisdom is
organized life.” 

─Immanuel Kant,
German philosopher
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A measure of irregular waves in a particular location can be considered as stochastic 

process.  Spectral and statistical processing are practical methods to determine properties 

of any stochastic process.  Applying spectral method can reveal the energy distribution of 

each component and the dominant frequency.  Applying statistical method can realize the 

probability distribution and obtain a forecasting about single event or long-term statement.  

In the present study, both methods were applied to extract the information of irregular 

waves and the associated effects.  Four different subjects were studied.  The first subject 

studied linear irregular waves and the associated shear tress; the second the nonlinear 

properties beneath irregular waves; the third the vortex dynamics around a submerged 

breakwater; the fourth the region from ripple trough to two times ripple height, which was 

dominated by ripple-induced vortices. 

1.2 Linear irregular waves and the associated properties 

The bottom shear stresses caused by irregular waves are very important in the 

sediment transports and the pipeline stability in the nearshore region.  However, 

determining the shear stresses in response to irregular waves in the field and in the 

laboratory is difficult.  Measurements of the velocity of the oscillatory boundary-layer 

flows over smooth and rough walls have already been made by Jonsson (1963, 1980) and 

Jonsson and Carlsen (1976) using a large oscillating water tunnel.  Other measurements 

and theoretical models have also been reported (Kamphuis, 1975; Justesen, 1988; Jensen et 

al. 1989; Fredsøe et al., 2003).  The maximum shear stresses, the friction factors and the 

boundary layer thickness of the laminar, smooth turbulent and rough turbulent flows 
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induced by a simple harmonic motion over a fixed bed have been discussed in detail.  

Lambrakos (1982) and Myrhaug et al. (1992) provided field measurement data of flows in 

wave boundary layers.  Grant and Madsen (1986), Sleath (1995), and Blondeaux and 

Vittori (1999) reviewed articles in the boundary layer on the seabed. 

Although the characteristics of the boundary layer induced by a simple harmonic 

motion or general waves have been elucidated in detail, the boundary layer or the shear 

stress under irregular waves has been less studied.  Myrhaug (1995) proposed a model to 

calculate the maximum bottom shear stress induced by irregular waves.  The surface 

elevation was assumed to be a stationary Gaussian narrow-band process.  Simple explicit 

friction coefficient formulas for sinusoidal waves, such as Jonsson’s formula (1980), were 

assumed to be valid for irregular waves as well.  The coefficients of the proposed 

formulas were not constant and varied with the sea state parameters.  The reliability of 

Myrhaug’s model has not been tested.  Myrhaug et al. (1998), Holmedal et al. (2000 and 

2003) and Myrhaug and Holmedal (2001 and 2003) extended Myrhaug’s approach (1995) 

for different applications.  Samad et al. (1998) examined experimental shear stress results 

by comparing them with those obtained using the transfer function between the shear stress 

and the surface elevation.  Tanaka and Samad (2006) solved the linearized boundary layer 

equation and the k ε− equations to compute turbulent bottom shear stress induced by 

irregular waves with a Bretschneider-Mitsuyasu spectral density.  Comparison of the 

model results with experimental data verifies their numerical model. 

This study proposes a new approach for determining the shear stresses induced by 
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irregular waves.  The viscous flow fields and the shear stresses induced by the desired 

irregular waves can be computed by generating the desired irregular waves in a numerical 

wave flume, in which the viscosity of the fluid is considered. 

Various methods have been developed to simulate the irregular waves with the 

spectral and statistical properties of realistic ocean waves.  Most such methods can be 

separated into two main categories: deterministic spectral amplitude (DSA) methods and 

nondeterministic spectral amplitude (NSA) methods.  The former determine the spectral 

amplitude of each wave component precisely to match the theoretical or measured 

one-sided target wave spectrum, while in the latter, the simulated wave spectrum randomly 

fluctuates about the target wave spectrum.  Rice (1955) originally developed these two 

methods for modeling Gaussian, white-noise, electronic signals.  Ploeg and Funke (1980), 

Funke and Mansard (1987), Hughes (1993) and Goda (2000) reviewed irregular wave 

generation techniques in detail. 

Borgman (1969) applied both the wave superposition method and the linear filtering 

method to simulate irregular waves.  The wave spectra of the simulated irregular waves 

by these two methods coincide with the given target spectra, but lack sufficient 

randomness as in the real sea states.  Goda (1970) demonstrated that in the wave 

superposition approach, the component frequencies should not be harmonics of each other 

and the amplitudes of the component waves should be approximately equal.  Therefore, 

he treated the spacing between dividing frequencies as increasing with frequency, and the 

synthesized frequencies were selected randomly in the respective sub-ranges.  The phase 
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of each component was selected at random and distributed uniformly in the interval 

[0,  2 ]π . 

Tuah and Hudspeth (1982) compared the spectral moments, spectral bandwith, 

skewness and peakedness of the simulated waves obtained by the DSA and NSA methods.  

Their comparison indicated that the statistical properties of irregular waves simulated by 

the NSA method were closer to the realistic sea states.  This difference was attributed to 

the fluctuating spectra obtained using the NSA method, which differs from the smooth 

spectra obtained from the DSA method.  Tucker et al. (1984) and Miles and Funke (1988) 

made similar comparisons, with the same results as were reported by Tuah and Hudspeth 

(1982).  However, Elgar et al. (1985) showed that if the number of spectral components 

suffices, then both DSA and NSA approaches simulate waves without a significant 

difference in the wave group statistics. 

The autoregressive-moving average model (ARMA) used by Medina et al. (1985) has 

been considered to be one of the most general approaches for generating random signals.  

However, applying this model to simulate waves for any given spectra is rather difficult.  

Miles and Funke (1988) chose 16 sea state parameters, such as the significant wave height 

and the peakedness factor, to compare seven wave synthesis methods.  The seven 

synthesis methods are the wave superposition method (Borgman, 1969), that of Goda 

(1970), the random amplitude and frequency method, the linear filtering method, the 

method of Fryer et al. (1973), ARMA and the random Fourier coefficients method.  Miles 

and Funke (1988) concluded that all of these synthesis methods could generate realistic 
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Gaussian wave records.  They noted also that the peak of the spectrum obtained by 

ARMA is lower than that of the target spectrum and, that the NSA-FFT (fast Fourier 

transform) was required for correct short-term variability.  They showed that any finite 

duration wave record generated by a wave synthesis method could be approximated by the 

equivalent FFT time series. 

1.3 Nonlinear properties beneath irregular waves 

Nonlinear properties of irregular waves has been studied by experiencing much 

progress in the past half century.  Since nonlinear irregular wave is complex and has huge 

affection about near shore phenomena, different methodologies (such as spectral or 

statistical method, field measurements, and experiments) were applied to survey the 

fundamental properties of nonlinear irregular wave and the associated dynamics.  Some 

of the famous properties of nonlinear irregular wave are energy transfer beneath resonant 

or non-resonant condition, presence of subharmonics and superharmonics, increase of 

skewness, change of dispersion relation and phase velocities. 

1.3.1  Spectral properties 

By the assumption of stationary in time and in space, the Fourier-Stieltjes transform 

was applied to deal with the second order spectral properties of irregular waves in deep sea 

(Phillips, 1960; Longuet-Higgins, 1962; Longuet-Higgins and Phillips, 1962; Tick, 1963; 

Huang and Tung, 1976 and 1977; Zhang and Chen, 1999) as well as in finite depth 

(Hasselmann, 1962; Laing, 1986).  Two major properties of nonlinear irregular wave 
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were found: existence of subharmonics and superharmonics; and energy transfer due to 

resonant interactions among wave components.  Subharmonics and superharmonics are 

both bound waves.  The former affect slow-drift motion of moored vessels, generation 

and evolution of sand bars, and surf-beat mechanism.  The latter sharpen the wave crests 

and flatten the wave troughs, which consequently increases the skewness of surface 

elevation and occurrence of freak waves. 

The wave-wave interaction beneath resonant condition for deep gravity waves was 

first derived by Phillips (1960), whereas Hasselmann (1962) treated of the problem by 

perturbation method and obtained a result of the nonlinear resonant interaction of free 

waves in a random sea.  An example is for four waves with directional wavenumbers 

( 1 2 3 4,  ,  ,  k k k k ) and the angular frequencies ( 1 2 3 4,  ,  ,  ω ω ω ω ) satisfied or close to being 

satisfied the resonant conditions, say 1 2 3 4k k k k+ = +  and 1 2 3 4ω ω ω ω+ = + , there is a 

direct energy transfer between these four waves and this is satisfied the action density 

spectrum ( ,  )F k t  at time t  (Hasselmann, 1962): 

 
1

1 2 3 4 1 2 3 4

1 2 3 4 2 3 4

( ,  ) ( ,  ,  ,  ) ( )

( )]

F k t G k k k k k k k k
t

dk dk dk

δ

δ ω ω ω ω

∞

−∞

∂ = + − −
∂

+ − −

∫ ∫  (1.1) 

where ( ,  )i iF F k t=  is the spectrum of energy in terms of wavenumber, 

1 2 3 4( ,  ,  ,  )G k k k k  is the coupling coefficient, k  is the directional wavenumber which 

agrees the dispersion relation i ig kω =  in deep sea with the gravitational acceleration g.  

The exchange of energy is slow (Benny, 1962), and thus agrees with the assumption of 

nonlinear transfer that the action density spectrum is a slowly varying function of time. 
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Further theoretical advances were made by Longuet-Higgins (1976).  He applied 

Davey and Stewartson’s model (1974) for wave group evolution and considered the linear 

dispersion relation for waves in deep water.  Physical meaning of each term of energy 

transfer equation was built up by the author and showed that the coupling coefficient 

1 2 3 4( ,  ,  ,  )G k k k k  between four nearly equal wave numbers 1 2 3 4,  ,  ,  k k k k  is finite and 

not zero, and it is implied that the energy transfer within the spectral peak itself is of 

supreme importance.  The author also noticed that the energy from an isolated peak in the 

spectrum tends to spread outwards along two characteristic lines, in which has the angle 

1 1
2

tan ( )−±  with the main direction.  This work was extended by Dungey and Hui (1979) 

with considering the effect of bandwidth of wave spectra.  The secondary spectral peak 

was produced if the second-order spectrum was considered and p ok h  smaller than 0.6 

(Laing, 1986), where pk  is the spectral-peak wavenumber and oh  the still water depth. 

Wave amplitudes and random phases are two fundamental elements for building a 

synthesized irregular wave train more realistic as mentioned in Sector 1.2.  In the 

afore-mentioned works, the properties of wave amplitude, such as energy transfer and the 

higher harmonics, were considered, but the effects of phase difference were seldom taken 

into account.  A second-order directional wave theory for the case of infinite depth 

including the random phases was developed by Longuet-Higgins (1963), and later 

extended by Sharma (1979) and Sharma and Dean (1981) to the case of finite depth.  

Different case conditions of surface elevation were tested based on the assumption that the 

linear wave components are with the amplitude satisfied the Bretschneider spectrum and 
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with random phases.  The higher harmonics, both subharmonics and superharmonics, 

were synthesized and presented produced with huge irregularity, which was resulted by the 

random phases of the linear waves. 

While the spectral properties are known, the vital point for engineering use is to 

determine the dispersion relation, and thus gain the understanding about the phase velocity 

or the group velocity of waves.  Many researchers (Longuet-Higgins and Phillips, 1962; 

Huang and Tung, 1976; Webber and Barrick, 1977; Barrick and Webber, 1977; Masuda et 

al., 1977; Mitsuyansu et al., 1979; Laing, 1986) have tried working it out.  Since the 

bound wave were composed by the distribution of linear free waves with random phases, 

as synthesized results of Dean and Sharma (1981), the dispersion relation in deep sea is 

also random as a function of time and space, when the second order of irregular wave is 

considered.  This was confirmed by Huang and Tung (1976), who ensured there was no 

single form of the dispersion relation for nonlinearity irregular waves.  The recent 

experiments reconfirmed this phenomenon were made by Baldock et al. (1996), who tried 

surveying the wave evolution and flow velocity by experimental study.  A particular wave 

group was test and compared the spectral amplitudes and phases.  Of their work, the wave 

group velocity was increase as increasing nonlinearity and high nonlinearity of irregular 

waves introduces a permanent phase change.  It indicates there is no permanent wave 

pattern for irregular waves if the nonlinearity is present. 

Resonant interaction is good for describing the energy transfer of directional waves in 

deep sea.  However, the energy transfer is rather slow and only weak nonlinearity is 
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considered (Dommermuth and Yue, 1987).  Another drawback is the afore-mentioned 

method cannot deal with the energy transfer of unidirectional waves.  For resonant 

conditions fitted only when ( 1 3k k= , 2 4k k= ) or ( 1 4k k= , 2 3k k= ) in unidirectional wave, 

the action density function showed in Eq. (1.1) tends to zero and appears no more energy 

transfers as the propagating of wave trains.  For most studies about unidirectional waves, 

the existence of energy transfer is found, such as the case of Benjamin-Feir instability 

(Benjamin and Feir, 1967, also called as side-band modulation or non-resonant interaction), 

because the resonant condition are no longer satisfied.  Most of these studies were 

performed by applying the nonlinear Schrödinger (NLS) equation and the Zakharov 

integral equation, which is another type of method to study the nonlinear effect of spectra. 

The carrier waves of NLS were assumed to be linear and symmetric sinusoidal waves.  

Such a solution was good at analyzing the energy transfer of waves over large distance and 

long time span, but limited on dealing with the local wave profile asymmetry due to higher 

harmonic terms (Huang and Tung, 1976).  The evolution of the wave train obtained by the 

nonlinear Schrödinger equation will tend to broaden the wave spectrum through side-band 

instability.  For narrow-bandedness requirement, which is the main disadvantage of NLS, 

the time span of the NLS simulation is limited while the bandwidth reaches the broaden 

limit.  For wave evolution governed by the NLS equation, Dysthe et al. (2003) showed 

the spectra followed a power-law behavior 4ω− .  Another application performed by the 

NLS equation is to figure out the appearance of freak waves.  Janssen (2003), Onorato et 

al. (2005) as well as Gramstan and Trulsen (2007) tried presenting the increased occurance 
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of freak waves using the NLS equation to implement the evolution of nonlinear 

multi-component waves, although the occurance was evidenced by the increased kurtosis.  

However, only the trend can be obtained because of the neglect of phase difference. 

1.3.2  Statistical properties 

The statistical properties of the realistic sea state are mostly concerned as Gaussian 

statistics for linear wave fields as summarized by Phillips (1977).  However, the linear 

approximation can only hold true when the steepness approaches zero, which is the linear 

condition for deep water waves.  Many laboratory data and field measures clearly show 

that surface elevation deviates from Gaussian (Kinsman, 1965; Huang and Long, 1980; 

Tayfun, 1980; Huang et al., 1983; Hatori, 1984; Goda, 1988; Tayfun and Lo, 1989; Mori 

and Yasuda, 1996 and 2002), and the statistical model of nonlinear surface waves was built 

by numerous methods.  In generally, there are two ways for obtaining the non-Gaussian 

statistical models.  One is applying an existed non-Gaussian formula to describe the 

statistical properties of wave elevation (Longuet-Higgins, 1963; Ochi, 1986; Cherneva et al. 

2005).  Another is extended the Gaussian statistics with the properties of nonlinear waves, 

e.g. the Stokes wave theory (Tayfun, 1980; Huang et al., 1983, Dawson, 2004), or the 

subharmonics and superharmonics (Tayfun, 1994; Song and Wu, 1999 a & b; Song et al., 

2002). 

The non-Gaussian property of irregular waves was first derived by Longuet-Higgins 

(1963).  He applied Edgeworth’s form of Gram-Charlier series and described the 

nonlinear properties by skewness and flatness of wave elevation.  However, probability 
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density function formed by the Gram-Charlier series has some drawbacks for describing 

sea state.  The major drawback is the Gram-Charlier approximation gives negative 

probability density values for some range of wave elevation, especially in the cases of 

steep waves.  The negative values obviously disagree with the axiom of a probability 

density function, which should be always positive.  Another is the Gram-Charlier 

approximation calls for the skewness and the flatness value to determine the nonlinear 

statistical properties.  But these two parameters are not directly perceived through the 

senses of statistical parameters. 

Huang et al. (1983) used the second type of the afore-mentioned method to form a 

nonlinear statistical formula in order to describe nonlinear random waves by extending 

Gaussian distribution with Stokes wave property.  Formulas for deep sea and for finite 

depth wave were built up.  The probability function for the deep water case was specified 

by two parameters: the root-mean-square value of wave elevation and the significant slope.  

For water of finite depth, an additional depth parameter is involved.  Of the formula, no 

negative density value was given as the Gram-Charlier was. 

1.3.3  Experimental treatment 

For many researches and field applications, experiments are applied to build 

preliminary knowledge about realistic phenomena.  It is doubtless that nonlinear irregular 

waves have major affections about coastal structures and shore line protection, and 

generating nonlinear waves with desired realistic sea state in wave flume is of inevitable 

for experiments.  The basic concept of generating a nonlinear irregular wave train is to 
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satisfy the spectral properties, which the secondary spectral peak is appeared about two 

times the spectral-peak frequency.  For lack of the knowledge about separating the linear 

components and the bound waves of a nonlinear-irregular-wave train, an alternative 

method is to apply an equilibrium spectrum (e.g. PM spectrum by Pierson and Moskowitz, 

1964; JONSWAP by Hasselmann et al., 1973; Bretschneider-Mitsuyasu, etc.) with bound 

waves, which can be obtained following the formula of Phillips (1960), Hasselmann 

(1962), Laing (1986) or Dean and Sharma (1981). 

Tuah and Hudspeth (1982) first synthesized the nonlinear irregular waves by this 

manner and corrected the spectrum to the second-order by applying the nonlinear 

interaction matrix in finite water depth given by Hasselmann (1962).  In spite of the 

spectral property was similar with the nonlinear one, the results determined by the 

deterministic spectral amplitude method (DSA) was totally linear, and no bound waves 

generated.  The statistical properties of nonlinear irregular waves thus are not satisfied, 

since the wave profile is still symmetric.  For overcoming this drawback, a wavemaking 

theory for nonlinear irregular waves, in which fitted the boundary conditions and the 

nonlinear surface elevation, is inevitable.  This manner seems to be first concerned by 

Sand and Mansard (1986), who solved the problem with second-order irregular waves in 

deep sea.  A good agreement was obtained when the model was applied to generate the 

second-order Stokes waves and compared with the theoretical one.  However, there were 

discrepancies when field data were simulated. 

Similar works were done by Sulisz and Hudspeth (1993), Duncan and Drake (1995), 
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and Schäffer (1993, 1996).  Klopman and Van Leeuwen (1990) as well as Van Leeuwen 

and Klopman (1996) used the narrow-band approximation to develop a nonlinear irregular 

wave generator.  The random-amplitude/random-phase (similar to NSA-FFT) method 

proposed by Tucker et al. (1984) was applied to determine the linear components.  The 

second-order spectra determined by the multiple-scales perturbation-series method (Mei, 

1989) and by the full second-order theory (Laing, 1986) were compared. 

Different methods were carried out for a nonlinear irregular wave generator, but only 

Sand and Mansard (1986) has verified their results by making comparison with theoretical 

Stokes waves, and the field spectrum.  Sulisz and Paprota (2008) denoted that the 

nonlinear-waves generator can only provide a wave train satisfied the target spectrum 

within a very short distance form wavemaker, if the wave generator is considered weakly 

nonlinear formula only.  The authors deduced another formula in order to predict the 

propagating waves and compared the predicted results with the wave packet of different 

nonlinearities.  However, the wave packet stated the interaction of only few composite 

components and does not suffice the banded irregular wave spectrum.  

1.3.4  Properties beneath nonlinear irregular waves 

For many coastal applications, the dynamic property beneath irregular waves is a 

fundamental knowledge for the design of coastal structures and a basis to realize the 

stability about the structures.  A study was done by Borgman (1969), who applied a 

transfer function of linear waves and the associated flow velocity to perform the 

understanding of the dynamics beneath irregular waves.  More works were done by 
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statistical manner, which can be used both regarding single event and long-term statement, 

such as the extreme state or the significant properties for coastal structure design.  Tung 

(1975) built up an initial work about the dynamics based on linear irregular waves and 

Tung and Hunag (1984) extended the formula to nonlinear one.  Cieślikiewicz and 

Gudmestad (1993) combined the nonlinear model of Longuet-Higgins (1963), the linear 

concepts of Tung (1975) and considered the emergence properties to obtain a statistical 

formula satisfied nonlinear surface elevation and to fix the statistical results close to the 

surface.   

The bed shear stresses caused by the nonlinear irregular waves are less studied since 

the theoretical formula for nonlinear surface elevation is not unique and no transfer 

function suitable for use.  The statistical work is made by Myrhaug and Holmedal (2003), 

who extended Myrhaug's approach (1995) using asymmetric property of the second-order 

Stokes waves to have that of the bed shear stress, which was formulated by Myrhaug and 

Holmedal (2001) for laminar flow.  Similar to Myrhaug (1995), no more verification was 

made, but a simplified procedure for practical application was stated clearly. 

1.4 Interaction of irregular waves and a submerged 

breakwater 

There are various coastal structures, such as reef, detached breakwater and submerged 

breakwater, built to prevent wave attack.  The major purpose of such structures is to 

introduce wave reflection or breaking and reduce wave transmission.  So that estimation 
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of wave motions with coastal structures in nearshore zone is an important subject of coastal 

engineering.  Since a submerged breakwater has the potential to protect wave attack, 

against beach erosion, and for creation of artifical fishing grounds (Dattatri et al., 1978), 

many researchers experienced different methods to figure out its efficiency, stability and 

performance.  Experiments, analytic and numerical models are variations of methods 

performed to study about waves propagating over a submerged breakwater.  Reflected and 

transmitted coefficient, nonlinear effects or higher harmonic generation, wave breaking, 

vortex dynamics and scour around breakwater are the essential properties that introduced 

by the interaction of waves and submerged breakwaters. 

Many experimental studies focused on wave reflections and transmissions induced by 

a submerged breakwater.  Determining the reflected coefficients accurately is the major 

subject for such studies (e.g. Stamos and Hajj, 2001).  Several methods have been 

proposed to determine the reflected characteristic.  Goda and Suzuki (1976) applied two 

measured wave heights and phase difference to obtain reflected coefficient.  Mansard and 

Funk (1980) used three probes and the least-square method to correct the bias of 

experimental results and to get the reflected coefficients more accurate.  Lin and Huang 

(2004) adopted the least-square method and four measured surface elevation to determine 

the reflected coefficient and higher harmonics.  These methods are all based on the 

Fourier transform with the assumptions that surface elevations are stationary in time, and 

homogeneous in space, and wave-wave interaction or energy loss are not allowed.  These 

assumptions limit experimental studies on far off breakwaters, where waves are not 
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affected by the nonlinear effects and more stationary.  Stamos and Hajj (2001) applied 

wavelet method to determine reflected waves from the variations in the amplitude as well 

as phase of the wave in only one measured result.  However, this method can only be 

applied on regular waves. 

Properties of surface elevations in the vicinal region of breakwater are vital for the 

performance and stability of breakwaters.  The generation of higher harmonics above 

breakwaters is one of the properties.  Johnson et al. (1951) noticed there are higher 

harmonics as a wave propagating over a submerged obstacle.  Similar phenomena were 

found in experiments by Young (1989).  Earlier researchers have tried to predict the 

generation of higher harmonics by applying nonlinear shallow-water wave theories, such 

as the Boussinesq and KdV equations.  Since the derivation of the Boussinesq equations 

is based on the assumptions of both weak nonlinearity and weak dispersivity of waves, 

these equations may not be valid for the prediction on the lee side of a submerged 

breakwater, where harmonics may arise in the form of deep-water waves. 

In order to overcome this defect, improvements on the Boussinesq equations have 

been developed.  Peregrine (1967) developed equations of motion for long waves in 

water of varying depth.  These equations can be viewed as the Boussinesq equations for 

water of varying depth.  Witting (1984), Madsen and Sorensen (1992), Nwogu (1993) 

and Beji and Battjes (1994) improved the Boussinesq equations by adding a term to 

improve its dispersion characteristics and extended its applications.  There are many 

studies employed the same equations to study the deformation of waves.  However the 
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term for improving dispersion includes an unknown variable and not rigorous 

mathematically.  Numerical results applied the extended Boussinesq equations are also 

found to overestimate the amplitude of higher harmonics and the total averaged energy 

flux on the lee side of a submerged breakwater (Ting et al., 2005).  The KdV equations 

are also applied to deal with the deformation of waves (Ishida and Takahashi ,1981; 

Yasuda et al., 1982), and have the same limitations with the Boussinesq equations. 

An experimental study about interaction of waves with a submerged trapezoidal 

breakwater was conducted by Beji and Battjes (1993), who investigated the deformation of 

waves around the breakwater.  Ohyama and Nadaoka (1994) used potential theory to 

perform similar studies.  Single and multiple wave components were considered.  The 

results of single wave component were at a good agreement with that of experiments by 

Kojima et al. (1990), and the beat length introduced by higher harmonics were compared.  

Two irregular waves with different phases were compared by numerical experiments and 

results totally different transmitted patterns.  Further verification was done by Ohyama et 

al. (1994).  The experimental results of Beji and Battjes (1993) were applied to justify 

their model and had a good agreement in the comparison of regular wave.  

The performance of impermeable and permeable breakwaters were revealed by 

Rambabu and Mani (2005), who used potential theory as governing equation and Green’s 

function as boundary treatment to deal with waves over trapezoidal and rectangular 

breakwaters.  After verifying the numerical results with experiments of permeable 

structures, the authors suggested several optimal conditions using parameterized 
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coefficients: submergence ratio q ; steepness factor 2/iH gT ; the ratio of breakwater 

width and water depth /B oW h ; and breakwater spacing parameter, where iH  was the 

incident wave height, g  the gravitational acceleration, T  the wave period, BW  the 

width of breakwater, and oh  the still water depth. 

Detailed spectral deformation of multi-component waves was studied by Yoshida et al. 

(1996), who applied the Stokes series expansion and Green’s second theory to solve the 

interactions over a submerged obstacle.  The results were comparied with experiment one 

and were good enough to describe the spectral deformation when the wave amplitudes 

were small and wave breaking did not take place. 

Vortices generated about a submerged breakwater have subtle effects on wave energy 

loss and the stability of breakwaters (Ting and Kim, 1994).  However, vortex dynamics 

strongly affect the mixing process of energy or nutrient, sediment transport, and also the 

introduced toe scour.  It is known that potential theory can deal with flow motions far 

from boundaries very well.  For studying vortex dynamics, flow viscous is inevitable, and 

thus only numerical models included viscous effects or experiments can handle this 

problem well.  

In order to realize the effects introduced by vortex, Ting and Kim (1994) made a 

measure on vortex by numerical integrating the vorticity over the region of eddy motion.  

No more details about the numerical integrating were stated and the region of eddy motion 

was not clearly identified.  Dong (2000) and Huang (2004) followed the same manner to 

study vortices.  They numerically integrated vorticities over a fixed-rectangular region, in 
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which vortices formed.  However, the region was not moved with vortices and the results 

probably lead to misconceptions. 

Another method was used by Chang et al. (2001, 2005), who chose the extreme value 

magnitude of vorticities as the measure of vortex strength.  With comparing the nearest 

horizontal velocity and the extreme vorticity obtained by numerical experiments, the 

authors found that the extreme vorticity was driven by the nearest horizontal velocity, and 

thus a simple model was built to have a prediction of the extreme vorticity around 

breakwater. 
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1.5 Vortex dynamics above rigid vortex ripples 

Plenty of sea bed is covered by sand and forms soft bottom.  The bedform can be 

easily changed beneath energetic hydraulic conditions and is different to be measured in 

field.  However, knowledge of bedform geometry is vital in several interesting areas to 

the coastal and marine environment, e.g. in continental shelf area, which are known as the 

principal fishing ground of the world (Nybakken and Bertness, 2005).  Hence, different 

methods were carried out to reveal fundamental understanding about the formation process 

and equilibrium state and non-equilibrium state of bedform, especially wave-induced 

ripples. 

1.5.1  The general conditions of ripples 

Ripples is a general pattern of soft bottom.  Since large part of sea bed is covered by 

ripples, the properties and functions of ripples are important factors of many applications.  

Sediment transport process, ripple morphology, vortex dynamics over ripples and near-bed 

drift are most important, especially in storms or other kind of energetic hydraulic 

conditions.  After a storm, the relic ripples are dominate in determining the bed roughness, 

which is a parameter in bottom boundary condition for modeling waves (Mathisen and 

Madsen, 1996 a and b, 1999; Zhang et al., 2004) during moderate hydraulic conditions, in 

which the ripple form has less change.  The nutrient distribution, biological and chemical 

process can also be changed with different ripple patterns.  An important mechanism for 

exchanges of nutrients was carried out by pore water flow through ripples (Precht and 
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Huettel, 2004). 

The bed flow properties are usually expressed as a function of bed orbital Reynolds 

number, say o o oRe U A υ= , where oU  is the bed-orbital-velocity amplitude and oA  the 

bed-orbital-displacement amplitude.  When bed orbital Reynolds does not suffice large, 

ripples were formed with small shape angles and flat, plane trough.  This ripple form was 

recognized as rolling-grain ripples.  As the bed orbital Reynolds number reached 3(10 )O , 

separation bubbles form against both slopes of ripples and increase ripple steepness 

exceeds over 0.1r rH L > , in which rH  is the ripple height and rL  the ripple 

wavelength.  Thus, organized vortex structures form and dominate the region within 

2 ry H<  (Ranasoma and Sleath, 1992; Davies and Thorn, 2005), so that sands are 

picked-up by vortices and settling when the vortices tend to breakdown.  A new form of 

ripples are built by this process with the triangular shape and the steepness about 

0.17r rH L = .  Since the ripple form was made by vortices, it is called vortex ripple.  

However, if the bed orbital Reynolds number exceeds 5(10 )O , the form of ripples was 

washed out and became near flat bed with large suspension. 

If the sand properties were taken into account, the particle Reynolds number, 

50d oRe U d υ= , and the Froude number, which states the velocity ratio of flow and particle, 

50( 1)d oFr U s gd= − , or the maximum Shields parameter, max 50( 1)g s dθ τ ρ′ = −  

should be considered, where s  is the specific density /sρ ρ , 50d  the medium grain size, 

and maxτ  the maximum shear stress.  These parameters are usually used to defined the 

sediment properties in flat bed condition.  While the Shields parameter exceeds the 
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critical value, say 0.05cθ ′ ≈  (Nielsen, 1992), the sands were moving by the flow.   

1.5.2  The flow motion and vortex dynamics 

Of preliminary study, the flow motion above ripples can be carried out theoretically 

when the ripple steepness is very small (Lyne, 1971; Kaneko and Honji, 1979; Matsunaga 

et al., 1981; Vittori, 1989; Hara and Mei, 1990; Blondeaux, 1990; Blondeaux and Vittori, 

1991).  With the assumption of small steepness for the ripple form, only rolling-grain 

ripple can be studied and with no vortex generated. 

For achieving the understanding of the properties and functions of vortex ripples, the 

flow motion and vortex dynamic are matters of concern.  Considerable amount of 

laboratory works has been performed to investigate the boundary layer flow above sand 

ripples.  In the earlier, Tunstall and Inman (1975) used the hydrogen bubble technique to 

measure the circulation of vortices generated as the oscillating flow passes over rippled 

surface.  It was found that the circulation is proportional to the horizontal flow velocity 

near the bottom and the height of sand ripples.  Du Toit and Sleath (1981) employed the 

laser Doppler velocimetry (LDV) to measure the flow fields near the crest and trough 

sections of the wavy wall and showed that the significant increase of turbulent intensities 

was induced by the vortices.  Sato et al. (1984 and 1987) performed the experiments by 

LDV and obtained the spatial distributions of the Reynolds stress, the eddy viscosity, and 

the characteristics of turbulent energy production rate and dissipation rate in the boundary 

layer.  Similar measurement was also performed by Ikeda et al. (1989 and 1991) and 

found that the generation of the Reynolds stress is limited within the vortices and the 
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associated eddy viscosity showed sinusoidal variation. 

The particle image velocimetry (PIV) was used to acquire the knowledge of regional 

velocities around ripples (Hudson et al., 1996; Earnshaw and Greated, 1998; Jespersen et 

al., 2004; Marin, 2004; Admiraal et al., 2006; Van der Werf et al., 2006).  Hudson et al. 

(1996) focused on turbulent effects and calculated Reynolds shear stress and turbulent 

kinetic energy.  Comparing to LDV or acoustic Doppler velocimetry (ADV), the PIV 

provides large spatial resolution.  Therefore, the regional results of vortex properties (e.g. 

circulation, trajectory and vortical size) can be calculated by vorticity-weighting methods 

and by summing local properties over a vortex, and the region of vortex was determined by 

a particular threshold of the extreme vorticity. 

Earnshaw and Greated (1998) as well as Admiraal et al. (2006) recognized the 

location with vorticity exceed 10% of the extreme one as the region of a vortex, and 

Jespersen et al. (2004) chose 20%.  However, the vorticity threshold, either 10% or 20%, 

were satisfied only if the extreme vorticity is large.  When the vorticities diffused and 

were convected, the region of vortex extended and with a smaller extreme vorticity, and the 

threshold, 10% or 20% of the extreme vorticity, led to misunderstanding about the 

properties of vortex.  Admiraal et al. (2006) changed the threshold to 50% of the extreme 

vorticity when the extreme vortices is small.  Moreover, the results were strongly affected 

by the selection of the threshold, and it should not be change within the interesting duration.  

By comparing the near-bed and free stream velocities, Van der Werf et al. (2006) stated the 

time-lag and reveal its contribution to sand concentration.  The authors also revealed that 
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the peak concentrations were associated with vortex dynamics. 

The fluid motion under waves is different from that of oscillatory flow.  In the region 

above the rippled bed, flow motion in waves is elliptic type but only the streamwise 

component of the elliptical motion appeared in oscillating flow.  The flow fields in waves 

above any two adjacent ripples are different because of different phase beneath the wave 

elevation and form a near-bed steady drift, which was responsible to the near-bed 

high-concentration sediment motion (Marin, 2004; Ourmières and Chaplin, 2004).  On 

the contrary, the flow fields in oscillatory flow are exactly the same above any ripples and 

with no drift. 

By PIV examination beneath single wave condition, Earnshaw and Greated (1998) 

found that negative vortices generated by onshore-directed flow were stronger than 

positive vortices generated by offshore-directed flow.  Fredsøe et al. (1999) used laser 

Doppler anemometry (LDA) to measure the velocity profile above a fixed rippled bed with 

combined wave and current.  Marin (2004) used similar methodology to study the 

Eulerian drift of waves over rippled beds.  Another visualization of wave-induced flow 

was performed by Ourmières and Chaplin (2004), who applied a fluorescent dye filmed by 

a digital high speed video camera to capture flow over a rigid ripple bed.  Vortex patterns 

were separated into rolls, rolls plus jets, first flow separation and vortex ejection, and also 

the patterns, ring and brick, of three-dimensional vortex were defined and distinguished by 

Taylor number, which defined as following. 
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By the improvement of computing technique, many solvers (solving Navier-Stokes 

equations or vorticity equations with a turbulence model) are able to reveal the interaction 

of oscillating flow with ripples clearly.  De Angelis et al. (1997) applied pseudospectral 

method and coordinate transformation technique to study regular oscillatory flow over a 

rippled bed.  Turbulent effects and velocity profile were studied.  Malarkey and Davies 

(2002, 2004) used two discrete vortex models, a simple inviscid model (with no diffusion 

of vorticity) and a cloud-in-cell (CIC) (with diffusion of vorticity), to study oscillating flow 

above rippled beds.  The special case of a round-crested symmetric ripple used by Sleath 

(1984) and a sharp-crest symmetric ripple were considered.  Chang and Scotti (2004) 

made a comparison of two turbulence models, the Reynolds-averaged Navier-Stokes 

equations (RANS) and the large-eddy simulation (LES), for simulating oscillating flow 

over ripples.  Comparing with the experiments of Hudson et al. (1996), the authors found 

that only the numerical model with the LES is able to deal with the problems well. 

Zedler and Street (2006) numerically studied the flow motion and the associated 

sediment concentration on long wave ripples.  The Taylor number is extremely high 

127Ta ≈  so that three dimensional pattern of flow motion was studied. 

1.5.3  The equilibrium state of wave formed ripples 

The equilibrium state of ripple is an important factor to determine the stability of sea 

bed or to evaluate the sediment transport, and also can be applied to estimate the associated 
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sea state if no measurements were set up. 

An oscillating plate covered with a layer of sand in static water was usually used to 

produce ripple structure in laboratory (Bagnold, 1946; Hansen, 2001; Hansen et al., 2001; 

Scheibye-Knudsen et al., 2005).  While the sand motion at the end of the oscillating plate 

may introduce instability, cylindrical tanks were applied to establish a 

quasi-one-dimensional system and avoid end effects (Betat et al., 1999; Stegner and 

Wesfreid, 1999; Andersen et al, 2000 and 2002; Rousseaux et al., 2004; Rousseaux, 2006).  

For the sake of realizing ripple patterns beneath waves, natural formed ripples with only 

waves or combined waves and current were carried out in experiments (Khelifa and 

Ouellet, 2000; Davis, 2005; Testik et al., 2005; Cataño-Lopera and García, 2006 a & b; 

Landry et al., 2007). 

Experiments revealed two equilibrium patterns: rolling-grain ripples and vortex 

ripples.  The rolling-grain ripples are small patterns with grains moving back and forth 

along the water-sand interface.  The wavelength of rolling-grain ripples are nearly 

independent of bed orbital amplitude with small steepness / 0.1r rH L <  (Wiberg and 

Harris, 1994; O’Donoghue et al. 2006).  Therefore, the rolling-grain ripples is also called 

anorbital ripples.  The steepness of vortex ripples is larger than that of rolling-grain 

ripples and with vortices surrounding and picking-up sands from trough to crest.  The 

wavelength of vortex ripples are proportional to bed orbital amplitude and also called 

orbital ripples (Wiberg and Harris, 1994; O’Donoghue et al. 2006).  Comparing numerous 

data of experiments and field measurements, Wiberg and Harris (1994) distinguished these 
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two ripple forms by bed orbital properties and the oscillating rough turbulent layer 

thickness.  However, the authors found that the oscillating rough turbulent layer thickness 

is not satisfied to describe the ripple patterns without the knowledge of flow motion. 

Bagnold (1946) found that the wavelength of ripples was not affected by the 

frequency of the oscillatory flows.  By changing the frequencies and last for a rather long 

duration, Scherer et al. (1999) and Stegner and Wesfreid (1999) found that rolling-grain 

ripples are transient stage and vortex ripples the true final stage of ripple form.  

Rousseaux et al. (2004) and Rousseaux (2006) confirmed the statement and revealed that 

the final stage can be quickly reached if the oscillating frequency was higher.  The author 

also noted that some misunderstanding may introduce by the observation of “the 

pseudo-stability zone.” 

Cataño-Lopera and García (2006a) focus on the long wave ripple and called it 

sandwaves.  The natural formed ripple beneath waves with 3.4 s in period was worked 

over 100 hrs.  The authors performed the experiments on the sandwaves formation.  

While the sandwaves were formed, at about 8 hrs, the sandwave vertical growth rate was at 

about 0.2 cm/hr and went on smaller.  The higher growth rate was at about 1 hr (0.76 

cm/hr).  And clear sandwaves formed after about 100 min.  The migration rate of the 

short wave ripples, about 0.65 cm/min, is smaller than that at flat bed.  This phenomena 

can only be carried out by waves.  While standing wave formed, the sandy bed was 

formed with crests beneath the surface wave nodes and flat plateaus flanked by mounds 

under the antinodes (Landry, 2007).  Cataño-Lopera and García (2006b) experimentally 
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studied the ripple migration and ripple formation above sandwaves.  The results are 

similar to literature data.  The authors also built the relation of ripple wavelength and 

ripple height with the Reynold number for 0.55277.3r o oL A Re−=  and 

0.68155.2r o oH A Re−=  valid for 3 516 10 5 10oRe× < < × . 

For the sake of having the knowledge about ripple form beneath irregular wave 

motion, Mathisen and Madsen (1999) experimentally studied irregular waves with five 

wave component over a fixed ripples, and focused on the hydraulic roughness resulted by 

ripples.  Scheibye-Knudsen et al. (2005) used oscillating plate with a set of 

multi-component wave motion to form natural ripples.  The authors found that the 

selected wavelength is dominated by the largest wave. 

Beneath the natural sea, bed form can be changed by the presence of wave groups, the 

distribution of grain size, and the wave direction, although experiments support simple 

parameterizations using “equivalent parameters”, e.g. medium grain size, bed orbital 

diameter and the Shields number based on the significant wave height.  However, there is 

difficult to determine the relation of ripples and wave condition in field since historical 

measurement of waves may not present.  Traykovski et al. (1999) used sector-scanning 

sonar and acoustic backscattering system to perform bedform observation at the sandy 

LEO-15 site located on Beach Haven ridge off southern New Jersey.  Ardhuin et al. (2002) 

used directional waverider buoys and side-scan sonar to measure the wave envelope and 

bed form on the North Carolina continental shelf.  The observed ripple characteristics are 

consistent with wave-generated vortex ripple, in which the ratio of wave orbital amplitude 
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and ripple wavelength is about / 1o rA L ≈ .  Another field study was performed by 

William et al. (2004) and focused on suborbital ripples, which has the properties between 

orbital and anorbital ripples. 

Grasmeijer and Kleinhans (2004) have compared many field and laboratory 

measurements and concluded the relation of bed forms and suspended sand concentrations.  

The field measurements were subdivided into two groups: short wave ripples (SWR) with 

wavelength of about 0.19 ~ 0.35 m  and long wave ripples (LWR) with wavelength of 

about 0.37 ~ 2.0 m .  The SWR and LWR associated respectively to low and high 

mobility parameter 2
50( 1)m oU s gdψ = −  of sand.  The authors suggested a new bed form 

predictor that better collapsed the measure field and laboratory data.  It included 

nondimensional ripple height r oH A  and ripple steepness r rH L .  However, the 

effects of relative proceeding wave were not considered.  Different bottom concentration 

models were also tested against field measurements by the authors.  Note that the 

information about the wave environment can be extracted from the preserved stratigraphy, 

if there are orbital ripples.  If ripples are with anorbital pattern, the wave environment 

remained unknown while no wave gage was installed and extracting the wave environment 

from the preserved stratigraphy is impossible. 

1.5.4  The non-equilibrium state and ripple migration 

The final stage or the equilibrium stage of sand ripples can be reached if the hydraulic 

conditions last for a sufficient duration (Rousseaux, 2006, and among others).  The 

sufficient duration, about 5 6(10 ) ~ (10 )O O  cycles, is about (10)O  days for field or 
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realistic sea state, if 10 spT ≈ .  However, it is rarely for a storm or an energetic hydraulic 

condition last so long.  The ripple migration, dynamic ripple pattern and non-equilibrium 

were studied with spectral or statistical manners by Becker et al. (2007) and Traykovski 

(2007).  However, the non-equilibrium state is very difficult for any model to implement 

and this part is not considered herein. 

1.6 Research Objectives 

The overall objective of the research is to attempt to figure out the associated 

phenomena beneath irregular waves by applying a viscous numerical wave tank.  This 

was to be achieved through the use of spectral and statistical methods about irregular 

waves and the associated properties, i.e. surface elevation and flow dynamics.  Under the 

overall objective the study focuses on the properties which potential theory can not reveal, 

and set a number of objectives:   

 Generating a stochastic wave train that satisfied the properties of linear or nonlinear 

irregular waves;  

 Extract the information of bottom shear stress introduced by linear or nonlinear waves 

in viscous wave tank and verified the transfer function as well as the statistical 

formulas for engineering use; 

 Build some fundamental understanding about the spectral and statistical properties of 

linear or nonlinear irregular waves and the associated flow dynamics; 

 Applied a measure to determine the vortex characteristics, such as vortex circulation 
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(or called vortex strength), center of vortex motion and the relative vortex extent, of 

the cases both of wave interacting with submerged breakwater and wave propagating 

over rippled beds.  

1.7 Layout and Contents of Dissertation 

This dissertation is structured to provide a logical progression and series studies 

through the work that has been completed regarding irregular waves and the associated 

effects.  Each of the following paragraphs outline the specifics of each chapter. 

Chapter 2 presents the theoretical treatment of water waves in a wave tank.  

Two-dimensional continuity equation and incompressible Navier-Stokes equations were 

consider as governing equations.  The boundary conditions that must be satisfied were 

applied.  The governing equations and boundary conditions are both described in 

Cartesian coordinate and in curvilinear coordinate. 

Chapter 3 outlines the numerical model using in this study.  The finite-analytic (FA) 

method was applied to discretize the unsteady two-dimensional Navier-Stokes equations.  

The SIMPLER algorithm was used to calculate the coupled velocity and pressure fields.  

The Marker and Cell method (MAC) and its modified version SUMMAC were used in 

combination to calculate the free surface boundary.  The numerical model was expressed 

in both Cartesian coordinate and curvilinear coordinate. 

Chapter 4 shows the generation of irregular waves and the associated results.  The 

deterministic spectral amplitude method based on the fast Fourier transform (DSA-FFT) 
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was adopted to generate a stochastic wave train that satisfies a target spectrum in 

amplitude and was with random-distributed phases.  Measure was made on sea bed and 

surface to realize the relation between surface elevation and bottom shear stress.  The 

accuracy of the numerical scheme was confirmed by comparing the measured wave 

spectrum with the target spectrum and by comparing the numerical transfer function 

between the shear stress and the surface elevation with the theoretical linear transfer 

function.  Velocity fields throughout the depth of the water and near the bottom, 

associated with irregular waves, were presented to elucidate the correlation between the 

water surface elevation and the bottom shear stress.  The Wavelet transform was also 

employed to obtain a full time-frequency representation of the wave and shear stress 

spectra.  The maximum bottom shear stresses obtained by this wave model are compared 

with those obtained using Myrhaug’s statistical model (1995) and those obtained using 

transfer function method. 

Chapter 5 reveals an extended studies of Chapter 4 on the nonlinear properties of 

surface elevation and the associated bed shear stress.  Since the nonlinear waves are 

without a permanent form, the model of Dean and Sharma (1981) was used as a qualitative 

comparison.  The statistical properties were presented spatially in order to elucidate the 

changes of nonlinearity of both the surface elevation and the bed shear stress.  A 

statistical model of the bed shear stress developed by Myrhaug and Holmedal (2003) were 

compared. 

Chapter 6 presents an environment for studying the interaction of irregular wave and 
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a submerged breakwater.  For simplicity, the real geometry and the permeability of a 

rubble-mound submerged breakwater, turbulent effects, and the stability of armour units 

are not considered herein.  A reliable processing period was confirmed by comparing 

reflected coefficients.  A procedure was carried out in order to study vortex dynamics 

around the breakwater.  The region of vortex was selected by a threshold of the extreme 

vorticity.  The flow field and vorticity contours were shown in sequence within the 

lifecycle of a counterclockwise vortex and a clockwise vortex.  Circulations of the 

vortices formed within the reliable period around the breakwater were shown. 

Chapter 7 uses the procedure in Chapter 6 to analysis the vortex dynamics above 

ripples.  An ripple form agrees with the equilibrium state and the natural shape was used.  

The circulations and trajectories of the vortices were compared with the wave conditions 

on and off the equilibrium state.  Statistical properties of the circulation of the vortices 

beneath irregular waves were also carried out. 

Chapter 8 presents the major conclusions drawn from the four related subjects of this 

research and highlights a number of recommendations for future work in the associated 

phenomena about irregular waves. 

 



 
 
 

 35 

Chapter 2 Governing Equations and 
Boundary Conditions 

 

2.1 Cartesian Coordinate System 
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Figure 2.1: Schematic diagram of a numerical wave flume with a piston-type wavemaker 

and a sponge layer for generating irregular waves.   

A schematic diagram of a two-dimensional numerical wave flume for generating 

“If you don’t learn to think when you are
young , you may never learn.” 

─Thomas A. Edison,
American inventor
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random waves is shown in Figure 2.1.  The x -axis is measured horizontally in the 

direction of wave propagation and the origin is set at the initial location of the piston-type 

wave generator with stroke oS .  The y -axis is measured vertically upwards from 

bottom.  The still water depth is oh .  In the present case, pu  and oh  are used to 

non-dimensionalize the velocity and length, while o o pt h u=  is chosen to 

non-dimensionalize the time, where pu  is the velocity-amplitude of the wave generator 

for producing the random waves with a spectral-peak frequency pf .  Furthermore, the 

pressure is non-dimensionalized by 2
puρ .  For incompressible, viscous fluid, the 

dimensionless continuity equation in the Cartesian coordinate system is 

 0u v
x y
′ ′∂ ∂+ =
′ ′∂ ∂

 (2.1) 

and the dimensionless Navier-Stokes equations are given by 

 
2 2

2 2

1 ( )u u u p u uu v
t x y x Re x y
′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂′ ′+ + = − + +
′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂

 (2.2) 

and 

 
2 2

2 2

1 ( )v v v p v vu v
t x y y Re x y
′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂′ ′+ + = − + +
′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂

 (2.3) 

where u′  and v′  are the horizontal and vertical velocity components, t′  is the time, 

p′  is the hydrodynamic pressure, which is defined as taking hydrostatic pressure sp′  off 

the total pressure tp′  ( t sp p p′ ′ ′= − ), and the apostrophe marks denote the dimensionless 

variables.  The Reynolds number Re  is defined as /p oRe u h υ= , where υ  is the 

kinematic viscosity of the fluid. 

For obtaining the solution of Eqs. (2.1) to (2.3), it is necessary to provide appropriate 
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boundary conditions at all boundaries of the solution domain, as well as the initial 

conditions at 0t =  in the whole domain.  The boundary conditions that must be satisfied 

are: (1) the kinematic and the dynamic free surface boundary conditions, (2) the no-slip 

boundary condition on the bottom, (3) the upstream boundary condition against the 

wavemaker, and (4) the non-reflected condition of the downstream. The initial conditions 

of the velocities, hydrodynamic pressure, and surface elevation are set to zero at time 

0t = .  Conditions (1), (3), and (4) mentioned above are explained in more detail in the 

following subsections. 

2.1.1  Free surface boundary conditions 

The kinematic condition states that fluid particles at free surface remain on the free 

surface, and can be expressed as 

 u v
t x
η η′ ′∂ ∂′ ′+ =
′ ′∂ ∂

 (2.4)  

where ( ,  )x tη η′ ′ ′ ′=  is the surface elevation. 

The dynamic condition requires that, along the free surface, the normal stress is equal 

to the atmospheric pressure and the tangential stress is zero.  These conditions can be 

expressed as the following: 

 0i ij jn nσ =  (2.5) 

 0i ij jnτ σ =  (2.6) 

in which in  and iτ  is the ix  component of a unit vector normal and tangential to the 

free surface, and ijσ  the i -th component of the stress tensor acting on the surface with 
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constant jx .  The x  and y  components of the normal and tangential unit vectors at 

the free surface are, respectively 

 1 21 ( )
x

x

n
η

η

′∂
′∂

′∂
′∂

−=
+

,  2 2

1
1 ( )x

n
η′∂

′∂

=
+

 (2.7) 

 1 2

1
1 ( )x

η
τ

′∂
′∂

=
+

,  2 21 ( )
x

x

η

η
τ

′∂
′∂

′∂
′∂

=
+

 (2.8) 

The stress tensor ijσ  is defined by 

 2

1 1( ) ( )ji
ij ij

j i

uuyp
Fr Re x x

σ δ
′∂′′ ∂−′= − − + +

′ ′∂ ∂
 (2.9) 

where the Kronecker delta ijδ  is defined by 

 
1 ,  for  
0 ,  for  ij

i j
i j

δ
=⎧

= ⎨ ≠⎩
 (2.10) 

and Fr  is the Froude number, defined as 

 p

o

u
Fr

gh
=  (2.11) 

where g  is the gravitational acceleration.  Substituting Eqs. (2.7) to (2.10) into (2.5) and 

(2.6), the dynamic free surface boundary conditions become 

 
2

2 2

2[( ) ( ) ]
( , )

[1 ( ) ]

u u v v
x x y x x y

o
x

p x p
Fr Re

η η

η
ηη

′ ′∂ ∂′ ′ ′ ′∂ ∂ ∂ ∂
′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂

′∂
′∂

− + +′′ ′ ′ ′= = +
+

 (2.12) 

 22( ) ( ) ( ) 1 0u v u v
x y x y x x

η η′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂⎡ ⎤− + + − =⎢ ⎥′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦
 (2.13) 

After substitution of equations (2.1) and (2.13) into equation (2.12), we obtain 
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2

2 2

2[1 ( ) ]
[1 ( ) ]

x
o

x

vp
Fr Re y

η

η
η ∂

∂

′∂
′∂

′∂
′∂

′ ′+′ = +
′−
 (2.14) 

where ( ,  )op p x η′ ′ ′ ′=  is the hydrodynamic pressure at the free surface η′ .  From Eq. 

(2.13), we obtain 

 2

4
( ) 1x

u v v
y x y xη

η
′∂
′∂

′ ′ ′ ′∂ ∂ ∂ ∂= − +
′ ′ ′ ′∂ ∂ − ∂ ∂

 (2.15) 

 In numerical computations, Eq. (2.14) is used to determine the pressure at the free 

surface and Eq. (2.15) is used to extrapolate the horizontal velocity at the free surface from 

the flow domain.  The vertical velocity component v′  is then calculated from the 

continuity equation using the known velocity component u′ , obtained from Eq. (2.15). 

2.1.2  The upstream boundary condition  

The upstream conditions have two constrains: one is the flow motion against the 

piston-type wavemaker has identical velocity with the wavemaker; the other is no-slip 

condition along the wavemaker.  However, strick no-slip condition makes the contact 

point of the free surface on the wavemaker unmovable in numerical performance.  The 

detailed treatment is described in the last paragraph of Section 3.4. 

2.1.3  The downstream boundary condition 

The downstream boundary condition requires that, at a large distance from the 

wavemaker, the wave is outgoing.  A numerical sponge layer, or sometimes referred to as 

“numerical beach” was applied at the downstream of the tank to dissipate wave energy and 

to eliminate possible reflected waves.  The numerical beach has been shown to be very 

efficient for dissipating high frequency waves, provided the beach length is longer than the 
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typical wavelength of the incident waves (Clément, 1996).  Details of the numerical 

beach will be discussed in the following chapter.  With the sponge layer applied, only 

waves with wavelength longer than the width of the sponge layer remain at the end of the 

sponge layer, which are indeed long waves with the phase speed ogh .  Such 

components are allowed to pass through the wave tank by utilizing the outgoing boundary 

condition applied on the downstream boundary.  According to the wave equation and 

continuity equation, the downstream boundary conditions were set as follows (Dong and 

Huang, 2004). 

 0o
p pc
t x
′ ′∂ ∂′+ =
′ ′∂ ∂

, 0o
u uc
t x
′ ′∂ ∂′+ =
′ ′∂ ∂

, 0u v
x y
′ ′∂ ∂+ =
′ ′∂ ∂

 (2.16) 

where /o o pc gh u′ =  is the phase velocity of the long waves. 

2.2 Curvilinear Coordinate System 

For achieving the study about the interaction of waves and ripples, the body-fitted 

coordinate system is used.  The curvilinear grid system is generated using algebraic 

coordinate method (Thompson, 1982).  The Cartesian coordinate system ( , )x y  is 

transformed into the curvilinear coordinate system ( , )ξ ζ .  To transform the equations of 

motion from the familiar orthogonal coordinates ( , )x y  to the new coordinate system 

( , )ξ ζ  partial transformation was used.  This means that only the independent coordinate 

variables were transformed, leaving the dependent variables, i.e. the velocity components, 

in the original orthogonal coordinates.  This approach has the advantage that the resulting 

equations are relatively simple and the results can be easily interpreted.   
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The variables are next transformed from Cartesian space ( , , )x y t′ ′ ′  into the 

curvilinear space ( , , )tξ ζ′ ′ ′ , where 

 ( , , )x y tξ ξ′ ′ ′ ′ ′=  (2.17a) 

 ( , , )x y tζ ζ′ ′ ′ ′ ′=  (2.17b) 

From the chain rule of differential calculus, we have 

 
x x x

ξ ζ
ξ ζ

′ ′∂ ∂ ∂ ∂ ∂= +
′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂

 (2.18a) 

 
y y y

ξ ζ
ξ ζ

′ ′∂ ∂ ∂ ∂ ∂= +
′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂

 (2.18b) 

 

22 2 2 2

2 2 2 2

22 2

2 2

x x x x

x x x

ξ ζ ξ
ξ ζ ξ

ζ ζ ξ
ζ ζ ξ

′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= + + ⎜ ⎟′ ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

′ ′ ′∂ ∂ ∂ ∂ ∂⎛ ⎞+ +⎜ ⎟′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (2.18c) 

 

22 2 2 2

2 2 2 2

22 2

2 2

y y y y

y y y

ξ ζ ξ
ξ ζ ξ

ζ ζ ξ
ζ ζ ξ

′ ′ ′⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂= + + ⎜ ⎟′ ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

′ ′ ′⎛ ⎞∂ ∂ ∂ ∂ ∂+ +⎜ ⎟′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (2.18d) 

The Cartesian derivatives in Eqs. (2.1) to (2.3) are replaced by Eqs. (2.18) to yield: 

 ( ) ( ) 0x y x yu v u vξ ξ ζ ζ
ξ ζ′ ′ ′ ′
∂ ∂′ ′ ′ ′ ′ ′ ′ ′+ + + =

′ ′∂ ∂
 (2.19) 

 ( ) ( )

11 22 12 1 2

1 2 1 2
1 1 2 2

2

t u

g u g u g u f u f u
Re u b u b u v b u b u Re u s
J

ξ ξ ζ ζ ξ ζ ξ ζ

ξ ζ ξ ζ

′ ′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′

′ ′ ′ ′ ′+ + + +

⎡ ⎤′ ′ ′ ′ ′ ′ ′= + + + + ⋅ +⎣ ⎦
 (2.20) 

 ( ) ( )

11 22 12 1 2

1 2 1 2
1 1 2 2

2

t v

g v g v g v f v f v
Re u b v b v v b v b v Re v s
J

ξ ξ ζ ζ ξ ζ ξ ζ

ξ ζ ξ ζ

′ ′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′

′ ′ ′ ′ ′+ + + +

⎡ ⎤′ ′ ′ ′ ′ ′ ′= + + + + ⋅ +⎣ ⎦
 (2.21) 

Where the subscript ( ,  )x y′ ′ , ( ,  )ξ ζ′ ′  or t′  on u′  and v′  denote the partial 

derivatives with respect to these variables, and 
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 ( )1 2
1 1

1
us Re b p b p

J ξ ζ′ ′
⎡ ⎤′ ′= +⎢ ⎥⎣ ⎦

 (2.22a) 

 ( )1 2
2 2

1
vs Re b p b p

J ξ ζ′ ′
⎡ ⎤′ ′= +⎢ ⎥⎣ ⎦

 (2.22b) 

The Jacobian J  is defined as follows 

 1 2 2 1
1 2 1 2J x y y x b b b bξ ζ ξ ζ′ ′ ′ ′′ ′ ′ ′= − = −  (2.23) 

and the contravariant base vectors j
ib  are 

 

1
1

2
1

1
2

2
2

x

x

y

y

b y J

b y J

b x J

b x J

ζ

ξ

ζ

ξ

ξ

ζ

ξ

ζ

′ ′

′ ′

′ ′

′ ′

′ ′⎧ = =
⎪

′ ′= − =⎪
⎨ ′ ′= − =⎪
⎪ ′ ′= =⎩

 (2.24) 

The conjugate metric tensor ijg  in the general curvilinear coordinates are defined as 

 

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )

2 211 2 2 1 1 2 2
1 22 2

2 222 2 2 2 2 2 2
1 22 2

12 1 2 1 2
1 1 2 22 2

1 1

1 1

1 1

x y

x y

x x y y

g b b y x
J J

g b b x y
J J

g b b b b x x y y
J J

ζ ζ

ξ ξ

ξ ζ ξ ζ

ξ ξ

ζ ζ

ξ ζ ξ ζ

′ ′ ′ ′

′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′ ′

⎧ ′ ′ ′ ′= + = + = +⎪
⎪
⎪ ′ ′ ′ ′= + = + = +⎨
⎪
⎪ ′ ′ ′ ′ ′ ′ ′ ′= + = + = − +⎪⎩

 (2.25) 

The grid-control function if  are defined as 

 
( ) ( )

( ) ( )

1 11 21

2 12 22

1 1

1 1

x x y y

x x y y

f Jg Jg
J J

f Jg Jg
J J

ξ ξ
ξ ζ

ζ ζ
ξ ζ

′ ′ ′ ′

′ ′ ′ ′

∂ ∂⎧ ′ ′= + = +⎪ ′ ′∂ ∂⎪
⎨ ∂ ∂⎪ ′ ′= + = +
⎪ ′ ′∂ ∂⎩

 (2.26) 

In curvilinear coordinates ( , )ξ ζ′ ′ , the dynamic free surface boundary conditions (2.13) 

and (2.14) are rewritten as: 
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1 2 2
1 1

1 2
2 22

1 2 2
1 1

1 12 1 ( )
1 1

1 11 ( )
o

b b
J Jp b v b v

Fr J JRe b b
J J

ξ ζ

ξ ζ

ξ ζ

η η
η

η η

′ ′

′ ′

′ ′

⎡ ⎤′ ′+ +⎢ ⎥′ ⎡ ⎤⎣ ⎦′ ′ ′= + +⎢ ⎥⎡ ⎤ ⎣ ⎦′ ′− +⎢ ⎥⎣ ⎦

 (2.27) 

 

1 2 1 2
2 2 1 1

1 2 1 2
1 1 2 2

2
1 2
1 1

1 1 1 1

1 1 1 14

1 1 1

b u b u b v b v
J J J J

b b b v b v
J J J J

b b
J J

ξ ζ ξ ζ

ξ ζ ξ ζ

ξ ζ

η η

η η

′ ′ ′ ′

′ ′ ′ ′

′ ′

⎡ ⎤ ⎡ ⎤′ ′ ′ ′+ = − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎛ ⎞⎛ ⎞′ ′ ′ ′+ +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠+

⎛ ⎞′ ′+ −⎜ ⎟
⎝ ⎠

 (2.28) 
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Chapter 3 Numerical Methods 

 

3.1 Staggered grid system 

A difficulty in solving the Navier-Stokes equations using primitive variables is the 

discretization of the pressure gradient and the continuity equation.  A highly non-uniform 

pressure and velocity field can probably be generated by a non-staggered grid system.  

This can be resolved by using a staggered grid system, in which velocities are calculated 

on the surface of control volumes, and pressures are calculated at the central of the control 

volumes.  The locations for u′ , v′ , and p′  are shown in Figure 3.1, where the 

subscripts ,  ,  ,  n s e w  denote the four surroundings and c  denotes the one calculated. 

 

“Never make a calculation until you know
the answer.” 

─John Wheeler’s first moral principle, 
American theoretical physicist
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eu′wu′

nv′

sv′

cp′

sp′

ep′wp′

np′

y′Δ

x′Δ  

Figure 3.1: Staggered grid system for u′ , v′ , and p′ . 

3.2 Finite-analytic method 

In general, equations (2.1) through (2.3) for unsteady two-dimensional flow can be 

transformed into the following form 

In Cartesian coordinate: 

 x x y y x y tRe U Re V Re sϕϕ ϕ ϕ ϕ ϕ′ ′ ′ ′ ′ ′ ′′ ′+ = ⋅ + ⋅ + ⋅ +  (3.1) 

In curvilinear coordinate: 

 

11 22 12 1 2

1 2 1 2
1 1 2 2

2

[ ( ) ( )] t

g g g f f
Re U b b V b b Re s
J

ξ ξ ζ ζ ξ ζ ξ ζ

ξ ζ ξ ζ ϕ

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

′ ′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′

+ + + +

′ ′= + + + + ⋅ +
 (3.2) 

where the subscripts ( ,x y′ ′ ), ( ,ξ ζ′ ′ ) or t′  on ( , )u vϕ ′ ′=  denote the partial derivatives 

with respect to these variables.  U ′  and V ′  are the mean values of u′  and v′  in a 

given computational element.  Note that Eq. (3.2) depends upon ijg , j
ib , and the 

Jacobian.  All of these quantities are only coordinate functions.  The source terms sϕ  
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are defined as 

In Carteian coordinate: 

 u xs Re p ′′= ⋅  (3.3a) 

 v ys Re p ′′= ⋅  (3.3b) 

In Curvilinear coordinate: 

 ( )1 2
1 1

1
us Re b p b p

J ξ ζ′ ′
⎡ ⎤′ ′= +⎢ ⎥⎣ ⎦

 (3.4a) 

 ( )1 2
2 2

1
vs Re b p b p

J ξ ζ′ ′
⎡ ⎤′ ′= +⎢ ⎥⎣ ⎦

 (3.4b) 

Equations (3.1) and (3.2) can be rearranged into a general convective-transport equation of 

the following formula 

In Cartesian coordinate: 

 2 2x x y y x y tA B Re Sϕϕ ϕ ϕ ϕ ϕ′ ′ ′ ′ ′ ′ ′+ = + + ⋅ +  (3.5) 

where the coefficient Aϕ , Bϕ  and the source term Sϕ  are 

 
2

2

A Re U

B Re V

S s

ϕ

ϕ

ϕ ϕ

′⎧ = ⋅
⎪

′= ⋅⎨
⎪ =⎩

 (3.6) 

In Curvilinear coordinate: 

 11 22 2 2 tg g A B Re Sξ ξ ζ ζ ϕ ξ ϕ ζ ϕϕ ϕ ϕ ϕ ϕ′ ′ ′ ′ ′ ′ ′+ = + + ⋅ +  (3.7) 

where 
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( )

( )

1 1 1
1 2

2 2 2
1 2

12

2

2

2

ReA b U b V f
J
ReB b U b V f
J

S s g

ϕ

ϕ

ϕ ϕ ξ ζϕ ′ ′

⎧ ′ ′= + −⎪
⎪
⎪ ′ ′= + −⎨
⎪
⎪ = −
⎪⎩

 (3.8) 

If we introduce the coordinate-stretching functions 

 
11g

ξξ
′′ = , 

22g
ζζ

′′ =  (3.9) 

Eq. (3.7) can be written as 

 
11 22

2 2
t

A B
Re S

g g
ϕ ϕ

ϕξ ξ ζ ζ ξ ζϕ ϕ ϕ ϕ ϕ ′′ ′ ′ ′ ′ ′+ = + + ⋅ +  (3.10) 

Let 
11

2
2

A
A

g
ϕ= ; 

22

2
2

B
B

g
ϕ=  (3.11) 

Equation (3.10) reduces to the standard two-dimensional convective-transport equation 

described in Chen and Chen (1982 and 1987), i.e.,  

 2 2 tA B Re Sϕξ ξ ζ ζ ξ ζϕ ϕ ϕ ϕ ϕ ′′ ′ ′ ′ ′ ′+ = + + ⋅ +  (3.12) 

It is convenient to rewrite the governing stand-in equations (3.5) and (3.12) in the 

following form 

 
1 1 2 2 1 2

2 2x x x x x x tA B Re Sϕϕ ϕ ϕ ϕ ϕ′ ′ ′ ′ ′ ′ ′+ = + + ⋅ +  (3.13) 

Equation (3.13) can be rewritten as 

 
2 2 2

2x x x fB Gϕ ϕ′ ′ ′= +  (3.14) 

where 
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1 1 1

2f x t x xG A Re Sϕϕ ϕ ϕ′ ′ ′ ′= + ⋅ + −  (3.15) 

Of an element as shown in Figure 3.2, it is found that a general solution for equation 

(3.14) is a linear combination of exponential and linear functions of 2x′ , i.e. 

 ( )22* * *
21Bxa e b x Cϕ ′ ′= − + +  (3.16) 

cφ
nh′

wh′

wφ eφ

nφ

sφ

sh′

eh′

cφ

nh′

wh′

wφ eφ

nφ

sφ

sh′

eh′

(a) (b)

 

Figure 3.2: A schematic of the solving variable with four neighbors: (a) for uϕ ′= ; (b) for 

vϕ ′= . 

The coefficients, *a , *b , and *C  are determined by the boundary conditions 

 2

,  if
0 ,  if

,  if

n n

c

s s

h
x

h

ϕ ϕ
ϕ ϕ
ϕ ϕ

′ =⎧
⎪′ = =⎨
⎪ ′− =⎩

 (3.17) 

i.e. 

 ( )*
2 2s n

n s s n n s c
Bh Bh

n s n s

h h h h
a

h e h e h h
ϕ ϕ ϕ

′ ′−

′ ′ ′ ′+ − +
=

′ ′ ′ ′+ − −
 (3.18a) 
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( ) ( ) ( )2 2 2 2

*
2 2

1 1n s n s

s n

Bh Bh Bh Bh
s n c

Bh Bh
n s n s

e e e e
b

h e h e h h

ϕ ϕ ϕ′ ′ ′ ′−

′ ′−

− + + − + −
=

′ ′ ′ ′+ − −
 (3.18b) 

 *
cC ϕ=  (3.18c) 

Substituting Eq. (3.16) into Eq. (3.14), we obtain 

 *2 0fBb G+ =  (3.19) 

Substituting Eq. (3.18b) into Eq. (3.19), we have 

 
( ) ( ) ( )2 2 2 2

1

2 2 1 2 1s n n s

s n
f c s n

c c c

Bh Bh Bh Bh

c s n
B B B

c c s s n

C CG
C C C

B e e B e B e

K K K
C C C

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

′ ′ ′ ′− −

= − −

− − −
= + +

= + +

 (3.20) 

where 

 2 2s nBh Bh
B n s n sK h e h e h h′ ′−′ ′ ′ ′= + − −  (3.21) 

 
2

2 2
1n

n s

Bh

s Bh Bh
eC

e e

′

′ ′−

−=
−

 (3.22a) 

 
2

2 2
1 s

n s

Bh

n Bh Bh
eC

e e

′−

′ ′−

−=
−

 (3.22b) 

 
2 2

2 2
1

2

n s

n s

Bh Bh
s n n s

p Bh Bh

h e h e h hC
B e e

′ ′−

′ ′−

′ ′ ′ ′− − + +=
−

 (3.22c) 

 1
c

c

C
C

=  (3.22d) 

 s
s s c

c

CC C C
C

= − = −  (3.22e) 

 n
n n c

c

CC C C
C

= − = −  (3.22f) 

 *
s n c cC C C C+ = − =  (3.22g) 
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Similarly, it yields 

 

1 1 1
2

( )
x x x t

w e c w w e e t

f

c p s s n n

A Re S

C C C C Re S

G

C C C

ϕ

ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

′ ′ ′ ′

′

− + ⋅ +

= − + + + + ⋅ +

=

= + +

 (3.23) 

where wC  and eC  are 

 
2

2 2
12

e

w e

Ah

w Ah Ah
e w w e

eC A
h e h e h h

′

′ ′−

−=
′ ′ ′ ′+ − −

 (3.24a) 

 
2

2 2
12

w

w e

Ah

e Ah Ah
e w w e

eC A
h e h e h h

′−

′ ′−

−=
′ ′ ′ ′− − −

 (3.24b) 

Equation (3.23) can be rewritten as 

 
* ** *( ) w ew e s n c s s n n w e tC C C C C C C C Re Sϕϕ ϕ ϕ ϕ ϕ ϕ ′+ + + = + + + − ⋅ −  (3.25) 

where *
w wC C− = , *

e eC C− = .  If we approximate tϕ ′  using a backward-difference 

scheme and let 
* **
w e s nS C C C C= + + + , the local analytic solution at the central node c  

of the element is obtained 

 

* *
1

* * * * * *

4
1

* *
1

s n nw e
c s n w e c

n
nb nb c

nb

SC CC C Re
S D S D S D S D S D t S D

SReC
S D t S D

ϕ

ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ

−

−

=

= + + + + −
′⋅ ⋅ ⋅ ⋅ ⋅ ⋅Δ ⋅

= + −
′⋅ ⋅Δ ⋅∑

 (3.26) 

where *1 / ( )D Re S t′= + ⋅Δ .  The subscript nb  represents the “neighboring” nodes of 

c .  Equation (3.26) is the four-point finite-analytic formula for the momentum equations. 

3.3 Solution algorithm 

If the pressure field is known, Eq. (3.26) can be used to solve the convective-diffusion 



Chapter 3─Numerical Methods 
 

 52

equation (3.13) for u  and v .  However, in practice, the pressure is a priori unknown 

and has to be determined with the velocity field satisfying the continuity equation.   In 

the present study the SIMPLER algorithm developed by Patankar (1979) was used to 

calculate the coupled velocities and pressure field. 

In the staggered grid system, the arrangement of the velocity and pressure nodes is 

shown in Figure 3.1.  The velocity u  on the east side of the control volume is 

represented, from Eq. (3.26), by 

 ˆ ( )e e e e cu u d p p′ ′ ′ ′= − −  (3.27) 

where the pseudo-velocity ˆeu′  and the coefficient ed  are defined as 

In Cartesian coordinate: 

 
4

1
*

1

ˆ ( ) ( ) n
e nb nb e

nb ee

Reu C u u
S D t

−

=

′ ′ ′= +
′⋅ ⋅Δ∑  (3.28a) 

 *( )e
e

Red
S D x

=
′⋅ ⋅ Δ

 (3.28b) 

In curvilinear coordinate: 

 
4

2 12 1
1* * *

1

1 1ˆ ( (2 ) ) ( ) n
e nb nb e

nb e e

Re Reu C u b p g u u
S D J S D S D tζ ξ ζ

−
′ ′ ′

=

′ ′ ′ ′ ′= − + +
′⋅ ⋅ ⋅ ⋅ Δ∑  (3.29a) 

 1
1*

1( )e
e

Red b
S D Jξ

=
′⋅ ⋅Δ

 (3.29b) 

Similarly, the velocities at the west, north, and south sides are, respectively 

 ˆ ( )w w w c wu u d p p′ ′ ′ ′= − −  (3.30a) 

 ˆ ( )n n n n cv v d p p′ ′ ′ ′= − −  (3.30b) 

 ˆ ( )s s s c sv v d p p′ ′ ′ ′= − −  (3.30c) 
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where 

In Cartesian coordinate: 

 
4

1
*

1

ˆ ( ) ( ) n
w nb nb w

nb ww

Reu C u u
S D t

−

=

′ ′ ′= +
′⋅ ⋅Δ∑  (3.31a) 

 
4

1
*

1

ˆ ( ) ( ) n
n nb nb n

nb nn

Rev C v v
S D t

−

=

′ ′ ′= +
′⋅ ⋅Δ∑  (3.31b) 

 
4

1
*

1

ˆ ( ) ( ) n
s nb nb s

nb ss

Rev C v v
S D t

−

=

′ ′ ′= +
′⋅ ⋅Δ∑  (3.31c) 

 *( )w
w

Red
S D x

=
′⋅ ⋅ Δ

, *( )n
n

Red
S D y

=
′⋅ ⋅Δ

, *( )s
s

Red
S D y

=
′⋅ ⋅Δ

 (3.31d) 

In curvilinear coordinate: 

 
4

2 12 1
1* * *

1

1 1ˆ ( (2 ) ) ( ) n
w nb nb w

nb w w

Re Reu C u b p g u u
S D J S D S D tζ ξ ζ

−
′ ′ ′

=

′ ′ ′ ′ ′= − + +
′⋅ ⋅ ⋅ ⋅ Δ∑  (3.32a) 

 
4

1 12 1
2* * *

1

1 1ˆ ( (2 ) ) ( ) n
n nb nb n

nb n n

Re Rev C v b p g v v
S D J S D S D tξ ξ ζ

−
′ ′ ′

=

′ ′ ′ ′ ′= − + +
′⋅ ⋅ ⋅ ⋅ Δ∑  (3.32b) 

 
4

1 12 1
2* * *

1

1 1ˆ ( (2 ) ) ( ) n
s nb nb s

nb s s

Re Rev C v b p g v v
S D J S D S D tξ ξ ζ

−
′ ′ ′

=

′ ′ ′ ′ ′= − + +
′⋅ ⋅ ⋅ ⋅ Δ∑  (3.32c) 

 1
1*

1( )w
w

Red b
S D Jξ

=
′⋅ ⋅Δ

, 2
2*

1( )n
n

Red b
S D Jζ

=
′⋅ ⋅Δ

, 2
2*

1( )s
s

Red b
S D Jζ

=
′⋅ ⋅Δ

 

  (3.32d) 

The pressure-gradient terms in the above equations were evaluated using the pressure 

field at the previous time step or iteration.  The continuity equations (2.1) and (2.19) 

within the element can be discretized as 

In Cartesian coordinate: 
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 [ ] [ ] 0e w n su u y v v x′ ′ ′ ′ ′ ′− Δ + − Δ =  (3.33) 

In curvilinear coordinate: 

 1 1 2 2
1 1 2 2 1[( ) ( ) ] [( ) ( ) ] 0e w n sb u b u b v b v Dζ ξ′ ′ ′ ′ ′ ′− Δ + − Δ + =  (3.34) 

where 

 1 1 2 2
1 2 2 1 1[( ) ( ) ] [( ) ( ) ]e w n sD b v b v b u b uζ ξ′ ′ ′ ′ ′ ′= − Δ + − Δ  (3.35) 

An equation for the pressure is then obtained by substituting Eqs. (3.26), (3.29) 

through (3.31) into Eq. (3.34) or (3.35), i.e., 

 ˆ
c c e e w w n n s sa p a p a p a p a p D′ ′ ′ ′ ′= + + + −  (3.36) 

where 

In Cartesian coordinate: 

 

e e

w w

n n

s s

c e w n s

a d y
a d y
a d y
a d y
a a a a a

′= Δ⎧
⎪ ′= Δ⎪⎪ ′= Δ⎨
⎪ ′= Δ⎪
⎪ = + + +⎩

 (3.37a) 

 ˆ ˆ ˆ ˆ ˆ[ ] [ ]e w n sD u u y v v x′ ′ ′ ′ ′ ′= − Δ + − Δ  (3.37b) 

In curvilinear coordinate: 

 

1
1

1
1
2
2
2
2

e e e

w w w

n n n

s s s

c e w n s

a b d

a b d

a b d

a b d
a a a a a

ζ
ζ
ζ
ζ

′⎧ = Δ
⎪

′= Δ⎪
⎪ ′= Δ⎨
⎪ ′= Δ⎪
⎪ = + + +⎩

 (3.38a) 
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 1 1 2 2
1 1 2 2 1

ˆ ˆ ˆ ˆ ˆ[( ) ( ) ] [( ) ( ) ]e w n sD b u b u b v b v Dζ ξ′ ′ ′ ′ ′ ′= − Δ + − Δ +  (3.38b) 

Although the guessed pressure field can be updated directly by Eq. (3.36), the updated 

pressure field probably produces a velocity field which does not satisfy the continuity 

equation.  An iterative procedure is therefore required to correct this erroneous velocity 

field for achieving more rapid convergence.  A velocity-correction formula, similar to that 

used in the SIMPLE algorithm, is derived.  If we denote the dimensionless imperfect 

velocities and pressure by *u , *v , and *p , respectively, the resulting velocities at the 

calculated locations are 

 * * * *ˆ ( )e e e e pu u d p p= − −  (3.39a) 

 * * * *ˆ ( )w w w p wu u d p p= − −  (3.39b) 

 * * * *ˆ ( )n n n n pv v d p p= − −  (3.39c) 

 * * * *ˆ ( )s s s p sv v d p p= − −  (3.39d) 

After subtracting these from the exact expressions, i.e. Eqs. (3.26) and (3.30), we obtain 

 * *ˆ ˆ ( )e e e e e e cu u u u d p p′ ′− = − − −  (3.40a) 

 * *ˆ ˆ ( )w w w w w c wu u u u d p p′ ′− = − − −  (3.40b) 

 * *ˆ ˆ ( )n n n n n n cv v v v d p p′ ′− = − − −  (3.40c) 

 * *ˆ ˆ ( )s s s s s c sv v v v d p p′ ′− = − − −  (3.40d) 

where *p p p′= −  is the pressure correction, and *( )u u′ −  and *( )v v′ −  are the 

corresponding velocity corrections.  It is not necessary to retain such a complicated 
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formulation because both the pressure- and velocity-corrections become trivial when the 

solution converges.  It is possible to omit that part of the velocity-corrections, *ˆ ˆu u′ −  

and *ˆ ˆv v′ − .  Patankar (1979) used this critical approximation in his SIMPLER algorithm.  

With this approximation, the velocity-corrections are expressed as 

 * ( )e e e e cu u d p p′ = − −  (3.41a) 

 * ( )w w w c wu u d p p′ = − −  (3.41b) 

 * ( )n n n n cv v d p p′ = − −  (3.41c) 

 * ( )s s s c sv v d p p′ = − −  (3.41d) 

As the velocity field satisfying the continuity equation, a pressure-correction equation is 

obtained  

 *
c c e e w w n n s sa p a p a p a p a p D= + + + −  (3.42) 

where 

In Cartesian coordinate: 

 * * * * *[ ] [ ]e w n sD u u y v v x′ ′= − Δ + − Δ  (3.43) 

In curvilinear coordinate: 

 * 1 * 1 * 2 * 2 *
1 1 2 2 1[( ) ( ) ] [( ) ( ) ]e w n sD b u b u b v b v Dζ ξ′ ′= − Δ + − Δ +   (3.44) 

and the coefficients ea , wa , na , sa , and ca  are exactly the same as those in equation 

(3.36).  After the pressure correction is obtained by equation (3.42), we substituted it into 

Eq. (3.41) to update the velocity field, which are used in Eq. (3.36) to renew the pressure 
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field.  This procedure repeated until the convergent condition * 410ϕ ϕ −

∞
− <  was 

satisfied, where 
∞

⋅  denotes the infinite norm. 

3.4 Free surface boundary 

A difficult aspect of flow problems with a free surface is the accurate location of the 

free surface, which forms an integral part of the solution.  The boundary conditions that 

must be satisfied at the free surface are the kinematic and the dynamic free surface 

boundary conditions.  The former condition is used to determine the location of the free 

surface after the velocity components are obtained.  In addition to the free surface 

location, there are three remaining unknowns: the velocity components u′  and v′  and 

the pressure p′ ; while there are only two remaining boundary conditions, namely, the 

dynamic free surface boundary conditions in the normal and tangential directions.  To 

obtain a unique solution of the problem, one more condition is inevitable.  The additional 

condition is the equation of continuity, which requires the conservation of mass 

everywhere in the flow domain. 

In the present model, the SUMMAC method was used to deal with the free surface 

boundary.  The major concept underlying this method is the use of marker particles to 

identify the location of the free surface.  By tracking the positions of these marked 

particles, the transient location of the free surface can be determined, namely 

 1n n
k k kx x u t−= + Δ ; 1n n

k k ky y v t−= + Δ  (3.45) 

where the subscript k  denotes the k -th marked particle on the free surface. 
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For the curvilinear coordinate, the afore-mentioned method has to be changed as 

following.  Consider an element with points 1, 2, 3, 4 and a marker M  located within it, 

as shown in Figure 3.3.  A weighting coefficient iA  is equal to the weighting area of the 

point i .  The Cartesian velocity can be evaluated at the points 1, 2, 3, and 4 in the 

computational domain.  The contravariant velocity ( ,u v′ ′ ) must be evaluated in these 

points in order to find the successive position of the free surface.  The transform formulas 

between Cartesian velocities and contravariant velocities are 

 
1 1
1 2

x y
b bu u v u v
J J

ξ ξ′ ′′ ′ ′ ′ ′ ′ ′= + = +  (3.46a) 

 
2 2

1 2
x y

b bv u v u v
J J

ζ ζ′ ′′ ′ ′ ′ ′ ′ ′= + = +  (3.46b) 

,  u v′ ′
( , 1)i j +

,  u v′ ′
( , )i j

,  u v′ ′
( 1, 1)i j+ +

,  u v′ ′
( 1, )i j+

M

1a2a

3a 4a

1 2

3 4

,  u v′ ′
( , 1)i j +

,  u v′ ′
( , )i j

,  u v′ ′
( 1, 1)i j+ +

,  u v′ ′
( 1, )i j+

M

1A2A

3A 4A
1 2

3 4

(a) (b)

 

Figure 3.3: Marker M  in the Cartesian coordinate system and the curvilinear coordinate 

system with the surrounding points and the weighting areas. 

When the contravariant velocities at points 1 to 4 are known, the contravariant 

velocity at the marker M  can be evaluated by interpolation. 

 ( ) ( ), 1 1, 2 1, 1 3 , 1 4 1 2 3 4
n n n n n n n n n n n n n

M i j i j i j i ju u A u A u A u A A A A A+ + + +′ ′ ′ ′ ′ ′= + + + + + +  (3.47a) 
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 ( ) ( ), 1 1, 2 1, 1 3 , 1 4 1 2 3 4
n n n n n n n n n n n n n

p i j i j i j i jv v A v A v A v A A A A A+ + + +′ ′ ′ ′ ′= + + + + + +  (3.47b) 

Where the subscript M  denotes the variables were at the marked location M . 

Thus the new free surface in the curvilinear coordinate system ( ,  )ξ ζ  can be 

calculated by  

 1n n n
M M Mu tξ ξ+′ ′ ′= + Δ  (3.48a) 

 1n n n
M M Mv tζ ζ+′ ′ ′ ′= + Δ  (3.48b) 

The new location 1 1( ,  )n n
p pξ ζ+ +′ ′  of the marker M  are certainly located with an 

element in the Cartesian coordinate system and surrounded by the four points ( ), , ,  i j i jξ ζ′ ′ , 

( )1, 1, ,  i j i jξ ζ+ +′ ′ , ( )1, 1 1, 1,  i j i jξ ζ+ + + +′ ′ , and ( ), 1 , 1,  i j i jξ ζ+ +′ ′ .  In the Cartesian coordinate system, 

the four weighting areas, as shown in Figure 3.3(b), are 1
1
na + , 1

2
na + , 1

3
na + , and 1

4
na + , 

respectively.  Hence, the location of the marker M  in the Cartesian coordinate system is 

calculated by 

 
( )

( )
1 1 1 1 1 1 1 1

, 1 1, 2 1, 1 3 , 1 41
1 1 1 1

1 2 3 4

n n n n n n n n
i j i j i j i jn

M n n n n

x a x a x a x a
x

a a a a

+ + + + + + + +
+ + + ++
+ + + +

′ ′ ′ ′+ + +
′ =

+ + +
 (3.49a) 

 
( )

( )
1 1 1 1 1 1 1 1

, 1 1, 2 1, 1 3 , 1 41
1 1 1 1

1 2 3 4

n n n n n n n n
i j i j i j i jn

M n n n n

y a y a y a y a
y

a a a a

+ + + + + + + +
+ + + ++
+ + + +

′ ′ ′ ′ ′+ + +
′ =

+ + +
 (3.49b) 

The pressure at the free surface is calculated by the normal dynamic free surface 

boundary condition [equation (2.12) or (2.27)] with the known velocities u′  and v′ .  By 

means of the tangential dynamic boundary condition [equation (2.13) or (2.28)], the 

velocity component u′  on the free surface is calculated from the velocity of the main 

body of the fluid.  By choosing a simple control volume beneath the free surface, as 
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shown in Figure 3.4, the vertical velocity 2v′  can be calculated by the discretized 

continuity equation as follows. 

 2 1 2 1 0u u v v
x y

′ ′ ′ ′− −+ =
′ ′Δ Δ

 (3.50) 

In Figure 3.4, the velocity components 1u′  and 2u′  were interpolated from the 

known-neighboring horizontal velocities, , i ju′  and 1, i ju +′  as well as 1, 1i ju + +′ , and , 1i ju +′  

respectively.  The velocity components ku′  and kv′  of the k -th marked particle were 

then interpolated from the neighboring velocities u′  and v′  as in the SUMMAC method.  

A method (Chan and Street, 1970), which satisfies the discretized Poisson equation for the 

pressure, called “irregular star” was applied to determine the pressure at the element near 

the free surface. 

,i ju′ 1,i ju +′

1, 1i jv + +′

1 1,i jv v +′ ′=

2v′

1u′ 2u′

x′Δ

y′Δ

1, 1i ju + +′, 1i ju +′

 

Figure 3.4: A simple control volume (shaded area) beneath free surface. 

 If strict no-slip boundary condition were held on the contact point of the free surface 
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on the wavemaker, the free surface on the wavemaker will be unmovable and be against 

physical flow motion.  For overcoming this deviation, the no-slip boundary condition at 

the wavemaker is released at two nodal points beneath the free surface.  The slip 

velocities v  along the wavemaker are extrapolated from the flow inside the domain (Tang 

et al., 1990). 

3.5 Numerical sponge layer 

A numerical sponge layer (Ohyama, 1991) was used for eliminating wave energies.  

An artificial viscous term was added as energy damper in the momentum equations, i.e. 

equations (2.2) and (2.3), and of the following form: 

 
2 2

2 2

1 1( )
s

u u u p u uu v u
t x y x Re x y Re
′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂′ ′ ′+ + = − + + −
′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂

 (3.51a) 

 
2 2

2 2

1 1( )
s

v v v p v vu v v
t x y y Re x y Re
′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂′ ′ ′+ + = − + + −
′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂

 (3.51b) 

where /s p o sRe u hρ μ=  and sμ  the damping factor of sponge layer, which should change 

smoothly along onshore direction to avoid sudden disturbance in the numerical domain.  

Normally, three kinds of function were used to perform the smooth change of the damping 

factor: rational, cosine and exponential function.  According to Troch and Rouck (1998), 

using cosine function has the smallest reflected coefficient over the three.  Such that, the 

cosine function was used to connect 0sμ =  and maxs sμ μ=  smoothly and has the 

following form. 
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1

1 max 1 2

max 2

0                                                ,  

0.5 1 cos ( ) ,  

                                          ,  

s

s s s s s
s

s s

x x

x x x x x
x

x x

πμ μ

μ

<⎧
⎪

⎛ ⎞⎛ ⎞⎪= − − < <⎜ ⎟⎨ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎪
⎪ >⎩

 (3.52) 

Note that the damping factor sμ  varies within the region [ ]1 2,  s sx x  with the width sx .  

The deployment of the sponge layer was shown in Figure 2.1. 

To examine the efficiency of the sponge layer, Fig. 2 compares the surface elevation 

of the random waves with the peak-spectral period, 1.6 spT = , significant wave height 

1/3 1 cmH = , time duration 16 sRT = , and still water depth 20 cmoh =  produced in the 

numerical wave tank with and without the numerical sponge layer.  When there is no 

sponge layer deployed, the numerical wave flume was simply extent so far that the waves 

will not touch the downstream boundary of the flume and no waves are reflected.  In 

Figure 3.5, the surface elevation η  is normalized to the significant wave height 1/3H  and 

the time is normalized to pT .  The results illustrated in Figure 3.5 indicate that no waves 

were reflected from the sponge layer.  Hence, in this study, the numerical sponge layer, or 

so-called numerical beach was deployed to avoid the wave reflection from the downstream 

boundary. 
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Figure 3.5: An irregular-wave train with peak-spectral period 1.6 spT = , significant wave 

height 1/3 1 cmH = , time duration 16 sRT = , and still water depth 20 cmoh =  in the 

numerical wave flume with (dot line and solid circle) and without (solid line) the numerical 

sponge layer. 

While the case without sponge layer was taken as a pure incident irregular wave, the 

attenuation of spectral energy within the sponge layer can be quantified and shown in 

Figure 3.6.  Comparing with the normalized damping factor max/s sμ μ , the spectral 

energy is found approximately zero before the damping factor reaches its maximum, 

although it costs about 3 pL  to have this results.  In this case, the associated parameters 

of the sponge layer are 21.46sRe =  and 3.77s px L= .  For assuring a robust 

non-reflected downstream boundary, the sponge layer was given as max / 0.04s oh gμ = , 

4s px L≈ , and the length longer than 5 pL  in subsequent computations. 
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Figure 3.6: The attenuation of spectral energy within the sponge layer, which has the 

parameters: 21.46sRe = , 3.77s px L= .  The case without the numerical sponge layer 

was chosen as the incident irregular wave. 

3.6 Calculating of shear stress 

Shear stress is studied in the present in present work, and can be obtained using 

numerical implement.  The shear stress is defined as following. 

 1/2 1( ) /j j j ju u yτ μ+ += − Δ   at 1/2jy y +=  for 1, 2,3j =  (3.63) 

where jyΔ  is the distance of jy  and 1jy + , which is the location of the horizontal 

velocities, and 0 moy =  is located on the bed boundary.  However, the results 1/ 2τ  has 

a distance 1/2y  from the bed, and an extrapolation method, the spline function in the 

Matlab toolbox, was used to obtain the bed shear stress oτ .  Consequently, the results is 

strongly dominated by the grid resolution along y -axis.  In the present study, the 

near-bed vertical grid size oyΔ  is set to be /16pδ , where pδ  is the spectral-peak Stokes 

layer thickness, i.e. /p pδ υ ω=  with the spectral-peak angular frequency pω . 
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3.7 The solution procedure 

The complete solution procedure of the present method is summarized in Figure 3.7. 

,  u v′ ′

,  u v′ ′

,  u v′ ′

p′

p′

 

Figure 3.7: The solution procedure. 
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Chapter 4 Linear irregular waves and the 
associated properties 
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Figure 4.1: Numerical wave flume with a piston-type wavemaker and a sponge layer for 

generating irregular waves. 

A schematic diagram of a two-dimensional numerical wave flume for generating 

irregular waves is shown in Figure 4.1.  The x -axis is measured horizontally in the 

“A theory is something nobody believes, except
the person who made it. An experiment is
something everybody believes, except the
person who made it.” 

─Albert Einstein,
 German-born theoretical physicist



Chapter 4─Linear irregular waves and the associated properties 
 

 68

direction of wave propagation and the origin is set at the initial location of a piston-type 

wave generator with stroke oS .  The y -axis is measured vertically upwards from 

bottom.  The still water depth is oh . 

4.1 Generation of irregular waves 

In the present work, the deterministic spectral amplitude method based on the fast 

Fourier transform (DSA-FFT) was applied to generate irregular waves.  Simulation of a 

time sequence )(tη  requires the independent time variable t , to be discretized as 

tntn Δ= ...),2,1,0( =n , where tΔ  is the time interval.  This discrete time sequence 

)( ntη  represents a continuous time series of water surface elevation with a total record 

length of RT , and a total number of discrete values N , which satisfies 

 /RN T t= Δ  (4.1) 

The reciprocal of tΔ  is the sampling frequency 1/sf t= Δ , and 1/(2 )cf t= Δ  is the 

cut-off (Nyquist) frequency.  The discrete Fourier transform pair is defined as 

 
1

2 /

0
( )

N
i nk N

k n
n

A t e πη
−

−

=

=∑ , 0,1, 2,..., 1k N= −  (4.2) 

 
1

2 /

0

1( )
N

i nk N
n k

k
t A e

N
πη

−

=
= ∑ , 0,  1,  2,...,  1n N= −  (4.3) 

where 1i = −  and kA  is the discrete Fourier transform of ( )ntη  or the k -th Fourier 

component.  The frequency interval between any two successive frequencies is 

 1 1/k k Rf f f T−Δ = − =  (4.4) 

For the identical frequency interval, this method can be identified as equal-frequency 
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superposition method. 

When the target wave spectral density Sη  of surface elevation is specified, the k -th 

Fourier component of the real time series ( )tη  can be represented by a complex variable 

kA  ( 0,1,..., / 2 1k N= − ) with an amplitude of ( ) / 2kS f fη Δ , a phase of kφ  and 

*
k N kA A −=  ( / 2, / 2 1,..., 1k N N N= + − ), where the superscript asterisk means complex 

conjugate.  The phase kφ  ( 0,1,..., 1)k N= −  are independent random variables, 

distributed uniformly over the interval [0,  2 ]π .  The time sequence of the surface 

elevation was then determined by applying the inverse Fourier transform to kA , as 

indicated in Eq. (4.2).  Alternatively, with the known amplitude of each Fourier 

component, the surface elevation of linear irregular waves can be superposed by / 2N  

components of discrete waves as follows. 

 
/ 2 1

0
( ) cos( )

N

k k k
k

t a tη ω φ
−

=

= −∑  (4.5) 

 2 2 ( )k k ka A S f fη= = Δ  (4.6) 

where 2k kfω π=  is the discrete angular frequency.  Thus, wave synthesis of any 

duration can be performed without leakage.  However, this limitation is inefficient in the 

present numerical model for irregular wave generation.  In ocean engineering practice, the 

cut-off frequency is generally less than 1 Hz (Medina et al., 1985).  In the numerical 

simulation, for the sake of accuracy, the time marching steps are typically 3 410 ~ 10− −  

seconds, and the cut-off frequency can be up to 2 35 10 ~ 5 10  Hz× × .  If the duration of 

wave synthesis is 1000 s, then 55 10×  wave components are required, given 310t −Δ =  s.  

Since waves with frequencies of over 1 Hz seem to be redundant in reality, for simplicity, 
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wave components with frequencies higher than 4 Hz are neglected in the numerical model 

of irregular wave generations. 

When the wave components are known, 

 ( , ) cos( )k k k k kx t a k x tη ω φ= − +  (4.7) 

the displacement function of a piston-type wavemaker used to generate this wave is 

determined using linear wavemaker theory, as follows (Dean and Dalrymple, 1984). 

 ( ) sin( )k k k kt e tξ ω φ= −  (4.8) 

with sinh 2 2
2(cosh 2 1)

k o k o
k k

k o

k h k he a
k h

+=
−

 (4.9) 

where / 2k ke S=  and kS  is the stroke of the wavemaker for generating the k -th wave 

component.  The displacement function of the wavemaker used to generate irregular 

waves is then obtained by linearly superposing the displacements to generate the k -th 

wave component as follows. 

 
/ 2 1 / 2 1

0 0
( ) ( ) sin( )

N N

k k k k
k k

t t e tξ ξ ω φ
− −

= =

= = −∑ ∑  (4.10) 

The Goda-JONSWAP spectral density (Goda, 1988) was chosen as the target wave 

spectrum, and is given by 

 
2 2exp[ ( 1) /2 ]2 4 5 4

1/3( ) exp[ 1.25( ) ] pT f
p pS f H T f T f α

η β γ − −− − −= −  (4.11) 

 
0.07,
0.09,

p

p

for f f
for f f

α
≤⎧

= ⎨ >⎩
 (4.12) 

 1

0.06238 (1.094 0.01915ln )
0.230 0.0336 0.185(1.9 )

γβ
γ γ −

× −=
+ − +

 (4.13) 

where 1/p pT f= , pf  is the peak-spectral frequency; 1/3H  the significant wave height 
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assigned initially, and γ  is the peak enhancement factor, which usually varies between 1 

and 10. 

4.2 Transfer function between shear stress and surface 

elevation 

Since the surface elevation of irregular waves can be constructed by superposing 

linear waves of various wave heights and frequencies, the shear stress exerted on the 

bottom by irregular waves can be synthesized similarly.  The shear stress on the bottom is 

( / )u yτ μ= ∂ ∂ , at 0y = .  The horizontal velocity within the boundary layer under linear 

waves with surface elevation cos( )a kx tη ω= −  is (Dean and Dalrymple, 1984) 

 (1 ) / 2 ( )1
sinh

i y i kx t

o

au e e
kh

ω υ ωω − − −⎡ ⎤= −⎣ ⎦  (4.14) 

where 0y =  is set at the bottom.  The shear stress on the bottom is then 

 

( )
0

Re (1 )
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cos( )
sinh 4

( , )
sinh 4

i kx t
y

o

o

o

a i e
kh

a kx t
kh

x t
kh

ωω ωτ μ
υ

μω ω πω
υ

μω ω πη
υ ω

−
=

⎡ ⎤
= −⎢ ⎥

⎣ ⎦

= − −

= +

 (4.15) 

Equation (4.15) reveals that a phase shift exits between the shear stress and the water 

surface elevation and that the shear stress can be directly obtained from the surface 

elevation by multiplying it by the term / / sinh okhω υμω .  This term represents the 

transfer function or the response function between the shear stress and the surface 

elevation and equals the square root of the ratio between the shear stress spectrum and the 
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wave spectrum (Samad et al., 1998); 

 ( )( )
( ) sinh o

SH
S kh

τ
τ

η

ω μω ωω
ω υ

= =  (4.16) 

The angular frequency and the wavenumber follow the dispersion relations, 

2 tanh ogk khω = . 

Incident irregular waves of uniform spectral density (a Gaussian white noise) were 

generated and propagated in the numerical wave flume at a still water depth 40 cmoh =  

to confirm that the shear stress under irregular waves, computed by this numerical wave 

model, is correct.  The wave height of each wave component is 22.683 10  cmH −= × .  

The numerical results obtained by S Sτ η  were compared with the theoretical one 

and shown in Figure 4.2.  The comparison reveals that the numerical results are identical 

to the theoretical values.  Experiments carried out by Samad et al. (1998) are compared 

and shown in Figure 4.2(b).  The experimental results have good agreement while the 

frequency is larger than unit hertz.  When the frequency is smaller than unit hertz, the 

discrepancy of the experiments are shown and indicates there is still difficult for measuring 

bottom shear stress using experiment. 
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Figure 4.2: The numerical results and theoretical transfer function between the shear stress 

and the surface elevation: (a) the case with 40 cmoh = ; (b) the case with 20.3 cmoh =  

and comparing with the experiments of Samad et al. (1998). 
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Figure 4.3: Variation of transfer functions with depth of still water. 

Figure 4.3 plots the variation of the transfer function ( )H fτ  as a function of the still 

water depth.  It shows that the main responsible frequency band shifts to a lower 

frequency as the water depth increases.  The spectral-peak frequencies of the transfer 

function are 0.8521 Hz, 0.6015 Hz, and 0.4311 Hz for still water depths of 20 cmoh = , 40 

cm and 80 cm, respectively. 

4.3 Relation between wave and shear stress spectra 

The accuracy of the numerical scheme was confirmed by comparing the wave 

spectrum of the simulated irregular waves with the target wave spectrum.  After the 

accuracy of this wave model was verified, the wave spectra and the associated shear stress 

spectra were discussed with reference to the spectral frequency, the zeroth moment and the 

spectral bandwidth parameter. 
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Table 4.1: Numerical conditions of simulated irregular waves. 

Case RT  
(s) 

oh  
(cm)

3/1H
(cm) 

pf  
(Hz) 

γ  
sUr  

4.1 
4.2 
4.3 
4.4 
4.5 
4.6 
4.7 
4.8 
4.9 

128 
128 
128 
128 
128 
128 
128 
128 
256 

40 
40 
40 
40 
20 
80 
40 
40 
40 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

0.625 
0.500 
0.800 
1.000 
0.625 
0.625 
0.625 
0.625 
0.625 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
3.3 
7.0 
1.0 

1.257 
2.133 
0.658 
0.335 
5.635 
0.246 
1.257 
1.257 
1.257 

 

Table 4.1 presents the numerical conditions studied in this work.  The characteristics 

of irregular waves were specified in terms of duration RT , the significant wave height 

1/3H , the peak spectral frequency pf  and the peak enhancement factor γ .  The 

significant Ursell number, which is often used to judge the nonlinearity of regular waves, is 

defined as 

 2 3
1/3 /s p oUr H L h=  (4.17) 

where pL  (= 2 / pkπ )  is the peak-spectral wavelength and can be determined from the 

dispersion relation. 

Figure 4.4 shows an excellent agreement between the simulated wave spectrum and 

the target wave spectrum in Case 4.1.  The target spectrum is the Goda-JONSWAP 

spectrum, which is described by Eq. (4.11).  The spectral density is normalized by the 

zeroth spectral moment om η , which will be presented in the following section. 
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Figure 4.4: Comparison of spectrum of simulated waves and target wave spectrum in Case 

4.1. 

Since this wave model takes into account the viscosity of the fluid, the viscous flow 

fields and the bottom shear stress can be determined.  Dong and Huang (2004) 

demonstrated the accuracy of this wave model by comparing the numerical results for 

wave and velocity profiles, including those in the bottom boundary layer, with the 

analytical solutions.  Figures 4.5(a) and 4.5(b) present the temporal variation of surface 

elevation at / 10ox h =  and the horizontal velocity profiles near the bottom at different 

wave phases, respectively, to elucidate viscous flows induced by the irregular waves in 

Case 4.1.  The significant bottom velocity sU  was calculated by the definition of the 

significant property, say 1/24s ouU m= , where oum  is the zeroth spectral moment of bed 

orbital velocity. 
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Figure 4.5: (a) Temporal variation of surface elevation at / 10ox h =  and (b) horizontal 

velocity profile near the bottom at different wave phases of irregular waves in Case 4.1 

( 45.064 10  mpδ −= × ). 
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Figure 4.6: (a) Water surface elevation, (b) velocity fields throughout the depth and (c) 

near the bottom beneath two zero-downcrossing waves induced by the irregular waves in 

Case 4.1. 
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Figure 4.6 plots the corresponding water surface elevation and velocity fields 

throughout the depth and near the bottom beneath two zero-upcrossing waves.  Figure 

4.5(a) also plots the temporal variation of the horizontal velocity component at / 8py δ = , 

where is far from the boundary layer and the velocity can be regarded as the free stream 

velocity.  Figure 4.5 reveals that the wave phase (1) with negative surface elevation 

induces a zero horizontal velocity beyond the boundary layer, instead of a negative 

horizontal velocity component, as for small-amplitude waves or Stokes waves (Dong and 

Huang, 2004).  Similarly, at the wave phase (3) with zero water elevation, a rather large 

positive horizontal velocity component instead of a zero horizontal velocity, was induced, 

because, although the higher frequency components are manifest in the wave profile, their 

effect does not reach close enough to the bottom.  Near the bottom, the velocities induced 

by the low-frequency components cover those induced by the higher-frequency 

components.  Accordingly, the wave components with very low frequencies dominated 

the flow behavior near the bottom.  Figure 4.6 also displays this phenomenon.  The 

negative surface elevation of a high-frequency component, located between / 18.2ox h =  

and 19.0 in Figure 4.6(a), is responsible for the negative horizontal velocity only to a 

certain depth, as shown in Figures. 4.6(b) and 4.6(c).  Below that depth, a positive 

velocity component exists, which is associated with other waves of lower frequencies.  

Figure 4.5(b) reveals also that the thickness of the boundary layer is about 6 pδ , if the 

thickness of the boundary layer is defined as the location where the flow velocity 

approaches 1.01 times the potential flow velocity of the spectral peak frequency.  Based 

on this definition, the thickness of the boundary layer for regular waves is about 4δ  
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( /δ υ ω= ) (Dong and Huang, 2004).  Figure 4.7 compares the wave spectrum with the 

shear stress spectrum for irregular waves in Case 4.1.  It shows that the spectral width of 

the shear stress spectrum is less than that of the wave spectrum and that the peak frequency 

of the shear stress spectrum is slightly lower than that of the wave spectrum. 
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Figure 4.7: Comparison of wave spectrum and shear stress spectrum for irregular waves in 

Case 4.1. 

4.4 Wavelet transform and effects of different spectral 

parameters 

The wavelet transform is also applied to yield a full time-frequency representation of 

the random water surface elevation and the associated shear stress.  The wavelet 

transform allows localization in the time domain via translations of the so-called mother 

wavelet and in the frequency domain via dilations.   Massel (2001) and Huang (2002) 

and several others successfully applied it to the analysis of wave data.  The wavelet 
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transform of a time series ( )f t  is defined as 

 * *
, 

1( ,  ) ( ) ( ) ( ) ( )
w w

w
w w t s

ww

t tWf t s f t t dt f t dt
ss

ψ ψ
∞ ∞

−∞ −∞

−= =∫ ∫  (4.18) 

where *ψ  is the complex conjugate of the mother wavelet ψ ; wt  is the time translating 

range and ws  is the dilation scale.  One of the most often used mother wavelets is the 

Morlet wavelet, which is given by 

 2( ) exp( / 2)exp( )t t i tψψ ω= −  (4.19) 

where 5.5ψω =  is the frequency of mother wavelet.  The time-frequency wavelet energy 

density is defined as 

 
22 ( ,  )

( ,  ) w w
w m

R w m

Wf t s
WS t f

T C s fψ

=  (4.20) 

where 2w ms f ψπ ω⋅ =  and Cψ  is the admissibility coefficient, defined as 

 2

0
( ( ) / )C dψ ω ω ω

∞
= Ψ∫  (4.21) 

where ( )ωΨ  is the Fourier transform of the mother wavelet.  Figures 4.8(a) and 4.8(b) 

present the time-frequency analysis of the water surface elevation and shear stress at 

/ 10ox h = , respectively, for the irregular waves in Case 4.1.  The values of the wavelet 

coefficient, ( ,  )w mWS t f , were normalized by the corresponding zeroth spectral moment, 

om η  and om τ (Table 4.2).  Notably from Figure 4.8, throughout the duration of wave 

progression, the spectral width of the shear stress is less than that of the wave elevation.  

This property is consistent with that presented in Figure 4.7.  The maximum values of the 

water surface elevation and the shear stress occurred in the period between 50 ~ 55 pT  
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with a sharp energy rise and a small frequency band. 
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(a) time-frequency analysis of the surface elevation. 
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(b) time-frequency analysis of the bed shear stress. 

Figure 4.8: Comparison of the surface elevation and shear stress in time-frequency domain 

for irregular waves in Case 4.1; the values of wavelet coefficient, ( ,  )w mWS t f  were 

normalized to the corresponding zeroth spectral moments, om η  and om τ . 
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Table 4.2: Comparison of different spectral parameters for cases in Table 4.1. 

Case pf  om η  sH  pQ η pf τ  om τ  pQ τ  

 (Hz) ( 6 210  m−× ) ( cm )  (Hz) ( 4 2 -2 -410  kg m s−× )  
4.1 0.625 6.790 1.042 1.981 0.617 3.547 2.562
4.2 0.500 7.079 1.064 1.923 0.500 3.854 2.291
4.3 0.800 6.377 1.010 2.165 0.750 2.565 2.983
4.4 1.000 7.394 1.088 2.143 0.906 1.678 3.419
4.5 0.625 5.913 0.973 2.219 0.773 9.553 2.345
4.6 0.625 7.433 1.095 1.950 0.594 0.797 3.184
4.7 0.625 6.900 1.050 3.044 0.625 3.715 3.885
4.8 0.625 6.865 1.048 4.499 0.625 3.862 5.462
4.9 0.625 6.978 1.056 1.966 0.613 3.479 2.553

 

The characteristics of the simulated wave spectra and the associated shear stress 

spectra can also be examined in terms of the zeroth spectral moment om  and the spectral 

bandwidth parameter pQ .  When these parameters referred to the wave spectra or the 

shear stress spectra, an extra subscript η  or τ  was added. 

The spectral moments of order r  are defined as 

 
0

( )r
rm S dω ω ω

∞
= ∫  (4.22) 

where ( )S ω  is the spectral density function of the random variable.  The significant 

wave height recommended by IAHR (1989) is defined as 

 1/ 24s oH m η=  (4.23) 

The spectral bandwidth parameter, pQ  can be determined using various approaches.  

The spectral bandwidth parameter proposed by Goda (1970) is adopted here.  It is defined 

as 

 2
2 0

2 ( )p
o

Q f S f df
m η

η

∞
= ∫  (4.24) 
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Based on this definition, a higher value of pQ  corresponds to a narrower spectral 

bandwidth. 

Table 4.2 lists the values of the spectral peak frequency, pf , the zeroth spectral 

moment, om , and the spectral bandwidth parameter, pQ , for the irregular waves and the 

associated shear stresses given in Table 4.1.  The results in Table 4.2 indicate that for 

0.625 Hzpf =  as the water depth increases, from 20 cmoh =  through 40 cm to 80 cm 

(Cases 4.5, 4.1 and 4.6), the spectral peak frequency of the shear stress pf τ  declines from 

0.773 Hz through 0.617 Hz to 0.594 Hz, respectively.  The zeroth spectral moment om η  

is a measure of the energy associated with the random variables.  Notably, although the 

zeroth spectral moments of the waves in Cases 4.1 to 4.9 are about the same since the 

1/3H  values are identical, the values of om τ  in these cases differ markedly and drop as 

pf  increases.  This fact implies that less energy is transferred to the bottom shear stress 

if the main frequency band of the waves shifts to higher frequencies.  Furthermore, the 

zeroth spectral moment of the shear stress increases rapidly as the water depth decreases.  

The bandwidth of the wave and the shear stress spectra becomes narrower as γ  increases. 

4.5 Determination of shear stresses using the transfer function 

method 

The shear stresses caused by irregular waves can also be directly estimated using the 

transfer function between the shear stress and the surface elevation, as given by Eq. (4.16).  

When the target spectral density function of the waves is specified, the k -th Fourier 
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component kA  of the surface elevation, can be determined as stated in Section 4.1.  The 

discrete time-series data of the shear stress were then obtained by superposing the shear 

stress due to each wave component, which can be determined from the shear stress in the 

frequency domain by applying the inverse discrete Fourier transform.  Therefore 
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 (4.26) 

where kB  is the k -th Fourier component of the bottom shear stress.  Figure 4.9 shows 

the comparison of the free surface of Case 4.1 and the bottom shear stress calculated by 

using Eq. (4.25) base on the free surface.  Both free surface and bottom shear stress were 

normalized by its significant value.  The results indicates not only the magnitude but also 

the phase difference can be well-quantified by Eq. (4.25).  Note that the phase difference 

between surface elevation and bottom shear stress is not exactly / 4π ω , since the time 

series shows the overall change contributed by each wave component, not reveals the 

change of single component. 

Figures 4.10(a), 4.10(b) and 4.10(c) exhibit excellent agreement between the shear 

stresses obtained from this nonlinear wave model and those determined from Eqs. (4.25) 

and (4.26) for the irregular waves in Cases 4.1, 4.3 and 4.6 in Table 4.1, respectively.  The 

shear stresses are normalized with respect to the significant bottom shear stress sτ , which 

is defined as 1/ 24( )s om ττ = . 



Chapter 4─Linear irregular waves and the associated properties 
 

 86

52 53 54 55 56
t/Tp

-1.0

-0.5

0.0

0.5

1.0

 
η

 Hs

-1.0

-0.5

0.0

0.5

1.0

 
τ

 τs

Surface elevation
Bottom shear stress

 

Figure 4.9: The free surface of Case 4.1 and the associated bottom shear stress determined 

using Eq. (4.25).  The phase difference between the free surface and the bottom shear 

stress can be found clearly. 
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Figure 4.10: Comparison of shear stresses obtained from the numerical wave model and 

the transfer function method , using Eqs. (4.25), for irregular waves in (a) Case 4.1, (b) 

Case 4.3 and (c) Case 4.6. 
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4.6 Bed shear stress induced by irregular waves 

The maximum shear stress is an important factor in the initial motion of the sediments 

and is difficult to determine in the field.  Myrhaug (1995) proposed a model for 

calculating the maximum bottom shear stress based on the assumption that the surface 

elevation is a stationary Gaussian narrow-band random process with zero expectation and 

the one-sided spectral density Sη .  Both the orbital displacement amplitude on the sea 

bed oA , and the orbital velocity amplitude on the seabed oU  are then 

Rayleigh-distributed. 

Let maxτ  denote the maximum bottom shear stress and max 1/( )
MNτ  denote the value 

of maxτ  which is exceeded by the probability 1/ MN , Myrhaug (1995) proposed the 

following equation to determine max 1/( )
MNτ  for laminar flows. 

 0.5 0.5 2
max 1/( ) (ln )

MN M rms rmsN Re Uτ ρ −=  (4.27) 

where MN  is the number of the crested value in the time-series data of the shear stress 

and rmsU  is the root-mean-square of oU  and is defined as 
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The Reynolds number is defined as 

 /rms rms rmsRe U A υ=  (4.29) 

where rmsA  is the root-mean-square of oA  and is defined as 
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Table 4.3 lists the values of the maximum bottom shear stress for the incident 

irregular waves shown in Table 4.1, as determined by Myrhaug’s model, denoted by max Mτ , 

and those determined using the present numerical wave model.  The value of MN  must 

be provided to determine maxτ  using Eq. (4.27).  In this study, the zero-upcrossing 

method was used to determine the number of zero-upcrossing waves, wN , and let this 

number be MN .  Table 4.3 also presents this value.  The difference between the values 

of maxτ  obtained using these two approaches was evaluated as a percentage as follows. 

 max max max/MDiff τ τ τ= −  (4.31) 

Table 4.3 demonstrates that Myrhaug’s model underestimates the maximum bottom shear 

stresses and at least with the 0.1Diff > . 

Table 4.3: Maximum bottom shear stress obtained by Myrhaug’s model and the present 

numerical wave model. 

Case wN rmsU  rmsA max Mτ  maxτ  Diff  

  (cm/s) (cm) ( 2 -1 -210  kg m s−× ⋅ ) ( 2 -1 -210  kg m s−× ⋅ ) (%) 
4.1 108 1.563 1.000 4.235 6.146 31.09 
4.2 94 1.800 1.040 5.052 6.768 25.35 
4.3 125 1.209 1.105 2.782 4.911 43.35 
4.4 165 0.907 1.688 1.505 4.112 63.40 
4.5 103 2.521 0.654 10.668 9.572 11.45 
4.6 109 0.774 0.314 2.639 3.005 12.18 
4.7 104 1.639 1.251 4.049 6.421 36.94 
4.8 98 1.683 0.979 4.731 6.128 22.80 
4.9 224 1.561 0.418 7.027 6.152 14.21 

 

Another possible approach for determining the maximum bottom shear stress 

associated with irregular waves is to use the transfer function between the shear stress and 

the surface elevation, given by Eq. (4.25).  Table 4.4 compares the value of maxτ  



Chapter 4─Linear irregular waves and the associated properties 
 

 90

obtained using Eq. (4.25), named maxTτ , and those obtained using the present numerical 

model.  Notably, the results are in good agreement. 

Table 4.4: Maximum bottom shear stress obtained by utilizing transfer function and the 

present wave model. 

Case maxTτ  
( 2 -1 -210  kg m s−× ⋅ )

maxτ  
( 2 -1 -210  kg m s−× ⋅ )

Diff  
(%) 

4.1 5.989 6.146 2.55 
4.2 6.596 6.768 2.54 
4.3 4.713 4.911 4.03 
4.4 3.935 4.112 4.30 
4.5 9.580 9.572 0.08 
4.6 2.926 3.005 2.63 
4.7 6.176 6.421 3.78 

4.8 5.987 6.128 2.30 
4.9 6.361 6.152 3.39 

 

4.7 Chapter remark 

The main conclusions from the study of this chapter can be summing up briefly: 

1. The wave spectrum of the generated irregular waves was in good agreement with the 

target spectrum; and the numerical and theoretical transfer functions coincide with each 

other.  This testified the accuracy of this numerical wave model. 

2. For a given depth of water, less wave energy is transferred to the bottom shear stress if 

the main frequency band of the waves is shifted to higher frequencies. 

3. The comparison of the maximum bottom shear stress obtained by this wave model with 

that obtained by Myrhaug’s model indicates that Myrhaug’s model underestimates the 

maximum bottom shear stress caused by laminar irregular waves, except when the water 
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is shallow. 

4. The bottom shear stresses obtained from this wave model agree closely with those 

obtained from the transfer function between the wave spectrum and the shear stress 

spectrum. 
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Chapter 5 Nonlinear properties beneath 
irregular waves 

 

5.1 The properties of Dean and Sharma’s formula 

The nonlinear free surface boundary conditions introduce the bound wave 

components, subharmonics and superharmonics, to irregular waves.  For achieving a 

basic understanding of the nonlinear phenomenon, a model deduced by Dean and Sharma 

(1981) was introduced in this section. 

The formula of Dean and Sharma’s model (shorten as the DS model) with a known 

linear unidirecitional irregular-wave train η  is prescribed as follows. 

 (1) (2)
DSη η η= +  (5.1a) 

 
/ 2 1

(1)

0
cos

N

k k
k

aη ψ
−

=

= ∑  (5.1b) 

“Twenty years from now you will be more
disappointed by the things you didn’t do
than by the ones you did do. So throw off the 
bowlines. Sail away from the safe harbor.
Catch the trade winds in your sails. Explore.
Dream. Discover.” 

─Mark Twain, American writer
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 kl k lk k k− = −  (5.1h) 

 kl k lk k k+ = +  (5.1i) 

 k k k kk x tψ ω φ= − +  (5.1j) 

 tanhk k k oR k k h=  (5.1k) 

where the subscript DS denotes the results of the DS model, and N  is number of the time 

sequence.  The term (2)
DSη  in Eq. (5.1a) is the second-order component of the nonlinear 

irregular wave.  The first term of the left hand side in Eq. (5.1c) is the second-order 

subharmonics and the second the second-order superharmonics. 

In Eq. (5.1c), the phase of each second-order component, with the amplitude (2 )
kla −  or 
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(2 )
kla + , was a composition of the phase of the first order waves.  Furthermore, a bound 

wave component with frequency f  is constituted by the associated first-order waves, i.e. 

subharmonics with frequency k lf f f= − , and superharmonics with frequency 

k lf f f= +  ( ,  0,  1,...,  / 2 1k l N= − ).  Although the amplitude of each second-order 

harmonic, (2 )
kla −  or (2 )

kla + , was constant if the linear irregular waves and the still water 

depth were held, the constituted results varies with phases, which changes temporally and 

spatially.  This denotes that there are no equilibrium state or permanent spectral form for 

nonlinear irregular wave when the second-order nonlinearity was considered.  Similar 

phenomenon were found by Huang and Tung (1976) as well as Baldock et al. (1996). 

Table 5.1: The conditions of studied cases. 

Case oh  1/3H RT  sUr  DSQ  
 (cm) (cm) (s)   

5.1 40 1 128 1.257 0.0005 
5.2 40 4 128 5.027 0.008 
5.3 40 8 128 10.05 0.033 
5.4 40 10 128 12.57 0.051 
5.5 20 1 128 5.635 0.005 
5.6 20 2 128 11.27 0.020 
5.7 20 4 128 22.54 0.077 
5.8 20 5 128 28.18 0.115 
5.9 20 6 128 33.81 0.187 

 

Table 5.1 lists the numerical conditions studied in the present study.  The cases with 

different wave height and water depth were studied for verifying the effects of 

nonlinearities.  The characteristics of nonlinear irregular waves were specified in terms of 

the time duration 128 sRT = , the significant wave height 1/3H , the spectral-peak 

frequency 0.625 Hzpf = , and the peak enhancement factor 3.3γ =  of Goda-JONSWAP 
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spectral density in Eq. (4.11). 

The significant Ursell number was defined as Eq. (4.17). 

 2 3
1/3 /s p oUr H L h=  (4.17) 

Ursell number is regarded as a nonlinear factor, which denotes the ratio of the first-order to 

the second-order wave component, and the significant Ursell number sUr  were applied 

for this manner.  A similar parameter can be defined by taking square of the ratio of linear 

energy (1)o
m η  to the energy of the second-order component ( 2)o

m η , say ( )( 2) (1)/
o o

m mη η .  

However, there is lack of techniques that can separate linear and nonlinear irregular waves 

successfully.  The DS model was applied to generate a synthesized results for comparison 

and denotes as following.  

 ( )( 2) (1)/DS o o DS
Q m mη η=  (5.2) 

The subscript DS of each parameter denotes the parameter was obtained from the 

synthesized results which synthesized by the DS model with the conditions in Table 5.1. 
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Figure 5.1: Synthesized nonlinear irregular wave spectrum applied the conditions of Case 

5.7, in which the linear components satisfied the Goda-JONSWAP spectrum and the 

second-order spectrum are formed by the DS model. 

Figure 5.1 shows the synthesized results of Case 5.7, which is synthesized by the 

linear irregular waves and the second-order components.  The linear waves was satisfied 

the Goda-JONSWAP spectrum with the specified condition, and the second-order 

components were formed by Eq. (5.1), the DS model.  The second-order subharmonics 

and superharmonics were clearly shown in Figure 5.1, in which the magnitude of 

subharmonics is smaller than that of superharmonics.  Note that the total spectrum cannot 

be determined by the sum of the spectra of the linear part and the second-order one, say 

(1) ( 2)
DS

S S Sη η η≠ +  (Sand and Mansard, 1986).   
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Figure 5.2: Synthesized results under identical condition with Case 5.7 with different 

applied locations, which introduced the phases difference of each component. 

Figure 5.2 shows the another synthesized results of Case 5.7 but with different phases.  

Although the random phase kφ  of the linear components (1)η  was without change, the 

phase of the second-order harmonics varied temporally and spatially as shown in Eq. (5.1), 

while the phase difference was formed by applying different locations, i.e. 0x =  and 

7.2 px L= .  The results reveal that there is no identical spectral form of nonlinear 

irregular waves if time or location changes. 

To identify the phase difference by the variation of zeroth moment is diffcult since the 

energy ration of the second-order components to the linear one is small.  A statistical 

properties, skewness 1γ , the third standardized moment, is defined as  

 3
1 3/2

2

μγ
μ

=  (5.3) 

 ( ) ( )r
r x x p x dxμ = −∫  (5.4) 
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where x  is the mean value of variable x , ( )p x  the probability of x , and rμ  the r -th 

moment of x .  The statistical properties can offer comprehensions about the tendency of 

the bound waves.  It is believed that linear irregular waves with random phases are 

normal distributed (or called Gaussian distributed), and nonlinear properties make the 

statistical properties deviating from Gaussian distribution.  An important parameter for 

determining the symmetric of wave crest and trough is the skewness, which is close to zero 

if surface elevation is symmetric, or the upper-envelop and the lower-envelop are identical 

or near identical.  Otherwise, skewness is far from zero if surface elevation is asymmetric.  

Since the present of subharmonics and superharmonics introduce sharp-narrow crests and 

broad-flat troughs, the asymmetric of the surface elevation is increased and the skewness 

as well.   

For wave train with identical random phase φ , and time duration RT , the skewness 

1DSγ  of the synthesized results of Case 5.1 to 5.4 can thus be compared spatially and draw 

in Figure 5.3.  The random variation of the skewness 1DSγ  was resulted by the random 

phases, and the identical randomness of these four cases denotes the random phase of the 

four cases were identical.  Within the same locations the skewness increases as the 

increasing of the significant wave height.  Note that in different locations the skewness of 

Case 5.1 ( 1 cmsH = ) can probably larger than that of Case 5.1 ( 8 cmsH = ).  Although 

the phase difference changes the skewness, the larger positive skewness can indicate the 

larger nonlinearity of the surface elevation. 
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Figure 5.3: Spatial-varied skewness of the synthesized results with four different 

significant wave heights, Cases 5.1 to 5.4. 

If the subharmonic components and wave-wave interaction were not considered, the 

first-order and the second-order components of a nonlinear-irregular-wave train can be 

separated using the method suggested by Sand and Mansard (1986).  The authors pointed 

the separation process can start from the lowest-frequency component with assuming it is 

fully linear, and eliminating the associated second-order component using a formula 

prescribed superharmonics.  When the sequential work is done, the linear components and 

the second-order components are separated.  However, subharmonics are clearly found in 

the synthesized results in Figure 5.2, and thus the suggestion of Sand and Mansard was not 

satisfied.  Henceforth, the comparison and further study used only the total spectrum Sη  

and the separation of linear and nonlinear irregular waves were not considered herein. 
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5.2 Generation of irregular waves and the numerical 

conditions 

A nonlinear-irregular-wave train can be combined by a linear-irregular-wave train and 

the associated higher order components.  Similar manner was used to generate nonlinear 

irregular waves by Shen and Huang (2005), who applied the second-order Stokes waves 

generator to each wave component and formed the nonlinear-irregular-wave train.  

However, only the second-order components satisfied the superharmonic k l=  in Eq. (5.1) 

were generated and none of the subharmonics.  Since the nonlinear-irregular-wave 

generator based on weakly nonlinearity cannot have the agreement with the target 

spectrum far from the wavemaker (Sulisz and Paprota, 2008), it is not considered herein. 

In the present work, the irregular-wave generator in Chapter 4 was used to form the 

waves.  Although the incident waves are without subharmonics and superharmonics, the 

nonlinear bound waves are supposed to be automatically formed by the fluid mechanics 

and can be found of the following discussions. 

5.3 Spectral properties 

With simply increasing the assigned significant wave height 1/3H , the nonlinear 

properties of the irregular-wave train was increased but was no robust confirmation.  The 

following process was applied to have the knowledge about the nonlinearity of irregular 

waves.  Figure 5.4 compares the numerical results and the Goda-JONSWAP spectral 
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density within identical conditions.  Of Case 5.2 shown in Figure 5.4(a), the components 

at about 1.8 pf  of the numerical results have larger magnitudes than that of 

Goda-JONSWAP spectrum, in which only presents linear components.  The similar 

phenomena is noticed in Figure 5.4(b), a comparison with the conditions on Case 5.7.  Of 

this condition, not only superharmonics but also subharmonic were formed in the 

numerical flume. 

Without nonlinear-irregular-wave generator, the higher-order harmonics, either 

subharmonics or superharmonics, are not generated by the wavemaker but by the nonlinear 

fluid mechanics.  Since the present numerical model considers the free surface conditions 

given in Eqs. (2.12) and (2.13) as well as the conservation equations, the numerical flume 

has the ability to simulate the fully nonlinear fluid mechanics.  Thus, the wave energy 

transferred in the progress of wave propagating and the change of the higher harmonics 

were introduced. 
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Figure 5.4: Spectrum of the numerical results (dot line) and the Goda-JONSWAP spectral 

density (solid line): (a) of Case 5.2; (b) of Case 5.7. 
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On the other hand, for a surface elevation, such as the DS model, considered only the 

weakly nonlinearity in the stationary state can not well describe the realistic nonlinear sea 

state.  Furthermore, a nonlinear-irregular-wave generator prescribes such surface 

elevation as free surface boundary has less the ability to form the irregular-wave train even 

to satisfy the target surface elevation.  This is indeed a very difficult problem. 

When generating a regular wave with a large Ursell number using linear wavemaking 

theory, the bound waves and free waves are both formed in the wave flume.  Similar 

phenomenon was expected for irregular waves.  It means not only the bound waves, 

subharmonics and superharmonics, but also free waves were formed as wave propagating.  

Since it is not possible to recognized whether the spectral density around the frequency 

2 pf  were bound waves or no, the statistical properties have to be introduced.  The results 

will not present in this section but in the following one, and make a comparison with the 

skewness of the bed shear stress. 

5.4 The properties of the transfer function 

In Chapter 4, the transfer function of surface elevation and the associated bed shear 

stress is identical with the numerical results and is good at estimating the bed shear stress 

beneath linear irregular waves.  In this section, the same procedure was applied to reveal 

the properties of the transfer function beneath nonlinear irregular waves.  The Gaussian 

white noises were used again to gain the characteristics of transfer function beneath 

nonlinear irregular waves. 
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Figure 5.5 shows the comparison of the theoretical transfer function (Eq. (4.16)) and 

numerical results of the Gaussian white noise with different wave heights.  The results 

show the property of transfer function beneath the white noise with still water depth 

20 cmoh =  and wave height 0.067, 0.2, 0.267, 0.4 cm, in which the nonlinear properties 

of free surface take place.  The results in Figure 5.5 show that the transfer function of the 

numerical results is slightly departed from the theoretical one if the wave heights of the 

white noise were large.  However, the tests of the white noise with different wave heights 

are limited by the physical and numerical limitation.  The physical limitation is that wave 

breaking may appear because the frequency band is so wide that the occurance of freak 

waves are increase.  The numerical limitation is the wavelength of high frequency 

components is not long enough for the present grid resolution to simulate it. 

Of these four white noise, the numerical results indicate the theoretical transfer 

function can be used with surface elevation to estimate bed shear stress well enough it 

small disturbance is allowable. 
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Figure 5.5: Theoretical transfer function and the transfer function of white noises with 

different wave height, which was assigned for each wave component within 0 ~ 4 Hz .  

In the present case, the still water depth is 20 cmoh = . 

5.5 The statistical properties of the nonlinear bed shear stress 

The statistical properties of a nonlinear irregular wave train is well-known of the 

skewness departed from the Gaussian distribution, in which the skewness is zero.  The 

distribution of nonlinear surface elevations can be obtained by extending the linear one 

with the Stokes wave model.  This manner was used for nonlinear shear stress by 

Myrhaug and Holmedal (2003), who deduced the probability distribution of the crested 

value of bed shear stress using the second-order Strokes theory. 

Myrhaug and Holmedal (2003) found the cumulative distribution was with the form: 
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and the probability of exceedance as following. 

 ( ) 1 ( )Q Pτ τ= − ,  0τ ≥  (5.6) 

where the normalized root-mean-square of bed shear stress: 

 max / rmsMτ τ τ=  (5.7) 

the root-mean-square of bed shear stress maxima: 

 0.5 2rmsM
rms rmsRe Uτ

ρ
−=  (5.8) 

The bed orbital Reynolds numbers of irregular waves: 

 /rms rms rmsRe U A υ=  (5.9) 

The root-mean-square of bed-orbital-displacement amplitude: 

 2
20

( )
2

sinhrms
o

S
A d

kh
η ω

ω
∞

= ∫  (5.10) 

The root-mean-square of bed-orbital-velocity amplitude: 

 
2

2
20

( )
2

sinhrms
o

S
U d

kh
ηω ω

ω
∞

= ∫  (5.11) 

According to Myrhaug and Holmedal (2001), an adjusted factor rmsΔ , which consisted 

with the second-order Stokes theory, can be defined as:  

 
3

312 2 1
8sinh

rms
rms

o

kH
khπ

⎡ ⎤⎛ ⎞Δ = − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (5.12) 

where the root-mean-square of wave height: 

 2 2

0
8 ( ) 8 / 2rms o sH S d m Hη ηω ω

∞
= = =∫  (5.13) 

the average wave number satisfying the distribution relation with zω : 



Chapter 5─Nonlinear properties beneath irregular waves 
 

 108

 2 tanhz ogk khω =  (5.14) 

in which the angular frequency is defined by  

 
1/2

2 rmsA
z

oA rms

Um
m A

ω
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

 (5.15) 

where the oAm  and 2 Am  are the zeroth momentum and the second momentum of 

bed-orbital-displacement amplitude. 

For the cumulative distribution function (Eq. (5.5)), the results were dominated by 

two parameters: the root-mean-square of bed shear stress and the adjusted factor rmsΔ .  

The former one determined the magnitude of normal distribution of the linear bed shear 

stress, and the letter modifies the distribution to satisfy the second-order property.  

According to the results of Myrhaug’s model (1995), which present in Chapter 4 and vary 

with the root-mean-square of bed shear stress only, we know that the RMS of bed shear 

stress determined by the simple explicit formula as shown in Eq. (5.8) cannot have a good 

estimation about the real bed shear stress.  Since the model of Myrhaug and Holmedal 

(2003) is strongly based on the estimation of the RMS of the bed shear stress, the 

probability of exceedance in Eq. (5.6) using rmsMτ  obviously has none of the ability to 

describe the statistics of bed shear stress very well. 

For having a comparison about the probability of exceedance, the rmsMτ  in Eq. (5.7) 

was replaced by the numerical results rmsτ , so that we can have a knowledge about the 

nonlinear adjustment of the statistical results.  Figure 5.6 shows the probability of 

exceedance of normal distribution (solid line), nonlinear adjustment with rmsΔ  (the 
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dashed line), and the numerical results of Case 5.6 (solid circle).  The results, numerical 

one or adjustment one, are both departed from the normal distribution when the surface 

elevation is nonlinear.  With the nonlinear adjustment rmsΔ , the probability of 

exceedance can deviate from Gaussian distribution, although the results do not satisfy with 

the numerical one or the one using the transfer function. 

0.0 0.5 1.0 1.5 2.0 2.5 3.0

τ/τrms

1x10-3

1x10-2

1x10-1

1x100

Q

Numerical results
Results using transfer function
Normal distribution
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Figure 5.6: The probability of exceedance of the normal distribution (solid line), the 

modified nonlinear model results (dot line), the numerical results (solid circles), and the 

results by applying theoretical transfer function. 

5.6 Skewness of surface elevation and bed shear stress 

Of Figure 5.3, the skewness is known that changes with the phase of composite waves.  

Figure 5.7 shows two cases, Cases 5.7 and 5.9, and compares the skewness of both the 

surface elevation and the bed shear stress.  The skewness varies with the location, and the 
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of Case 5.9 is always larger than that of Case 5.7.  It indicates the generated irregular 

wave were with bound waves so that the skewness is remained positive and has large value.  

In comparison to the skewness of the surface elevation, the skewness of the two bed shear 

stress shows similar variation.  The found is the skewness has a phase different between 

the one of the surface elevation and of the bed shear stress.  It indicates a forecasting 

using statistical formula will fail if only the associated magnitudes of the surface elevation 

and the bed shear stress are considered and ignore the phase difference. 
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τ  (H1/3 = 6 cm, Case 5.9)

 

Figure 5.7: Skewness of the surface elevation η  and the bed shear stress τ  of Cases 5.7 

and 5.9. 

5.7 Chapter remark 

The main conclusions from the study of this chapter can be summing up briefly: 

1. Applying identical linear components with different phases, the synthesized results of 
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the DS model present irregular wave propagating with no identical spectral form, even 

though the change of phase velocity is not consider in the DS model. 

2. For the waves propagating in the numerical flume, the subharmonics and 

superharmonics were generated automatically. 

3. Increasing the wave height of the white noise increases only slight scatter of the transfer 

function obtained by the numerical results from the theoretical one.  It indicates the 

theoretical transfer function is capable for predicting the associated bed shear stress from 

the surface elevation. 

4. The skewness of both the surface elevation and the bed shear stress denotes there are 

bound waves within the numerical results.  Of the spatial-varied skewness, the 

comparison evidences that the skewness of the bed shear stress has a phase difference 

between that of the surface elevation.  This may result the statistical forecasting about 

the bed shear stress is malfunction if the phase shift is without concerned. 
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Chapter 6 Interaction of irregular waves 
and a submerged breakwater 

 

6.1 Numerical setup 

A schematic diagram of a two-dimensional numerical wave flume for studying 

irregular waves propagating over a submerged breakwater is shown in Figure 6.1.  The 

-axisx  is measured horizontally in the direction of wave propagation and the origin is set 

at the weather side of the breakwater.  The piston-type wavemaker with stroke oS  is 

located at minx x= .  The -axisy  is measured vertically upwards from bed.  The still 

water depth is oh , the height of the submerged breakwater (1 ) oq h− , the width of the 

breakwater BW , and the submergence ratio q . 

“The important thing in science is not so
much to obtain new facts as to discover new
ways of thinking about them.” 

─William H. Bragg,
British physicist
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Figure 6.1: Schematic diagram of the numerical wave tank for studying the interaction of 

irregular waves propagating over a submerged breakwater.   

The numerical scheme, which was with no sponge layer and capable of generating 

regular waves only, was once used by Huang and Dong (1999) to study the interaction of 

waves and a submerged breakwater and has been verified the accuracy of wave 

transformation and the associated nonlinear effects.  For the purpose of studying irregular 

waves, the irregular wave generator, which has verified in Chapter 4, was used, and the 

sponge layer was add to provide a non-reflected downstream. 

Table 6.1 presents numerical conditions of the irregular waves and the submerged 

breakwater studied here.  The Goda-JONSWAP spectrum (Eq. (4.11)), was chosen as the 

target spectrum of the incident irregular waves with spectral-peak frequency 

0.625 Hzpf = , the peak enhancement factor 3.3γ = , the spectral-peak wavelength is 

2.84 mpL = , and the still water depth 40 cmoh = .  The duration of each wave train is 

16 sRT =  and the location of wavemaker is min 16 mx = − .  The submergence Reynolds 

number at the depth (1 ) oy q h= −  is simply defined by the 
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submergence-orbital-displacement amplitude BA  and the submergence-orbital-velocity 

amplitude BU  as follows. 

 /B B BRe U A υ=  (6.1) 

 1/3 cosh[ (1 ) ]
2 sinh( )

p o
B

p o

k q hHA
k h

−
=  (6.2) 

 B p BU Aω=  (6.3) 

where pk  is the spectral-peak wavenumber followed the dispersion relation 

tanhp p p ogk k hω = .  In Case 6.1 no breakwater was in the numerical wave flume.  

Hence, the measures of Case 6.1 are purely incident waves.  Effects of different 

submergence depths and widths of the breakwater were compared. 

Table 6.1: Tested conditions with the rest are 1.6 spT = , 1/3 4 cmH = , 3.3γ = , 
40 cmoh = , 2.84 mpL =  and 16 sRT = . 

Case q  
BW  BRe  

  ( pL× )  
6.1 ---- ---- 1549 
6.2 0.50 0.5 1874 
6.3 0.50 1.0 1874 
6.4 0.25 0.5 2341 
6.5 0.25 1.0 2341 

 

Of regular waves, it is known that the propagation of waves over a submerged 

breakwater generates higher harmonics (Beji and Battjes, 1993; Ohyama and Nadaoka, 

1994; Huang and Dong, 1999; and among others).  When the incident waves are irregular, 

the propagation of waves over a submerged breakwater, which will be expounded further 

in following section, will produce the subharmonics and superharmonics as well as energy 
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transfer, due to the nonlinear properties in shallow water.  Since the properties of 

subharmonics and superharmonics depend on the amplitude and phase of their constituent 

wave components, to obtain reliable results for examining these two types of waves, the 

random seed for generating the randomness of phases for each wave component was held 

the same and thus random sequence was identical.  The effects of the height and width of 

the submerged breakwater were studied on the vortex dynamics, which were measured in 

the vicinity at the weather side and the lee side of the breakwater. 

The interaction of waves and the breakwater results wave reflection.  Reflected 

waves have to be quantify in order to ensure the result reliable.  In most experiments, 

wave separation methods or an active water-wave absorber were used to deal with reflected 

waves.  The wave separation method which uses measures at different locations is 

functional if surface elevation of the measures is stationary temporally and spatially.  The 

active water-wave absorber works by generating waves, which are out of phase of the 

reflected one, to eliminate the measured reflected waves.  Thus, the efficiency of 

eliminating the reflected waves is up to the determination of reflected waves, and is also 

limited by the stationary constrain. 

Base on the repeatable property of the present numerical method, incident waves and 

reflected waves can be separated whether the results are stationary or no.  Figure 6.2 plots 

the temporal variation of surface elevation for Cases 6.1 and 6.2 at / 3px L = − , which is in 

between the wavemaker and the weather side of the breakwater.  Note that the surface 

elevation before / 7.40pt T =  (denoted by a vertical dashed line) was not affected by the 
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reflected waves, such that the surface elevations for Case 6.1 and Case 6.2 are identical.  

After / 7.40pt T = , the surface elevation in Case 6.2 contains the reflected waves from the 

weather side of the breakwater.  The identity of the incident irregular waves in Cases 6.1 

and 6.2 enables us to detach out the reflected waves by subtracting the incident waves from 

the surface elevation in Case 6.2, namely Case 6.2 Case 6.1η η− .  The reflected waves thus 

obtained for Case 6.2 are plotted in Figure 6.3.  Notably the wave front of the reflected 

waves appeared at / 7.40pt T = . 
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Figure 6.2: The surface elevation of Cases 6.1 and 6.2 at 3 px L= − .  The changes made 

by the reflected waves are evident after the dashed line. 
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Figure 6.3: The reflected waves of Case 6.2 at 3 px L= − , obtained by Case 6.2 Case 6.1η η− . 

6.2 Duration for study 

Athough the reflected waves can be well identified, they are accumulated in the flume 

because of lacking the non-reflecting boundary at the upstream.  A reliable duration for 

study has to be checked.  The reflected coefficients were analyzed spatially and 

temporally to verify the effects of reflected waves.  The reflected coefficient can be 

determined by  

 
( )
( )

( )
( )

os r r
R

s i o i

mH
C

H m

η

η

= =  (6.4) 

where 

 
0

( )om S dη η ω ω
∞

= ∫  and 4s oH m η=  (6.5) 

where ( )Sη ω  is the spectral density function of the surface elevation, the subscript r  
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denotes the reflected waves and the subscript i  the incident one.  Spatial variation of the 

reflected waves of Case 6.2 was shown in Figure 6.4.  The location / 0px L =  is the 

leading side of the breakwater.  Four different time periods of Case 6.2 were compared to 

examine their temporal difference.  The four time periods, denoted as 1RT , 2RT , etc., 

differ in the beginning time, but have the same time duration of 16 seconds. 

-5 -4 -3 -2 -1 0
x/Lp

0.0

0.1

0.2

CR

TR1: 12 s ~ 28 s
TR2: 16 s ~ 32 s
TR3: 18 s ~ 34 s
TR4: 32 s ~ 48 s

 

Figure 6.4: The reflected coefficient of Case 6.2 in different time period.  The time 

duration, 16 sRT = , was identical. 

The results in Figure 6.4 indicate that the reflected coefficient increases with time.  

This is because that in our numerical wave flume no active water-wave absorber was 

installed at the wavemaker, such that when the reflected waves from the breakwater move 

back to the wavemaker, they will be reflected, and then combine with the new generated 

incident waves.  This process repeats again and again and results in the continuous 
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increase of the reflected coefficient with time.  The results in Figure 6.4 indicate also that 

the reflected waves appear during 1RT  is the justified ones, and the further study will 

focus on this period. 

6.3 Nonlinear properties 

Figure 6.5 compares the spectra, which is normalized by its own zeroth momentum 

om η , of the water surface elevation above the breakwater at / 0.50px L =  in Cases 6.1, 6.3 

and 6.5.  The spectrum for Case 6.1 is the purely incident waves.  The breakwaters in 

Cases 6.3 and 6.5 have the same width ( / 1.0B pW L = ) but differ in the height.  As regular 

waves propagating over a submerged breakwater, the higher harmonics, which include 

bound waves and free waves, are generated in the shallow water region.  Irregular waves 

have similar phenomenon to regular waves.  In finite water depth or deep sea, the second 

order bound waves are introduced by nonlinear free surface boundary condition 

(Hasselmann, 1962; Laing, 1986; Dean and Sharma, 1981), and such bound waves are 

subharmonics and superharmonics, in which the amplitude and phases are determined by 

the linear constituent waves as shown in Eq. (5.1), and the amplitude of the bound waves 

can be described as 

 cos( )
i a b

a b i

f f f a b
f f f

a a a ψ ψ
+ =

∝ ±∑  (6.6) 

where 
af

a 、
bf

a 、 aψ 、 bψ  are the amplitudes and phases of the linear constituent waves 

respectively, and 
if

a  is the amplitude of the bound waves.  The subharmonics are with 

the phase ( )a bψ ψ− , and the superharmonics with the phase ( )a bψ ψ+ , and the detailed 
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properties are described in Chapter 5.  In Figure 6.5 the spectral form about the spectral 

peak of Case 6.3 is similar to that of Case 6.1, with no observable difference.  However, 

there are superharmonics of Case 6.3 observed at about / 2.1pf f =  and 2.3 because of 

the present of nonlinear properties in irregular waves.  The subharmonics of Case 6.3, 

with the magnitude about ( )210 oO m η
−  are too small to be observed in Figure 6.5. 

When submergence ratio decrease (Case 6.5, 0.25q = ), the energy of the 

components around the spectral peak ( pf , 1 1.1 pf f= , and 2 1.2 pf f= ) are decrease 

significantly, and the energy of higher harmonics, saying 12.1 p pf f f f= = + = , 

1 22.3 pf f f f= = + = , are increase observably.  Although the nonlinear properties can 

be stated more clearly by analyzing about the numerical data, the results presented here 

only figure out the phenomena for the following discussion about vortex dynamics. 
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Figure 6.5: Wave spectra of Cases 6.1, 6.3 and 6.5 at 0.5 px L= . 
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6.4 Properties of vortices around breakwater 

Vortex dynamics are vital for many subtle applications, such as the mixing process, or 

nutrient transport.  For achieving the goal of studying vortex dynamics, vorticities were 

calculated by the definition 

 v uu
x y

⎛ ⎞∂ ∂Ω = ∇× = −⎜ ⎟∂ ∂⎝ ⎠
 (6.7) 

Figures 6.6 (a) and (b) show the flow field with the vorticity contours of Case 6.4 at 

/ 10.76pt T =  and / 11.27pt T =  respectively.  A clockwise vortex above the breakwater 

was observed in Figure 6.6(a), and a counterclockwise vortex in front of the breakwater in 

Figure 6.6(b). 

A vortex can be both found by observing the swirling velocity in flow field and by 

tracing the maximum absolute value of vorticities (condensed as MAV, the maximum 

vorticity for a counterclockwise vortex and the minimum vorticity for a clockwise one).  

However, as shown in Figure 6.6(b), the swirling center of the vortex, which is at about 

( ) ( )/ ,  / 0.10,  0.68o ox h y h = −  approximately, and the location of the MAV, which is at 

( ) ( )/ ,  / 0.10,  0.71o ox h y h = − , are not identical.  In this chapter, the MAV was chosen to 

find the characteristics of a vortex because it can be traced automatically by numerical 

programming. 
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Figure 6.6: The flow field and the vorticity contours in Case 6.4: (a) / 10.76pt T =  with a 

clockwise vortex above the breakwater; (b) / 11.27pt T =  with a counterclockwise vortex 

in front of the breakwater. 
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Since there are no finer numerical elements close the boundaries to improve the 

resolution within boundary layer, the large-valued vorticities next to the boundaries are 

introduced by the no-slip condition and with no sense about vortex.  Hence, the vorticities 

of the elements next to the boundaries were not taken into account.  

For quantify a vortex, the following definition have to be made.  A circulation Γ  

around a closed curve C  is a scalar that gives a measure of the strength of a vortex, 

defined by Saffman (1992): 

 
C

u dlΓ = ⋅∫  (6.8) 

From Stokes’ theorem, Eq. (6.8) equivalent to the flux of vorticity through the surface s  

bounded by the curve C , so it can be rewritten as: 

 dsΓ = Ω⋅∫  (6.9) 

Equation (6.9) has to be discretized for numerical use with the form (Earnshaw and 

Greated, 1998): 

 
vortex vortex

N N

i i i
i i

A
Ω Ω

Ω
∈ ∈

Γ = Γ = Ω∑ ∑  (6.10) 

where iΓ , iΩ  and iAΩ  are the circulation of a vortex, vorticity and the area of the i -th 

numerical element within a vortex respectively.  NΩ  denotes the number of the 

numerical elemtnes of a vortex, and varies with the vortex strength and the definition of the 

vortical region.  The center of a vortex can be defined as follows. 
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Ω
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Since the circulation of a vortex is affected by the vorticities around it and the 

distance it can extent, the submergence-orbital-displacement amplitude BA  and the 

submergence-orbital-velocity amplitude BU  at the depth (1 ) oy q h= −  were chosen as 

parameters to normalize the circulation of vortex. 

6.4.2  The region of a vortex 

Vertices can be traced automatically by searching the MAV of numerical results in 

each time step.  A procedure was stated here to identify the region of vortices.  The 

procedure is based on an assumption that the contour of the vorticities of a vortex was 

centralized on the MAV.  This also states that the absolute value of the vorticities in the 

region of a vortex is monotonous decreasing from center.  First of all, a guassed location 

bO  and an estimated pace rΔ  within a time step rtΔ  of a vortex have to be calculated 

for performing a good searching.  The guassed location bO  was at 

( ) ( ),  ,  (1 ) ox y r q h r= Δ − + Δ  and ( ) ( ),  ,  (1 ) ox y r q h r= −Δ − − Δ  for the clockwise 

vortices and the counterclockwise vortex at the weather side, and at 

( ) ( ),  ,  (1 )B ox y W r q h r= + Δ − − Δ  and ( ) ( ),  ,  (1 )B ox y W r q h r= − Δ − + Δ  for the 

clockwise vortex and the counterclockwise vortex at the lee side respectively.  The 

estimated pace rΔ  can be obtained by assuming that the vortex was moved with the 

phase velocity of the surface elevation.  Thus the estimated pace rΔ  within the time step 

rtΔ  for a vortex is predicted as following. 

 p rr c tΔ = Δ  (6.12) 

where 2.84 mpL =  is the spectral-peak wavelength, 1.6 spT = , 1/ 64 srtΔ = , and 
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results 2.7 cm 5r xΔ = ≈ Δ  in the present case.  Since effects of viscous and no-slip 

boundary, the true pace of a vortex within time step rtΔ  is smaller than the estimated one.  

The estimated space rΔ  makes the searching process focus on the same vortex.   

The detail of the procedure for determining a vortex was described as follows: 

1. Choose one type of the vortices (clockwise or counterclockwise, at the weather side 

on at the lee side) and assign the guessed location bO ; 

2. Searching the MAV of the area (2 ) (2 )r rΔ × Δ  centralized on bO ; 

3. Trace the MAV and find the global MAV, denotes as 
max

Ω , over the time period 

1RT ; 

4. Define the vorticity threshold TΩ  as a ratio of the global MAV 
max

Ω ; 

5. Find the location of the MAV of the area (2 ) (2 )r rΔ × Δ  centralized on bO  in the 

beginning of the time period 1RT ; 

6. Record the location ( ),  i ix yΩ Ω  of elements as the vortex if the vorticity in this 

location satisfies with the following contrains: 

(1) the vorticity of the element is larger than the vorticity threshold TΩ ; 

(2) the vorticity is smaller than that of the surrounding elements which is nearer bO  

than the location ( ),  i ix yΩ Ω ; 

(3) the element is not isolated in the flow field; 
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7. The properties of the vortex can thus be calculated and will be discussed later; 

8. The location of the MAV was assigned to be the new guessed location bO  of the 

searching process of the next time step; 

9. Repeat Step 5 to Step 8 for tracing the vortices and calculating the properties of the 

vortices. 

The flow field in Figure 6.6 was tested by the procedure and found the vortex region 

as shown in Figure 6.7.  Of the flow field only the elements within the selected vortex 

region were shown.  By this procedure, the vortex can be recognized automatically with 

an applied vorticity threshold. 
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Figure 6.7: The selected region of vortices of Case 6.4: (a) the clockwise vortex at 

/ 10.76pt T = ; (b) the counterclockwise vortex at / 11.27pt T = .  Only the flow field 

within the selected region of the vortices were shown. 



 
 

 129

6.4.3  Determining the threshold 

Although the measure of vortex was defined in Eq. (6.10) and the procedure was 

clearly stated in Section 6.4.2, comparison is needed in order to define a particular 

threshold that makes the region of the vortices identically agrees with the swirling 

velocities of the flow field.  Different thresholds, which are 0.5TΩ = , 0.2, 0.1, 0.05, 0.01, 

max
0.001 Ω , were compared.  The circulations of the clockwise vortex, in Figure 6.7(a), 

and the counterclockwise vortex, in Figure 6.7(b), were calculated using Eq. (6.10) with 

the vortical region selected by different thresholds and compared within a life cycle of the 

vortices. 

Figure 6.8 shows the circulation and Figure 6.9 selected region of the 

counterclockwise vortex.  The results of the clockwise vortex in Figure 6.7(a) were 

shown in Figure 6.8(a).  When 
max

0.5TΩ = Ω  was chosen as the vorticity threshold 

(denotes by dashed line with open circle), the maximum absolute circulation Γ  was only 

3.2 B BU A  and no measure were obtained after 10.95 pt T= .  When 
max

0.2TΩ = Ω  was 

used, the maximum circulation Γ  is 5.3 B BU A  with smoother results.  By taking 

TΩ = 0.1, 0.05, 0.01, 0.001
max

Ω  as the vorticity threshold, the results show similar 

tendency but have slight difference of the magnitudes, and the selected region of the vortex 

in the flow field have to be compared for ensuring a reliable vorticity threshold. 

The circulation of the clockwise vortex in Figure 6.7(b) were shown in Figure 6.8(b) 

with using different vorticity thresholds, and similar results were obtained.  At about 

/ 11.2pt T =  the circulations of the clockwise vortex have a discrepance, which will be 
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discussed latter. 
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Figure 6.8: Circulations with different threshold: (a) the circulations of the clockwise 

vortex in Figure 6.7(a); and (b) the circulations of the counterclockwise vortex in Figure 

6.7(b). 
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From the results of Figure 6.6 and the enlarged one of Figure 6.7, the vorticity 

contours of the vortex above the breakwater are so convex that the region of the vortex can 

be determined easily with the procedure described in Section 6.4.2.  On the contrary, the 

vortex next to the breakwater is not so convex in the formation of the vortex, and is 

difficult to determine the region.  Thus, the vortex in front of the submerged breakwater 

was chosen as the pattern to confirm a reliable threshold. 

Figure 6.9 shows a sequence of plots, which include the flow fields, the vorticity 

contours and the selected region of the vortex, in order to verify the vortical region.  The 

flow field within the selected region of the vortex was denoted by black arrows and 

otherwise gray.  In Figure 6.7(b), swirling velocities centralize at 

( ) ( )/ ,  / 0.10,  0.68o ox h y h = −  were observed and the radius of the vertical is about 

0.05 ~ 0.06 oh .  Hence the threshold was chosen in order to select the elements in this 

region of the vortex with less misunderstanding.  In Figure 6.9(a), the selected region is 

obviously not sufficient to be regarded as a vortex since only the swirling center was 

caught and other part of the vortex was lost by using the threshold 
max

0.2TΩ = Ω .  The 

selected region decided by 
max

0.1TΩ = Ω  in Figure 6.9(b) has similar problem with that 

by 
max

0.2TΩ = Ω .  In general, the extent is larger when the smaller threshold was 

chosen.  However, it can be found that the selected region obtained by the smallest 

threshold 
max

0.001TΩ = Ω  in Figure 6.9(e) includes many elements that can not be 

regarded as part of the vortex, especially at about / 0.1ox h = −  and / 0.6oy h = .  The 

selected region determined by 
max

0.05TΩ = Ω  and 0.01
max

Ω  are similar and good 

enough in describing the region of the vortex.  In the present  work, the threshold 
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max
0.05TΩ = Ω  was chosen as the one for determining the selected region of vortices and 

the circulation calculated by Eq. (6.10) with this vorticity threshold is denoted as 95Γ . 

(a) max
0.2TΩ = Ω  
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Figure 6.9: The vortical region of the counterclockwise vortex in Figure 6.6(b) with 

different vorticity thresholds: (a) 
max

0.2TΩ = Ω ; (b) 
max

0.1TΩ = Ω ; (c) 
max

0.05TΩ = Ω ; 

(d) 
max

0.01TΩ = Ω ; (e) 
max

0.001TΩ = Ω .  The black arrows denote the selected region 

obtained by the vorticity threshold with the procedure in Section 6.4.2. (continued on next 

page) 



 
 

 133

(b) 
max
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Figure 6.9: (continued on next page). 
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(d) 
max

0.01TΩ = Ω  
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Figure 6.9: (continued).
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6.4.4  Circulations at the weather side 

By means of the threshold 
max

0.05TΩ = Ω  and the procedure in Section 6.4.2, the 

vortex circulation and the associated properties of vortices can be measured.  Figure 6.10 

shows the circulations, in which contains the life cycles of two clockwise vortices ( −Γ ) 

and one counterclockwise vortex ( +Γ ) at the weather side, in which the clockwise vortices 

are formed above the breakwater and the counterclockwise vortex are formed in front of 

the breakwater. 

The variation of the circulation 95Γ  can be compared with the surface elevation at 

/ 0px L = .  The maximum circulation of the clockwise vortex ( −Γ ) in / 10.4 ~ 11.3pt T =  

was measured at / 10.76pt T =  and has a time shift / 0.12pt TΔ =  with the wave crest, 

which is at / 10.64pt T = .  The maximum circulation of the counterclockwise vortex was 

measured at / 11.22pt T =  and has a time shift / 0.07pt TΔ =  with the wave trough, 

which is at / 11.15pt T = .  The time shifts were obviously introduced by viscosity of fluid.  

Figure 6.10 also indicates that at the weather side the clockwise vortex ( −Γ ) is driven by 

the positive horizontal velocities beneath the wave crest, and the counterclockwise vortex 

the negative horizontal velocities beneath the wave trough. 

The circulation of the clockwise vortex ( −Γ ) in / 11.3 ~ 12.0pt T =  is shown to 

demonstrate that the counterclockwise vortex was affected by the clockwise vortex after 

/ 11.44pt T = , and further description and comparison were stated in Section 6.4.5.  The 

discrepancy at / 11.18pt T =  of the counterclockwise vortex at the weather side will be 

discussed later by the plots of flow fields with the vorticity contours. 
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Figure 6.10: The circulations 95Γ  of the clockwise and counterclockwise vortices at the 

weather side in Case 6.4.  The wave elevation was measured at / 0px L = . 

6.4.5  Motions of the vortices at the weather side 

Figure 6.11 and Figure 6.12 show sequences of plots of flow fields with the vorticity 

contours.  The surface elevation at / 0px L =  and the circulation 95Γ  of the vortices 

were marked by cross and were presented within the breakwater.  The flow fields were 

distinguished by colors: the black arrows denote the selected region of the vortex and the 

gray arrows otherwise. 

Figure 6.11 shows the life cycle, from formation to breakdown, of the clockwise 

vortex, which has been presented in Figures 6.6(a) and 6.7(a).  In Figure 6.11(a), the 

vortex formed as a result of the positive surface elevation and the associated positive 
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horizontal velocities.   
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Figure 6.11: A sequence of flow fields with the vorticity contours shows the life cycle of 

the clockwise vortex indicated in Figure 6.6(a).  The surface elevation and the circulation 

95Γ  were denoted both in mark and the location of the vortical centers ( )/ ,  /c o c ox h y h  

are shown.  The phase of each flow fields is: (a) / 10.53pt T = ; (b) / 10.65pt T = ; (c) 

/ 10.76pt T = ; (d) / 10.92pt T = ; (e) / 11.08pt T = . (continued on next page)
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Figure 6.11: (continued on next page). 
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(e) ( ) ( )/ ,  / 0.067,  0.780c o c ox h y h =  
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Figure 6.11: (continued). 

When the wave crest arrived, the selected region of the vortex enlarged with higher 

circulation and the location of the MAV detached from the corner as shown in Figure 

6.11(b).  The vortex reached the maximum circulation 95Γ  at / 10.76pt T =  in Figure 

6.11(c) and centralized at ( ) ( )/ ,  / 0.113,  0.794c o c ox h y h = .  The extent of the vortex in 

Figure 6.11(d) is wider than that in Figure 6.11(c) and with the smaller MAV because the 

vorticity was convected by flow motion.  The swirling center at about / 0.06ox h =  in 

Figure 6.11(d) was parted from the location of the MAV.  Although the circulation can be 

measured at the stage shown in Figure 6.11(e), there are no clockwise-vortical velocities.  

This denotes that the selected region of a vortex base on vorticity is not well-described if 

the vorticities are small. 
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Figure 6.12: A sequence of flow fields with the contours of vorticities shows the life cycle 

of the counterclockwise vortex indicated in Figure 6.6(b).  The surface elevation and the 

circulation 95Γ  were denote both in mark and the location of the vortical centers 

( )/ ,  /c o c ox h y h  were showed.  The phase of each flow fields is: (a) / 11.07pt T = ; (b) 

/ 11.14pt T = ; (c) / 11.18pt T = ; (d) / 11.27pt T = ; (e) / 11.38pt T = ; (f) / 11.44pt T = ; (g) 

/ 11.53pt T = . (continued on next page)
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Figure 6.12: (continued on next page). 
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Figure 6.12: (continued on next page). 
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(g) ( ) ( )/ ,  / 0.071,  0.789c o c ox h y h = −  
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Figure 6.12: (continued). 

The life cycle of the counterclockwise vortex, which has been presented in Figure 

6.6(b) and Figure 6.7(b), is shown in Figure 6.12.  The counterclockwise vortex in Figure 

6.12(a) was formed in front of the breakwater and introduced by the negative velocities 

which followed with the coming wave trough.  When the wave trough arrived in Figure 

6.12(b), the location of the MAV, which is at the corner of the breakwater, differs from that 

of the swirling center, which was at about ( ) ( )/ ,  / 0.5,  0.69o ox h y h = − .  This resulted 

the vorticity contour in Figure 6.12(b) are neither convex nor centralized at the location of 

the MAV. 
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Figure 6.13: The circulations 95Γ  of the clockwise vortex and the counterclockwise 

vortex at the lee side in Case 6.4.  The wave elevation was measured at / 0.5px L = . 

In the case of the counterclockwise vortex at the weather side, large positive 

vorticities are initially induced by the negative horizontal velocities above the breakwater 

and convected into the deep water region in front of the breakwater.  Thus, the vorticities 

convected downward and introduced the swirling velocities in the deep water.  However, 

the velocities above the breakwater continuously decreasing until reaching the minimum at 

the wave trough and the MAV reaches its maximum value at the corner of the breakwater, 

and results the discrepancy at / 11.18pt T =  of the circulation of the counterclockwise 

vortex in Figure 6.10.  Figure 6.12(c) offers a clear view of the discrepancy, and shows 

that the procedure described at Section 6.4.2 cannot catch the all of the vortical region 

below / 0.69oy h =  since the contours of the vorticities were not convex and not 
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centralized on the MAV.  Thus the lack of the selected elements introduces the circulation 

measured by using Eq. (6.10) has a value smaller than that at / 11.14pt T =  or 11.22.  

The same phenomena appeared at the lee side of the breakwater when the positive 

velocities introduce a clockwise vortex behind the breakwater, and thus introduced a 

smaller measures within the life cycle of a vortex.  This distortions can be seen in Figure 

6.10 at / 11.18pt T =  of the counterclockwise vortex at the weather side and in Figure 

6.13 at / 11.60pt T =  of the clockwise vortex at the lee side. 

Although the vorticity contours are not convex and the swirling center is parted from 

the location of the MAV in Figure 6.12(d), the maximum circulation was well-measured 

and the region of the vortex was well-described.  In Figure 6.12(e), the counterclockwise 

vortex was lifted by the upward vertical velocities and another clockwise vortex, which 

was with the circulation of duration / 11.3 ~ 12.0pt T =  shown in Figure 6.10, was formed 

at the corner of the breakwater.  Swirling velocities of the counterclockwise vortex can be 

found at about ( ) ( )/ ,  / 0.14,  0.74o ox h y h = −  and the vortical structure is near disappear, 

although the contours of the vorticities are convex enough and centralized at the location of 

the MAV.  In Figure 6.12(f) of the timing / 11.44pt T = , the vorticity was strongly 

affected by the clockwise vortex at the corner. 

In Figure 6.12(g), the vortical structure of the counterclockwise vortex was not 

observed and the contours of the positive vorticities were affected by the negative one, 

which introduced by the clockwise vortex at the corner.  Thus, the circulation of the 

region within the contours of the positive vorticities decreases in higher speed than that 
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before / 11.44pt T ≈ .  The phenomenon can be revealed by measuring the decreasing rate 

of the circulation of the counterclockwise vortex ( +Γ ) in Figure 6.10, where two 

decreasing rate are clearly distinguished.  Before / 11.44pt T = , the counterclockwise 

vortex was not affected by the clockwise vortex, which formed at about / 11.3pt T = , and 

was with a decreasing rate 2 -2
95 / 0.008 m sd dtΓ ≈ − .  After / 11.44pt T =  as shown in 

Figure 6.12(f) and 6.12(g), the clockwise vortex at the corner of the breakwater became 

stronger and sped up the decreasing rate of the circulation of the counterclockwise vortex, 

which is 2 -2
95 / 0.026 m sd dtΓ ≈ − .  It seems that the successive-formed clockwise 

vortex increased the decreasing rate about three times the original decreasing rate. 

6.4.6  Circulations at the lee side 

At the lee side of the breakwater, clockwise vortices are formed behind the submerged 

breakwater, and counterclockwise vortices are formed above the submerged breakwater.  

Figure 6.13 shows the circulation of a clockwise vortex ( −Γ ) and a counterclockwise 

vortex ( +Γ ) of Case 6.4 with the surface elevation at / 0.5px L = .  The discrepancy at 

/ 11.60pt T =  of the clockwise vortex at the lee side is caused by the same reason of that of 

counterclockwise vortices at the weather side. 

At the weather side, the circulation-decreasing rate of a counterclockwise vortex in 

front of the breakwater was affected by the successive-formed clockwise vortex at the 

corner of the breakwater.  Similarly, the circulation-decreasing rate of the clockwise 

vortex behind the breakwater was affected by the successive-formed counterclockwise 

vortex.  In the region of the lee side, typically counterclockwise vortices should be 
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formed and strengthened at the wave trough.  However, the formation process of 

counterclockwise vortex in Figure 6.13(b) was diminished by the higher order free wave in 

the trough and results a longer formation process.  It took about / 0.6pt T =  for the 

counterclockwise vortex to reach the maximum circulation 95Γ . 

The clockwise vortex ( −Γ ) in Figure 6.13(b) formed with the higher increasing rate, 

which is about 2 -2
95 / 0.054 m sd dtΓ ≈ , and was resulted by the sharpened wave crest.  

The breakdown process of the clockwise vortex has two decreasing rates separated at about 

/ 12.0pt T = , when the successive-formed counterclockwise vortex was strong enough.  

Before / 12.0pt T = , the circulation of the counterclockwise vortex was with the 

decreasing rate 2 -2
95 / 0.006 m sd dtΓ ≈ − , and with the decreasing rate 

2 -2
95 / 0.020 m sd dtΓ ≈ −  after / 12.0pt T = .  Similar with the results at the weather side, 

the successive-formed counterclockwise vortex increased the decreasing rate of the 

clockwise vortex about three times the original decreasing rate. 

6.4.7  Properties beneath the irregular waves 

Since the procedure in Section 6.4.3 was well-programmed and has the ability to 

automatically detect vortices, the circulations of the vortices around the breakwater in the 

period 1RT  can be quantified and shown in Figure 6.14. 

The life cycle of the vortices in / 10 ~ 14pt T =  have similar pattern with that shown 

in Figure 6.11, in which four large waves were observed in the surface elevation.  One of 

them has been discussed detailly in Sections 6.4.4 to 6.4.6.  In / 8 ~ 10pt T = , the vortices 

formed by the small waves can be distinguished by zero-valued circulation.  In 
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/ 10 ~ 14pt T = , although the circulations were seldom zero, the clear pattern makes the life 

cycle of the vortices be identified with no difficult.  However, after / 14pt T = , the 

successive small waves resulted that the vortices lasted for longer duration since the 

associated velocities were not huge enough to eliminate the vortex.  The clockwise vortex 

in / 16 ~ 18pt T =  strongly evidenced this phenomena.  Similar phenomena was 

appeared in the vortices at the lee side in Figure 6.14(b) if a large wave was followed by 

several small waves.  It shows that the wave sequences or wave phases are important for 

determining the vortex pattern or the last duration of a vortex. 

Figure 6.14(b) shows the circulations at the lee side with the surface elevation 

measured at / 0.5px L = .  The shallow water region made the subharmonics and 

superharmonics take place, and resulted the sharpened crest and the floated trough.  In 

/ 11 ~ 15pt T = , there are four large wave components, which has the wave crest exceed 

0.7 1/3H  and three waves with small heights and shorter periods in between.  The vortices 

formed in / 11 ~ 15pt T =  were with similar pattern of the vortices discussed in Section 

6.4.6.  Note that the sharpened crests made the maximum circulations 95Γ  of the 

clockwise vortex ( −Γ ) were near that of the counterclockwise vortex. 

For studying irregular waves, the statistical manner is inevitable.  Because the 

reflected waves in between the wavemaker and the breakwater has not been eliminated, the 

duration RT  of the irregular waves has only 16 s, which is not sufficient for a good 

statistical study.  Hence, the statistical properties of vortex dynamics were not considered 

herein. 
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Figure 6.14: The variation of vortex circulation 95Γ : (a) at the weather side, and (b) at 

the lee side of the breakwater in Case 6.4.  The wave elevation is measured at / 0px L =  

and / 0.5px L =  respectively. 



Chapter 6─Interaction of irregular waves and a submerged breakwater 
 

 150

6.5 Chapter remark 

The main conclusions from the study of this chapter can be summing up briefly: 

1. Base on the repeatable property of the numerical wave tank, the reflected waves were 

identified by subtracting the surface elevation of Case 5.1, which was the pure incident 

waves, from that of Cases 5.2 to 5.5 without assumptions. 

2. By comparing the reflected coefficients spatially, the time period 1 12 ~ 28 sRT =  was 

without the reflected waves from the wavemaker with the spectral-peak phase velocity 

1.77 m/spc =  and the distance 16 m  between the wavemaker and the breakwater. 

3. The vorticity-major method were stated and the vorticity threshold 
max

0.05TΩ = Ω  

applied.  By means of this method, the region of the vortices were selected 

automatically and the properties of the vortices can be calculated if the vortex centered 

on the location of the MAV. 

4. The normal pattern of the lifecycle of the vortices were as results shown in Figures 6.10 

and 6.13.  At the both sides of the breakwater, although the lifecycle of the vortices was 

different, the breakdown process of the vortices next to the breakwater was always 

affected by the formation process of that above the breakwater, and had two 

distinguishable breakdown rate. 

5. The lifecycle within the irregular wave train had similar patterns before large wave 

packet, and differed while large wave followed by small waves, which induced the flow 

motion not sufficient to diminish the vortex formed by large waves.  Thus, the vortex 
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formed by large waves last for a longer duration. 

 



Chapter 6─Interaction of irregular waves and a submerged breakwater 
 

 152

 

 



 
 
 

 153 

Chapter 7 Vortex dynamics above rigid 
vortex ripples 

 

7.1 Dimensional analysis 

As bed flow moves back and forth above sandy bed with the Shields number (defined 

in Eq. (7.3)) larger than a critical value, the shear stress make sands roll over bed, pile 

together and then form several small bumps.  This is an initial stage of ripple formation.  

If the distance or wavelength of the bumps was large than the bed orbital amplitude, a 

steady streaming (Rousseaux et al., 2004), was formed between the bumps and rolling 

sands were transported by the shear stress of fluid.  In this stage, ripple pattern was 

dominant by sand properties, i.e. medium grain size 50d , particle density sρ , and fluid 

density ρ . 

When the bump’s height is large enough, the oscillating flow forms separation 

“That is the essence of science: ask an
impertinent question, and you are on the
way to the pertinent answer.” 

─Jacob Bronowski,
 British mathematician
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bubbles of both sides of the bumps.  Reversal flow of the separation bubbles introduces 

near-bed offshore (onshore) flow while the free stream is in onshore (offshore) direction.  

Consequently, the shear stress is increase of both slopes of the bumps and results sediment 

transport from the flat bed to the bumps’ top.  This procedure is treated as a steepening 

process, and goes on until the slopes of ripples reach the angle of repose, which is the 

maximum angle of a stable slope of particles. 

While the same hydraulic condition last for only a short duration (less than about 

3(10 )O tf , which was suggested by Rousseaux, 2006) and the steepness r rH L  less than 

0.1, an equilibrium state is reached and named as rolling-grain ripples, in which the ripple 

form is only base on the grain properties and length of the almost horizontal troughs are 

always irregular since the initial piled locations are random. 

While two rolling-grain ripples are close enough, with a distance or wavelength rL , 

or the hydraulic condition are sufficiently huge, say 0.4o rA L > , vortices form on the 

both slopes of the ripples.  If the vortex is strong enough, sands are picked-up by the 

vortices and settle down when the vortex is weak.  A new sharpening process is formed 

by the organized vortices until the new equilibrium state is reached, and named as vortex 

ripple. 
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Figure 7.1: The ripple geometry (not to scale) and the associated parameters. 

Regarding waves over vortex ripples as shown in Figure 7.1, the following 

dimensional quantities were considered: 

 H  or 1/3H  ─wave height or significant wave height ([ ]L ) 

 ω  or pω  ─angular frequency or spectral-peak angular frequency ( 1[ ]T − ) 

 υ  ─fluid kinematic viscosity ( 2 1[ ]L T − ) 

 rH  ─ripple height ([ ]L ) 

 rL  ─ripple wavelength ([ ]L ) 

 oA  ─bed-orbital-displacement amplitude ([ ]L ) 

 oU  ─bed-orbital-velocity amplitude ( 1[ ]LT − ) 

 oh  ─still water depth ([ ]L ) 

 sk  ─the Nikuradse roughness ([ ]L ) 
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where the bracket denotes the dimension, L  the length, and T  the time.  

There are nine dimensional quantities and two fundamental dimensions, time and 

space, in such a problem.  Hence, seven nondimensional quantities can be formed.  

Chosen ω  as the reference of time and oA  as the reference of length, we have 

 
2

,  ,  ,  ,  ,  o o o o or

o o r r r s

A U h A AHHf
A A H L L k

ω
υ ω

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (7.1) 

The parameter o oU Aω  is unit for linear regular waves, and / 2sinh( )o oH A kh=  is 

determined when a frequency was chosen.  For vortex ripples, the Nikuradse roughness 

was defined as 220 /s r rk H L=  (Van Rijn, 1993).  Since the interaction of flow and 

ripples are major within the vortex layer beneath 2 ry H<  (Ranasoma and Sleath, 1992; 

Davies and Thorn, 2005) or sy k<  (Marin, 2004), which is far smaller than the water 

depth oh , the water depth became unimportant.  The parameter 2
oAω υ  is defined as the 

bed-orbital Reynold number in the present study.  The parameter o sA k  is used to 

confirm whether turbulent effects take a leading part in or ont.  If 30o sA k > , 

momentum transfer is no more dominated by vortex but by random turbulent process 

(Trowbridge and Madsen, 1984). 

If sediment transport were considered, the dimensional analysis becomes more 

complex and four new dimensional quantities have to be concerned: 

 ρ  ─density of fluid ( 3[ ]ML− ) 

 50d  ─medium grain diameter ([ ]L ) 
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 sρ  ─density of the sediment ( 3[ ]ML− ) 

 sw  ─settling velocity ( 2 1[ ]L T − ) 

where M  denotes the mass.  And implies three non-dimensional quantities: the specific 

density /ss ρ ρ= ; the ratio of bed-orbital-displacement amplitude to median grain size, 

50/oA d ; and the normalized settling velocity /s ow U . 

In general, the relative density s  is about 2.65 for the density of glass spheres or 

quartz sand to that of water, and is constant in the present study.  The ratio of 

bed-orbital-displacement amplitude to medium grain diameter is important for 

rolling-grain ripple, and not for vortex ripple.  This quantity is replaced by the 

ripple-adjusted Shields parameter (Nielsen, 1986): 

 2

1
r

r

r

H
L

θθ
π

′
=
⎛ ⎞

+⎜ ⎟
⎝ ⎠

 (7.2) 

where the maximum Shields parameter θ ′  and the maximum shear stress maxτ  are: 

 max

50( 1)g s d
τθ

ρ
′ =

−
 (7.3) 

and 

 21
2b w of Uτ ρ′ =  (7.4) 

The coefficient wf  is the resistance factor and defined as follows. 

For laminar flow over smoothed bed: 

 0.52w of Re−=  (7.5a) 
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For rough bed (Swart,1974): 

 0.194exp( 5.977 5.213( / ) )w o sf A k −′= − +  for / 1.59o sA k′ >  (7.5a) 

The skin roughness 502.5sk d′ =  is the roughness along ripple surface.  The 

ripple-adjusted Shields parameter was used for confirmed that no sediment transport was 

occurred beneath the tested hydraulic conditions physically.  Since the present numerical 

model can simulate only rigid ripple, the numerical settling velocity, which used to identify 

sediment rate, was not considered herein. 
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Figure 7.2: Schematic diagram (not to scale) of a numerical wave tank for studying 

irregular waves over rigid vortex ripples. 

By means of the curvilinear coordinate mentioned in Chapters 2 and 3, this chapter 

examined the vortex dynamic of waves over ripples.  Figure 7.2 shows the schematic of 

the numerical model for studying irregular waves over rigid vortex ripples.  Ten ripples 

were set up.  The x -axis is measured horizontally in the direction of wave propagation 

from the center of the ripples.  So that the center of the ripples is 0x =  and two edges 
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are at 5 rx L= ± .  The distance between wavemaker and ripples is about 2 pL , where pL  

is the spectral-peak wavelength.  The grids for studying waves over rippled beds are 

generated and shown in Figure 7.3.  The y -axis is measured vertically upwards from 

ripple trough.  The still water depth is oh .   

7.2 Ripple form 

The natural shape of vortex ripple and the equilibrium state of ripple steepness 

r rH L  should be taken into account for a good simulation.  The approximated form of 

natural sea ripples are suggested by many researchers, and the Sleath form (Sleath, 1984) 

were used  

 ( )0.5 sin 2o r o rx H Lξ πξ= −  (7.6a) 

 ( )( )0.5 cos 2 1r o ry H Lπξ= +   for rx L≤  (7.6b) 

 0y =   for rx L>  (7.6c) 

where oξ  is a shape factor used to describe the ripple surface. 

The bottom boundary in Figure 7.3 is the bed form generated by Eq. (7.6).  The 

ripple shape with approximately triangular crest and flatten trough satisfies with the 

evidence obtained by the experiments of Stegner and Wesfreid (1999).  The equilibrium 

state of ripple steepness r rH L  has been stated with different manner, experiments 

(Wiberg and Harris, 1994; Sistermans, 2002; Davis, 2005; Admiraal et al., 2006; Lacy et 

al., 2007), field measurements (Traykovski et al., 1999; Hanes et al., 2001; Ardhuin et al. , 

2002; Masselink et al., 2007; Traykovski, 2007).  An acceptable pattern of vortex ripple is 
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that the ripple wavelength is about the bed-orbital-displacement amplitude, and the ripple 

steepness is about 0.17 (Wiberg and Harris, 1994).  By using the formula of Khelifa and 

Ouellet (2000) with medium sand size 50 242 md μ= , which is a finer sand case of Davis’ 

(2005) study, we have 

 
( )

2 2

3
501 3.92 10

o oU U
s gd

ψ −= =
− ×

 (7.7 a) 

 ( )( ) ( )2
1.9 0.08 ln 1 0.74ln 1r

o

L
A

ψ ψ= + + − +  (7.7 b) 

 ( ) ( )20.32 0.017 ln 1 0.142ln 1r

o

H
A

ψ ψ= + + − +  (7.7 c) 

Although the present numerical model is using for solid and impermeable bed only, these 

parameters, r oL A  and r rH L , were referred to design reasonable test cases in this 

study. 
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Figure 7.3: Numerical grids about the ripples. 
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7.3 Validation and numerical conditions 

With applying curvilinear boundary to form rippled bed, as shown in Figure 7.3, the 

present numerical model can deal with the problem that waves propagating over ripples.  

For ensuring the accuracy of the present model, validation was carried out by comparing 

the numerical results with experimental one.  Marin (2004) made a series of experiments 

ranged from transitional to full turbulent flow.  Test 1, a transitional flow case, of Marin’s 

tests was compared with the numerical results with the identical wave condition and was 

shown in Figure 7.4, where /δ υ ω= .  The agreement in Figure 7.4 indicates the 

present numerical model is good in describing this problem within the transitional regime. 
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Figure 7.4: Comparison of numerical results (solid line) and the experimental one (solid 

circles) of Marin (2004, Test 1).  The associated conditions are with 27 cmoh = , 

4.8 cmH = , 1.08 sT = , 5.38Ur = , / 0.947o rA L = , 0.3 cmrH = , 1.8 cmrL = . 
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The numerical conditions in this study were built base on this comparison and the 

equilibrium ripple pattern mentioned in Section 7.2.  When a wave with period 2.0 sT = , 

wave height 4 cmH =  propagates unidirectionally in water with the depth 30 cmoh = , 

the bed orbital amplitude of this wave is 3.27 cmoA =  and thus the ripple wavelength 

was designed to be 3 cmrL =  to satisfy 1o rA L ≈ .  By means of Eq. (7.7) with 

3.27 cmoA = , we have a steepness 0.153r rH L ≈ , hence the ripple height is about 

0.45 cmrH = .  For the sake of simplicity, the ripple height 0.5 cmrH =  was selected, 

which led to the steepness 0.167r rH L ≈  and still within the equilibrium state 

0.15 ~ 0.17r rH L ≈ . 

Table 7.1: List of wave conditions. 

Case Type 1/3H oA  /o rA L Ur  oRe o rU L  
  (cm) (cm)    ( 2cm /s ) 

7.1 1.5 1.23 0.41 5.90 469 11.6 
7.2 4.0 3.27 1.09 15.72 3338 30.83 
7.3 

Regular 
5.5 4.50 1.50 21.62 6311 42.39 

7.4 1.5 1.02 0.41 5.90 333 9.8 
7.5 4.0 2.86 1.09 15.72 2432 25.7 
7.6 

Irregular 
5.5 4.12 1.50 21.62 4703 34.5 

 

Three regular-wave cases, Cases 7.1 to 7.3 with 0.41,  1.09,  1.50r oL A =  

respectively, were tested to reveal the properties on and off the equilibrium state.  

Although some researchers stated that ripple form beneath irregular waves was differed 

from that of regular waves, the bedform was also used for irregular-wave cases in order to 

have an identical environment and comparable results.  The bed orbital properties of 

irregular waves defined in Chapter 4 were applied herein: 
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η ω
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The non-dimensional quantities, oRe  and o sA k , of the listed cases are ploted in 

Figure 7.5 and are in transitional regime.  This indicated that the present numerical model 

can simulate these flow motion very well.  Since the parameter o sA k  were not 

exceeded over 30, the flow or momentum transfer were dominated by organized vortex, 

not by random turbulent process. 
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Figure 7.5: Delineation of flow regime proposed by Davies (1980), indicating the 

boundaries between laminar, transitional and rough turbulent oscillatory flow, in which 

solid circle denotes Marin (2004, Test 1), and solid triangles the listed cases. 
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7.4 Vortex properties above ripples 

The well-defined properties of vortex were described in Chapter 6 and used here to 

reveal the vortex dynamics above ripples.  The vorticity is defined as  

 v u
x y

∂ ∂Ω = −
∂ ∂

 (7.9) 

The vorticity threshold 
max

0.05TΩ = Ω  in order to define the region of a vortex was 

confirmed in Section 6.4.3.  Applying the threshold, the circulation of a vortex can be 

defined as:  

 95
vortex

i i
i

AΩ
∈

Γ = Ω∑  for i TΩ ≥ Ω  (7.10) 

where iΓ , iΩ  and iAΩ  are the circulation of a vortex, vorticity and the area of the i -th 

numerical element within a vortex respectively. 

7.4.1  Vortex circulation 

Figure 7.6 shows the temporal variation of circulations of the three regular-wave cases.  

The surface elevation at / 0rx L =  was shown to compare the phase difference of the 

surface elevation and the circulations.  The circulations can be regarded as the strength of 

vorticies, and the process from formation to breakdown of vortices can also be stated by 

the variation as well. 
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Figure 7.6: Circulations of counterclockwise vortices ( +Γ , solid line) and clockwise 

vortices ( −Γ , dashed line): (a) Case 7.1 ( 3 21.16 10  m /o rU L s−= × ); (b) Case 7.2 

( 3 23.08 10  m /o rU L s−= × ); (c) Case 7.3 ( 3 24.24 10  m /o rU L s−= × ).  The surface elevation 

was measured at / 0rx L = . (continued on next page) 
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(c) 
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Figure 7.6: (continued). 

Comparing to Chapter 6, the circulation of vortices above ripples are more disturbed.  

This disturbed was resulted by the grid resolution and by the vortex properties above 

ripples.  Although it is good enough to describe the boundary layer above ripples, as 

shown in Figure 7.4, the grid resolution is not sufficiently good to describe the variation of 

vorticities, which changes quickly about ripple surface.  Around a corner of a submerged 

breakwater, the vortices Within a large wave can be distinguished easily since only one 

vortex, either clockwise vortex or counterclockwise vortex, dominates the flow.  However, 

series ripples introduce series vortices.  When waves propagating over ripples, vortices 

were formed next to each other and were only with a phase difference about /rL cφ ωΔ = , 

where c  is the phase velocity of waves.  In the regular-wave cases, the time difference is 

about 0.056φΔ = .  Although the method described in Section 6.4.2 can identify the 

region of a vortex, the results in Figure 7.6 show the method still have some discrepancy of 
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vortex recognition. 

As afore-mentioned, Case 7.2 was taken as the equilibrium state of regular waves in 

this hydraulic condition.  Since the bedform prescribed by Eq. (7.6) is symmetric, the 

difference of circulation is determined by the asymmetric property of free stream, which is 

resulted by the Stokes wave.  Consequently, the asymmetric property is increase if the 

Ursell number is large enough as Case 7.3, and it is nearly symmetric if the Ursell number 

is small as Case 7.1.  Hence, the circulations of Case 7.3 shown in Figure 7.6(c) show 

large difference in magnitude, and that of Case 7.1 shown in Figure 7.6(a) only a bit 

difference. 

The process of formation and breakdown of the vortices above ripples is similar since 

the major effects were dominated by oscillating flow motion.  In Figure 7.6(b), maximum 

circulation of the clockwise vortex in equilibrium ripple form (Case 7.2) is about 0.4 o rU L .  

Similar phenomenon can be found in Figure 7.6(c).  Although the bed-orbital-velocity 

amplitude is larger than that of Case 7.2, the maximum vortex strength is limited at 

0.4 o rU L .  The results denote that the vortex development was limited by the ripple form 

as well as the velocity of the free stream.  Similar results can be observed in the following 

section with the velocity field and the vorticity contours. 

7.4.2  Flow field and vorticity contours 

Detailed flow motion above a ripple within oscillatory waves has been stated clearly 

by Van der Werf et al. (2007).  In this study, we focus on the flow motion and the 

associated circulations of vortex, which strongly affects the picked-up and settling process 
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of sediment transport.  Figure 7.7 shows different phases of the velocity field and 

vorticity contours beneath the surface elevation at / 0rx L =  of Case 7.2 shown in Figure 

7.6(b).  Seven phases were selected for discussion.  Because the surface elevation is in 

phase with the associated near-bed free stream velocity, we used the surface elevation to 

evidence the near bed flow motion. 

The free-stream velocity was increase in / 6.281t T =  and shown in Figure 7.7(b), in 

which the large near-bed vorticities were introduced by the no-slip condition with large 

near-bed velocities.  A separation bubble formed against ripple lee slope, and this is the 

first stage that a clockwise vortex can be measured by the procedure showed in Section 

6.4.2.  The free stream velocity reached the maximum in / 6.347t T = .  After a while, 

the circulation of the vortex has its largest value 95 0.399o rU LΓ =  at / 6.375t T =  

shown in Figure 7.7(c).  Note that the center of the vortex is close to the ripple lee slope 

and the extent of the vortex is small than the ripple wavelength.  Comparing with Figure 

7.7(b), the vortex was extended and shifted toward ripple center / 0rx L = .  Furthermore, 

the reversal flow induced by the separation bubble were on offshore direction and 

introduced the near bed positive vorticities, and the negative vorticities extended all over 

the ripple surface. 

Pass the wave crest or the maximum circulation, the free stream velocity was 

decreasing but was not yet zero.  At / 6.5t T =  shown in Figure 7.7(d), the negative 

vorticities were transferred to higher location and the swirling velocities had an extent 

about a ripple wavelength.  Because the spatial phase difference introduced by wave 
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propagating, the magnitude of negative vorticities around the ripple crest at / 0.5rx L =  is 

larger than that at / 0.5rx L = − . 

Of Figure 7.6(e), the remained circulation dominated the flow, and the vortex became 

a weak swirl with large extent at higher location.  As discussed in Section 6.4.5, the 

smaller magnitude of vorticity probably introduced the discrepancy of the calculated 

vortex center ( ),  c cx y  and the swirling center.  The calculated vortex center was at 

( ) ( )/ ,  / 0.21,  0.10c r c rx L y L = − , and the swirling center is at about 

( ) ( )/ ,  / 0.2,  0.25r rx L y L = −  by observing Figure 7.7(e), where cx , cy  are the 

measured vortex center and defined in the following section.  Clearly, the calculated 

vortex center is lower than the swirling center in this phase. 

When the flow moves back, the counterclockwise vortex was formed and dominated 

the flow.  The counterclockwise vortex at the maximum circulation 95Γ  is shown in 

Figure 7.7(f).  The counterclockwise vortex was formed against the ripple stoss slope and 

centered at ( / ,  / ) (0.094,  0.140)c r c rx L y L = . 
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Figure 7.7: The surface elevation, the flow fields, and vorticity contours of Case 7.2 with 

(a) the surface elevation at / 0rx L = , and flow field at (a) / 6.281pt T = , (c) 

/ 6.375pt T = , (d) / 6.500pt T = , (e) / 6.563pt T = , (f) / 6.906pt T = , (g) / 7.063pt T = , as 

well as (h) / 7.125pt T = . (continued on next page) 
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Figure 7.7: (continued on next page). 
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Figure 7.7: (continued). 

Similar to the clockwise vortex, the circulation of the counterclockwise vortex is 

decreased but with larger extent in Figure 7.7(g).  When the vortex was ejected to higher 

region in Figure 7.7(h), the counterclockwise vortex is almost disappeared.   

7.4.3  Migration of vortex center and strength variation 

By tracing the center of a vortex defined in Eq. (7.11), the trajectory of vortex is able 

to be established.  The vortex trajectories can used to realize the vortex motion, the 

energy transfer, and the further study may reveal the equilibrium state if the process of 

sand transport is considered.  Similar to circulations, the trajectories were also dominated 

by the selected region of vortex and the grid resolution.  Although some discrepancy of 

trajectory is inevitable, the tendency can be stated. 

Figure 7.8 shows the trajectories of the measured vortex center of the regular wave 

cases, Cases 7.1, 7.2 and 7.3.  In Figure 7.8(b), three stages of vortex motion were marked 

by −Ι , −ΙΙ , −ΙΙΙ  and +Ι , +ΙΙ , +ΙΙΙ  for the clockwise vortex and the counterclockwise 

vortex respectively.  The center of a vortex can be defined as: 
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where iΓ , ixΩ  and iyΩ  are the circulation of a vortex and the position of the i -th 

numerical element within a vortex respectively. 

Of the first stage, −Ι  or +Ι , the circulations of the vortices are from a small initial 

value to its maximum as the circulation shown in Figure 7.6, and the vortices were moved 

from ripple slope side toward ripple trough, which can be found at Figure 7.7.  This stage 

can also be stated as the formation process.  Of the beginning of the formation, the 

vortices formed near the ripple slope and moved toward the ripple trough as the increasing 

of the free stream velocity.  Comparing the trajectories of vortex center, the maximum 

circulations do not appear at the trough but the slope side.  This normally results sand 

picked-up process and change the ripple form. 

Of the second stages, −ΙΙ  and +ΙΙ , the vortices moved from the ripple slope side to 

the ripple center / 0rx L = .  Since the center of vortex were measured by weighting with 

vorticity, the results show the vorticities were convected and extended to cover all ripple 

region as shown in Figure 7.7(d).  The vortex region were extended as well but limited by 

the ripple crest and by the vortices at / 1rx L = ± . 
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Figure 7.8: Trajectories of vortex center and the magnitude of circulations denoted by 

open circle with different size: (a) Case 7.1 ( 3 21.16 10  m /o rU L s−= × ); (b) Case 7.2 

( 3 23.08 10  m /o rU L s−= × ); (c) Case 7.3 ( 3 24.24 10  m /o rU L s−= × ).  Solid and dashed line 

showed the trajectory of vortex center calculated by Eq. (7.11) and open circles denote the 

circulation determined by Eq. (7.10). 
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In the third stage, −ΙΙΙ  and +ΙΙΙ , the circulation was small and moved toward ripple 

crest.  Note that in small vorticity the method underestimates the location of vortex center, 

which is lower than the swirling center as shown in Figure 7.7(e).  However, the small 

circulation denotes that vortices are about breakdown. 

7.5 Statistics results of vortex strength beneath irregular 

waves 

Cases 7.4, 7.5 and 7.7 cannot be processed only by the methods using to deal with the 

results of Cases 7.1, 7.2 and 7.3, because wave elevations are not periodic and the 

associated vortex characteristics are not regular.  Figure 7.9 states the randomness of 

irregular waves properly.  The circulations of counterclockwise vortices ( +Γ ) and 

clockwise vortices ( −Γ ) were measured automatically with the applied vorticity threshold.  

Since the ratio of ripple height to water depth can be ignored, the reflected waves 

introduced by ripples were neglected as well.  Hence, the irregular-wave tests can have 

longer time duration than that of Chapter 6, and the statistical properties can be measured.  

Note that of surface elevation there are 24 zero-upcrossing waves but only 22 

counterclockwise vortices and 21 clockwise vorticex are counter in Figure 7.9.  Similar to 

Chapters 4 and 5, the statistical properties of surface elevation can not state the near bed 

phenomena directly.  Modification has to be made and to build an association. 
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Figure 7.9: Surface elevation and circulations of Case 7.5 with 3 22.57 10  m /so rU L −= × : 

(a) the surface elevation at 0x = ; (b) the circulations of clockwise vortices, and (c) the 

circulations of counterclockwise vortices. 
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7.6 Chapter remark 

With the results in this chapter, some remarks were carried out here briefly: 

1. The present numerical model can simulate the flow within the transitional regime very 

well. 

2. The circulation of the vortex above ripples were limited by ripple form and the free 

stream velocity.  Of Cases 7.2 and 7.3 the maximum circulation 95Γ  was about 

0.4 o rU L .  Of Case 7.1 the maximum circulation 95Γ  was smaller because it was not 

sufficiently large to be limited. 

3. The asymmetric property of the surface elevation resulted the non-identical maximum 

circulation 95Γ  of the clockwise vortex and the counterclockwise vortex.  With the 

sharp crest and flat trough of Cases 7.2 and 7.3, the circulation of the clockwise vortex 

was larger with shorter duration, and that of counterclockwise vortex was smaller with 

longer duration. 

4. The circulations of irregular-wave cases were measured automatically and the different 

number of the surface elevation and the introduced vortices was found. 
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Chapter 8 Conclusions and Recommendations 

 

8.1 Conclusions 

8.1.1  Linear irregular waves and the associated properties 

The deterministic spectral amplitude method performed by the fast Fourier transform 

was applied to generate irregular waves in the numerical viscous wave flume.  The 

Goda-JONSWAP spectral density was chosen as the target wave spectrum.  

Characteristics of the wave spectra and the spectra of the bottom shear stresses caused by 

irregular waves were discussed in terms of the spectral frequency, the zeroth spectral 

moment and the spectral bandwidth parameter.  Based on the numerical results the 

following conclusion can be drawn. 

1. The wave spectrum of the simulated irregular waves was in good agreement with the 

target spectrum; and the numerical and theoretical transfer functions coincide with each 

“If you thought that science was
certain—well, that is just an error on your 
part.” 

─Richard P. Feynman,
American physicist
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other.  This testified the accuracy of this numerical wave model. 

2. The comparison of the maximum bottom shear stress obtained by this wave model with 

that obtained by Myrhaug’s model indicates that Myrhaug’s model underestimates the 

maximum bottom shear stress caused by laminar irregular waves. 

3. The bottom shear stresses obtained from this wave model agree closely with those 

obtained from the transfer function between the wave spectrum and the shear stress 

spectrum. 

8.1.2  Nonlinear properties beneath irregular waves 

Applying the method in Chapter 4, Chapter 5 focused on the nonlinear properties of 

irregular waves.  The model deduced by Dean and Sharma (1981) was used to 

demonstrate the irregularity of nonlinear waves and to provided a comparison.  With the 

numerical results the following conclusions were carried out. 

1. The bound waves, subharmonics and superharmonics, were found in the numerical 

results of the studied cases. 

2. Despite the bound waves of the surface elevation are identified, the transfer function of 

the surface elevation and the associated bed shear stress are only departed from the 

theoretical one slightly.  The theoretical transfer function is satisfied for estimating the 

bed shear stress if the small bias is acceptable. 

3. The spatial-varied skewness of surface elevation and bed shear stress is with a phase 

difference.  The phase difference evidences the statistical properties of bed shear 



   
 

 181

stress can not simply extent by that of the surface elevation, and it should have a roll in 

the shear stress forecasting using statistical manner. 

8.1.3  Interaction of irregular wave s and submerged breakwater 

The present numerical model with a rectangular submerged breakwater was used on 

the study of the vortex dynamics about the breakwatrer.  Base on the repeatable properties 

of the numerical wave tank, the reflected waves were identified by subtracting the surface 

elevation of the pure incident waves from that of the listed cases without assumptions.  Of 

the numerical results, the conclusions were stated as following. 

1. The vorticity-major method were stated and utilized with the applied vorticity 

threshold max0.05TΩ = Ω .  By means of this method, the vortex region were found 

automatically and the properties of vortices can be obtained if the swirling velocities 

centered on the location of the MAV. 

2. The normal pattern of the lifecycle of the vortices were as results shown in Figures 

6.10 and 6.13.  At the both corner of the breakwater, although the vortex pattern were 

different, the formation process of the vortices above breakwater increased the 

breakdown rate of the nearby counter-vortex about three fold. 

3. The lifecycle within the irregular wave train had similar patterns before large wave 

packet, and had different patterns while a large wave followed by small waves, which 

induced the flow motion not sufficient large to diminish the vortex which formed by 

the large wave.  Therefore, the vortex formed by the large wave last for a longer 
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duration. 

8.1.4  Vortex dynamics above rigid vortex ripples 

Using the curvilinear coordinate discussed in Chapters 2 and 3, Chapter 7 reveals the 

properties of vortices above ripples beneath regular waves and irregular waves.  The 

method for identifying the region of vortex in Chapter 6 was applied to have the vortex 

circulations and trajectories of the vortex center.  After verifying the reliable regime 

which the numerical model satisfied, the numerical results were carried out on and off the 

equilibrium ripple pattern, and can be concluded as following. 

1. The circulation of the vortex above ripples were limited by ripple form and the free 

stream velocity.  Of the cases on or over the equilibrium state, the maximum 

circulation 95Γ  was limited about 0.4 o rU L .  Of the case with mild hydraulic 

condition, say o rA L< , the maximum circulation 95Γ  will not reach the limitation 

0.4 o rU L . 

2. The asymmetric property of the surface elevation resulted to the non-identical 

maximum circulation 95Γ  of the clockwise vorteies and the counterclockwise one.  

With the sharp crest and flat trough of the waves with larger Ursell number, say 

10Ur > , the circulation of the clockwise vortex was larger with shorter duration, and 

that of counterclockwise vortex was smaller with longer duration. 

3. By the vortex-automatic-recognition method, the vortex circulations beneath 

irregular-wave cases were studied.  Similar to the borrom phenomena of Chapters 4 
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and 5, the statistical pattern of vortex circulations can not be predicted directly with 

that of the surface elevation. 

8.2 Recommendations for Future Research 

The following recommendations were stated in the four topics studied herein. 

8.2.1  Linear irregular waves and the associated properties 

1. The study of Chapter 4 can be extended by generating an irregular-wave train with a 

longer duration, about 3(10  s)O  or longer for approaching the amount of field data, in 

order to have more rigorous statistical statement. 

2. The transfer function of surface elevation and bed shear stress is only useful for a 

measured wave train or an artificial irregular waves.  For estimating critical events or 

long term properties, a rigorous statistical model for bed shear stress is helpful. 

3. The 1% difference with free stream velocity are usually applied to recognized the edge 

of boundary layer.  However, the criterion is not satisfied for identifying the edge of 

boundary layer beneath irregular-wave motion.  A new criterion is inevitable in order 

to determine boundary layer thickness by statistical manner. 

4. Of time or space domain, the occurrence of freak waves can be calculated numerically 

with linear dispersion relation, if both amplitudes and phases of an irregular-wave train 

over a smooth-flat bed are identified.  The results can provided a basic understanding 

about freak waves and help building the associated statistical model. 
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8.2.2  Nonlinear properties beneath irregular waves 

1. The comparison of spatial-varied skewness of surface elevation and bed shear stress 

can provide good knowledge base to build a more robust statistical model about bed 

shear stress. 

2. The statistical parameters of bed shear stress can be studied and compared with 

statistical formula of surface elevation.    Thus, the statistical results can be built and 

the true statistical relation can be revealed instead of using parametric estimation. 

8.2.3  Interaction of irregular wave s and submerged breakwater 

1. Vorticity-based method is easy to perform, but is with discrepancy about recognizing 

swirling center or the region of a vortex when the vorticity is small.  The invariant of 

velocity deformation can be used for further and detailed study (Kolář, 2007). 

2. Since the width of the submerged breakwater is larger than the extent of vortex, the 

vortices formed above the submerged breakwater do not interact with each other.  A 

submerged breakwater with small width can be tested to study the interaction of 

vortices and have the knowledge about the effects of momentum transfer. 

3. More cases have to be tested to build the relation of vortex circulation and the 

geometry of submerged breakwaters. 

4. Since reflected waves are non-stationary, active wave absorber is malfunction.  A new 

boundary treatment to deal with offshore reflected waves is essentially important for 

having a wave train with longer duration, and therefore the statistical properties can be 



   
 

 185

built. 

5. The procedure of determining the region of a vortex can be further refined to diminish 

the misunderstanding of the circulations of vortices next to a submerged breakwater, in 

which the un-convex distribution of vorticities makes the procedure in Section 6.4.2 

have a long discontinuity. 

8.2.4  Vortex dynamics above rigid vortex ripples 

1. If the study of the momentum transfer above 2 ry H=  is inevitable, a turbulent model 

should be combined in the present numerical method.  Base on the conclusion of 

Chang and Scotti (2004), only large-eddy simulation is suggested for the rippled bed 

problem. 

2. The near-bed drift can be calculated numerically and make a comparison to improve 

the knowledge of ripple migration.  However, the grid resolution have to be finer than 

the present study. 

3. For further study, e.g. waves over a non-equilibrium ripples or irregular ripples, a more 

flexible boundary treatment or grid regenerated technique can be built in the present 

numerical model in stead of the body-fitted boundary. 

4. Because of the no-slip boundary condition, the shear region near boundary is no sense 

about vortex core, and the near-boundary elements were excluded in this study to avoid 

misconception about vortex region.  As studied cases in the present work, the 

maximum circulation appeared at near the ripple slope and taking-out the near-bed 
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elements probably introduce the underestimation about circulations.  Similar with the 

recommendation in Section 8.2.3, the invariant of velocity deformation are suggested 

to implement the vortex recognition more accurate. 
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