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Abstract

This work presents the simulation of irregular waves interacting with submerged
offshore structures. By generating the incident irregular waves in a numerical wave
flume and solving the unsteady two-dimensional Navier-Stokes equations with the fully
nonlinear free surface boundary conditions for the fluid flows in the flume, the viscous
flows are determined and the bed shear stress as well as vortex circulation can be obtained.
Four topics were focus. irregular waves with the associated bed shear stress were studied
linearly and nonlinearly, vortex formed beneath irregular waves around a submerged

breakwater and ripples.

Irregular waves were generated by the wavemaker adopting deterministic spectral
amplitude method implemented using the fast Fourier transform algorithm. The accuracy
of the generated irregular waves and the viscous flows was confirmed by comparing the
predicted wave spectrum with the target spectrum and by comparing the numerical transfer
function between the shear stress and the surface elevation with the theoretical transfer
function, respectively. Additionally, characteristics of the wave spectra and the associated
shear stress spectra were discussed in terms of the spectral frequency, the zeroth spectral
moment and the spectral bandwidth parameter. The maximum bottom shear stress caused
by irregular waves, computed by this wave model, was compared with that obtained using
Myrhaug's model (1995). The transfer function method was also employed to determine

the maximum shear stress, and was demonstrated to be accurate.



Nonlinear properties of irregular waves are preliminary presented using the formula
of the second-order bound waves, subharmonics and superharmonics, which deduced by
Dean and Sharma (1981). As the associated phases changed, bound waves of the
synthesized results show irregularity in spectrum and form randomness in spatial-varied
skewness. Similar phenomena were found in the numerical results, athough the
magnitude of spectral higher harmonic components and the skewness are larger. The
gpatial-varied skewness of the surface elevation and the bed shear stress shows bound
components indeed present, and indicate that the phase difference of surface elevation and

bed shear stress has to be considered for building the associated statistical model.

Of the repeatable properties of the present numerical scheme, the incident waves and
reflected waves from the submerged breakwater were separated without any assumption.
A reliable time duration for analysis was confirmed by the comparison of reflected
coefficientsin order to ensure that the wave reflected from wavemaker would not affect the
interesting duration. A vorticity-based method with a vorticity threshold were developed
and made the automatic recognition of vortex become possible, in which the threshold was
confirmed for well describing the vortex region. Both the circulations and the selected
vortex region were shown in flow fields and vorticity contours. The interaction of the
vortices was evidenced and showed the succeed-formed vortices above breakwater
increased the breakdown rate of the vortices next to the breskwater three times. Of the

irregular-wave train, the vortex of large wave followed by small one lasted longer.

Applying body-fitted boundary, different hydraulic conditions were studied about on

\



and off equilibrium ripple pattern beneath regular and irregular waves. While concerning
only the region beneath twice the ripple wave height, the present numerical scheme was
verified with the experiment and has a good agreement within the transitional regime.
The vortices formed beneath regular waves reached a limited circulation if the
bed-orbital-displacement amplitude is larger than the ripple wavelength. The limitation
can furthermore be evidenced by the trajectories of the vortex center. The vortices
formed beneath irregular waves were recognized automatically as well, athough the

number of the zero-upcrossing waves and the vortices was not matched.

Keyword: Irregular wave; Viscous flow; Bed shear stress;, Transfer function; Spectral
property; Nonlinearity; Subharmonic; Superharmonic; Skewness, Submerged breakwater;

Vortex ripple; vortex circulation; Vortex auto-recognition
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Chapter 1 Introduction

“Science is organized knowledge. Wisdom is
organized life.”
—Immanuel Kant,
German philosopher

1.1 Research Background

On a natural sea, waves are irregular with high uncertainty. The researchers in about
1960 were tried ensuring the equilibrium state for wind-wave spectrum and establishing
some simple parameterizations using “equivalent parameters”, e.g. the significant wave
height, the significant-associated period, and wavelength. Many experiments, theories
and numerical studies were done by applying equivalent parameters as the realistic sea
state in practical applications. However, taking equivalent parameters as true sea state
leads to some misunderstandings about the realistic sea state, because multi-component
introduced properties (e.g. wave-wave interaction, phase difference, and the occurrence of
freak waves) were ignored when only significant wave properties are considered.
Simulation and studying the effects of irregular waves interacting with itself or structures

is inevitable for coastal study.
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A measure of irregular waves in a particular location can be considered as stochastic
process. Spectral and statistical processing are practical methods to determine properties
of any stochastic process. Applying spectral method can reveal the energy distribution of
each component and the dominant frequency. Applying statistical method can realize the
probability distribution and obtain a forecasting about single event or long-term statement.
In the present study, both methods were applied to extract the information of irregular
waves and the associated effects. Four different subjects were studied. The first subject
studied linear irregular waves and the associated shear tress; the second the nonlinear
properties beneath irregular waves; the third the vortex dynamics around a submerged
breakwater; the fourth the region from ripple trough to two times ripple height, which was

dominated by ripple-induced vortices.

1.2 Linear irregular waves and the associated properties

The bottom shear stresses caused by irregular waves are very important in the
sediment transports and the pipeline stability in the nearshore region. However,
determining the shear stresses in response to irregular waves in the field and in the
laboratory is difficult. Measurements of the velocity of the oscillatory boundary-layer
flows over smooth and rough walls have already been made by Jonsson (1963, 1980) and
Jonsson and Carlsen (1976) using a large oscillating water tunnel. Other measurements
and theoretical models have also been reported (Kamphuis, 1975; Justesen, 1988; Jensen et
al. 1989; Fredsee et al., 2003). The maximum shear stresses, the friction factors and the

boundary layer thickness of the laminar, smooth turbulent and rough turbulent flows



induced by a simple harmonic motion over a fixed bed have been discussed in detail.
Lambrakos (1982) and Myrhaug et al. (1992) provided field measurement data of flows in
wave boundary layers. Grant and Madsen (1986), Sleath (1995), and Blondeaux and

Vittori (1999) reviewed articles in the boundary layer on the seabed.

Although the characteristics of the boundary layer induced by a simple harmonic
motion or general waves have been elucidated in detail, the boundary layer or the shear
stress under irregular waves has been less studied. Myrhaug (1995) proposed a model to
calculate the maximum bottom shear stress induced by irregular waves. The surface
elevation was assumed to be a stationary Gaussian narrow-band process. Simple explicit
friction coefficient formulas for sinusoidal waves, such as Jonsson’s formula (1980), were
assumed to be valid for irregular waves as well. The coefficients of the proposed
formulas were not constant and varied with the sea state parameters. The reliability of
Myrhaug’s model has not been tested. Myrhaug et al. (1998), Holmedal et al. (2000 and
2003) and Myrhaug and Holmedal (2001 and 2003) extended Myrhaug’s approach (1995)
for different applications. Samad et al. (1998) examined experimental shear stress results
by comparing them with those obtained using the transfer function between the shear stress
and the surface elevation. Tanaka and Samad (2006) solved the linearized boundary layer
equation and the K—¢&equations to compute turbulent bottom shear stress induced by
irregular waves with a Bretschneider-Mitsuyasu spectral density. Comparison of the

model results with experimental data verifies their numerical model.

This study proposes a new approach for determining the shear stresses induced by
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irregular waves. The viscous flow fields and the shear stresses induced by the desired
irregular waves can be computed by generating the desired irregular waves in a numerical

wave flume, in which the viscosity of the fluid is considered.

Various methods have been developed to simulate the irregular waves with the
spectral and statistical properties of realistic ocean waves. Most such methods can be
separated into two main categories: deterministic spectral amplitude (DSA) methods and
nondeterministic spectral amplitude (NSA) methods. The former determine the spectral
amplitude of each wave component precisely to match the theoretical or measured
one-sided target wave spectrum, while in the latter, the simulated wave spectrum randomly
fluctuates about the target wave spectrum. Rice (1955) originally developed these two
methods for modeling Gaussian, white-noise, electronic signals. Ploeg and Funke (1980),
Funke and Mansard (1987), Hughes (1993) and Goda (2000) reviewed irregular wave

generation techniques in detail.

Borgman (1969) applied both the wave superposition method and the linear filtering
method to simulate irregular waves. The wave spectra of the simulated irregular waves
by these two methods coincide with the given target spectra, but lack sufficient
randomness as in the real sea states. Goda (1970) demonstrated that in the wave
superposition approach, the component frequencies should not be harmonics of each other
and the amplitudes of the component waves should be approximately equal. Therefore,
he treated the spacing between dividing frequencies as increasing with frequency, and the

synthesized frequencies were selected randomly in the respective sub-ranges. The phase



of each component was selected at random and distributed uniformly in the interval

[0, 271

Tuah and Hudspeth (1982) compared the spectral moments, spectral bandwith,
skewness and peakedness of the simulated waves obtained by the DSA and NSA methods.
Their comparison indicated that the statistical properties of irregular waves simulated by
the NSA method were closer to the realistic sea states. This difference was attributed to
the fluctuating spectra obtained using the NSA method, which differs from the smooth
spectra obtained from the DSA method. Tucker et al. (1984) and Miles and Funke (1988)
made similar comparisons, with the same results as were reported by Tuah and Hudspeth
(1982). However, Elgar et al. (1985) showed that if the number of spectral components
suffices, then both DSA and NSA approaches simulate waves without a significant

difference in the wave group statistics.

The autoregressive-moving average model (ARMA) used by Medina et al. (1985) has
been considered to be one of the most general approaches for generating random signals.
However, applying this model to simulate waves for any given spectra is rather difficult.
Miles and Funke (1988) chose 16 sea state parameters, such as the significant wave height
and the peakedness factor, to compare seven wave synthesis methods. The seven
synthesis methods are the wave superposition method (Borgman, 1969), that of Goda
(1970), the random amplitude and frequency method, the linear filtering method, the
method of Fryer et al. (1973), ARMA and the random Fourier coefficients method. Miles

and Funke (1988) concluded that all of these synthesis methods could generate realistic
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Gaussian wave records. They noted also that the peak of the spectrum obtained by
ARMA is lower than that of the target spectrum and, that the NSA-FFT (fast Fourier
transform) was required for correct short-term variability. They showed that any finite
duration wave record generated by a wave synthesis method could be approximated by the

equivalent FFT time series.

1.3 Nonlinear properties beneath irregular waves

Nonlinear properties of irregular waves has been studied by experiencing much
progress in the past half century. Since nonlinear irregular wave is complex and has huge
affection about near shore phenomena, different methodologies (such as spectral or
statistical method, field measurements, and experiments) were applied to survey the
fundamental properties of nonlinear irregular wave and the associated dynamics. Some
of the famous properties of nonlinear irregular wave are energy transfer beneath resonant
or non-resonant condition, presence of subharmonics and superharmonics, increase of

skewness, change of dispersion relation and phase velocities.

1.3.1 Spectral properties

By the assumption of stationary in time and in space, the Fourier-Stieltjes transform
was applied to deal with the second order spectral properties of irregular waves in deep sea
(Phillips, 1960; Longuet-Higgins, 1962; Longuet-Higgins and Phillips, 1962; Tick, 1963;
Huang and Tung, 1976 and 1977; Zhang and Chen, 1999) as well as in finite depth

(Hasselmann, 1962; Laing, 1986). Two major properties of nonlinear irregular wave



were found: existence of subharmonics and superharmonics; and energy transfer due to
resonant interactions among wave components. Subharmonics and superharmonics are
both bound waves. The former affect slow-drift motion of moored vessels, generation
and evolution of sand bars, and surf-beat mechanism. The latter sharpen the wave crests
and flatten the wave troughs, which consequently increases the skewness of surface

elevation and occurrence of freak waves.

The wave-wave interaction beneath resonant condition for deep gravity waves was
first derived by Phillips (1960), whereas Hasselmann (1962) treated of the problem by
perturbation method and obtained a result of the nonlinear resonant interaction of free
waves in a random sea. An example is for four waves with directional wavenumbers
(k., k,, Kk, k,) and the angular frequencies (@, ®,, @,, ®,) satisfied or close to being
satisfied the resonant conditions, say k +k, =k, +k, and @+, =, +w,, there is a
direct energy transfer between these four waves and this is satisfied the action density
spectrum F(k, t) attime t (Hasselmann, 1962):

T folk, k. K ok + - -K) W

3w +w, — o, — w,)]dk,dk,dk,
where F = F(K, t) is the spectrum of energy in terms of wavenumber,
G(k,, k,, k;, k,) is the coupling coefficient, k is the directional wavenumber which
agrees the dispersion relation @ = \/m in deep sea with the gravitational acceleration g.

The exchange of energy is slow (Benny, 1962), and thus agrees with the assumption of

nonlinear transfer that the action density spectrum is a slowly varying function of time.
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Further theoretical advances were made by Longuet-Higgins (1976). He applied
Davey and Stewartson’s model (1974) for wave group evolution and considered the linear
dispersion relation for waves in deep water. Physical meaning of each term of energy
transfer equation was built up by the author and showed that the coupling coefficient
G(k,, k,, k;, k,) between four nearly equal wave numbers k, k,, k;, k, is finite and
not zero, and it is implied that the energy transfer within the spectral peak itself is of
supreme importance. The author also noticed that the energy from an isolated peak in the
spectrum tends to spread outwards along two characteristic lines, in which has the angle
+ tan_l(%) with the main direction. This work was extended by Dungey and Hui (1979)
with considering the effect of bandwidth of wave spectra. The secondary spectral peak
was produced if the second-order spectrum was considered and k h, smaller than 0.6

(Laing, 1986), where kK is the spectral-peak wavenumber and h, the still water depth.

Wave amplitudes and random phases are two fundamental elements for building a
synthesized irregular wave train more realistic as mentioned in Sector 1.2. In the
afore-mentioned works, the properties of wave amplitude, such as energy transfer and the
higher harmonics, were considered, but the effects of phase difference were seldom taken
into account. A second-order directional wave theory for the case of infinite depth
including the random phases was developed by Longuet-Higgins (1963), and later
extended by Sharma (1979) and Sharma and Dean (1981) to the case of finite depth.
Different case conditions of surface elevation were tested based on the assumption that the

linear wave components are with the amplitude satisfied the Bretschneider spectrum and



with random phases. The higher harmonics, both subharmonics and superharmonics,
were synthesized and presented produced with huge irregularity, which was resulted by the

random phases of the linear waves.

While the spectral properties are known, the vital point for engineering use is to
determine the dispersion relation, and thus gain the understanding about the phase velocity
or the group velocity of waves. Many researchers (Longuet-Higgins and Phillips, 1962;
Huang and Tung, 1976; Webber and Barrick, 1977; Barrick and Webber, 1977; Masuda et
al., 1977; Mitsuyansu et al., 1979; Laing, 1986) have tried working it out. Since the
bound wave were composed by the distribution of linear free waves with random phases,
as synthesized results of Dean and Sharma (1981), the dispersion relation in deep sea is
also random as a function of time and space, when the second order of irregular wave is
considered. This was confirmed by Huang and Tung (1976), who ensured there was no
single form of the dispersion relation for nonlinearity irregular waves. The recent
experiments reconfirmed this phenomenon were made by Baldock et al. (1996), who tried
surveying the wave evolution and flow velocity by experimental study. A particular wave
group was test and compared the spectral amplitudes and phases. Of their work, the wave
group velocity was increase as increasing nonlinearity and high nonlinearity of irregular
waves introduces a permanent phase change. It indicates there is no permanent wave

pattern for irregular waves if the nonlinearity is present.

Resonant interaction is good for describing the energy transfer of directional waves in

deep sea. However, the energy transfer is rather slow and only weak nonlinearity is
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considered (Dommermuth and Yue, 1987). Another drawback is the afore-mentioned
method cannot deal with the energy transfer of unidirectional waves. For resonant
conditions fitted only when (k =k, , k, =k, )or (k =k,, k, =k;) in unidirectional wave,
the action density function showed in Eq. (1.1) tends to zero and appears no more energy
transfers as the propagating of wave trains. For most studies about unidirectional waves,
the existence of energy transfer is found, such as the case of Benjamin-Feir instability
(Benjamin and Feir, 1967, also called as side-band modulation or non-resonant interaction),
because the resonant condition are no longer satisfied. Most of these studies were

performed by applying the nonlinear Schrodinger (NLS) equation and the Zakharov

integral equation, which is another type of method to study the nonlinear effect of spectra.

The carrier waves of NLS were assumed to be linear and symmetric sinusoidal waves.
Such a solution was good at analyzing the energy transfer of waves over large distance and
long time span, but limited on dealing with the local wave profile asymmetry due to higher
harmonic terms (Huang and Tung, 1976). The evolution of the wave train obtained by the
nonlinear Schrodinger equation will tend to broaden the wave spectrum through side-band
instability. For narrow-bandedness requirement, which is the main disadvantage of NLS,
the time span of the NLS simulation is limited while the bandwidth reaches the broaden
limit. For wave evolution governed by the NLS equation, Dysthe et al. (2003) showed
the spectra followed a power-law behavior @ ™. Another application performed by the
NLS equation is to figure out the appearance of freak waves. Janssen (2003), Onorato et

al. (2005) as well as Gramstan and Trulsen (2007) tried presenting the increased occurance

10



of freak waves using the NLS equation to implement the evolution of nonlinear
multi-component waves, although the occurance was evidenced by the increased kurtosis.

However, only the trend can be obtained because of the neglect of phase difference.

1.3.2 Satistical properties

The statistical properties of the realistic sea state are mostly concerned as Gaussian
statistics for linear wave fields as summarized by Phillips (1977). However, the linear
approximation can only hold true when the steepness approaches zero, which is the linear
condition for deep water waves. Many laboratory data and field measures clearly show
that surface elevation deviates from Gaussian (Kinsman, 1965; Huang and Long, 1980;
Tayfun, 1980; Huang et al., 1983; Hatori, 1984; Goda, 1988; Tayfun and Lo, 1989; Mori
and Yasuda, 1996 and 2002), and the statistical model of nonlinear surface waves was built
by numerous methods. In generally, there are two ways for obtaining the non-Gaussian
statistical models. One is applying an existed non-Gaussian formula to describe the
statistical properties of wave elevation (Longuet-Higgins, 1963; Ochi, 1986; Cherneva et al.
2005). Another is extended the Gaussian statistics with the properties of nonlinear waves,
e.g. the Stokes wave theory (Tayfun, 1980; Huang et al., 1983, Dawson, 2004), or the
subharmonics and superharmonics (Tayfun, 1994; Song and Wu, 1999 a & b; Song et al.,

2002).

The non-Gaussian property of irregular waves was first derived by Longuet-Higgins
(1963). He applied Edgeworth’s form of Gram-Charlier series and described the

nonlinear properties by skewness and flatness of wave elevation. However, probability
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density function formed by the Gram-Charlier series has some drawbacks for describing
sea state. The major drawback is the Gram-Charlier approximation gives negative
probability density values for some range of wave elevation, especially in the cases of
steep waves. The negative values obviously disagree with the axiom of a probability
density function, which should be always positive. ~Another is the Gram-Charlier
approximation calls for the skewness and the flatness value to determine the nonlinear
statistical properties. But these two parameters are not directly perceived through the

senses of statistical parameters.

Huang et al. (1983) used the second type of the afore-mentioned method to form a
nonlinear statistical formula in order to describe nonlinear random waves by extending
Gaussian distribution with Stokes wave property. Formulas for deep sea and for finite
depth wave were built up. The probability function for the deep water case was specified
by two parameters: the root-mean-square value of wave elevation and the significant slope.
For water of finite depth, an additional depth parameter is involved. Of the formula, no

negative density value was given as the Gram-Charlier was.

1.3.3 Experimental treatment

For many researches and field applications, experiments are applied to build
preliminary knowledge about realistic phenomena. It is doubtless that nonlinear irregular
waves have major affections about coastal structures and shore line protection, and
generating nonlinear waves with desired realistic sea state in wave flume is of inevitable

for experiments. The basic concept of generating a nonlinear irregular wave train is to
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satisfy the spectral properties, which the secondary spectral peak is appeared about two
times the spectral-peak frequency. For lack of the knowledge about separating the linear
components and the bound waves of a nonlinear-irregular-wave train, an alternative
method is to apply an equilibrium spectrum (e.g. PM spectrum by Pierson and Moskowitz,
1964; JONSWAP by Hasselmann et al., 1973; Bretschneider-Mitsuyasu, etc.) with bound
waves, which can be obtained following the formula of Phillips (1960), Hasselmann

(1962), Laing (1986) or Dean and Sharma (1981).

Tuah and Hudspeth (1982) first synthesized the nonlinear irregular waves by this
manner and corrected the spectrum to the second-order by applying the nonlinear
interaction matrix in finite water depth given by Hasselmann (1962). In spite of the
spectral property was similar with the nonlinear one, the results determined by the
deterministic spectral amplitude method (DSA) was totally linear, and no bound waves
generated. The statistical properties of nonlinear irregular waves thus are not satisfied,
since the wave profile is still symmetric. For overcoming this drawback, a wavemaking
theory for nonlinear irregular waves, in which fitted the boundary conditions and the
nonlinear surface elevation, is inevitable. This manner seems to be first concerned by
Sand and Mansard (1986), who solved the problem with second-order irregular waves in
deep sea. A good agreement was obtained when the model was applied to generate the
second-order Stokes waves and compared with the theoretical one. However, there were

discrepancies when field data were simulated.

Similar works were done by Sulisz and Hudspeth (1993), Duncan and Drake (1995),
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and Schéffer (1993, 1996). Klopman and Van Leeuwen (1990) as well as Van Leeuwen
and Klopman (1996) used the narrow-band approximation to develop a nonlinear irregular
wave generator. The random-amplitude/random-phase (similar to NSA-FFT) method
proposed by Tucker et al. (1984) was applied to determine the linear components. The
second-order spectra determined by the multiple-scales perturbation-series method (Mei,

1989) and by the full second-order theory (Laing, 1986) were compared.

Different methods were carried out for a nonlinear irregular wave generator, but only
Sand and Mansard (1986) has verified their results by making comparison with theoretical
Stokes waves, and the field spectrum. Sulisz and Paprota (2008) denoted that the
nonlinear-waves generator can only provide a wave train satisfied the target spectrum
within a very short distance form wavemaker, if the wave generator is considered weakly
nonlinear formula only. The authors deduced another formula in order to predict the
propagating waves and compared the predicted results with the wave packet of different
nonlinearities. However, the wave packet stated the interaction of only few composite

components and does not suffice the banded irregular wave spectrum.

1.3.4 Propertiesbeneath nonlinear irregular waves

For many coastal applications, the dynamic property beneath irregular waves is a
fundamental knowledge for the design of coastal structures and a basis to realize the
stability about the structures. A study was done by Borgman (1969), who applied a
transfer function of linear waves and the associated flow velocity to perform the

understanding of the dynamics beneath irregular waves. More works were done by
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statistical manner, which can be used both regarding single event and long-term statement,
such as the extreme state or the significant properties for coastal structure design. Tung
(1975) built up an initial work about the dynamics based on linear irregular waves and
Tung and Hunag (1984) extended the formula to nonlinear one. Cieslikiewicz and
Gudmestad (1993) combined the nonlinear model of Longuet-Higgins (1963), the linear
concepts of Tung (1975) and considered the emergence properties to obtain a statistical
formula satisfied nonlinear surface elevation and to fix the statistical results close to the

surface.

The bed shear stresses caused by the nonlinear irregular waves are less studied since
the theoretical formula for nonlinear surface elevation is not unique and no transfer
function suitable for use. The statistical work is made by Myrhaug and Holmedal (2003),
who extended Myrhaug's approach (1995) using asymmetric property of the second-order
Stokes waves to have that of the bed shear stress, which was formulated by Myrhaug and
Holmedal (2001) for laminar flow. Similar to Myrhaug (1995), no more verification was

made, but a simplified procedure for practical application was stated clearly.

1.4 Interaction of irregular waves and a submerged

breakwater

There are various coastal structures, such as reef, detached breakwater and submerged
breakwater, built to prevent wave attack. The major purpose of such structures is to

introduce wave reflection or breaking and reduce wave transmission. So that estimation
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of wave motions with coastal structures in nearshore zone is an important subject of coastal
engineering. Since a submerged breakwater has the potential to protect wave attack,
against beach erosion, and for creation of artifical fishing grounds (Dattatri et al., 1978),
many researchers experienced different methods to figure out its efficiency, stability and
performance. Experiments, analytic and numerical models are variations of methods
performed to study about waves propagating over a submerged breakwater. Reflected and
transmitted coefficient, nonlinear effects or higher harmonic generation, wave breaking,
vortex dynamics and scour around breakwater are the essential properties that introduced

by the interaction of waves and submerged breakwaters.

Many experimental studies focused on wave reflections and transmissions induced by
a submerged breakwater. Determining the reflected coefficients accurately is the major
subject for such studies (e.g. Stamos and Hajj, 2001). Several methods have been
proposed to determine the reflected characteristic. Goda and Suzuki (1976) applied two
measured wave heights and phase difference to obtain reflected coefficient. Mansard and
Funk (1980) used three probes and the least-square method to correct the bias of
experimental results and to get the reflected coefficients more accurate. Lin and Huang
(2004) adopted the least-square method and four measured surface elevation to determine
the reflected coefficient and higher harmonics. These methods are all based on the
Fourier transform with the assumptions that surface elevations are stationary in time, and
homogeneous in space, and wave-wave interaction or energy loss are not allowed. These

assumptions limit experimental studies on far off breakwaters, where waves are not
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affected by the nonlinear effects and more stationary. Stamos and Hajj (2001) applied
wavelet method to determine reflected waves from the variations in the amplitude as well
as phase of the wave in only one measured result. However, this method can only be

applied on regular waves.

Properties of surface elevations in the vicinal region of breakwater are vital for the
performance and stability of breakwaters. The generation of higher harmonics above
breakwaters is one of the properties. Johnson et al. (1951) noticed there are higher
harmonics as a wave propagating over a submerged obstacle. Similar phenomena were
found in experiments by Young (1989). Earlier researchers have tried to predict the
generation of higher harmonics by applying nonlinear shallow-water wave theories, such
as the Boussinesq and KdV equations. Since the derivation of the Boussinesq equations
is based on the assumptions of both weak nonlinearity and weak dispersivity of waves,
these equations may not be valid for the prediction on the lee side of a submerged

breakwater, where harmonics may arise in the form of deep-water waves.

In order to overcome this defect, improvements on the Boussinesq equations have
been developed. Peregrine (1967) developed equations of motion for long waves in
water of varying depth. These equations can be viewed as the Boussinesq equations for
water of varying depth. Witting (1984), Madsen and Sorensen (1992), Nwogu (1993)
and Beji and Battjes (1994) improved the Boussinesq equations by adding a term to
improve its dispersion characteristics and extended its applications. There are many

studies employed the same equations to study the deformation of waves. However the
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term for improving dispersion includes an unknown variable and not rigorous
mathematically. Numerical results applied the extended Boussinesq equations are also
found to overestimate the amplitude of higher harmonics and the total averaged energy
flux on the lee side of a submerged breakwater (Ting et al., 2005). The KdV equations
are also applied to deal with the deformation of waves (Ishida and Takahashi ,1981;

Yasuda et al., 1982), and have the same limitations with the Boussinesq equations.

An experimental study about interaction of waves with a submerged trapezoidal
breakwater was conducted by Beji and Battjes (1993), who investigated the deformation of
waves around the breakwater. Ohyama and Nadaoka (1994) used potential theory to
perform similar studies. Single and multiple wave components were considered. The
results of single wave component were at a good agreement with that of experiments by
Kojima et al. (1990), and the beat length introduced by higher harmonics were compared.
Two irregular waves with different phases were compared by numerical experiments and
results totally different transmitted patterns. Further verification was done by Ohyama et
al. (1994). The experimental results of Beji and Battjes (1993) were applied to justify

their model and had a good agreement in the comparison of regular wave.

The performance of impermeable and permeable breakwaters were revealed by
Rambabu and Mani (2005), who used potential theory as governing equation and Green’s
function as boundary treatment to deal with waves over trapezoidal and rectangular
breakwaters.  After verifying the numerical results with experiments of permeable

structures, the authors suggested several optimal conditions using parameterized
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coefficients: submergence ratio (; steepness factor H,/gT?; the ratio of breakwater
width and water depth W, /h,; and breakwater spacing parameter, where H, was the
incident wave height, g the gravitational acceleration, T the wave period, W; the

width of breakwater, and h, the still water depth.

Detailed spectral deformation of multi-component waves was studied by Yoshida et al.
(1996), who applied the Stokes series expansion and Green’s second theory to solve the
interactions over a submerged obstacle. The results were comparied with experiment one
and were good enough to describe the spectral deformation when the wave amplitudes

were small and wave breaking did not take place.

Vortices generated about a submerged breakwater have subtle effects on wave energy
loss and the stability of breakwaters (Ting and Kim, 1994). However, vortex dynamics
strongly affect the mixing process of energy or nutrient, sediment transport, and also the
introduced toe scour. It is known that potential theory can deal with flow motions far
from boundaries very well. For studying vortex dynamics, flow viscous is inevitable, and
thus only numerical models included viscous effects or experiments can handle this

problem well.

In order to realize the effects introduced by vortex, Ting and Kim (1994) made a
measure on vortex by numerical integrating the vorticity over the region of eddy motion.
No more details about the numerical integrating were stated and the region of eddy motion
was not clearly identified. Dong (2000) and Huang (2004) followed the same manner to

study vortices. They numerically integrated vorticities over a fixed-rectangular region, in
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which vortices formed. However, the region was not moved with vortices and the results

probably lead to misconceptions.

Another method was used by Chang et al. (2001, 2005), who chose the extreme value
magnitude of vorticities as the measure of vortex strength. With comparing the nearest
horizontal velocity and the extreme vorticity obtained by numerical experiments, the
authors found that the extreme vorticity was driven by the nearest horizontal velocity, and
thus a simple model was built to have a prediction of the extreme vorticity around

breakwater.
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1.5 Vortex dynamicsaboverigid vortex ripples

Plenty of sea bed is covered by sand and forms soft bottom. The bedform can be
easily changed beneath energetic hydraulic conditions and is different to be measured in
field. However, knowledge of bedform geometry is vital in several interesting areas to
the coastal and marine environment, e.g. in continental shelf area, which are known as the
principal fishing ground of the world (Nybakken and Bertness, 2005). Hence, different
methods were carried out to reveal fundamental understanding about the formation process
and equilibrium state and non-equilibrium state of bedform, especially wave-induced

ripples.

1.5.1 Thegeneral conditions of ripples

Ripples is a general pattern of soft bottom. Since large part of sea bed is covered by
ripples, the properties and functions of ripples are important factors of many applications.
Sediment transport process, ripple morphology, vortex dynamics over ripples and near-bed
drift are most important, especially in storms or other kind of energetic hydraulic
conditions. After a storm, the relic ripples are dominate in determining the bed roughness,
which is a parameter in bottom boundary condition for modeling waves (Mathisen and
Madsen, 1996 a and b, 1999; Zhang et al., 2004) during moderate hydraulic conditions, in
which the ripple form has less change. The nutrient distribution, biological and chemical
process can also be changed with different ripple patterns. An important mechanism for

exchanges of nutrients was carried out by pore water flow through ripples (Precht and
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Huettel, 2004).

The bed flow properties are usually expressed as a function of bed orbital Reynolds
number, say Re, =U A /v, where U, is the bed-orbital-velocity amplitude and A, the
bed-orbital-displacement amplitude. When bed orbital Reynolds does not suffice large,
ripples were formed with small shape angles and flat, plane trough. This ripple form was
recognized as rolling-grain ripples. As the bed orbital Reynolds number reached O(10°),
separation bubbles form against both slopes of ripples and increase ripple steepness
exceeds over H /L >0.1, in which H, is the ripple height and L, the ripple
wavelength. Thus, organized vortex structures form and dominate the region within
y<2H, (Ranasoma and Sleath, 1992; Davies and Thorn, 2005), so that sands are
picked-up by vortices and settling when the vortices tend to breakdown. A new form of
ripples are built by this process with the triangular shape and the steepness about
H,/L =0.17. Since the ripple form was made by vortices, it is called vortex ripple.
However, if the bed orbital Reynolds number exceeds O(10°), the form of ripples was

washed out and became near flat bed with large suspension.

If the sand properties were taken into account, the particle Reynolds number,
Re, =U, d,, /v, and the Froude number, which states the velocity ratio of flow and particle,
Fr,=U, / m , or the maximum Shields parameter, &' =7, /pg(s—1)d,,
should be considered, where s is the specific density p,/p, d,, the medium grain size,
and 7__ the maximum shear stress. These parameters are usually used to defined the

max

sediment properties in flat bed condition. While the Shields parameter exceeds the
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critical value, say €, =0.05 (Nielsen, 1992), the sands were moving by the flow.

1.5.2 Theflow motion and vortex dynamics

Of preliminary study, the flow motion above ripples can be carried out theoretically
when the ripple steepness is very small (Lyne, 1971; Kaneko and Honji, 1979; Matsunaga
et al., 1981; Vittori, 1989; Hara and Mei, 1990; Blondeaux, 1990; Blondeaux and Vittori,
1991). With the assumption of small steepness for the ripple form, only rolling-grain

ripple can be studied and with no vortex generated.

For achieving the understanding of the properties and functions of vortex ripples, the
flow motion and vortex dynamic are matters of concern. Considerable amount of
laboratory works has been performed to investigate the boundary layer flow above sand
ripples. In the earlier, Tunstall and Inman (1975) used the hydrogen bubble technique to
measure the circulation of vortices generated as the oscillating flow passes over rippled
surface. It was found that the circulation i1s proportional to the horizontal flow velocity
near the bottom and the height of sand ripples. Du Toit and Sleath (1981) employed the
laser Doppler velocimetry (LDV) to measure the flow fields near the crest and trough
sections of the wavy wall and showed that the significant increase of turbulent intensities
was induced by the vortices. Sato et al. (1984 and 1987) performed the experiments by
LDV and obtained the spatial distributions of the Reynolds stress, the eddy viscosity, and
the characteristics of turbulent energy production rate and dissipation rate in the boundary
layer. Similar measurement was also performed by lkeda et al. (1989 and 1991) and

found that the generation of the Reynolds stress is limited within the vortices and the
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associated eddy viscosity showed sinusoidal variation.

The particle image velocimetry (PIV) was used to acquire the knowledge of regional
velocities around ripples (Hudson et al., 1996; Earnshaw and Greated, 1998; Jespersen et
al., 2004; Marin, 2004; Admiraal et al., 2006; Van der Werf et al., 2006). Hudson et al.
(1996) focused on turbulent effects and calculated Reynolds shear stress and turbulent
kinetic energy. Comparing to LDV or acoustic Doppler velocimetry (ADV), the PIV
provides large spatial resolution. Therefore, the regional results of vortex properties (e.g.
circulation, trajectory and vortical size) can be calculated by vorticity-weighting methods
and by summing local properties over a vortex, and the region of vortex was determined by

a particular threshold of the extreme vorticity.

Earnshaw and Greated (1998) as well as Admiraal et al. (2006) recognized the
location with vorticity exceed 10% of the extreme one as the region of a vortex, and
Jespersen et al. (2004) chose 20%. However, the vorticity threshold, either 10% or 20%,
were satisfied only if the extreme vorticity is large. When the vorticities diffused and
were convected, the region of vortex extended and with a smaller extreme vorticity, and the
threshold, 10% or 20% of the extreme vorticity, led to misunderstanding about the
properties of vortex. Admiraal et al. (2006) changed the threshold to 50% of the extreme
vorticity when the extreme vortices is small. Moreover, the results were strongly affected
by the selection of the threshold, and it should not be change within the interesting duration.
By comparing the near-bed and free stream velocities, Van der Werf et al. (2006) stated the

time-lag and reveal its contribution to sand concentration. The authors also revealed that
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the peak concentrations were associated with vortex dynamics.

The fluid motion under waves is different from that of oscillatory flow. In the region
above the rippled bed, flow motion in waves is elliptic type but only the streamwise
component of the elliptical motion appeared in oscillating flow. The flow fields in waves
above any two adjacent ripples are different because of different phase beneath the wave
elevation and form a near-bed steady drift, which was responsible to the near-bed
high-concentration sediment motion (Marin, 2004; Ourmiéres and Chaplin, 2004). On
the contrary, the flow fields in oscillatory flow are exactly the same above any ripples and

with no drift.

By PIV examination beneath single wave condition, Earnshaw and Greated (1998)
found that negative vortices generated by onshore-directed flow were stronger than
positive vortices generated by offshore-directed flow. Fredsee et al. (1999) used laser
Doppler anemometry (LDA) to measure the velocity profile above a fixed rippled bed with
combined wave and current. Marin (2004) used similar methodology to study the
Eulerian drift of waves over rippled beds. Another visualization of wave-induced flow
was performed by Ourmieres and Chaplin (2004), who applied a fluorescent dye filmed by
a digital high speed video camera to capture flow over a rigid ripple bed. Vortex patterns
were separated into rolls, rolls plus jets, first flow separation and vortex ejection, and also
the patterns, ring and brick, of three-dimensional vortex were defined and distinguished by

Taylor number, which defined as following.
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’H
Ta= 2o J@ _H v, (12)
22 Vo 20\

By the improvement of computing technique, many solvers (solving Navier-Stokes
equations or vorticity equations with a turbulence model) are able to reveal the interaction
of oscillating flow with ripples clearly. De Angelis et al. (1997) applied pseudospectral
method and coordinate transformation technique to study regular oscillatory flow over a
rippled bed. Turbulent effects and velocity profile were studied. Malarkey and Davies
(2002, 2004) used two discrete vortex models, a simple inviscid model (with no diffusion
of vorticity) and a cloud-in-cell (CIC) (with diffusion of vorticity), to study oscillating flow
above rippled beds. The special case of a round-crested symmetric ripple used by Sleath
(1984) and a sharp-crest symmetric ripple were considered. Chang and Scotti (2004)
made a comparison of two turbulence models, the Reynolds-averaged Navier-Stokes
equations (RANS) and the large-eddy simulation (LES), for simulating oscillating flow
over ripples. Comparing with the experiments of Hudson et al. (1996), the authors found

that only the numerical model with the LES is able to deal with the problems well.

Zedler and Street (2006) numerically studied the flow motion and the associated
sediment concentration on long wave ripples. The Taylor number is extremely high

Ta=127 so that three dimensional pattern of flow motion was studied.

1.5.3 Theequilibrium state of wave formed ripples

The equilibrium state of ripple is an important factor to determine the stability of sea

bed or to evaluate the sediment transport, and also can be applied to estimate the associated

26



sea state if no measurements were set up.

An oscillating plate covered with a layer of sand in static water was usually used to
produce ripple structure in laboratory (Bagnold, 1946; Hansen, 2001; Hansen et al., 2001;
Scheibye-Knudsen et al., 2005). While the sand motion at the end of the oscillating plate
may introduce instability, cylindrical tanks were applied to establish a
quasi-one-dimensional system and avoid end effects (Betat et al., 1999; Stegner and
Wesfreid, 1999; Andersen et al, 2000 and 2002; Rousseaux et al., 2004; Rousseaux, 2006).
For the sake of realizing ripple patterns beneath waves, natural formed ripples with only
waves or combined waves and current were carried out in experiments (Khelifa and
Ouellet, 2000; Davis, 2005; Testik et al., 2005; Catafio-Lopera and Garcia, 2006 a & b;

Landry et al., 2007).

Experiments revealed two equilibrium patterns: rolling-grain ripples and vortex
ripples. The rolling-grain ripples are small patterns with grains moving back and forth
along the water-sand interface. The wavelength of rolling-grain ripples are nearly
independent of bed orbital amplitude with small steepness H, /L, <0.1 (Wiberg and
Harris, 1994; O’Donoghue et al. 2006). Therefore, the rolling-grain ripples is also called
anorbital ripples. The steepness of vortex ripples is larger than that of rolling-grain
ripples and with vortices surrounding and picking-up sands from trough to crest. The
wavelength of vortex ripples are proportional to bed orbital amplitude and also called
orbital ripples (Wiberg and Harris, 1994; O’Donoghue et al. 2006). Comparing numerous

data of experiments and field measurements, Wiberg and Harris (1994) distinguished these
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two ripple forms by bed orbital properties and the oscillating rough turbulent layer
thickness. However, the authors found that the oscillating rough turbulent layer thickness

is not satisfied to describe the ripple patterns without the knowledge of flow motion.

Bagnold (1946) found that the wavelength of ripples was not affected by the
frequency of the oscillatory flows. By changing the frequencies and last for a rather long
duration, Scherer et al. (1999) and Stegner and Wesfreid (1999) found that rolling-grain
ripples are transient stage and vortex ripples the true final stage of ripple form.
Rousseaux et al. (2004) and Rousseaux (2006) confirmed the statement and revealed that
the final stage can be quickly reached if the oscillating frequency was higher. The author
also noted that some misunderstanding may introduce by the observation of “the

pseudo-stability zone.”

Catafio-Lopera and Garcia (2006a) focus on the long wave ripple and called it
sandwaves. The natural formed ripple beneath waves with 3.4 s in period was worked
over 100 hrs. The authors performed the experiments on the sandwaves formation.
While the sandwaves were formed, at about 8 hrs, the sandwave vertical growth rate was at
about 0.2 cm/hr and went on smaller. The higher growth rate was at about 1 hr (0.76
cm/hr).  And clear sandwaves formed after about 100 min. The migration rate of the
short wave ripples, about 0.65 cm/min, is smaller than that at flat bed. This phenomena
can only be carried out by waves. While standing wave formed, the sandy bed was
formed with crests beneath the surface wave nodes and flat plateaus flanked by mounds

under the antinodes (Landry, 2007). Catafio-Lopera and Garcia (2006b) experimentally
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studied the ripple migration and ripple formation above sandwaves. The results are
similar to literature data. The authors also built the relation of ripple wavelength and
ripple  height with the Reynold number for L, /A =2773Rg"® and

H, /A =155.2Re*® valid for 16x10’ < Re, <5x10°.

For the sake of having the knowledge about ripple form beneath irregular wave
motion, Mathisen and Madsen (1999) experimentally studied irregular waves with five
wave component over a fixed ripples, and focused on the hydraulic roughness resulted by
ripples.  Scheibye-Knudsen et al. (2005) used oscillating plate with a set of
multi-component wave motion to form natural ripples. The authors found that the

selected wavelength is dominated by the largest wave.

Beneath the natural sea, bed form can be changed by the presence of wave groups, the
distribution of grain size, and the wave direction, although experiments support simple
parameterizations using “equivalent parameters”, e.g. medium grain size, bed orbital
diameter and the Shields number based on the significant wave height. However, there is
difficult to determine the relation of ripples and wave condition in field since historical
measurement of waves may not present. Traykovski et al. (1999) used sector-scanning
sonar and acoustic backscattering system to perform bedform observation at the sandy
LEO-15 site located on Beach Haven ridge off southern New Jersey. Ardhuin et al. (2002)
used directional waverider buoys and side-scan sonar to measure the wave envelope and
bed form on the North Carolina continental shelf. The observed ripple characteristics are

consistent with wave-generated vortex ripple, in which the ratio of wave orbital amplitude
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and ripple wavelength is about A /L =1. Another field study was performed by
William et al. (2004) and focused on suborbital ripples, which has the properties between

orbital and anorbital ripples.

Grasmeijer and Kleinhans (2004) have compared many field and laboratory
measurements and concluded the relation of bed forms and suspended sand concentrations.
The field measurements were subdivided into two groups: short wave ripples (SWR) with
wavelength of about 0.19 ~0.35m and long wave ripples (LWR) with wavelength of
about 0.37~2.0m. The SWR and LWR associated respectively to low and high
mobility parameter y, =U_ / (s—1)gd,, ofsand. The authors suggested a new bed form
predictor that better collapsed the measure field and laboratory data. It included
nondimensional ripple height H, /A and ripple steepness H, /L, . However, the
effects of relative proceeding wave were not considered. Different bottom concentration
models were also tested against field measurements by the authors. Note that the
information about the wave environment can be extracted from the preserved stratigraphy,
if there are orbital ripples. If ripples are with anorbital pattern, the wave environment
remained unknown while no wave gage was installed and extracting the wave environment

from the preserved stratigraphy is impossible.

1.5.4 Thenon-equilibrium state and ripple migration

The final stage or the equilibrium stage of sand ripples can be reached if the hydraulic
conditions last for a sufficient duration (Rousseaux, 2006, and among others). The

sufficient duration, about O(10°)~O(10°) cycles, is about O(10) days for field or
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realistic sea state, if T =10s. However, it is rarely for a storm or an energetic hydraulic
condition last so long. The ripple migration, dynamic ripple pattern and non-equilibrium
were studied with spectral or statistical manners by Becker et al. (2007) and Traykovski
(2007). However, the non-equilibrium state is very difficult for any model to implement

and this part is not considered herein.

1.6 Research Objectives

The overall objective of the research is to attempt to figure out the associated
phenomena beneath irregular waves by applying a viscous numerical wave tank. This
was to be achieved through the use of spectral and statistical methods about irregular
waves and the associated properties, i.e. surface elevation and flow dynamics. Under the
overall objective the study focuses on the properties which potential theory can not reveal,

and set a number of objectives:

® Generating a stochastic wave train that satisfied the properties of linear or nonlinear
irregular waves;

® Extract the information of bottom shear stress introduced by linear or nonlinear waves
in viscous wave tank and verified the transfer function as well as the statistical
formulas for engineering use;

® Build some fundamental understanding about the spectral and statistical properties of
linear or nonlinear irregular waves and the associated flow dynamics;

® Applied a measure to determine the vortex characteristics, such as vortex circulation
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(or called vortex strength), center of vortex motion and the relative vortex extent, of
the cases both of wave interacting with submerged breakwater and wave propagating

over rippled beds.

1.7 Layout and Contentsof Dissertation

This dissertation is structured to provide a logical progression and series studies
through the work that has been completed regarding irregular waves and the associated

effects. Each of the following paragraphs outline the specifics of each chapter.

Chapter 2 presents the theoretical treatment of water waves in a wave tank.
Two-dimensional continuity equation and incompressible Navier-Stokes equations were
consider as governing equations. The boundary conditions that must be satisfied were
applied. The governing equations and boundary conditions are both described in

Cartesian coordinate and in curvilinear coordinate.

Chapter 3 outlines the numerical model using in this study. The finite-analytic (FA)
method was applied to discretize the unsteady two-dimensional Navier-Stokes equations.
The SIMPLER algorithm was used to calculate the coupled velocity and pressure fields.
The Marker and Cell method (MAC) and its modified version SUMMAC were used in
combination to calculate the free surface boundary. The numerical model was expressed

in both Cartesian coordinate and curvilinear coordinate.

Chapter 4 shows the generation of irregular waves and the associated results. The

deterministic spectral amplitude method based on the fast Fourier transform (DSA-FFT)
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was adopted to generate a stochastic wave train that satisfies a target spectrum in
amplitude and was with random-distributed phases. Measure was made on sea bed and
surface to realize the relation between surface elevation and bottom shear stress. The
accuracy of the numerical scheme was confirmed by comparing the measured wave
spectrum with the target spectrum and by comparing the numerical transfer function
between the shear stress and the surface elevation with the theoretical linear transfer
function. Velocity fields throughout the depth of the water and near the bottom,
associated with irregular waves, were presented to elucidate the correlation between the
water surface elevation and the bottom shear stress. The Wavelet transform was also
employed to obtain a full time-frequency representation of the wave and shear stress
spectra. The maximum bottom shear stresses obtained by this wave model are compared
with those obtained using Myrhaug’s statistical model (1995) and those obtained using

transfer function method.

Chapter 5 reveals an extended studies of Chapter 4 on the nonlinear properties of
surface elevation and the associated bed shear stress. Since the nonlinear waves are
without a permanent form, the model of Dean and Sharma (1981) was used as a qualitative
comparison. The statistical properties were presented spatially in order to elucidate the
changes of nonlinearity of both the surface elevation and the bed shear stress. A
statistical model of the bed shear stress developed by Myrhaug and Holmedal (2003) were

compared.

Chapter 6 presents an environment for studying the interaction of irregular wave and
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a submerged breakwater. For simplicity, the real geometry and the permeability of a
rubble-mound submerged breakwater, turbulent effects, and the stability of armour units
are not considered herein. A reliable processing period was confirmed by comparing
reflected coefficients. A procedure was carried out in order to study vortex dynamics
around the breakwater. The region of vortex was selected by a threshold of the extreme
vorticity. The flow field and vorticity contours were shown in sequence within the
lifecycle of a counterclockwise vortex and a clockwise vortex. Circulations of the

vortices formed within the reliable period around the breakwater were shown.

Chapter 7 uses the procedure in Chapter 6 to analysis the vortex dynamics above
ripples.  An ripple form agrees with the equilibrium state and the natural shape was used.
The circulations and trajectories of the vortices were compared with the wave conditions
on and off the equilibrium state. Statistical properties of the circulation of the vortices

beneath irregular waves were also carried out.

Chapter 8 presents the major conclusions drawn from the four related subjects of this
research and highlights a number of recommendations for future work in the associated

phenomena about irregular waves.
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Chapter 2 Governing  Equations and
Boundary Conditions

“If you don’t learn to think when you are
young , you may never learn.”

—Thomas A. Edison,

American inventor

2.1 Cartesian Coordinate System
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Figure 2.1: Schematic diagram of a numerical wave flume with a piston-type wavemaker
and a sponge layer for generating irregular waves.

A schematic diagram of a two-dimensional numerical wave flume for generating
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random waves is shown in Figure 2.1. The x-axis is measured horizontally in the
direction of wave propagation and the origin is set at the initial location of the piston-type
wave generator with stroke S,. The y-axis is measured verticaly upwards from
bottom. The still water depth is h,. In the present case, u, and h, are used to
non-dimensionalize the velocity and length, while t =h /u, is chosen to
non-dimensiondize the time, where u, is the velocity-amplitude of the wave generator
for producing the random waves with a spectral-peak frequency f,. Furthermore, the
pressure is non-dimensionalized by puf). For incompressible, viscous fluid, the

dimensionless continuity equation in the Cartesian coordinate system is

ou” oV
—=0 2.1
pval Y (2.1)
and the dimensionless Navier-Stokes equations are given by
ou ,ou” ,ou op° 1 0% 9%
v e e ! i 2.2
ot TV YT T Reax® oy (22)
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where u” and V' are the horizontal and vertical velocity components, t* is the time,
p’ is the hydrodynamic pressure, which is defined as taking hydrostatic pressure p. off
the total pressure p/ (p’= p/— p.), and the apostrophe marks denote the dimensionless
variables. The Reynolds number Re is defined as Re=u h,/v, where v is the

kinematic viscosity of the fluid.

For obtaining the solution of Egs. (2.1) to (2.3), it is necessary to provide appropriate
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boundary conditions at all boundaries of the solution domain, as well as the initial
conditionsat t=0 inthewhole domain. The boundary conditions that must be satisfied
are: (1) the kinematic and the dynamic free surface boundary conditions, (2) the no-dlip
boundary condition on the bottom, (3) the upstream boundary condition against the
wavemaker, and (4) the non-reflected condition of the downstream. The initial conditions
of the velocities, hydrodynamic pressure, and surface elevation are set to zero at time
t=0. Conditions (1), (3), and (4) mentioned above are explained in more detail in the

following subsections.

2.1.1 Freesurfaceboundary conditions

The kinematic condition states that fluid particles at free surface remain on the free

surface, and can be expressed as

8_77, + u’a—n, =V (2.4)
ot oX

where 1" =7'(X, t") isthe surface elevation.
The dynamic condition requires that, along the free surface, the normal stressis equal

to the atmospheric pressure and the tangentia stress is zero. These conditions can be

expressed as the following:

no,n =0 (2.5)

i
to.n =0 (2.6)

i

inwhich n and 7z, isthe x component of a unit vector normal and tangential to the

free surface, and o, the i-th component of the stress tensor acting on the surface with
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constant x;. The x and y components of the normal and tangential unit vectors at

the free surface are, respectively

n=
VI () \/ @y

an’
X

\/ N 1+ (5)°

The stresstensor ¢, is defined by
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where the Kronecker delta o, isdefined by

ij
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and Fr isthe Froude number, defined as

2.7)

(2.8)

(2.9)

(2.10)

(2.11)

where g isthe gravitational acceleration. Substituting Egs. (2.7) to (2.10) into (2.5) and

(2.6), the dynamic free surface boundary conditions become

’ 2[(3777:)2%’ )877 +a\/
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After substitution of equations (2.1) and (2.13) into equation (2.12), we obtain

2( +(
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o = N, A1+(E)°] IV
° Fr* Rd1-(Z)’]19Y

(2.14)

where p, = p'(X, ') is the hydrodynamic pressure at the free surface 7°. From Eq.

(2.13), weobtain

W 4 oy
=——t— — 2.15
ay  oxX () -1loy oxX 13

In numerical computations, Eq. (2.14) is used to determine the pressure at the free
surface and Eq. (2.15) is used to extrapolate the horizontal velocity at the free surface from
the flow domain. The vertical velocity component V' is then calculated from the

continuity equation using the known velocity component u’, obtained from Eqg. (2.15).

2.1.2 Theupstream boundary condition

The upstream conditions have two constrains: one is the flow motion against the
piston-type wavemaker has identical velocity with the wavemaker; the other is no-dlip
condition along the wavemaker. However, strick no-slip condition makes the contact
point of the free surface on the wavemaker unmovable in numerical performance. The

detailed treatment is described in the last paragraph of Section 3.4.

2.1.3 Thedownstream boundary condition

The downstream boundary condition requires that, a a large distance from the
wavemaker, the wave is outgoing. A numerical sponge layer, or sometimes referred to as
“numerical beach” was applied at the downstream of the tank to dissipate wave energy and
to eliminate possible reflected waves. The numerical beach has been shown to be very

efficient for dissipating high frequency waves, provided the beach length is longer than the
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typica wavelength of the incident waves (Clément, 1996). Details of the numerical
beach will be discussed in the following chapter. With the sponge layer applied, only
waves with wavelength longer than the width of the sponge layer remain at the end of the
sponge layer, which are indeed long waves with the phase speed \/a . Such
components are allowed to pass through the wave tank by utilizing the outgoing boundary
condition applied on the downstream boundary. According to the wave equation and
continuity equation, the downstream boundary conditions were set as follows (Dong and
Huang, 2004).

ap/+C(,)ap/:0’ au/+ct,)a_u/:O’ a_u/+a_V::
ot oX ot 0X ox  ay

0 (2.16)

where ¢, =./gh, / u, isthe phase velocity of thelong waves.

2.2 Curvilinear Coordinate System

For achieving the study about the interaction of waves and ripples, the body-fitted
coordinate system is used. The curvilinear grid system is generated using algebraic
coordinate method (Thompson, 1982). The Cartesian coordinate system (X,y) is
transformed into the curvilinear coordinate system (&£, (). To transform the equations of
motion from the familiar orthogonal coordinates (x,y) to the new coordinate system
(£,¢) partia transformation was used. This means that only the independent coordinate
variables were transformed, leaving the dependent variables, i.e. the velocity components,
in the original orthogonal coordinates. This approach has the advantage that the resulting

equations are relatively simple and the results can be easily interpreted.
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The variables are next transformed from Cartesian space (X, Y,t") into the
curvilinear space (&', {’,t"), where
&'=8(X,y,t) (2.17a)
=X, Y, 1) (2.17b)
From the chain rule of differential calculus, we have

90 _99&, 9o

= 2.18
X 9F X 9L ox (2.188)
0 d o 9 9’

2255 2.18b
o0° _ 009 99 o (ag'f
2 ’ 2 ’ 2 ,2 ’
oxX?  9& oX 82§ oxX*  a&”\ ox (2180
N 0’ (8(’) 4o 0> 9{’d&
a9l oX 0{0& ox oX
82 _ a 82§’+ a azéw-*_ 82 (aéyjz
dy? 9& dy? 9L ay? 9E7%| 9
y* o9& oy 24“ AT (2.180)
N 0% (a¢’ 42 0> 9¢’9&
ag”?\ oy’ 9gag” ay’ oy’
The Cartesian derivativesin Egs. (2.1) to (2.3) are replaced by Egs. (2.18) to yield:
a 44 \/ ’ a IS4 \/ 4 _
aé:/(ué:x'+ é:y')+aé//(u§x’+ gy’)_o (219)
9" + 97U}, + 2970, + fUL + f2U] 020
Rer ,i1 . , , , , :
:T[u (bfug,+bfu§,)+v’(b§u§,+b22u§,)]+ Re-u, +§,
OV, + G+ 20+ T+ 1
(2.21)

R ’ 2 1, 2
=Te[u (bfv;,+blv2,)+v’(b2\/§,+b2v;,)}+ Re-V, +5,

Where the subscript (X, y), (£, ¢) o t" on U and V denote the partial

derivatives with respect to these variables, and

41



Chapter 2—Governing Equations and Boundary Conditions

S Re[ (bfp§/+bfp;,)} (2.224)

S = Re{ (b§p§,+b§p;,)} (2.22b)
The Jacobian J isdefined asfollows

3= Xy, — YoX, = bib? — P (2.23)

and the contravariant base vectors b’ are

b=y =38
0 =y, = 3¢
b =X, = 3¢
by =x. =3¢

(2.24)

The conjugate metric tensor g" in the general curvilinear coordinates are defined as

u_ g2, e 1 1\2 1\2 1 2 2
0" =&+ &7 =55 ((8) + ()" ) = 55 (v 4 )
47 =744 %(<q>2+<bs>2)=J—i<x;%+ ?) 229)

=884y = (QQ +b5b?) =~ (>( X+ YY)
The grid-control function f' are defined as

, , 14 10
fl:‘fx'x'+§y')/ J aé: (‘ngl)+J aé/ (‘]g )

=Gl 6y = 3390 555(907)

(2.26)

In curvilinear coordinates (£, ), the dynamic free surface boundary conditions (2.13)

and (2.14) are rewritten as:
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1
J

1 1
21+i l,»+i 2,»2
o [ (meg Jbln;)}[

_ o 1
pO_ i 1 1. .7 1 2. 7 1\2 bz\/§’+\]b2\/§':|
Re 1—(3b177;'+3b177;/)

Fr?

1,,, 1 , 1 1
{jb;uf,+3b§u§,}:{jbfv;,+jbfv;1
1.,,1.,,])1 1
+4(Jb1177§,+Jblzng,](\]b;v;&‘]bzz\/g,j

2

1., 1.,
(J b1177§' + 3 blzﬂ;') -1
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Chapter 3 Numerical Methods

“Never make a calculation until you know

the answer.”
—John Wheeler’s first moral principle,
American theoretical physicist

3.1 Saggered grid system

A difficulty in solving the Navier-Stokes equations using primitive variables is the
discretization of the pressure gradient and the continuity equation. A highly non-uniform
pressure and velocity field can probably be generated by a non-staggered grid system.
This can be resolved by using a staggered grid system, in which velocities are calculated
on the surface of control volumes, and pressures are calculated at the central of the control
volumes. The locations for v, V', and p’ are shown in Figure 3.1, where the

subscripts n, s, e, w denote the four surroundingsand ¢ denotes the one calculated.
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/ u , e /
Pve "U» ep. 4> e P Ay

Figure 3.1: Staggered grid systemfor u’, v',and p’.

3.2 Finite-analytic method

In general, equations (2.1) through (2.3) for unsteady two-dimensional flow can be

transformed into the following form

In Cartesian coordinate:
P+, =Re-U'p, +Re-V'p, +Re ¢, +5, (3.1)

In curvilinear coordinate:

9"0ee + 970 +20%0c + Tp. + TP,

Re.  /na 2 (a1 2 (3'2)
:T[U (b +b'e,)+V (e +b e, )]+ Re-¢, +s,

where the subscripts (X, YY), (£,{") or t* on ¢(=U’,V) denote the partial derivatives
with respect to these variables. U’ and V’ are the mean values of u” and V' in a
given computational element. Note that Eqg. (3.2) depends upon g', b', and the

Jacobian.  All of these quantities are only coordinate functions. The source terms s,
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are defined as

In Cartelan coordinate:
s, =Re- p; (3.39)

s =Re p, (3.3b)
In Curvilinear coordinate:
1 ’ /’
S, = Re{j(bllpg, +b? pg,)} (3.49)
_ 1 1 7 2.7
S = Re{;(bz oL +b3 pg,)} (3.4b)

Equations (3.1) and (3.2) can be rearranged into a general convective-transport equation of

the following formula
In Cartesian coordinate:
Pox +Opy = 2”0, +2Bp, + Re- ¢, + S, (3.5

where the coefficient Ap, B¢ and the source term S(p are

2A,=Re-U’
2B, =Re'V’ (3.6)
S, =5,

In Curvilinear coordinate:
9"0.» + 9%, =2A0. + 2B, +Re @, +S, (3.7)

where
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2%:%e(bfu'+b;v’)— ft
R 217 4 2
28, = (b’ +BV') - f (38)

_ 12
S,=8,-297¢:,

If we introduce the coordinate-stretching functions

§=t=, {'=F= (3.9)

Eq. (3.7) can be written as

@ + Re-¢, +S, (3.10)

_2A, 2B,
Pee + Pppr = \/@% 4 \/F

2 2B
Let 2A:—A"; oB=_—_¢

Jot g2

Equation (3.10) reduces to the standard two-dimensional convective-transport equation

(3.11)

described in Chen and Chen (1982 and 1987), i.e.,

Pez + Ppp = 2A¢5, + ZB(pi, +Re ¢, +S, (3.12)

It is convenient to rewrite the governing stand-in equations (3.5) and (3.12) in the

following form
Pux T P, = 2P0, +2Bp, +Re- ¢, +S, (3.13)
Equation (3.13) can be rewritten as

(Dx’zx’Z = 28¢x§ + Gf (314)

where
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G, =2Ap, +Re-9,+S,— ¢, (3.15)

Of an element as shown in Figure 3.2, it is found that a general solution for equation

(3.14) isalinear combination of exponential and linear functionsof X, i.e.

p=a (€ -1)+b'x+C’ (3.16)

(a) (b) ,

|
A
1 .
2 4 4 4
h, | | |
4, o o Gl %l T
- - > h;
K i
—>
s
«— > «— >
h, h h, K

Figure 3.2: A schematic of the solving variable with four neighbors: (a) for ¢ =u’"; (b) for
o=V .

The coefficients, a', b ,and C  are determined by the boundary conditions

h, L if =g,
X, = Vi =g, (3.17)
_hs, ’ if Q=@

o+ o~ (N +N)o,
h':e_th; + h;eZBh; _ hr: _ h;

(3.189)
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(-€7" +1) g, + (" —1) g, + (€7 -7 ),

b = hr:e—ZBhg +hé828h,‘ _h:_h;

C =g,
Substituting Eg. (3.16) into Eq. (3.14), we obtain
2Bb +G, =0

Substituting Eqg. (3.18b) into Eqg. (3.19), we have

1, G G

Gf :E_C c EC S EC n
ZB(e*ZB*‘é —eZB“%) ZB(eZB** —1) ZB(l—e’ZBh;)
- KB @c == KB ¢s s KB ¢n
=C.0.+C.0, +Co,

where

Kg =™ +he’™ —K — I
= eZBm _1
s eZBh; _e—2Bh;

- 1-e”™
n = 2B _ o 28I,

c .1 —he™™ — e + 1+

P~ oB 2B _ o 28N
=2
C

c~:5::_&:__s~c

C
c~:n:_&:__n ~c

C
C.+C =-C_ =C

w
S5
o
o
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(3.18b)

(3.18¢)

(3.19)

(3.20)

(3.21)

(3.223)

(3.22b)

(3.22¢)

(3.22d)

(3.22¢)

(3.22f)

(3.229)



Similarly, it yields

=—(C,+C)p.+C p,+C.p,+Re- @, + S,

3.23
-G, (3.23)
=C.0, +Co +C0,
where C, and C, are
- 1-e*
C,=2A ; ; 3.244
R 329
C, =2 ™1 3.24b
=2A . . 24
e h;e_ZAh” _ h:\,eZAm _ h\:v _ h; ( )
Equation (3.23) can be rewritten as
(C.+C.+C.+C)p.=Cop.+C o, + E;v(pw + qu)e -Re-g,-S, (3.25)

where -C,=C,, -C,=C;

e E

If we approximate ¢, using a backward-difference
scheme and let S =E;+E;+és+én, the local analytic solution at the central node c

of the element is obtained

p=C g+ Oy Gy Gy RE e S

' spD”® sSsD" D" §S.D'* S.D-A'° S.D (3.26)
:ic R a5
~ nb(onb S* . D At/ ¢c S* . D

where D=1+Re/(S -At"). The subscript nb represents the “neighboring” nodes of

c. Equation (3.26) isthe four-point finite-analytic formula for the momentum equations.

3.3 Solution algorithm

If the pressure field is known, Eg. (3.26) can be used to solve the convective-diffusion
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equation (3.13) for u and v. However, in practice, the pressure is a priori unknown
and has to be determined with the velocity field satisfying the continuity equation.  In
the present study the SIMPLER algorithm developed by Patankar (1979) was used to

calculate the coupled velocities and pressure field.

In the staggered grid system, the arrangement of the velocity and pressure nodes is
shown in Figure 3.1. The velocity u on the east side of the control volume is

represented, from Eq. (3.26), by
=l —d.(p.— P;) (3.27)

where the pseudo-velocity U, and the coefficient d, aredefined as

In Cartesian coordinate;

" 4 , Re iy
u. = C.u +(——)| u 3.28a
e (';ﬂ nb nb)e (S 'D'At’)e e ( )
Re
d =(— 3.28b
el (3.280)
In curvilinear coordinate:
2 1 Re, ., 12 Re m-1
— (2 —— )| u 3.29a
; wUnp = S, DJblp; (g)gg)e (S-D-At')ee ( )
d = (; (3.29b)
® 'S.D-AE ] '
Similarly, the velocities at the west, north, and south sides are, respectively
u, =, —d,(p; - p,) (3.30)
Vv, =V —d,(p,— ) (3.30b)
V.=V, —d (p. - p) (3.30c)
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where

In Cartesian coordinate;

=(>C. U + u™t 3.31a
(r;l nb nb)W (S D At) W ( )
7 =(3CoV)| (| v (3.31b)
n ~ nb ¥nb ] S* ] D At, ) n '
L =3 Co)| +e | v (3.310)
s ~ nb “nb . S*DAt/ . s '
Re Re Re
d =(—) , d =(——)|, d.=(——— 3.31d
e ) s g ) (3:310)
In curvilinear coordinate:
~p 4 ’ 1 Re 78 N 12 ’ Re /n-1
a = C.u, ———— —2 u..) +(—=——)| u 3.324
w (r;l nb™~nb S.DJ pg“ S D( g )gg)w (SDAt,)W w ( )
1 Re
= C VvV, ———— D e 2 = +(——— v’”‘1 3.32b
v —(ic v, - S Reb; S (20%)) +(—) V(3320
LI gt Ry <YL s DAY '
1 1 1
d = - -
W(SDAfJbl) d SDAngZ) ds = SDAngZ)
(3.32d)

The pressure-gradient terms in the above equations were evaluated using the pressure
field at the previous time step or iteration. The continuity equations (2.1) and (2.19)

within the element can be discretized as

In Cartesian coordinate;
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[, ~ W JAY +[V, ~V/]AX = 0 (3:39)
In curvilinear coordinate:

[(BlU), — (b)), JAS +[(B3V), - (B5V) JAS + D, =0 (3.34)
where

D, =[(BV), — (bV), JAL +[(BW),, — (b)) AL (3.35)

An equation for the pressure is then obtained by substituting Egs. (3.26), (3.29)

through (3.31) into Eq. (3.34) or (3.35), i.e,,

~

a.p,=a,p,+a,p,+a,p,+ap,—D (3.36)
where

In Cartesian coordinate:

a, =d.AY

a, =d,Ay’

a, =d Ay (3.373)
a, =d.Ay

8, =a+a,+a,+a

D =[0, -0, JAY +[V, ¥/ ]AX (3.37h)

In curvilinear coordinate:

a, =b.d.A{’

a, =b,d,A{’

a =h’d Al (3.38a)
a,=bdAd’

8, =a,+a,+a,+a
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D =[(b{T), - (B0),,JAL +[(b20), — (b20) JAE + D, (3.380)

Although the guessed pressure field can be updated directly by Eq. (3.36), the updated
pressure field probably produces a velocity field which does not satisfy the continuity
equation. An iterative procedure is therefore required to correct this erroneous velocity
field for achieving more rapid convergence. A velocity-correction formula, similar to that
used in the SIMPLE algorithm, is derived. If we denote the dimensionless imperfect
velocities and pressure by u, v, and p’, respectively, the resulting velocities at the

caculated locations are

u, =0, -d.(p, - p,) (3.39)
u, =0, -d,(p, - p,) (3.39b)
v, =V, —d,(p,— P,) (3.390)
v, =V, —d.(p, - p2) (3.39d)

After subtracting these from the exact expressions, i.e. Egs. (3.26) and (3.30), we obtain

u;—u, =0 -0, —d.(P. - P.) (3.40a)
u, —u, =0, -0, —d, (P, - B,) (3.40b)
Vo=V, =V, ¥, ~d.(p, - P.) (3.400)
V-V, =V, -V, —d,(P, - p.) (3.40d)

where p=p'—p is the pressure correction, and (U'—u’) and (V-Vv) are the

corresponding velocity corrections. It is not necessary to retain such a complicated
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formulation because both the pressure- and velocity-corrections become trivial when the
solution converges. It is possible to omit that part of the velocity-corrections, ('—0
and V-V . Patankar (1979) used this critical approximation in his SIMPLER algorithm.

With this approximation, the vel ocity-corrections are expressed as

u, =u,—d (P, - p.) (3.41a)
u, =u,—d,(p. - p,) (3.41b)
v, =V, —d,(P,~ P,) (3.41¢)
V.=V, —d.(p, - P.) (3.41d)

As the velocity field satisfying the continuity equation, a pressure-correction equation is

obtained

a.p, =a,p, +a,p,+a,p, +a,p. —D’ (3.42)
where
In Cartesian coordinate:

D" =[u, —u,]JAY +[V. —V.]AX (3.43)
I'n curvilinear coordinate:

D" =[(u'), — (bu"),JAS" +[(05V'), - (B5V),]AS+ D, (3.44)

and the coefficients a,, a,, a,, a,, and a, are exactly the same as those in equation
(3.36). After the pressure correction is obtained by equation (3.42), we substituted it into

Eq. (3.41) to update the velocity field, which are used in Eq. (3.36) to renew the pressure
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field. This procedure repeated until the convergent condition H(p—(p*um<10‘4 was

satisfied, where ||_ denotes the infinite norm.

3.4 Freesurfaceboundary

A difficult aspect of flow problems with a free surface is the accurate location of the
free surface, which forms an integral part of the solution. The boundary conditions that
must be satisfied at the free surface are the kinematic and the dynamic free surface
boundary conditions. The former condition is used to determine the location of the free
surface after the velocity components are obtained. In addition to the free surface
location, there are three remaining unknowns. the velocity components u” and V' and
the pressure p’; while there are only two remaining boundary conditions, namely, the
dynamic free surface boundary conditions in the normal and tangentia directions. To
obtain a unique solution of the problem, one more condition is inevitable. The additional
condition is the equation of continuity, which requires the conservation of mass

everywhere in the flow domain.

In the present model, the SUMMAC method was used to deal with the free surface
boundary. The major concept underlying this method is the use of marker particles to
identify the location of the free surface. By tracking the positions of these marked

particles, the transient location of the free surface can be determined, namely
X =x'+UAt; Y =yt +v At (3.45)

where the subscript k denotesthe k -th marked particle on the free surface.
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For the curvilinear coordinate, the afore-mentioned method has to be changed as
following. Consider an element with points 1, 2, 3, 4 and amarker M located within it,
asshown in Figure 3.3. A weighting coefficient A Is equal to the weighting area of the
point i. The Cartesian velocity can be evauated at the points 1, 2, 3, and 4 in the
computational domain. The contravariant velocity (07, V') must be evaluated in these
points in order to find the successive position of the free surface. The transform formulas

between Cartesian velocities and contravariant velocities are

0 =ug, +V¢, Hu +b2\/ (3.464)
vV=u{, +\/g“ —&u +b2\/ (3.46b)
a b) o, v o, v
@ v,V U\/ N ¢ (i,j+D (i+1j+1)
(I,J+1)@ 5 (i+1j+2) S N, =
&, a A A
T et N PR ey
& A MA,
u, v @ @ u, Vv G'\f/< D¥/@?’, \7’
()} (i+1]) () (i+17)

Figure 3.3: Marker M in the Cartesian coordinate system and the curvilinear coordinate

system with the surrounding points and the weighting areas.

When the contravariant velocities at points 1 to 4 are known, the contravariant

velocity at themarker M can be evaluated by interpolation.

~,n _( '5& ~|,‘::|1 ]AZ + ~|Tl j+1 + l:jl,nHl )/('51 AZ AB Azl) (3473,)
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V) = (VA A A +\/+1A4)/(A A+ A+ A)) (3.47b)
Where the subscript M denotes the variables were at the marked location M .

Thus the new free surface in the curvilinear coordinate system (&, {) can be

calculated by
v =&+ OgAL (3.483)
= ALY (3.48b)

The new location (£7™, ¢7™) of the marker M are certainly located with an
element in the Cartesian coordinate system and surrounded by the four points (f,’ e )
(&air Gai)o (Erjon ) and (&5, &) Inthe Cartesian coordinate system,
the four weighting areas, as shown in Figure 3.3(b), are &', &™, &, and &",

respectively. Hence, the location of the marker M in the Cartesian coordinate system is

calculated by
n+lxn+l N+l xn+l ntl  xn+l nl 5 ntl
)q:_'.l_( i, a + +1Ja2 ck +lj+la3 +)<J+l ) (3493)
- (aln+1+ a2+1+ ag+1+ an+1) ’
IHLFNHL L il g/ il xn+l n+l zn+l
o _ (yrrar + yiia™ + Va8 + yaE) 249
M nel | xn+l |, xn+l | z=n+l ( : )
(& +a+ar+ayt)

The pressure at the free surface is calculated by the normal dynamic free surface
boundary condition [equation (2.12) or (2.27)] with the known velocities u” and V. By
means of the tangential dynamic boundary condition [equation (2.13) or (2.28)], the
velocity component u” on the free surface is calculated from the velocity of the main

body of the fluid. By choosing a simple control volume beneath the free surface, as
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shown in Figure 3.4, the vertical velocity Vv, can be caculated by the discretized

continuity equation as follows.

’ ’
u2_ul+\/2_vi

- —=0 (3.50)
AX Ay

In Figure 3.4, the velocity components u; and u, were interpolated from the

and U

’
as well as u; i

known-neighboring horizontal velocities, v, and U 1 o1

i+1, j
respectively. The velocity components u, and v, of the k-th marked particle were
then interpolated from the neighboring velocities u” and V' asin the SUMMAC method.
A method (Chan and Street, 1970), which satisfies the discretized Poisson equation for the

pressure, called “irregular star” was applied to determine the pressure at the element near

the free surface.
?Vi,‘f’l,j‘f’l
! free surface
%/
ui,,j+1——> oz - ui,+1,j+1
2
u - - U Ay
L 1
!
V:l,. = Vi’+1,j
ui,,j——> - ui,+l,j
< AX >

Figure 3.4: A simple control volume (shaded area) beneath free surface.

If strict no-dlip boundary condition were held on the contact point of the free surface
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on the wavemaker, the free surface on the wavemaker will be unmovable and be against
physical flow motion. For overcoming this deviation, the no-slip boundary condition at
the wavemaker is released at two nodal points beneath the free surface. The dip
velocities v along the wavemaker are extrapolated from the flow inside the domain (Tang

et al., 1990).

3.5 Numerical sponge layer

A numerical sponge layer (Ohyama, 1991) was used for eliminating wave energies.
An artificial viscous term was added as energy damper in the momentum equations, i.e.

equations (2.2) and (2.3), and of the following form:

8u’+u,8u’+v,au’ :_ap’+i E)zu’+ azu’)_ 1 ¥
ot oxX dy X Redx?® dy?" Re
o Lo Lo op 1,0V oV, 1

! V—=——+— - 4 3.51b
ot’ T ox’ " ay oy . Re(ax’2 ¥ oy’ 2) Re, ( )

(3.519)

where Re, = pu h,/u, and u, the damping factor of sponge layer, which should change
smoothly along onshore direction to avoid sudden disturbance in the numerical domain.
Normally, three kinds of function were used to perform the smooth change of the damping
factor: rational, cosine and exponential function. According to Troch and Rouck (1998),
using cosine function has the smallest reflected coefficient over the three.  Such that, the
cosine function was used to connect x, =0 and gy, =u,,, Smoothly and has the

following form.
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0 , X< Xy
U= 0.5(1— COS(%(X— xﬂ)Dﬂsmax, Xg < X< X, (3.52)
:usmax 1 X > )(52

Note that the damping factor . varies within the region [xg, X,,] with the width x.

The deployment of the sponge layer was shown in Figure 2.1.

To examine the efficiency of the sponge layer, Fig. 2 compares the surface elevation
of the random waves with the peak-spectra period, T =1.6s, significant wave height
H,;=1cm, time duration T,=16s, and still water depth h, =20 cm produced in the
numerical wave tank with and without the numerical sponge layer. When there is no
sponge layer deployed, the numerical wave flume was simply extent so far that the waves
will not touch the downstream boundary of the flume and no waves are reflected. In
Figure 3.5, the surface elevation 77 is normalized to the significant wave height H,, and
thetimeisnormalizedto T,. Theresultsillustrated in Figure 3.5 indicate that no waves
were reflected from the sponge layer.  Hence, in this study, the numerical sponge layer, or
so-called numerical beach was deployed to avoid the wave reflection from the downstream

boundary.
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Figure 3.5: An irregular-wave train with peak-spectral period T, =1.6 s, significant wave
height H,;=1cm, time duration T,=16s, and still water depth h,=20cm in the
numerical wave flume with (dot line and solid circle) and without (solid line) the numerical

sponge layer.

While the case without sponge layer was taken as a pure incident irregular wave, the
attenuation of spectral energy within the sponge layer can be quantified and shown in
Figure 3.6. Comparing with the normalized damping factor u /u,., ., the spectra
energy is found approximately zero before the damping factor reaches its maximum,
athough it costs about 3L, to have thisresults. In this case, the associated parameters
of the sponge layer are Re,=2146 and x,=3.77L,. For assuring a robust
non-reflected downstream boundary, the sponge layer was given as u,../h, /9 =0.04,

X, = 4L, and thelength longer than 5L in subsequent computations.
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Figure 3.6: The attenuation of spectral energy within the sponge layer, which has the
parameters: Re,=21.46, x,=3.77L,. The case without the numerical sponge layer
was chosen as the incident irregular wave.

3.6 Calculating of shear stress
Shear stress is studied in the present in present work, and can be obtained using
numerical implement. The shear stressis defined as following.
T =MW, —U) Ay, a y=y,,, for =123 (3.63)

where Ay, is the distance of y, and y,,, which is the location of the horizontal

velocities, and y, =0 m islocated on the bed boundary. However, the results z,,, has
a distance y,, from the bed, and an extrapolation method, the spline function in the
Matlab toolbox, was used to obtain the bed shear stress 7,. Consequently, the results is

strongly dominated by the grid resolution along y-axis. In the present study, the

near-bed vertical grid size Ay, issettobe 6,/16, where J, isthe spectral-pesk Stokes

layer thickness, i.e. 5p=,/v/ o, Wwith the spectral-peak angular frequency w,.
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3.7 Thesolution procedure

The complete solution procedure of the present method is summarized in Figure 3.7.

Assign the initial conditions
and boundary conditions

{

Calculate the FA coefficients <

v

Solve the momentum equations
to have u",v', D"

v

Solve the pressure-correction
equation to obtain p’

v

Use the velocity-correction formula
to correct the velocity U, V/

v

Calculate the velocity U, V'
No at the free surface

s Next time step

Calculate the U, V'

v

Solve the pressure equation
to have the pressure P’

If the absolute error
smaller than 10™

Yes
v

Calculate the locations of free surface
and the wavemaker

Program End while all time
steps are done

Figure 3.7: The solution procedure.

65



Chapter 3—Numerical Methods

66



Chapter 4 Linear irregular waves and the
associated properties

“A tﬁeory is sometﬁing noﬁocfy believes, except
the _person who made it. An experiment is
something everybody believes, except the

person who made it.”
—Albert Einstein,

German-born tﬁeoreticafjaﬁysicist

y A

Xs
0 /UJS/ I

{\ _sd Smax

4 /\AI\VVI\I\AI\ v X Xe
VVV 1L =

h Sponge
° | Layer

X

7

Figure 4.1: Numerical wave flume with a piston-type wavemaker and a sponge layer for

generating irregular waves.

A schematic diagram of a two-dimensional numerical wave flume for generating

irregular waves is shown in Figure 41. The x-axis is measured horizontally in the
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Chapter 4—Linear irregular waves and the associated properties

direction of wave propagation and the origin is set at the initial location of a piston-type
wave generator with stroke S,. The y-axis is measured verticaly upwards from

bottom. The still water depthis h,.

4.1 Generation of irregular waves

In the present work, the deterministic spectral amplitude method based on the fast
Fourier transform (DSA-FFT) was applied to generate irregular waves. Simulation of a
time sequence 7(t) requires the independent time variable t, to be discretized as
t,=nAt (n=0,12,..), where At is the time interval. This discrete time sequence
n(t,) represents a continuous time series of water surface elevation with a total record
length of Ty, and atotal number of discrete values N , which satisfies

N =T,/At (4.2)

The reciprocal of At is the sampling frequency f.=1/At, and f_=1/(2At) is the

cut-off (Nyquist) frequency. The discrete Fourier transform pair is defined as

N-1
A=Y nt)e'”™ N, k=012..,N-1 (4.2)
n=0
1N
77(tn)=ﬁzpke'2”nkm1 n=0,1 2., N-1 (4.3)
k=0

where i =+/-1 and A, is the discrete Fourier transform of 7(t,) or the k-th Fourier

component. The frequency interval between any two successive frequenciesis
Af =1, —f_, =1IT, (4.4

For the identical frequency interval, this method can be identified as equal-frequency
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superposition method.

When the target wave spectral density S, of surface elevation is specified, the k-th
Fourier component of the real time series 77(t) can be represented by a complex variable
A (k=01..,N/2-1) with an amplitude of /S (f,)Af/2, a phase of ¢ and
A =A_ (k=N/2,N/2+1,..,N-1), where the superscript asterisk means complex
conjugate. The phase ¢ (k=01..,N-1) are independent random variables,
distributed uniformly over the interval [0, 2z]. The time sequence of the surface
elevation was then determined by applying the inverse Fourier transform to A , as
indicated in Eqg. (4.2). Alternatively, with the known amplitude of each Fourier
component, the surface elevation of linear irregular waves can be superposed by N/2

components of discrete waves as follows.

N/2-1

nt)= Y, a cos(@t-4,) (4.5

k=0

a, = 2|A|=1/2S, (f)Af (4.6)
where @, =2xf, is the discrete angular frequency. Thus, wave synthesis of any
duration can be performed without leakage. However, this limitation is inefficient in the
present numerical model for irregular wave generation.  In ocean engineering practice, the
cut-off frequency is generally less than 1 Hz (Medina et a., 1985). In the numerical
simulation, for the sake of accuracy, the time marching steps are typically 10° ~10™
seconds, and the cut-off frequency can be up to 5x10° ~5x10° Hz. If the duration of
wave synthesis is 1000 s, then 5x10° wave components are required, given At=10"° s

Since waves with frequencies of over 1 Hz seem to be redundant in reality, for smplicity,
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wave components with frequencies higher than 4 Hz are neglected in the numerical model

of irregular wave generations.

When the wave components are known,
. (xt) =3, cos(k x— @t +¢,) (4.7)
the displacement function of a piston-type wavemaker used to generate this wave is

determined using linear wavemaker theory, as follows (Dean and Dalrymple, 1984).

é:k t)= & Sin(%t _¢k) (4.8)

sinh 2k h, + 2k h, 49)
2(cosh 2k h, —1) '

with g =a,

where ¢ =S /2 and S, isthe stroke of the wavemaker for generating the k-th wave
component. The displacement function of the wavemaker used to generate irregular
waves is then obtained by linearly superposing the displacements to generate the k-th

wave component as follows.

(0= &= gsn@t-a) (410

The Goda-JONSWAP spectral density (Goda, 1988) was chosen as the target wave

spectrum, and is given by

S,(f)= BHZT;* £ ° exp[-L25(T, f) ]~ (o' /2 (4.11)

0.07, for f <f, 4.12
“710.09, for >, @12
5 _0.06238x(1.094-0.01915In 7) (4.13)

~ 0.230+0.0336y—0.185(1.9+ 7)*

where T =1/f , f  is the peak-spectral frequency; H,, the significant wave height

p
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assigned initially, and y is the peak enhancement factor, which usually varies between 1

and 10.

4.2 Transfer function between shear stress and surface

elevation

Since the surface elevation of irregular waves can be constructed by superposing
linear waves of various wave heights and frequencies, the shear stress exerted on the
bottom by irregular waves can be synthesized similarly. The shear stress on the bottom is
t=u(du/dy),a y=0. The horizontal velocity within the boundary layer under linear

waves with surface elevation 7 = acos(kx—wt) is(Dean and Dalrymple, 1984)

PG [1_ o UDyars ] ol (oc-at) (4.14)
sinhkh,

where y=0 isset at the bottom. The shear stress on the bottom is then

wa o
=Re 1-i), | —e
T‘y=° {u sinhkh, a-n 20 }

= MO8 1 cog(lox—at - T
sinhkh, V v 4
__ Mo o

sinhkh, Vv

(4.15)

T
Xt+—
n( 4w)

Equation (4.15) reveals that a phase shift exits between the shear stress and the water
surface elevation and that the shear stress can be directly obtained from the surface
elevation by multiplying it by the term «/m,ua)/ sinhkh,. This term represents the
transfer function or the response function between the shear stress and the surface

elevation and equals the square root of the ratio between the shear stress spectrum and the
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wave spectrum (Samad et al., 1998);

H, (@) = /Sf(w) =_HO |2 (4.16)
S,(w) sinhkh Vo

The angular frequency and the wavenumber follow the dispersion relations,

@” = gktanhkh, .

Incident irregular waves of uniform spectral density (a Gaussian white noise) were
generated and propagated in the numerical wave flume at a still water depth h, =40 cm
to confirm that the shear stress under irregular waves, computed by this numerical wave

model, iscorrect. The wave height of each wave component is H = 2.683x10% cm.

The numerical results obtained by ,/S,/S, were compared with the theoretical one
and shown in Figure 4.2. The comparison reveals that the numerical results are identical
to the theoretical values. Experiments carried out by Samad et al. (1998) are compared
and shown in Figure 4.2(b). The experimental results have good agreement while the
frequency is larger than unit hertz.  When the frequency is smaller than unit hertz, the
discrepancy of the experiments are shown and indicates there is still difficult for measuring

bottom shear stress using experiment.
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Figure 4.2: The numerical results and theoretical transfer function between the shear stress
and the surface elevation: (a) the case with h, =40 cm; (b) the case with h =20.3 cm
and comparing with the experiments of Samad et al. (1998).
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Figure 4.3: Variation of transfer functions with depth of still water.

Figure 4.3 plots the variation of the transfer function H_(f) asafunction of the still
water depth. It shows that the main responsible frequency band shifts to a lower
frequency as the water depth increases. The spectral-peak frequencies of the transfer
function are 0.8521 Hz, 0.6015 Hz, and 0.4311 Hz for still water depths of h, =20 cm, 40

cm and 80 cm, respectively.

4.3 Relation between wave and shear stress spectra

The accuracy of the numerica scheme was confirmed by comparing the wave
spectrum of the ssimulated irregular waves with the target wave spectrum. After the
accuracy of this wave model was verified, the wave spectra and the associated shear stress
spectra were discussed with reference to the spectral frequency, the zeroth moment and the

spectral bandwidth parameter.
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Table 4.1: Numerical conditions of simulated irregular waves.

Case TR ho H1/3 fP 7 Ur

S
(9  (cm) (cm) (H2)
4.1 128 40 1.0 0.625 1.0 1.257
4.2 128 40 10 0.500 10 2.133
4.3 128 40 1.0 0.800 1.0 0.658
4.4 128 40 1.0 1.000 1.0 0.335
45 128 20 10 0.625 10 5.635
4.6 128 80 10 0.625 10 0.246
4.7 128 40 1.0 0.625 3.3 1.257
4.8 128 40 10 0.625 7.0 1.257
4.9 256 40 1.0 0.625 1.0 1.257

Table 4.1 presents the numerical conditions studied in thiswork. The characteristics
of irregular waves were specified in terms of duration T, the significant wave height
Hy;, the peak spectral frequency f, and the peak enhancement factor y. The
significant Ursell number, which is often used to judge the nonlinearity of regular waves, is

defined as
Ur, = H1,3L2p/h§ (4.17)

where L, (=27z/k;,) is the peak-spectral wavelength and can be determined from the

dispersion relation.

Figure 4.4 shows an excellent agreement between the simulated wave spectrum and
the target wave spectrum in Case 4.1. The target spectrum is the Goda-JONSWAP
spectrum, which is described by Eq. (4.11). The spectral density is normalized by the

zeroth spectral moment m, , which will be presented in the following section.

75



Chapter 4—Linear irregular waves and the associated properties

Goda-JONSWAP spectrum
.............. Numerical results

S(f)2
m,,
(9 1

f (H2)

Figure 4.4: Comparison of spectrum of simulated waves and target wave spectrum in Case
4.1.

Since this wave model takes into account the viscosity of the fluid, the viscous flow
fields and the bottom shear stress can be determined. Dong and Huang (2004)
demonstrated the accuracy of this wave model by comparing the numerical results for
wave and velocity profiles, including those in the bottom boundary layer, with the
analytical solutions. Figures 4.5(a) and 4.5(b) present the temporal variation of surface
elevation a x/h, =10 and the horizontal velocity profiles near the bottom at different
wave phases, respectively, to elucidate viscous flows induced by the irregular waves in
Case 4.1. The significant bottom velocity U  was calculated by the definition of the
significant property, say U_=4m.?, where m,, is the zeroth spectral moment of bed

orbital velocity.
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Figure 4.5: (a) Temporal variation of surface elevation at x/h =10 and (b) horizontal
velocity profile near the bottom at different wave phases of irregular waves in Case 4.1
(5, =5.064x107* m).
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Figure 4.6: (a) Water surface elevation, (b) velocity fields throughout the depth and (c)
near the bottom beneath two zero-downcrossing waves induced by the irregular waves in
Case 4.1
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Figure 4.6 plots the corresponding water surface elevation and velocity fields
throughout the depth and near the bottom beneath two zero-upcrossing waves. Figure
4.5(a) a'so plots the temporal variation of the horizontal velocity component at y/J, =8,
where is far from the boundary layer and the velocity can be regarded as the free stream
velocity. Figure 4.5 reveals that the wave phase (1) with negative surface elevation
induces a zero horizontal velocity beyond the boundary layer, instead of a negative
horizontal velocity component, as for small-amplitude waves or Stokes waves (Dong and
Huang, 2004). Similarly, at the wave phase (3) with zero water elevation, a rather large
positive horizontal velocity component instead of a zero horizontal velocity, was induced,
because, although the higher frequency components are manifest in the wave profile, their
effect does not reach close enough to the bottom. Near the bottom, the velocities induced
by the low-frequency components cover those induced by the higher-frequency
components. Accordingly, the wave components with very low frequencies dominated
the flow behavior near the bottom. Figure 4.6 also displays this phenomenon. The
negative surface elevation of a high-frequency component, located between x/h, =18.2
and 19.0 in Figure 4.6(a), is responsible for the negative horizontal velocity only to a
certain depth, as shown in Figures. 4.6(b) and 4.6(c). Below that depth, a positive
velocity component exists, which is associated with other waves of lower frequencies.
Figure 4.5(b) reveals also that the thickness of the boundary layer is about 66, if the
thickness of the boundary layer is defined as the location where the flow velocity
approaches 1.01 times the potential flow velocity of the spectral peak frequency. Based

on this definition, the thickness of the boundary layer for regular waves is about 46
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(0 =+v/w) (Dong and Huang, 2004). Figure 4.7 compares the wave spectrum with the
shear stress spectrum for irregular waves in Case 4.1. It shows that the spectral width of
the shear stress spectrum is less than that of the wave spectrum and that the peak frequency

of the shear stress spectrum is dightly lower than that of the wave spectrum.

3
— A — Wave spectrum -
= ' ‘\ — — — — Shear stress spectrum -
S £)2] -
m, .
(8 ] i
O T I I T T

f (H2)

Figure 4.7: Comparison of wave spectrum and shear stress spectrum for irregular waves in
Case4.1.

4.4 Wavelet transform and effects of different spectral

parameters

The wavelet transform is also applied to yield a full time-frequency representation of
the random water surface elevation and the associated shear stress. The wavelet
transform allows localization in the time domain via trandations of the so-called mother
wavelet and in the frequency domain via dilations. Massel (2001) and Huang (2002)

and several others successfully applied it to the analysis of wave data. The wavelet

80



transform of atime series f(t) isdefined as

WGt )= [ fw, . Odt=]" f(t)ﬁz/(‘;:w

)dt (4.18)

where ¥~ isthe complex conjugate of the mother wavelet y; t isthe time trandating

W

range and s, is the dilation scale. One of the most often used mother wavelets is the

Morlet wavelet, which is given by
w(t) = exp(—t*/ 2) exp(iw,t) (4.19)

where @, =5.5 isthe frequency of mother wavelet. The time-frequency wavelet energy

density isdefined as

ws(,, f,)= 2 G S (4.20)

TC, s, fn
where s,-27f =0, and C, istheadmissibility coefficient, defined as
C, = j: (¥ (@) | o)dw (4.21)

where W(w) is the Fourier transform of the mother wavelet. Figures 4.8(a) and 4.8(b)
present the time-frequency analysis of the water surface elevation and shear stress at
x/'h, =10, respectively, for the irregular waves in Case 4.1. The values of the wavelet
coefficient, WS(t,,, f,,), were normalized by the corresponding zeroth spectral moment,
m,, and m, (Table 4.2). Notably from Figure 4.8, throughout the duration of wave
progression, the spectral width of the shear stress is less than that of the wave elevation.

This property is consistent with that presented in Figure 4.7.  The maximum values of the

water surface elevation and the shear stress occurred in the period between 50~ 55T,
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with a sharp energy rise and a small frequency band.
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(b) time-frequency analysis of the bed shear stress.
Figure 4.8: Comparison of the surface elevation and shear stress in time-frequency domain
for irregular waves in Case 4.1; the values of wavelet coefficient, WS(t,, f,,) were
normalized to the corresponding zeroth spectral moments, m, and m, .
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Table 4.2: Comparison of different spectral parametersfor casesin Table 4.1.

Case f p m,, H s Qp’? f pr My Qp’
(Hz) (x10°m?) (cm) (Hz) (x10™ kg’m?s*)

41 0.625 6.790 1.042 1981 0.617 3.547 2.562
4.2 0.500 7.079 1.064 1.923 0.500 3.854 2.291
4.3 0.800 6.377 1.010 2.165 0.750 2.565 2.983
44 1.000 7.394 1.088 2.143 0.906 1.678 3.419
45 0.625 5.913 0.973 2219 0.773 9.553 2.345
46 0.625 7.433 1.095 1.950 0.594 0.797 3.184
4.7 0.625 6.900 1.050 3.044 0.625 3.715 3.885
4.8 0.625 6.865 1.048 4.499 0.625 3.862 5.462
49 0.625 6.978 1.056 1966 0.613 3.479 2.553

The characteristics of the simulated wave spectra and the associated shear stress
spectra can aso be examined in terms of the zeroth spectral moment m, and the spectral
bandwidth parameter Q,. When these parameters referred to the wave spectra or the

shear stress spectra, an extrasubscript 7 or 7 was added.

The spectral moments of order ' are defined as
m = j: o' S(w)dw (4.22)

where S(w) is the spectral density function of the random variable. The significant

wave height recommended by IAHR (1989) is defined as
H, = 4rrtf72 (4.23)

The spectra bandwidth parameter, Q, can be determined using various approaches.
The spectral bandwidth parameter proposed by Goda (1970) is adopted here. It is defined

as

2

Q, =—2j°° f S2(f)df (4.24)
n,, -°
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Based on this definition, a higher value of Q, corresponds to a narrower spectral

bandwidth.

Table 4.2 lists the values of the spectra peak frequency, f,, the zeroth spectra
moment, m,, and the spectral bandwidth parameter, Q,, for the irregular waves and the
associated shear stresses given in Table 4.1. The results in Table 4.2 indicate that for
f,=0.625Hz as the water depth increases, from h, =20cm through 40 cm to 80 cm
(Cases 4.5, 4.1 and 4.6), the spectral peak frequency of the shear stress f declines from
0.773 Hz through 0.617 Hz to 0.594 Hz, respectively. The zeroth spectra moment m,,
is a measure of the energy associated with the random variables. Notably, although the
zeroth spectral moments of the waves in Cases 4.1 to 4.9 are about the same since the
H,, values are identical, the values of m_ in these cases differ markedly and drop as
f, increases. This fact implies that less energy is transferred to the bottom shear stress
if the main frequency band of the waves shifts to higher frequencies. Furthermore, the

zeroth spectral moment of the shear stress increases rapidly as the water depth decreases.

The bandwidth of the wave and the shear stress spectra becomes narrower as ¥ increases.

4.5 Determination of shear stresses using the transfer function

method

The shear stresses caused by irregular waves can also be directly estimated using the
transfer function between the shear stress and the surface elevation, as given by Eq. (4.16).

When the target spectral density function of the waves is specified, the k-th Fourier
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component A of the surface elevation, can be determined as stated in Section 4.1. The
discrete time-series data of the shear stress were then obtained by superposing the shear
stress due to each wave component, which can be determined from the shear stress in the

frequency domain by applying the inverse discrete Fourier transform. Therefore
1 N L 2ank/N _ _
T(tn)—ﬁz B.e , N=012,..., N-1 (4.25)
k=0

where

i (g +7ldw) _ _
Bk:{H*T(@)|A(|e ,k=01,..,N/2-1 (4.26)

B,  k=N/2,N/2+1,..,N-1

where B, isthe k-th Fourier component of the bottom shear stress. Figure 4.9 shows
the comparison of the free surface of Case 4.1 and the bottom shear stress calculated by
using Eq. (4.25) base on the free surface. Both free surface and bottom shear stress were
normalized by its significant value. The results indicates not only the magnitude but also
the phase difference can be well-quantified by Eq. (4.25). Note that the phase difference
between surface elevation and bottom shear stress is not exactly 7 /4w, since the time
series shows the overall change contributed by each wave component, not reveals the

change of single component.

Figures 4.10(a), 4.10(b) and 4.10(c) exhibit excellent agreement between the shear
stresses obtained from this nonlinear wave model and those determined from Egs. (4.25)
and (4.26) for theirregular wavesin Cases 4.1, 4.3 and 4.6 in Table 4.1, respectively. The
shear stresses are normalized with respect to the significant bottom shear stress 7, which

isdefined as 7, =4(m,,)"?.
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Figure 4.9: The free surface of Case 4.1 and the associated bottom shear stress determined
using Eq. (4.25). The phase difference between the free surface and the bottom shear
stress can be found clearly.
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Figure 4.10: Comparison of shear stresses obtained from the numerical wave model and
the transfer function method , using Egs. (4.25), for irregular waves in (a) Case 4.1, (b)
Case 4.3 and (c) Case 4.6.
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4.6 Bed shear stressinduced by irregular waves

The maximum shear stress is an important factor in the initial motion of the sediments
and is difficult to determine in the field. Myrhaug (1995) proposed a model for
calculating the maximum bottom shear stress based on the assumption that the surface
elevation is a stationary Gaussian narrow-band random process with zero expectation and
the one-sided spectral density S,. Both the orbital displacement amplitude on the sea
bed A, , and the orbital velocity amplitude on the seabed U, are then

Rayleigh-distributed.

Let 7., denote the maximum bottom shear stress and (7)., denote the value

of 7., which is exceeded by the probability 1/N,,, Myrhaug (1995) proposed the

max

following equation to determine (7, )y, for laminar flows.
(Tradun, = (NN, )™ pREUL (4.27)

where N,, isthe number of the crested value in the time-series data of the shear stress

and U, . istheroot-mean-square of U, andisdefined as

rms

, zr @’S, (w)

= d 4.28
rms o sinh?kh, @ (4.28)

The Reynolds number is defined as
R« =U A/ ¥ (4.29)
where A . istheroot-mean-square of A andisdefined as

do (4.30)

2 i Sq(a))
A”‘S_Zjosinhzkho
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Table 4.3 lists the values of the maximum bottom shear stress for the incident
irregular waves shown in Table 4.1, as determined by Myrhaug’'s model, denoted by 7.\, »
and those determined using the present numerical wave model. The value of N,, must
be provided to determine 7., using Eq. (4.27). In this study, the zero-upcrossing
method was used to determine the number of zero-upcrossing waves, N, and let this

number be N,,. Table 4.3 also presents this value. The difference between the values

of z__ obtained using these two approaches was evaluated as a percentage as follows.

max

Diff =|z

max M

~ T | | T (4.31)
Table 4.3 demonstrates that Myrhaug's model underestimates the maximum bottom shear

stresses and at least with the Diff > 0.1.

Table 4.3: Maximum bottom shear stress obtained by Myrhaug’'s model and the present

numerical wave mode!.

(cm/s) (cm) (x10° kg-m’'s?) (x107% kg-m's?) (%)
41 108 1.563 1.000 4.235 6.146 31.09
42 94 1800 1.040 5.052 6.768 25.35
43 125 1.209 1.105 2.782 4911 43.35
44 165 0.907 1.688 1.505 4112 63.40
45 103 2521 0.654 10.668 9.572 11.45
46 109 0.774 0.314 2.639 3.005 12.18
47 104 1639 1251 4.049 6.421 36.94
48 98 1.683 0.979 4,731 6.128 22.80
49 224 1561 0.418 7.027 6.152 14.21

Another possible approach for determining the maximum bottom shear stress
associated with irregular waves is to use the transfer function between the shear stress and

the surface elevation, given by Eq. (4.25). Table 4.4 compares the value of 7,
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obtained using Eq. (4.25), named 7,

maxT ?

and those obtained using the present numerical

model. Notably, the results are in good agreement.

Table 4.4: Maximum bottom shear stress obtained by utilizing transfer function and the

present wave model.

- P Troe Diff

(x102 kg-m?s?) (x102 kg-m’s?) (%)
4.1 5.989 6.146 2.55
4.2 6.596 6.768 2.54
4.3 4,713 4911 4.03
4.4 3.935 4112 4.30
45 9.580 9.572 0.08
4.6 2.926 3.005 2.63
4.7 6.176 6.421 3.78
4.8 5.987 6.128 2.30
4.9 6.361 6.152 3.39

4.7 Chapter remark

The main conclusions from the study of this chapter can be summing up briefly:

1. The wave spectrum of the generated irregular waves was in good agreement with the
target spectrum; and the numerical and theoretical transfer functions coincide with each

other. Thistestified the accuracy of this numerical wave model.

2. For a given depth of water, less wave energy is transferred to the bottom shear stress if

the main frequency band of the wavesis shifted to higher frequencies.

3. The comparison of the maximum bottom shear stress obtained by this wave model with
that obtained by Myrhaug’'s model indicates that Myrhaug's model underestimates the

maximum bottom shear stress caused by laminar irregular waves, except when the water
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is shallow.

4. The bottom shear stresses obtained from this wave model agree closely with those
obtained from the transfer function between the wave spectrum and the shear stress

spectrum.
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Chapter 5 Nonlinear properties beneath
Irregular waves

“Twenty years from now you will be more
disappointed by the things you didn’t do
than by the ones you did do. So throw off the
bowlines. Sail away from the safe harbor.
Catch the trade winds in your sails. Explore.
Dream. Discover.”

—Mark Twain, American writer

5.1 Thepropertiesof Dean and Sharma’sformula

The nonlinear free surface boundary conditions introduce the bound wave
components, subharmonics and superharmonics, to irregular waves. For achieving a
basic understanding of the nonlinear phenomenon, a model deduced by Dean and Sharma

(1981) was introduced in this section.

The formula of Dean and Sharma’s model (shorten as the DS model) with a known

linear unidirecitional irregular-wavetrain 7 isprescribed asfollows.

n=n"+n (5.13)
" N/2-1
n® = > a cosy, (5.1b)
k=0
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@ _ N/2-1N/2-1 (29) 1N/2 —-1N/2-1 (2 )
- +
763 = Z 2l sy —yi)+5 cos( +¥)
k=0 1=0 k=0 1=0

where

2 =aa DQ_%RKR)HRJR)

a;(<|2+):akai DJ_UJK%R(R)+(RK+R)

(VR —R)WR (k2 - R) - /R (k? - R))
(JR. —[R)? —k; tanhkgh, ol
Da =1 2/R ~JR)’(kk +RR) |
(f JR)?—k, tanhkgh,
, k=1

D+:(ﬁ+ﬁ)(ﬁ(kf—Rf)+ﬁ(h2—R2»

‘ (JR. +yR)?—k; tanhk;h,
2(W+J_) (kk —RR)
(\/§+\/—)2—k+tanhk+

Ko =k =k

ke =k +k

=Kk X-at+¢,
R =k, tanhkh,

(5.1¢)

(5.1d)

(5.1¢)

(5.1f)

(5.19)

(5.1h)

(5.1i)

(5.1))

(5.1K)

where the subscript DS denotes the results of the DS model, and N is number of the time

sequence.  The term 7% in Eqg. (5.14) is the second-order component of the nonlinear

irregular wave. The first term of the left hand side in Eqg. (5.1c) is the second-order

subharmonics and the second the second-order superharmonics.

In Eq. (5.1c), the phase of each second-order component, with the amplitude a?” or
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al®”, was a composition of the phase of the first order waves. Furthermore, a bound
wave component with frequency f is congtituted by the associated first-order waves, i.e.
subharmonics with frequency f=f,—f , and superharmonics with frequency
f=f+f (k 1=01.., N/2-1). Although the amplitude of each second-order
harmonic, a?” or a{*”, was congtant if the linear irregular waves and the till water
depth were held, the constituted results varies with phases, which changes temporally and
gpatially. This denotes that there are no equilibrium state or permanent spectral form for
nonlinear irregular wave when the second-order nonlinearity was considered. Similar

phenomenon were found by Huang and Tung (1976) as well as Baldock et al. (1996).

Table 5.1: The conditions of studied cases.

Case h, Hys Ty Ur, Qos
(cm) (cm) (9

5.1 40 1 128 1.257 0.0005
5.2 40 4 128 5.027 0.008
5.3 40 8 128 10.05 0.033
54 40 10 128 1257 0.051
5.5 20 1 128 5.635 0.005
5.6 20 2 128 11.27 0.020
5.7 20 4 128 2254 0.077
5.8 20 5 128 2818 0.115
5.9 20 6 128 33.81 0.187

Table 5.1 lists the numerical conditions studied in the present study. The cases with
different wave height and water depth were studied for verifying the effects of
nonlinearities. The characteristics of nonlinear irregular waves were specified in terms of
the time duration T,=128s, the significant wave height H,,, the spectral-peak

frequency f, =0.625Hz, and the peak enhancement factor y=3.3 of Goda-JONSWAP
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spectral density in EQ. (4.11).
The significant Ursell number was defined as EqQ. (4.17).
Ur, = H1,3L2p /R (4.17)

Ursell number is regarded as a nonlinear factor, which denotes the ratio of the first-order to
the second-order wave component, and the significant Ursell number Ur, were applied
for thismanner. A similar parameter can be defined by taking square of the ratio of linear
energy m_ ., to the energy of the second-order component m, e » S8y (moﬂ(z) / monm) :
However, there is lack of techniques that can separate linear and nonlinear irregular waves

successfully.  The DS model was applied to generate a synthesized results for comparison

and denotes as following.

Qos = \/ ( mo,](a / mc”](l) ) (5.2

DS
The subscript DS of each parameter denotes the parameter was obtained from the

synthesized results which synthesized by the DS model with the conditionsin Table 5.1.
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Synthesized results
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Figure 5.1: Synthesized nonlinear irregular wave spectrum applied the conditions of Case
5.7, in which the linear components satisfied the Goda-JONSWAP spectrum and the

second-order spectrum are formed by the DS model.

Figure 5.1 shows the synthesized results of Case 5.7, which is synthesized by the
linear irregular waves and the second-order components.  The linear waves was satisfied
the Goda-JONSWAP spectrum with the specified condition, and the second-order
components were formed by Eq. (5.1), the DS model. The second-order subharmonics
and superharmonics were clearly shown in Figure 5.1, in which the magnitude of
subharmonics is smaller than that of superharmonics. Note that the total spectrum cannot
be determined by the sum of the spectra of the linear part and the second-order one, say

S #S,+S, (SandandMansard, 1986).
n n Ibs

97



Chapter 5—Nonlinear properties beneath irregular waves

Synthesized results
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Figure 5.2: Synthesized results under identical condition with Case 5.7 with different
applied locations, which introduced the phases difference of each component.

Figure 5.2 shows the another synthesized results of Case 5.7 but with different phases.
Although the random phase ¢, of the linear components 7Y was without change, the
phase of the second-order harmonics varied temporally and spatially as shown in Eq. (5.1),
while the phase difference was formed by applying different locations, i.e. x=0 and
x=7.2L,. The results revea that there is no identical spectral form of nonlinear

irregular waves if time or location changes.

To identify the phase difference by the variation of zeroth moment is diffcult since the
energy ration of the second-order components to the linear one is small. A statistical

properties, skewness y;, the third standardized moment, is defined as

g =t (5.3)
M
# = [ (x=%)" p(x)dx (5.4)
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where X isthe mean value of variable X, p(x) theprobability of x,and u, the r-th
moment of x. The statistical properties can offer comprehensions about the tendency of
the bound waves. It is believed that linear irregular waves with random phases are
normal distributed (or caled Gaussian distributed), and nonlinear properties make the
statistical properties deviating from Gaussian distribution.  An important parameter for
determining the symmetric of wave crest and trough is the skewness, which is close to zero
if surface elevation is symmetric, or the upper-envelop and the lower-envelop are identical
or near identical. Otherwise, skewnessisfar from zero if surface elevation is asymmetric.
Since the present of subharmonics and superharmonics introduce sharp-narrow crests and
broad-flat troughs, the asymmetric of the surface elevation is increased and the skewness

aswell.

For wave train with identical random phase ¢, and time duration T, the skewness
7ios Of the synthesized results of Case 5.1 to 5.4 can thus be compared spatially and draw
in Figure 5.3. The random variation of the skewness y,,; was resulted by the random
phases, and the identical randomness of these four cases denotes the random phase of the
four cases were identical. Within the same locations the skewness increases as the
increasing of the significant wave height. Note that in different locations the skewness of
Case 5.1 (H, =1cm) can probably larger than that of Case 5.1 (H,=8cm). Although
the phase difference changes the skewness, the larger positive skewness can indicate the

larger nonlinearity of the surface elevation.
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1.0 5 Synthesized results
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Figure 5.3: Spatia-varied skewness of the synthesized results with four different
significant wave heights, Cases 5.1 to 5.4.

If the subharmonic components and wave-wave interaction were not considered, the
first-order and the second-order components of a nonlinear-irregular-wave train can be
separated using the method suggested by Sand and Mansard (1986). The authors pointed
the separation process can start from the lowest-frequency component with assuming it is
fully linear, and eliminating the associated second-order component using a formula
prescribed superharmonics.  When the sequential work is done, the linear components and
the second-order components are separated. However, subharmonics are clearly found in
the synthesized results in Figure 5.2, and thus the suggestion of Sand and Mansard was not
satisfied. Henceforth, the comparison and further study used only the total spectrum S,

and the separation of linear and nonlinear irregular waves were not considered herein.
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5.2 Generation of irregular waves and the numerical

conditions

A nonlinear-irregular-wave train can be combined by alinear-irregular-wave train and
the associated higher order components. Similar manner was used to generate nonlinear
irregular waves by Shen and Huang (2005), who applied the second-order Stokes waves
generator to each wave component and formed the nonlinear-irregular-wave train.
However, only the second-order components satisfied the superharmonic k=1 in Eq. (5.1)
were generated and none of the subharmonics. Since the nonlinear-irregular-wave
generator based on weakly nonlinearity cannot have the agreement with the target

spectrum far from the wavemaker (Sulisz and Paprota, 2008), it is not considered herein.

In the present work, the irregular-wave generator in Chapter 4 was used to form the
waves. Although the incident waves are without subharmonics and superharmonics, the
nonlinear bound waves are supposed to be automatically formed by the fluid mechanics

and can be found of the following discussions.

5.3 Spectral properties

With simply increasing the assigned significant wave height H,,, the nonlinear
properties of the irregular-wave train was increased but was no robust confirmation. The
following process was applied to have the knowledge about the nonlinearity of irregular

waves. Figure 5.4 compares the numerical results and the Goda-JONSWAP spectral
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density within identical conditions. Of Case 5.2 shown in Figure 5.4(a), the components
a apbout 1.8f of the numerica results have larger magnitudes than that of
Goda-JONSWAP spectrum, in which only presents linear components. The similar
phenomena s noticed in Figure 5.4(b), a comparison with the conditions on Case 5.7. Of
this condition, not only superharmonics but also subharmonic were formed in the

numerica flume.

Without nonlinear-irregular-wave generator, the higher-order harmonics, either
subharmonics or superharmonics, are not generated by the wavemaker but by the nonlinear
fluid mechanics.  Since the present numerical model considers the free surface conditions
given in Egs. (2.12) and (2.13) as well as the conservation equations, the numerical flume
has the ability to smulate the fully nonlinear fluid mechanics. Thus, the wave energy
transferred in the progress of wave propagating and the change of the higher harmonics

were introduced.
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Figure 5.4: Spectrum of the numerical results (dot line) and the Goda-JONSWA P spectral
density (solid line): (a) of Case 5.2; (b) of Case 5.7.
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On the other hand, for a surface elevation, such as the DS model, considered only the
weakly nonlinearity in the stationary state can not well describe the realistic nonlinear sea
state.  Furthermore, a nonlinear-irregular-wave generator prescribes such surface
elevation as free surface boundary has less the ability to form the irregular-wave train even

to satisfy the target surface elevation. Thisisindeed avery difficult problem.

When generating aregular wave with alarge Ursell number using linear wavemaking
theory, the bound waves and free waves are both formed in the wave flume. Similar
phenomenon was expected for irregular waves. It means not only the bound waves,
subharmonics and superharmonics, but also free waves were formed as wave propagating.
Since it is not possible to recognized whether the spectral density around the frequency
2f, were bound waves or no, the statistical properties have to be introduced.  The results

will not present in this section but in the following one, and make a comparison with the

skewness of the bed shear stress.

54 Thepropertiesof thetransfer function

In Chapter 4, the transfer function of surface elevation and the associated bed shear
stress is identical with the numerical results and is good at estimating the bed shear stress
beneath linear irregular waves. In this section, the same procedure was applied to reveal
the properties of the transfer function beneath nonlinear irregular waves. The Gaussian
white noises were used again to gain the characteristics of transfer function beneath

nonlinear irregular waves.
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Figure 5.5 shows the comparison of the theoretical transfer function (Eg. (4.16)) and
numerical results of the Gaussian white noise with different wave heights. The results
show the property of transfer function beneath the white noise with still water depth
h, =20 cm and wave height 0.067, 0.2, 0.267, 0.4 cm, in which the nonlinear properties
of free surface take place. The results in Figure 5.5 show that the transfer function of the
numerical results is dightly departed from the theoretical one if the wave heights of the
white noise were large. However, the tests of the white noise with different wave heights
are limited by the physical and numerical limitation. The physical limitation is that wave
breaking may appear because the frequency band is so wide that the occurance of freak
waves are increase. The numerical limitation is the wavelength of high frequency

components is not long enough for the present grid resolution to simulate it.

Of these four white noise, the numerical results indicate the theoretica transfer
function can be used with surface elevation to estimate bed shear stress well enough it

small disturbanceis allowable.
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16 _ Theoretical solutions
_ O b Of each component H = 0.067 cm
. S A Of each component H = 0.200 cm
12 — o S Of each component H = 0.267 cm
H - O  Of each component H = 0.400 cm
- 4
kg . 8
(m252 .
i a
4 O AN QA A
= éAD AE O
- <>x:(
0 —F T 1 T [T T 1 [ 1 T T
0 3
f (Hz)

Figure 5.5: Theoretical transfer function and the transfer function of white noises with
different wave height, which was assigned for each wave component within 0~ 4 Hz.
In the present case, the still water depthis h, =20 cm.

5.5 Thestatistical properties of the nonlinear bed shear stress

The statistical properties of a nonlinear irregular wave train is well-known of the
skewness departed from the Gaussian distribution, in which the skewness is zero. The
distribution of nonlinear surface elevations can be obtained by extending the linear one
with the Stokes wave model. This manner was used for nonlinear shear stress by
Myrhaug and Holmedal (2003), who deduced the probability distribution of the crested

value of bed shear stress using the second-order Strokes theory.

Myrhaug and Holmedal (2003) found the cumulative distribution was with the form:

P(7) =1—exp{—(\'1Jr M ine? =) } 720 (5.5)

4N7
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and the probability of exceedance as following.

Q(7)=1-P(7), 720 (5.6)
where the normalized root-mean-sgquare of bed shear stress:

T =T | Toroa (5.7)

the root-mean-square of bed shear stress maxima:

Timev _ R 052 (5.8)

P

The bed orbital Reynolds numbers of irregular waves:
Re.« =U A/ U (5.9)

The root-mean-square of bed-orbital-displacement amplitude:
S, ()

A =2, ety

sinh?kh, (510

The root-mean-square of bed-orbital-velocity amplitude:

U2 =2j°° 'S, (@)

0] 511
0 sinh? kh, -1

According to Myrhaug and Holmedal (2001), an adjusted factor A, ., which consisted

with the second-order Stokes theory, can be defined as:

A= 2—2[1—1) _SKHy (5.12)
7 ) |8sinh®kh,

where the root-mean-square of wave height:
Hfm:SI:S”(a))da):&nw =HZ2/2 (5.13)

the average wave number satisfying the distribution relation with @, :
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w? = gktanhkh, (5.14)

in which the angular frequency is defined by

1/2
o, = (%J _ Y (5.15)
My A

where the m,, and m,, are the zeroth momentum and the second momentum of

bed-orbital-displacement amplitude.

For the cumulative distribution function (Eg. (5.5)), the results were dominated by
two parameters: the root-mean-square of bed shear stress and the adjusted factor A, .
The former one determined the magnitude of normal distribution of the linear bed shear
stress, and the letter modifies the distribution to satisfy the second-order property.
According to the results of Myrhaug's model (1995), which present in Chapter 4 and vary
with the root-mean-square of bed shear stress only, we know that the RMS of bed shear
stress determined by the ssimple explicit formula as shown in Eqg. (5.8) cannot have a good
estimation about the real bed shear stress. Since the model of Myrhaug and Holmedal
(2003) is strongly based on the estimation of the RMS of the bed shear stress, the
probability of exceedance in Eq. (5.6) using 7., oObviousy has none of the ability to

describe the statistics of bed shear stress very well.

For having a comparison about the probability of exceedance, the 7, ., inEq. (5.7)

was replaced by the numerical results 7

rms’?

so that we can have a knowledge about the
nonlinear adjustment of the statistical results. Figure 5.6 shows the probability of

exceedance of normal distribution (solid line), nonlinear adjustment with A, . (the
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dashed line), and the numerical results of Case 5.6 (solid circle). The results, numerical
one or adjustment one, are both departed from the normal distribution when the surface

elevation is nonlinear.  With the nonlinear adjustment A the probability of

rms !

exceedance can deviate from Gaussian distribution, although the results do not satisfy with

the numerical one or the one using the transfer function.

1x10° =
1x10™ 3 =
-2 1 A |
1x10 3 ° Numerical results © =
. o Results using transfer function C
] Normal distribution i
. | BT Modified MH model
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Figure 5.6: The probability of exceedance of the normal distribution (solid line), the

modified nonlinear model results (dot line), the numerical results (solid circles), and the
results by applying theoretical transfer function.

5.6 Skewnessof surface elevation and bed shear stress

Of Figure 5.3, the skewness is known that changes with the phase of composite waves.
Figure 5.7 shows two cases, Cases 5.7 and 5.9, and compares the skewness of both the

surface elevation and the bed shear stress. The skewness varies with the location, and the
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of Case 5.9 is adways larger than that of Case 5.7. It indicates the generated irregular
wave were with bound waves so that the skewness is remained positive and has large value.
In comparison to the skewness of the surface elevation, the skewness of the two bed shear
stress shows similar variation. The found is the skewness has a phase different between
the one of the surface elevation and of the bed shear stress. It indicates a forecasting
using statistical formula will fail if only the associated magnitudes of the surface elevation

and the bed shear stress are considered and ignore the phase difference.

1.0

1 1 (Hys =4cm, Case5.7) C
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Figure 5.7: Skewness of the surface elevation 7 and the bed shear stress 7 of Cases 5.7
and 5.9.

5.7 Chapter remark

The main conclusions from the study of this chapter can be summing up briefly:

1. Applying identical linear components with different phases, the synthesized results of
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the DS model present irregular wave propagating with no identical spectral form, even

though the change of phase velocity is not consider in the DS model.

2.For the waves propagating in the numerical flume, the subharmonics and

superharmonics were generated automatically.

3. Increasing the wave height of the white noise increases only slight scatter of the transfer
function obtained by the numerical results from the theoretica one. It indicates the
theoretical transfer function is capable for predicting the associated bed shear stress from

the surface elevation.

4. The skewness of both the surface elevation and the bed shear stress denotes there are
bound waves within the numerical results. Of the gpatial-varied skewness, the
comparison evidences that the skewness of the bed shear stress has a phase difference
between that of the surface elevation. This may result the statistical forecasting about

the bed shear stressis malfunction if the phase shift is without concerned.
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Chapter 6 Interaction of irregular waves
and a submerged breakwater

“The important thing in science is not so

much to obtain new facts as to discover new
ways of thinking about them.”

—William H. Bragg,

British physicist

6.1 Numerical setup

A schematic diagram of a two-dimensional numerical wave flume for studying
irregular waves propagating over a submerged breakwater is shown in Figure 6.1. The
x-axis 1is measured horizontally in the direction of wave propagation and the origin is set
at the weather side of the breakwater. The piston-type wavemaker with stroke S is
located at Xx=X_. . The Yy-axis is measured vertically upwards from bed. The still
water depth is h,, the height of the submerged breakwater (1-q)h,, the width of the

breakwater W;, and the submergence ratio (.
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Figure 6.1: Schematic diagram of the numerical wave tank for studying the interaction of

irregular waves propagating over a submerged breakwater.

The numerical scheme, which was with no sponge layer and capable of generating
regular waves only, was once used by Huang and Dong (1999) to study the interaction of
waves and a submerged breakwater and has been verified the accuracy of wave
transformation and the associated nonlinear effects. For the purpose of studying irregular
waves, the irregular wave generator, which has verified in Chapter 4, was used, and the

sponge layer was add to provide a non-reflected downstream.

Table 6.1 presents numerical conditions of the irregular waves and the submerged
breakwater studied here. The Goda-JONSWAP spectrum (Eq. (4.11)), was chosen as the
target spectrum of the incident irregular waves with spectral-peak frequency

f,=0.625 Hz, the peak enhancement factor y=3.3, the spectral-peak wavelength is
L,=2.84 m, and the still water depth h, =40 cm. The duration of each wave train is
T, =16 s and the location of wavemaker is X . =-16 m. The submergence Reynolds

number at  the  depth y=>1-q)h, is  simply  defined by the
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submergence-orbital-displacement amplitude A, and the submergence-orbital-velocity

amplitude U, as follows.

Re, =U.A, /v (6.1)
_H, cosh[k, (1-q)h,]

A= 2 sinh(k h,) (62)

Ug = 0,A (6.3)

where Kk, is the spectral-peak wavenumber followed the dispersion relation
o, =gk, tanhk h . In Case 6.1 no breakwater was in the numerical wave flume.

Hence, the measures of Case 6.1 are purely incident waves. Effects of different

submergence depths and widths of the breakwater were compared.

Table 6.1: Tested conditions with the rest are T,=1.6s, H ;=4cm, y=33,
h,=40cm, L =284 m and T,=16s.

Case q W, Re,

(xL,)
6.1  —  —— 1549
62 050 05 1874
63 050 1.0 1874
64 025 05 2341
65 025 1.0 2341

Of regular waves, it is known that the propagation of waves over a submerged
breakwater generates higher harmonics (Beji and Battjes, 1993; Ohyama and Nadaoka,
1994; Huang and Dong, 1999; and among others). When the incident waves are irregular,
the propagation of waves over a submerged breakwater, which will be expounded further

in following section, will produce the subharmonics and superharmonics as well as energy
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transfer, due to the nonlinear properties in shallow water. Since the properties of
subharmonics and superharmonics depend on the amplitude and phase of their constituent
wave components, to obtain reliable results for examining these two types of waves, the
random seed for generating the randomness of phases for each wave component was held
the same and thus random sequence was identical. The effects of the height and width of
the submerged breakwater were studied on the vortex dynamics, which were measured in

the vicinity at the weather side and the lee side of the breakwater.

The interaction of waves and the breakwater results wave reflection. Reflected
waves have to be quantify in order to ensure the result reliable. In most experiments,
wave separation methods or an active water-wave absorber were used to deal with reflected
waves. The wave separation method which uses measures at different locations is
functional if surface elevation of the measures is stationary temporally and spatially. The
active water-wave absorber works by generating waves, which are out of phase of the
reflected one, to eliminate the measured reflected waves. Thus, the efficiency of
eliminating the reflected waves is up to the determination of reflected waves, and is also

limited by the stationary constrain.

Base on the repeatable property of the present numerical method, incident waves and
reflected waves can be separated whether the results are stationary or no. Figure 6.2 plots
the temporal variation of surface elevation for Cases 6.1 and 6.2 at x/L, =-3, which is in
between the wavemaker and the weather side of the breakwater. Note that the surface

elevation before t/T,=7.40 (denoted by a vertical dashed line) was not affected by the
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reflected waves, such that the surface elevations for Case 6.1 and Case 6.2 are identical.
After t/ Tp =7.40, the surface elevation in Case 6.2 contains the reflected waves from the
weather side of the breakwater. The identity of the incident irregular waves in Cases 6.1
and 6.2 enables us to detach out the reflected waves by subtracting the incident waves from
the surface elevation in Case 6.2, namely 7)., —Mcwes:- 1he reflected waves thus
obtained for Case 6.2 are plotted in Figure 6.3. Notably the wave front of the reflected

waves appeared at /T =7.40.

1.0 |

: i Case 6.1 -
] A T o e Case 6.2 L
- | n : | -
0.5 ] | 3
noC ‘ {
0.0 — ' b
_ | -
H1/3 | : :
20.5 - | -
] ! :
- I -
g I :

-1.0 — T [ T T T T
) X 12 16 20

t/Tp

Figure 6.2: The surface elevation of Cases 6.1 and 6.2 at x=-3L The changes made

o
by the reflected waves are evident after the dashed line.
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Figure 6.3: The reflected waves of Case 6.2 at X=-3L, obtained by 7.6, ~caes.s -

6.2 Duration for study

Athough the reflected waves can be well identified, they are accumulated in the flume
because of lacking the non-reflecting boundary at the upstream. A reliable duration for
study has to be checked. The reflected coefficients were analyzed spatially and
temporally to verify the effects of reflected waves. The reflected coefficient can be

determined by

= = (6.4)
(

where

m, =], S@d® and H, =4/m, (6.5)

where S (@) is the spectral density function of the surface elevation, the subscript r
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denotes the reflected waves and the subscript i the incident one. Spatial variation of the

reflected waves of Case 6.2 was shown in Figure 6.4. The location x/L,=0 is the

leading side of the breakwater. Four different time periods of Case 6.2 were compared to

examine their temporal difference. The four time periods, denoted as T, Tg,, etc.,

differ in the beginning time, but have the same time duration of 16 seconds

0.2
Tai 125~28s i

] 16s5~32s
T T 18 5~34s X . i
:32s~48s I\ B

Figure 6.4: The reflected coefficient of Case 6.2 in different time period. The time

duration, T, =16 s, was identical.

The results in Figure 6.4 indicate that the reflected coefficient increases with time.
This is because that in our numerical wave flume no active water-wave absorber was
installed at the wavemaker, such that when the reflected waves from the breakwater move

back to the wavemaker, they will be reflected, and then combine with the new generated

incident waves. This process repeats again and again and results in the continuous
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increase of the reflected coefficient with time. The results in Figure 6.4 indicate also that
the reflected waves appear during T, 1s the justified ones, and the further study will

focus on this period.

6.3 Nonlinear properties

Figure 6.5 compares the spectra, which is normalized by its own zeroth momentum
m,, , of the water surface elevation above the breakwater at x/L, =0.50 in Cases 6.1, 6.3
and 6.5. The spectrum for Case 6.1 is the purely incident waves. The breakwaters in
Cases 6.3 and 6.5 have the same width (W /L, =1.0) but differ in the height. ~ As regular
waves propagating over a submerged breakwater, the higher harmonics, which include
bound waves and free waves, are generated in the shallow water region. Irregular waves
have similar phenomenon to regular waves. In finite water depth or deep sea, the second
order bound waves are introduced by nonlinear free surface boundary condition
(Hasselmann, 1962; Laing, 1986; Dean and Sharma, 1981), and such bound waves are
subharmonics and superharmonics, in which the amplitude and phases are determined by
the linear constituent waves as shown in Eq. (5.1), and the amplitude of the bound waves

can be described as

a e D, a8y cos(y, Ty,) (6.6)

fot fo=f
where a; ~ a; - ¥, ~ ¥, are the amplitudes and phases of the linear constituent waves
respectively, and a; is the amplitude of the bound waves. The subharmonics are with

the phase (¥, -, ), and the superharmonics with the phase (¥, +v,), and the detailed

120



properties are described in Chapter 5. In Figure 6.5 the spectral form about the spectral
peak of Case 6.3 is similar to that of Case 6.1, with no observable difference. However,
there are superharmonics of Case 6.3 observed at about f/f =2.1 and 2.3 because of
the present of nonlinear properties in irregular waves. The subharmonics of Case 6.3,

with the magnitude about O(IO*2 mm) are too small to be observed in Figure 6.5.

When submergence ratio decrease (Case 6.5, q=0.25), the energy of the

components around the spectral peak (f,, f =1.1f , and f,=1.2f ) are decrease

p b
significantly, and the energy of higher harmonics, saying f=2.1f =f +f =--,
f=23f =f+f,=--, are increase observably. Although the nonlinear properties can

be stated more clearly by analyzing about the numerical data, the results presented here

only figure out the phenomena for the following discussion about vortex dynamics.

6
i ———— Goda-JONSWAP |
- R Case 6.1 -
- F @ ----- Case 6.3 (q=10.50) -
Sn( f)a- ‘. —o— Case 6.5(q=0.25)

Figure 6.5: Wave spectra of Cases 6.1, 6.3 and 6.5 at x=0.5L .
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6.4 Propertiesof vorticesaround breakwater

Vortex dynamics are vital for many subtle applications, such as the mixing process, or
nutrient transport. For achieving the goal of studying vortex dynamics, vorticities were

calculated by the definition

Q=Vxu= v_u (6.7)
ox oy

Figures 6.6 (a) and (b) show the flow field with the vorticity contours of Case 6.4 at
t/T,=10.76 and t/T =11.27 respectively. A clockwise vortex above the breakwater
was observed in Figure 6.6(a), and a counterclockwise vortex in front of the breakwater in

Figure 6.6(b).

A vortex can be both found by observing the swirling velocity in flow field and by
tracing the maximum absolute value of vorticities (condensed as MAV, the maximum
vorticity for a counterclockwise vortex and the minimum vorticity for a clockwise one).
However, as shown in Figure 6.6(b), the swirling center of the vortex, which is at about
(x/h,, y/h,)=(-0.10, 0.68) approximately, and the location of the MAV, which is at
(x/h,, y/h)=(-0.10, 0.71), are not identical. In this chapter, the MAV was chosen to
find the characteristics of a vortex because it can be traced automatically by numerical

programming.
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Figure 6.6: The flow field and the vorticity contours in Case 6.4: (a) t/T,=10.76 witha
clockwise vortex above the breakwater; (b) t/T,=11.27 with a counterclockwise vortex

in front of the breakwater.
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Since there are no finer numerical elements close the boundaries to improve the
resolution within boundary layer, the large-valued vorticities next to the boundaries are
introduced by the no-slip condition and with no sense about vortex. Hence, the vorticities

of the elements next to the boundaries were not taken into account.

For quantify a vortex, the following definition have to be made. A circulation T’
around a closed curve C 1is a scalar that gives a measure of the strength of a vortex,

defined by Saffman (1992):

'=¢ u-dl (6.8)

Y
From Stokes’ theorem, Eq. (6.8) equivalent to the flux of vorticity through the surface s
bounded by the curve C, so it can be rewritten as:

r:jg-ds (6.9)

Equation (6.9) has to be discretized for numerical use with the form (Earnshaw and

Greated, 1998):

No No
F:,Z ri:'z QA, (6.10)
le vortex le vortex

where I',, Q, and A, are the circulation of a vortex, vorticity and the area of the i-th
numerical element within a vortex respectively. N, denotes the number of the
numerical elemtnes of a vortex, and varies with the vortex strength and the definition of the

vortical region. The center of a vortex can be defined as follows.

No No
Z I' Xy Z Iy,
— levortex and — levortex 611
X="r Yo = (6.11)
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Since the circulation of a vortex is affected by the vorticities around it and the
distance it can extent, the submergence-orbital-displacement amplitude A, and the
submergence-orbital-velocity amplitude U, at the depth y=(1-q)h, were chosen as

parameters to normalize the circulation of vortex.

6.4.2 Theregion of avortex

Vertices can be traced automatically by searching the MAV of numerical results in
each time step. A procedure was stated here to identify the region of vortices. The
procedure is based on an assumption that the contour of the vorticities of a vortex was
centralized on the MAV. This also states that the absolute value of the vorticities in the
region of a vortex is monotonous decreasing from center. First of all, a guassed location
O, and an estimated pace Ar within a time step At, of a vortex have to be calculated
for performing a good searching. The guassed location O, was at
(x, y)=(Ar, A-g)h,+Ar) and (x, y)=(-Ar, I-q)h,—Ar) for the clockwise
vortices and the counterclockwise vortex at the weather side, and at
(X, y)=(Wg+Ar, I-q)h,—Ar) and (X y)=(Wy—Ar, 1-q)h,+Ar) for the
clockwise vortex and the counterclockwise vortex at the lee side respectively. The
estimated pace Ar can be obtained by assuming that the vortex was moved with the
phase velocity of the surface elevation. Thus the estimated pace Ar within the time step

At, for a vortex is predicted as following.

Ar =C,At, (6.12)

where L, =2.84m is the spectral-peak wavelength, T =1.6s, At =1/64s, and
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results Ar=2.7 cm =5AX in the present case. Since effects of viscous and no-slip
boundary, the true pace of a vortex within time step At, is smaller than the estimated one.

The estimated space Ar makes the searching process focus on the same vortex.
The detail of the procedure for determining a vortex was described as follows:

1. Choose one type of the vortices (clockwise or counterclockwise, at the weather side

on at the lee side) and assign the guessed location O, ;
2. Searching the MAV of the area (2Ar)x(2Ar) centralized on O;

3. Trace the MAV and find the global MAYV, denotes as |Q|max, over the time period

Tas

4. Define the vorticity threshold €2, as a ratio of the global MAV |Q|max;

5. Find the location of the MAV of the area (2Ar)x(2Ar) centralized on O, in the

beginning of the time period T, ;

6.  Record the location (X, Yy ) of elements as the vortex if the vorticity in this

location satisfies with the following contrains:
(1) the vorticity of the element is larger than the vorticity threshold €, ;

(2) the vorticity is smaller than that of the surrounding elements which is nearer O,

than the location (X, Yo );

(3) the element is not isolated in the flow field;
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7. The properties of the vortex can thus be calculated and will be discussed later;

8. The location of the MAV was assigned to be the new guessed location O, of the

searching process of the next time step;

9. Repeat Step 5 to Step 8 for tracing the vortices and calculating the properties of the

vortices.

The flow field in Figure 6.6 was tested by the procedure and found the vortex region
as shown in Figure 6.7. Of the flow field only the elements within the selected vortex
region were shown. By this procedure, the vortex can be recognized automatically with

an applied vorticity threshold.
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Figure 6.7: The selected region of vortices of Case 6.4: (a) the clockwise vortex at
t/T,=10.76; (b) the counterclockwise vortex at t/T =11.27. Only the flow field

within the selected region of the vortices were shown.
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6.4.3 Determining thethreshold

Although the measure of vortex was defined in Eq. (6.10) and the procedure was
clearly stated in Section 6.4.2, comparison is needed in order to define a particular
threshold that makes the region of the vortices identically agrees with the swirling
velocities of the flow field. Different thresholds, which are € =0.5,0.2, 0.1, 0.05, 0.01,
0.001|Q|max, were compared. The circulations of the clockwise vortex, in Figure 6.7(a),
and the counterclockwise vortex, in Figure 6.7(b), were calculated using Eq. (6.10) with
the vortical region selected by different thresholds and compared within a life cycle of the

vortices.

Figure 6.8 shows the circulation and Figure 6.9 selected region of the
counterclockwise vortex. The results of the clockwise vortex in Figure 6.7(a) were
shown in Figure 6.8(a). When Q; :0.5|£2|max was chosen as the vorticity threshold
(denotes by dashed line with open circle), the maximum absolute circulation |F| was only
3.2UzA; and no measure were obtained after t=10.95T,. When €Q, :0.2|£2|max was
used, the maximum circulation |F| is 5.3UgA; with smoother results. By taking
Q; =0.1, 0.05, 0.01, 0.001]Q|  as the vorticity threshold, the results show similar
tendency but have slight difference of the magnitudes, and the selected region of the vortex

in the flow field have to be compared for ensuring a reliable vorticity threshold.

The circulation of the clockwise vortex in Figure 6.7(b) were shown in Figure 6.8(b)
with using different vorticity thresholds, and similar results were obtained. At about

t/T,=11.2 the circulations of the clockwise vortex have a discrepance, which will be
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discussed latter.
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Figure 6.8: Circulations with different threshold: (a) the circulations of the clockwise

vortex in Figure 6.7(a); and (b) the circulations of the counterclockwise vortex in Figure

6.7(b).
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From the results of Figure 6.6 and the enlarged one of Figure 6.7, the vorticity
contours of the vortex above the breakwater are so convex that the region of the vortex can
be determined easily with the procedure described in Section 6.4.2. On the contrary, the
vortex next to the breakwater is not so convex in the formation of the vortex, and is
difficult to determine the region. Thus, the vortex in front of the submerged breakwater

was chosen as the pattern to confirm a reliable threshold.

Figure 6.9 shows a sequence of plots, which include the flow fields, the vorticity
contours and the selected region of the vortex, in order to verify the vortical region. The
flow field within the selected region of the vortex was denoted by black arrows and
otherwise  gray. In Figure 6.7(b), swirling velocities centralize at
(x/h,, y/h))=(-0.10, 0.68) were observed and the radius of the vertical is about
0.05~0.06h,. Hence the threshold was chosen in order to select the elements in this
region of the vortex with less misunderstanding. In Figure 6.9(a), the selected region is
obviously not sufficient to be regarded as a vortex since only the swirling center was

caught and other part of the vortex was lost by using the threshold Q. = 0.2|£2 The

max

selected region decided by Q. = 0.1|Q|max in Figure 6.9(b) has similar problem with that
by Q; :O.2|Q|max. In general, the extent is larger when the smaller threshold was
chosen. However, it can be found that the selected region obtained by the smallest
threshold Q; =0.001|§2|max in Figure 6.9(e) includes many elements that can not be
regarded as part of the vortex, especially at about x/h, =-0.1 and y/h =0.6. The
selected region determined by € :0.05|£2|max and 0.01|Q|max are similar and good

enough in describing the region of the vortex. In the present work, the threshold
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Q. =0.05 |Q|max was chosen as the one for determining the selected region of vortices and

the circulation calculated by Eq. (6.10) with this vorticity threshold is denoted as T, .

(@) Q;=02|Q

1~ 10 cm/s
1.0

0T, =11.27

Figure 6.9: The vortical region of the counterclockwise vortex in Figure 6.6(b) with
different vorticity thresholds: (a) Q; =0.2|Q ;(b) Q; =0.1|Q| ;(c) Q; =0.05]Q|
(d) Q;=0.01|Q :(e) Q =0.001Q .
obtained by the vorticity threshold with the procedure in Section 6.4.2. (continued on next

page)

The black arrows denote the selected region
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Figure 6.9: (continued on next page).
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Figure 6.9: (continued).
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6.4.4 Circulations at theweather side

By means of the threshold €, = 0.05|Q|max and the procedure in Section 6.4.2, the
vortex circulation and the associated properties of vortices can be measured. Figure 6.10
shows the circulations, in which contains the life cycles of two clockwise vortices (—I")
and one counterclockwise vortex (+1") at the weather side, in which the clockwise vortices
are formed above the breakwater and the counterclockwise vortex are formed in front of

the breakwater.

The variation of the circulation |F95| can be compared with the surface elevation at
X/L,=0. The maximum circulation of the clockwise vortex (-I') in t/T,=10.4~11.3
was measured at t/ Tp =10.76 and has a time shift At/ Tp =0.12 with the wave crest,
which is at t/T;=10.64. The maximum circulation of the counterclockwise vortex was
measured at t/T =11.22 and has a time shift At/T =0.07 with the wave trough,
which is at t/T =11.15. The time shifts were obviously introduced by viscosity of fluid.
Figure 6.10 also indicates that at the weather side the clockwise vortex (—I") is driven by
the positive horizontal velocities beneath the wave crest, and the counterclockwise vortex

the negative horizontal velocities beneath the wave trough.

The circulation of the clockwise vortex (-I') in t/T =11.3~12.0 is shown to
demonstrate that the counterclockwise vortex was affected by the clockwise vortex after
t/T,=11.44, and further description and comparison were stated in Section 6.4.5. The
discrepancy at t/T =11.18 of the counterclockwise vortex at the weather side will be

discussed later by the plots of flow fields with the vorticity contours.
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(a) 0.8 5

10.4 10.8 11.2 11.6 12.0
T,

Figure 6.10: The circulations |F95| of the clockwise and counterclockwise vortices at the

weather side in Case 6.4. The wave elevation was measured at X/ Lp =0.

6.45 Motionsof thevortices at the weather side

Figure 6.11 and Figure 6.12 show sequences of plots of flow fields with the vorticity
contours. The surface elevation at x/L,=0 and the circulation |F95| of the vortices
were marked by cross and were presented within the breakwater. The flow fields were
distinguished by colors: the black arrows denote the selected region of the vortex and the

gray arrows otherwise.

Figure 6.11 shows the life cycle, from formation to breakdown, of the clockwise
vortex, which has been presented in Figures 6.6(a) and 6.7(a). In Figure 6.11(a), the

vortex formed as a result of the positive surface elevation and the associated positive
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horizontal velocities.
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Figure 6.11: A sequence of flow fields with the vorticity contours shows the life cycle of
the clockwise vortex indicated in Figure 6.6(a). The surface elevation and the circulation
|F95| were denoted both in mark and the location of the vortical centers (x./h,, y,/h))
are shown. The phase of each flow fields is: (a) t/T;=10.53; (b) t/T, =10.65; (c)
t/T,=10.76; (d) t/T,=10.92;(e) t/T,=11.08. (continued on next page)

137



Chapter 6—Interaction of irregular waves and a submer ged breakwater

(¢) (x/hy, y./h)=(0.113, 0.794)

0.9

e — Q (s
| _ S
uT, =10.76 | 4D
< —_+ B0
4 >>=
20
NSNS s sl 5
R N
. |
@ os L 1
LIS AR N
Hil/}ﬂﬁ’
b : - 1
O AR AR
777777 :
oA
_ ad N N
//////// ’ 24 /, \\ I 20
71 / lh -
1 AN
------ 104 108 112 116 12.0)
0.6-4—— 1 S T -80

0.9

L L IR Q(S-l)
4 — AR N e e % = -
10cm/s |- |y, =10.92
rarar e ererer-dV RV EVEFEFEEEERINE VNN r 80
lvvvvvvvvve e oo o v v v M AYSTNNNNNSSSSS s wws |
A A A A A A A A A A e T T
1YV /v L v v v v S SN N N NN N N NN NN NN W P 20
A EEEy N N A
AL VI R
/L e v v o0 L 5
Yy L L S
AL ey, - [
H % @ 1
7 044 E
” His-044 R £
o T T T 1
(b) 104 108 11.2 116 12,0}
7\,,,,,,, =
6 // H
] /X -5
UeA / \ F
4/ '\ |
3/ | -20
/
we s 2 me g
0.6

-0.1 0.0 0.1 0.2 0.3

Figure 6.11: (continued on next page).
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Figure 6.11: (continued).

When the wave crest arrived, the selected region of the vortex enlarged with higher
circulation and the location of the MAV detached from the corner as shown in Figure
6.11(b). The vortex reached the maximum circulation |F95| at t/T,=10.76 in Figure
6.11(c) and centralized at (x,/h,, y,/h,)=(0.113, 0.794). The extent of the vortex in
Figure 6.11(d) is wider than that in Figure 6.11(c) and with the smaller MAV because the
vorticity was convected by flow motion. The swirling center at about X/h, =0.06 in
Figure 6.11(d) was parted from the location of the MAV. Although the circulation can be
measured at the stage shown in Figure 6.11(e), there are no clockwise-vortical velocities.
This denotes that the selected region of a vortex base on vorticity is not well-described if

the vorticities are small.
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Figure 6.12: A sequence of flow fields with the contours of vorticities shows the life cycle
of the counterclockwise vortex indicated in Figure 6.6(b). The surface elevation and the
circulation |F95| were denote both in mark and the location of the vortical centers
(x./h,, y./h,) were showed. The phase of each flow fields is: (a) t/T,=11.07; (b)
t/T,=11.14;(c) t/T,=11.18;(d) t/T,=11.27;(e) t/T,=11.38; (D) t/T,=11.44;(g)
t/T,=11.53. (continued on next page)

140



© (%/h, Y./h)=(=0.070, 0.722)

11.18 }

Q (s

/Ty

~
/

1 HlOcnﬂs%fﬁ\

0.9

)= (~0.083, 0.708)

(@ (% /h y./h,

Q (s

80

=11.22¢}

LA

< <

0.1

0.0

-0.1

x/h,

Figure 6.12: (continued on next page).
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Figure 6.12: (continued on next page).
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Figure 6.12: (continued).

The life cycle of the counterclockwise vortex, which has been presented in Figure
6.6(b) and Figure 6.7(b), is shown in Figure 6.12. The counterclockwise vortex in Figure
6.12(a) was formed in front of the breakwater and introduced by the negative velocities
which followed with the coming wave trough. When the wave trough arrived in Figure
6.12(b), the location of the MAV, which is at the corner of the breakwater, differs from that
of the swirling center, which was at about (x/h,, y/h)=(-0.5, 0.69). This resulted
the vorticity contour in Figure 6.12(b) are neither convex nor centralized at the location of

the MAV.
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Figure 6.13: The circulations |F95| of the clockwise vortex and the counterclockwise

vortex at the lee side in Case 6.4. The wave elevation was measured at X/ Lp =0.5.

In the case of the counterclockwise vortex at the weather side, large positive
vorticities are initially induced by the negative horizontal velocities above the breakwater
and convected into the deep water region in front of the breakwater. Thus, the vorticities
convected downward and introduced the swirling velocities in the deep water. However,
the velocities above the breakwater continuously decreasing until reaching the minimum at
the wave trough and the MAV reaches its maximum value at the corner of the breakwater,
and results the discrepancy at t/T,=11.18 of the circulation of the counterclockwise
vortex in Figure 6.10. Figure 6.12(c) offers a clear view of the discrepancy, and shows
that the procedure described at Section 6.4.2 cannot catch the all of the vortical region

below y/h =0.69 since the contours of the vorticities were not convex and not
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centralized on the MAV. Thus the lack of the selected elements introduces the circulation
measured by using Eq. (6.10) has a value smaller than that at t/T,=11.14 or 11.22.
The same phenomena appeared at the lee side of the breakwater when the positive
velocities introduce a clockwise vortex behind the breakwater, and thus introduced a
smaller measures within the life cycle of a vortex. This distortions can be seen in Figure
6.10 at t/T,=11.18 of the counterclockwise vortex at the weather side and in Figure

6.13 at t/ Tp =11.60 of the clockwise vortex at the lee side.

Although the vorticity contours are not convex and the swirling center is parted from
the location of the MAV in Figure 6.12(d), the maximum circulation was well-measured
and the region of the vortex was well-described. In Figure 6.12(e), the counterclockwise
vortex was lifted by the upward vertical velocities and another clockwise vortex, which
was with the circulation of duration t/T,=11.3~12.0 shown in Figure 6.10, was formed
at the corner of the breakwater. Swirling velocities of the counterclockwise vortex can be
found at about (x/h,, y/h,)=(-0.14, 0.74) and the vortical structure is near disappear,
although the contours of the vorticities are convex enough and centralized at the location of
the MAV. In Figure 6.12(f) of the timing t/T =11.44, the vorticity was strongly

affected by the clockwise vortex at the corner.

In Figure 6.12(g), the vortical structure of the counterclockwise vortex was not
observed and the contours of the positive vorticities were affected by the negative one,
which introduced by the clockwise vortex at the corner. Thus, the circulation of the

region within the contours of the positive vorticities decreases in higher speed than that
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before t/T,=11.44. The phenomenon can be revealed by measuring the decreasing rate
of the circulation of the counterclockwise vortex (+I") in Figure 6.10, where two
decreasing rate are clearly distinguished. Before t/T,=11.44, the counterclockwise
vortex was not affected by the clockwise vortex, which formed at about t/T ,=11.3, and
was with a decreasing rate d|Ty|/dt=-0.008 m’s. After t/T,=11.44 as shown in
Figure 6.12(f) and 6.12(g), the clockwise vortex at the corner of the breakwater became
stronger and sped up the decreasing rate of the circulation of the counterclockwise vortex,
which is d |1"95|/ dt =—0.026 m’s® . It seems that the successive-formed clockwise

vortex increased the decreasing rate about three times the original decreasing rate.

6.4.6 Circulationsat thelee side

At the lee side of the breakwater, clockwise vortices are formed behind the submerged
breakwater, and counterclockwise vortices are formed above the submerged breakwater.
Figure 6.13 shows the circulation of a clockwise vortex (—I") and a counterclockwise
vortex (+I") of Case 6.4 with the surface elevation at x/L;=0.5. The discrepancy at
t/T,=11.60 of the clockwise vortex at the lee side is caused by the same reason of that of

counterclockwise vortices at the weather side.

At the weather side, the circulation-decreasing rate of a counterclockwise vortex in
front of the breakwater was affected by the successive-formed clockwise vortex at the
corner of the breakwater. Similarly, the circulation-decreasing rate of the clockwise
vortex behind the breakwater was affected by the successive-formed counterclockwise

vortex. In the region of the lee side, typically counterclockwise vortices should be
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formed and strengthened at the wave trough. However, the formation process of
counterclockwise vortex in Figure 6.13(b) was diminished by the higher order free wave in
the trough and results a longer formation process. It took about t/T =0.6 for the

counterclockwise vortex to reach the maximum circulation |F95| .

The clockwise vortex (—I") in Figure 6.13(b) formed with the higher increasing rate,
which is about d|1"95|/ dt = 0.054 m’s™, and was resulted by the sharpened wave crest.
The breakdown process of the clockwise vortex has two decreasing rates separated at about
t/T,=12.0, when the successive-formed counterclockwise vortex was strong enough.
Before t/ T,=12.0, the circulation of the counterclockwise vortex was with the
decreasing rate  d|Tys|/dt=-0.006 m’s® , and with the decreasing rate
d |F95|/ dt = —0.020 m’s™ after t/ T,=12.0. Similar with the results at the weather side,
the successive-formed counterclockwise vortex increased the decreasing rate of the

clockwise vortex about three times the original decreasing rate.

6.4.7 Propertiesbeneath theirregular waves
Since the procedure in Section 6.4.3 was well-programmed and has the ability to

automatically detect vortices, the circulations of the vortices around the breakwater in the

period T, can be quantified and shown in Figure 6.14.

The life cycle of the vortices in t/T;=10~14 have similar pattern with that shown
in Figure 6.11, in which four large waves were observed in the surface elevation. One of
them has been discussed detailly in Sections 6.4.4 to 6.4.6. In t/T, =8~10, the vortices

formed by the small waves can be distinguished by zero-valued circulation. In
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t/T, =10~ 14, although the circulations were seldom zero, the clear pattern makes the life
cycle of the vortices be identified with no difficult. However, after t/T,=14, the
successive small waves resulted that the vortices lasted for longer duration since the
associated velocities were not huge enough to eliminate the vortex. The clockwise vortex
in t/T,=16~18 strongly evidenced this phenomena.  Similar phenomena was
appeared in the vortices at the lee side in Figure 6.14(b) if a large wave was followed by
several small waves. It shows that the wave sequences or wave phases are important for

determining the vortex pattern or the last duration of a vortex.

Figure 6.14(b) shows the circulations at the lee side with the surface elevation
measured at X/L;=0.5. The shallow water region made the subharmonics and
superharmonics take place, and resulted the sharpened crest and the floated trough. In
t/T,=11~15, there are four large wave components, which has the wave crest exceed
0.7H,,, and three waves with small heights and shorter periods in between. The vortices
formed in t/T,=11~15 were with similar pattern of the vortices discussed in Section
6.4.6. Note that the sharpened crests made the maximum circulations |F95| of the

clockwise vortex (—I") were near that of the counterclockwise vortex.

For studying irregular waves, the statistical manner is inevitable. Because the
reflected waves in between the wavemaker and the breakwater has not been eliminated, the
duration T; of the irregular waves has only 16 s, which is not sufficient for a good
statistical study. Hence, the statistical properties of vortex dynamics were not considered

herein.
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Figure 6.14: The variation of vortex circulation |F95|: (a) at the weather side, and (b) at
the lee side of the breakwater in Case 6.4. The wave elevation is measured at X/ Lp =0

and x/L,=0.5 respectively.
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6.5 Chapter remark
The main conclusions from the study of this chapter can be summing up briefly:

1. Base on the repeatable property of the numerical wave tank, the reflected waves were
identified by subtracting the surface elevation of Case 5.1, which was the pure incident

waves, from that of Cases 5.2 to 5.5 without assumptions.

2. By comparing the reflected coefficients spatially, the time period T, =12~28 s was
without the reflected waves from the wavemaker with the spectral-peak phase velocity

C, = 1.77 m/s and the distance 16 m between the wavemaker and the breakwater.

3. The vorticity-major method were stated and the vorticity threshold €. =0.05|Q|max
applied. By means of this method, the region of the vortices were selected

automatically and the properties of the vortices can be calculated if the vortex centered

on the location of the MAV.

4. The normal pattern of the lifecycle of the vortices were as results shown in Figures 6.10
and 6.13. At the both sides of the breakwater, although the lifecycle of the vortices was
different, the breakdown process of the vortices next to the breakwater was always
affected by the formation process of that above the breakwater, and had two

distinguishable breakdown rate.

5. The lifecycle within the irregular wave train had similar patterns before large wave
packet, and differed while large wave followed by small waves, which induced the flow

motion not sufficient to diminish the vortex formed by large waves. Thus, the vortex
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formed by large waves last for a longer duration.

151



Chapter 6—Interaction of irregular waves and a submer ged breakwater

152



Chapter 7 Vortex dynamics above rigid
vortex ripples

“That is the essence of science: ask an

impertinent question, and you are on the
way to the ﬁeﬂinent answer.”

—Jacob Bronowski,

British mathematician

7.1 Dimensional analysis

As bed flow moves back and forth above sandy bed with the Shields number (defined
in Eq. (7.3)) larger than a critical value, the shear stress make sands roll over bed, pile
together and then form several small bumps. This is an initial stage of ripple formation.
If the distance or wavelength of the bumps was large than the bed orbital amplitude, a
steady streaming (Rousseaux et al., 2004), was formed between the bumps and rolling
sands were transported by the shear stress of fluid. In this stage, ripple pattern was
dominant by sand properties, i.e. medium grain size d,,, particle density p,, and fluid

density p.

When the bump’s height is large enough, the oscillating flow forms separation
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bubbles of both sides of the bumps. Reversal flow of the separation bubbles introduces
near-bed offshore (onshore) flow while the free stream is in onshore (offshore) direction.
Consequently, the shear stress is increase of both slopes of the bumps and results sediment
transport from the flat bed to the bumps’ top. This procedure is treated as a steepening
process, and goes on until the slopes of ripples reach the angle of repose, which is the

maximum angle of a stable slope of particles.

While the same hydraulic condition last for only a short duration (less than about
O(10°#f) , which was suggested by Rousseaux, 2006) and the steepness H, /L, less than
0.1, an equilibrium state is reached and named as rolling-grain ripples, in which the ripple
form is only base on the grain properties and length of the almost horizontal troughs are

always irregular since the initial piled locations are random.

While two rolling-grain ripples are close enough, with a distance or wavelength L _,
or the hydraulic condition are sufficiently huge, say 4 /L >0.4, vortices form on the
both slopes of the ripples. If the vortex is strong enough, sands are picked-up by the
vortices and settle down when the vortex is weak. A new sharpening process is formed

by the organized vortices until the new equilibrium state is reached, and named as vortex

ripple.
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Figure 7.1: The ripple geometry (not to scale) and the associated parameters.

Regarding waves over vortex ripples as shown in Figure 7.1, the following

dimensional quantities were considered:

H or H,, —wave height or significant wave height ([L])

@ or ®, —angular frequency or spectral-peak angular frequency ([T 1
v —fluid kinematic viscosity ([L'T'])

H, —ripple height ([L])

L —ripple wavelength ([L])

A, —bed-orbital-displacement amplitude ([L])

U, —bed-orbital-velocity amplitude ([LT'])

h, —still water depth ([L])

k, —the Nikuradse roughness ([L])
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where the bracket denotes the dimension, L the length, and 7 the time.

There are nine dimensional quantities and two fundamental dimensions, time and
space, in such a problem. Hence, seven nondimensional quantities can be formed.

Chosen @ as the reference of time and A, as the reference of length, we have

2
wA> (H U h H A Aj 1)

v N4 wd  H L Lk

[ [ r r r N

The parameter U, /@A, is unit for linear regular waves, and H /A, =2sinh(kh,) is
determined when a frequency was chosen. For vortex ripples, the Nikuradse roughness
was defined as k, =20H /L, (Van Rijn, 1993). Since the interaction of flow and
ripples are major within the vortex layer beneath y <2H (Ranasoma and Sleath, 1992;
Davies and Thorn, 2005) or y <k, (Marin, 2004), which is far smaller than the water
depth £, , the water depth became unimportant. The parameter @A’ / v is defined as the
bed-orbital Reynold number in the present study. The parameter A /k, is used to
confirm whether turbulent effects take a leading part in or ont. If A /k >30,
momentum transfer is no more dominated by vortex but by random turbulent process

(Trowbridge and Madsen, 1984).

If sediment transport were considered, the dimensional analysis becomes more

complex and four new dimensional quantities have to be concerned:
p —density of fluid ([ML”])

d,, —medium grain diameter ([L])
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p, —density of the sediment ([ML™])
w, —settling velocity ([L’T'])

where M denotes the mass. And implies three non-dimensional quantities: the specific
density s=p, /p; the ratio of bed-orbital-displacement amplitude to median grain size,

A, /d,,; and the normalized settling velocity w_ /U, .

In general, the relative density s is about 2.65 for the density of glass spheres or
quartz sand to that of water, and is constant in the present study. The ratio of
bed-orbital-displacement amplitude to medium grain diameter is important for
rolling-grain ripple, and not for vortex ripple. This quantity is replaced by the

ripple-adjusted Shields parameter (Nielsen, 1986):

g9 (7.2)

r [ H jZ
1+7—=
L

where the maximum Shields parameter 8" and the maximum shear stress 7, are:

N (7.3)
pg(s—1d,,
and
, 1 )
Tb = Epwao (74)

The coefficient f, is the resistance factor and defined as follows.

For laminar flow over smoothed bed:

f,=2Re"’ (7.5a)
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For rough bed (Swart,1974):

£, =exp(=5.977+5.213(4, / kK))*"**) for A4, /k/ >1.59 (7.5a)

The skin roughness k& =2.5d,, is the roughness along ripple surface. The
ripple-adjusted Shields parameter was used for confirmed that no sediment transport was
occurred beneath the tested hydraulic conditions physically. Since the present numerical
model can simulate only rigid ripple, the numerical settling velocity, which used to identify

sediment rate, was not considered herein.

S =
0 s I
[\ A

/\A/\v_:/\l\nl\
TR

AVAVAVAVAVAVAVAVAVA X

%

Figure 7.2: Schematic diagram (not to scale) of a numerical wave tank for studying

irregular waves over rigid vortex ripples.

By means of the curvilinear coordinate mentioned in Chapters 2 and 3, this chapter
examined the vortex dynamic of waves over ripples. Figure 7.2 shows the schematic of
the numerical model for studying irregular waves over rigid vortex ripples. Ten ripples
were set up. The x-axis is measured horizontally in the direction of wave propagation

from the center of the ripples. So that the center of the ripples is x=0 and two edges
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are at x=15L, . The distance between wavemaker and ripples is about 2L,, where L,
is the spectral-peak wavelength. The grids for studying waves over rippled beds are
generated and shown in Figure 7.3. The y -axis is measured vertically upwards from

ripple trough.  The still water depthis 4, .

7.2 Rippleform

The natural shape of vortex ripple and the equilibrium state of ripple steepness
H, /L, should be taken into account for a good simulation. The approximated form of

natural sea ripples are suggested by many researchers, and the Sleath form (Sleath, 1984)

were used
x=¢& —0.5H sin(27E, /L) (7.62)
y=0.5H, (cos(27¢, /L, )+1) for |x|<L, (7.6b)
y=0 for |x|>L, (7.6¢)

where & is a shape factor used to describe the ripple surface.

The bottom boundary in Figure 7.3 is the bed form generated by Eq. (7.6). The
ripple shape with approximately triangular crest and flatten trough satisfies with the
evidence obtained by the experiments of Stegner and Wesfreid (1999). The equilibrium
state of ripple steepness H,/L. has been stated with different manner, experiments
(Wiberg and Harris, 1994; Sistermans, 2002; Davis, 2005; Admiraal et al., 2006; Lacy et
al., 2007), field measurements (Traykovski et al., 1999; Hanes et al., 2001; Ardhuin et al. ,

2002; Masselink et al., 2007; Traykovski, 2007).  An acceptable pattern of vortex ripple is
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By using the formula of Khelifa and

that the ripple wavelength is about the bed-orbital-displacement amplitude, and the ripple

Ouellet (2000) with medium sand size d,, =242 um, which is a finer sand case of Davis’

Chapter 7—Vortex dynamics aboverigid vortex ripples

steepness is about 0.17 (Wiberg and Harris, 1994).

(2005) study, we have
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Figure 7.3: Numerical grids about the ripples.



7.3 Validation and numerical conditions

With applying curvilinear boundary to form rippled bed, as shown in Figure 7.3, the
present numerical model can deal with the problem that waves propagating over ripples.
For ensuring the accuracy of the present model, validation was carried out by comparing
the numerical results with experimental one. Marin (2004) made a series of experiments
ranged from transitional to full turbulent flow. Test 1, a transitional flow case, of Marin’s
tests was compared with the numerical results with the identical wave condition and was
shown in Figure 7.4, where O = Ju/w. The agreement in Figure 7.4 indicates the

present numerical model is good in describing this problem within the transitional regime.

1.0
] [ ] Marin (2004, Test 1) 24
il Numerical results -
0.8 — i
] — 18
0.6 — L
y S
k, =12 §
0.4 — N
A —6
0.2 7 crest level =
00 T T ‘ T T ‘ T T ‘ T T ‘ T T ‘ T T 0
-0.8 -0.4 0.0 0.4 0.8 1.2 1.6

w/'U,

Figure 7.4: Comparison of numerical results (solid line) and the experimental one (solid
circles) of Marin (2004, Test 1). The associated conditions are with A =27 cm,

H=48cm, T=108s, Ur=538, A /L =0947, H =03 cm, L =1.8cm.
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The numerical conditions in this study were built base on this comparison and the
equilibrium ripple pattern mentioned in Section 7.2.  When a wave with period 7=2.0s,
wave height H =4 cm propagates unidirectionally in water with the depth 4 =30 cm,
the bed orbital amplitude of this wave is 4 =3.27 cm and thus the ripple wavelength
was designed to be L =3cm to satisfy 4 /L =1. By means of Eq. (7.7) with
A,=3.27 cm, we have a steepness H,/L. =~0.153, hence the ripple height is about
H_ =0.45cm. For the sake of simplicity, the ripple height A, =0.5 cm was selected,
which led to the steepness H,/L =0.167 and still within the equilibrium state

H. [L ~0.15~0.17.

Table 7.1: List of wave conditions.

Case Type H,, A A/L Ur Re U,L

o o r

(cm) (cm) (cm?’/s)
7.1 1.5 123 041 590 469 11.6
7.2 Regular 4.0 327 1.09 1572 3338 30.83
7.3 55 450 150 21.62 6311 42.39
7.4 1.5 1.02 041 590 333 9.8
7.5 Irregular 4.0 2.86 1.09 1572 2432 25.7
7.6 55 412 150 21.62 4703 345

Three regular-wave cases, Cases 7.1 to 7.3 with L /4 =0.41, 1.09, 1.50
respectively, were tested to reveal the properties on and off the equilibrium state.
Although some researchers stated that ripple form beneath irregular waves was differed
from that of regular waves, the bedform was also used for irregular-wave cases in order to
have an identical environment and comparable results. The bed orbital properties of

irregular waves defined in Chapter 4 were applied herein:
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o @S
U =U_ = 2[ de (7.8 a)
o 0 sinh’ kh,

- S, (o)
{ = A _ n ")
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The non-dimensional quantities, Re, and A /k,, of the listed cases are ploted in
Figure 7.5 and are in transitional regime. This indicated that the present numerical model
can simulate these flow motion very well. Since the parameter A, /k, were not
exceeded over 30, the flow or momentum transfer were dominated by organized vortex,

not by random turbulent process.
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Figure 7.5: Delineation of flow regime proposed by Davies (1980), indicating the
boundaries between laminar, transitional and rough turbulent oscillatory flow, in which

solid circle denotes Marin (2004, Test 1), and solid triangles the listed cases.
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7.4 \ortex propertiesaboveripples

The well-defined properties of vortex were described in Chapter 6 and used here to

reveal the vortex dynamics above ripples. The vorticity is defined as

Q= o (7.9)

Cox oy
The vorticity threshold €2, :0.05|£2|1mX in order to define the region of a vortex was
confirmed in Section 6.4.3. Applying the threshold, the circulation of a vortex can be

defined as:

Tys= > QA for |Q]>Q; (7.10)

ie vortex
where I',, Q. and 4, are the circulation of a vortex, vorticity and the area of the i-th

numerical element within a vortex respectively.

7.4.1 \Vortex circulation

Figure 7.6 shows the temporal variation of circulations of the three regular-wave cases.
The surface elevation at x/L =0 was shown to compare the phase difference of the
surface elevation and the circulations. The circulations can be regarded as the strength of
vorticies, and the process from formation to breakdown of vortices can also be stated by

the variation as well.
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Figure 7.6: Circulations of counterclockwise vortices (+I", solid line) and clockwise
vortices (—I", dashed line): (a) Case 7.1 (U,L, =1.16x10" m’/s); (b) Case 7.2
(U,L, =3.08x10" m’/s); (c) Case 7.3 (U,L, =4.24x107 m’/s). The surface elevation

was measured at x/L. =0. (continued on next page)
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Figure 7.6: (continued).

Comparing to Chapter 6, the circulation of vortices above ripples are more disturbed.
This disturbed was resulted by the grid resolution and by the vortex properties above
ripples. Although it is good enough to describe the boundary layer above ripples, as
shown in Figure 7.4, the grid resolution is not sufficiently good to describe the variation of
vorticities, which changes quickly about ripple surface. Around a corner of a submerged
breakwater, the vortices Within a large wave can be distinguished easily since only one
vortex, either clockwise vortex or counterclockwise vortex, dominates the flow. However,
series ripples introduce series vortices. When waves propagating over ripples, vortices
were formed next to each other and were only with a phase difference about A¢g=wL /c,
where ¢ is the phase velocity of waves. In the regular-wave cases, the time difference is
about A¢=0.056. Although the method described in Section 6.4.2 can identify the

region of a vortex, the results in Figure 7.6 show the method still have some discrepancy of
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vortex recognition.

As afore-mentioned, Case 7.2 was taken as the equilibrium state of regular waves in
this hydraulic condition. Since the bedform prescribed by Eq. (7.6) is symmetric, the
difference of circulation is determined by the asymmetric property of free stream, which is
resulted by the Stokes wave. Consequently, the asymmetric property is increase if the
Ursell number is large enough as Case 7.3, and it is nearly symmetric if the Ursell number
is small as Case 7.1. Hence, the circulations of Case 7.3 shown in Figure 7.6(c) show
large difference in magnitude, and that of Case 7.1 shown in Figure 7.6(a) only a bit

difference.

The process of formation and breakdown of the vortices above ripples is similar since
the major effects were dominated by oscillating flow motion. In Figure 7.6(b), maximum
circulation of the clockwise vortex in equilibrium ripple form (Case 7.2) is about 0.4U L .
Similar phenomenon can be found in Figure 7.6(c). Although the bed-orbital-velocity
amplitude is larger than that of Case 7.2, the maximum vortex strength is limited at
0.4U,L,. The results denote that the vortex development was limited by the ripple form
as well as the velocity of the free stream. Similar results can be observed in the following

section with the velocity field and the vorticity contours.

7.4.2 Flow field and vorticity contours

Detailed flow motion above a ripple within oscillatory waves has been stated clearly
by Van der Werf et al. (2007). In this study, we focus on the flow motion and the

associated circulations of vortex, which strongly affects the picked-up and settling process
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of sediment transport. Figure 7.7 shows different phases of the velocity field and
vorticity contours beneath the surface elevation at x/L =0 of Case 7.2 shown in Figure
7.6(b). Seven phases were selected for discussion. Because the surface elevation is in
phase with the associated near-bed free stream velocity, we used the surface elevation to

evidence the near bed flow motion.

The free-stream velocity was increase in ¢/7 =6.281 and shown in Figure 7.7(b), in
which the large near-bed vorticities were introduced by the no-slip condition with large
near-bed velocities. A separation bubble formed against ripple lee slope, and this is the
first stage that a clockwise vortex can be measured by the procedure showed in Section
6.4.2. The free stream velocity reached the maximum in ¢/7 =6.347. After a while,
the circulation of the vortex has its largest value |F95| /UOL, =0.399 at ¢/T=6.375
shown in Figure 7.7(c). Note that the center of the vortex is close to the ripple lee slope
and the extent of the vortex is small than the ripple wavelength. Comparing with Figure
7.7(b), the vortex was extended and shifted toward ripple center x/L =0. Furthermore,
the reversal flow induced by the separation bubble were on offshore direction and
introduced the near bed positive vorticities, and the negative vorticities extended all over

the ripple surface.

Pass the wave crest or the maximum circulation, the free stream velocity was
decreasing but was not yet zero. At ¢/7 =6.5 shown in Figure 7.7(d), the negative
vorticities were transferred to higher location and the swirling velocities had an extent

about a ripple wavelength. Because the spatial phase difference introduced by wave
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propagating, the magnitude of negative vorticities around the ripple crestat x/L, =0.5 is

larger than that at x/L =-0.5.

Of Figure 7.6(e), the remained circulation dominated the flow, and the vortex became
a weak swirl with large extent at higher location. As discussed in Section 6.4.5, the
smaller magnitude of vorticity probably introduced the discrepancy of the calculated
vortex center (x,, y,) and the swirling center. The calculated vortex center was at
(x,/L,y /L)=(-0.21,0.10) , and the swirling center is at about
(x/L,y/L)=(-0.2,025) by observing Figure 7.7(¢), where x, , y,  are the
measured vortex center and defined in the following section. Clearly, the calculated

vortex center is lower than the swirling center in this phase.

When the flow moves back, the counterclockwise vortex was formed and dominated
the flow. The counterclockwise vortex at the maximum circulation |F95| is shown in
Figure 7.7(f). The counterclockwise vortex was formed against the ripple stoss slope and

centeredat (x,/L_,y./L )=(0.094, 0.140).
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Figure 7.7: The surface elevation, the flow fields, and vorticity contours of Case 7.2 with
(a) the surface elevation at x/L =0, and flow field at (a) #/7,=6.281, (c)
t/T,=6.375,(d) t/T,=6.500,(e) ¢t/T,=6.563,(f) ¢/T,=6.906,(g) ¢t/T,=7.063,as
well as (h) ¢/T,=7.125. (continued on next page)
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Figure 7.7: (continued on next page).
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Figure 7.7: (continued).

Similar to the clockwise vortex, the circulation of the counterclockwise vortex is
decreased but with larger extent in Figure 7.7(g). When the vortex was ejected to higher

region in Figure 7.7(h), the counterclockwise vortex is almost disappeared.

7.4.3 Migration of vortex center and strength variation

By tracing the center of a vortex defined in Eq. (7.11), the trajectory of vortex is able
to be established. The vortex trajectories can used to realize the vortex motion, the
energy transfer, and the further study may reveal the equilibrium state if the process of
sand transport is considered. Similar to circulations, the trajectories were also dominated
by the selected region of vortex and the grid resolution. Although some discrepancy of

trajectory is inevitable, the tendency can be stated.

Figure 7.8 shows the trajectories of the measured vortex center of the regular wave
cases, Cases 7.1, 7.2 and 7.3. In Figure 7.8(b), three stages of vortex motion were marked

by I, II ,IIl. and I,, II,,III, for the clockwise vortex and the counterclockwise

+ 9

vortex respectively. The center of a vortex can be defined as:
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where I',, x,

24

and y, are the circulation of a vortex and the position of the i-th

numerical element within a vortex respectively.

Of the first stage, I_ or I,, the circulations of the vortices are from a small initial
value to its maximum as the circulation shown in Figure 7.6, and the vortices were moved
from ripple slope side toward ripple trough, which can be found at Figure 7.7. This stage
can also be stated as the formation process. Of the beginning of the formation, the
vortices formed near the ripple slope and moved toward the ripple trough as the increasing
of the free stream velocity. Comparing the trajectories of vortex center, the maximum
circulations do not appear at the trough but the slope side. This normally results sand

picked-up process and change the ripple form.

Of the second stages, II_ and II,, the vortices moved from the ripple slope side to
the ripple center x/L, =0. Since the center of vortex were measured by weighting with
vorticity, the results show the vorticities were convected and extended to cover all ripple
region as shown in Figure 7.7(d). The vortex region were extended as well but limited by

the ripple crest and by the vortices at x/L =+%1.
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Figure 7.8: Trajectories of vortex center and the magnitude of circulations denoted by
open circle with different size: (a) Case 7.1 (U,L, =1.16x10" m’/s); (b) Case 7.2
(U,L, =3.08x10" m’/s); (c) Case 7.3 (U,L, =4.24x107 m*/s). Solid and dashed line
showed the trajectory of vortex center calculated by Eq. (7.11) and open circles denote the

circulation determined by Eq. (7.10).
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In the third stage, III_ and III,, the circulation was small and moved toward ripple
crest. Note that in small vorticity the method underestimates the location of vortex center,
which is lower than the swirling center as shown in Figure 7.7(e). However, the small

circulation denotes that vortices are about breakdown.

7.5 Satisticsresults of vortex strength beneath irregular

waves

Cases 7.4, 7.5 and 7.7 cannot be processed only by the methods using to deal with the
results of Cases 7.1, 7.2 and 7.3, because wave elevations are not periodic and the
associated vortex characteristics are not regular. Figure 7.9 states the randomness of
irregular waves properly. The circulations of counterclockwise vortices (+I") and
clockwise vortices (—I") were measured automatically with the applied vorticity threshold.
Since the ratio of ripple height to water depth can be ignored, the reflected waves
introduced by ripples were neglected as well. Hence, the irregular-wave tests can have
longer time duration than that of Chapter 6, and the statistical properties can be measured.
Note that of surface elevation there are 24 zero-upcrossing waves but only 22
counterclockwise vortices and 21 clockwise vorticex are counter in Figure 7.9. Similar to
Chapters 4 and 5, the statistical properties of surface elevation can not state the near bed

phenomena directly. Modification has to be made and to build an association.
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Figure 7.9: Surface elevation and circulations of Case 7.5 with U, L, =2.57x107> m*/s:
(a) the surface elevation at x=0; (b) the circulations of clockwise vortices, and (c) the

circulations of counterclockwise vortices.
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7.6 Chapter remark
With the results in this chapter, some remarks were carried out here briefly:

1. The present numerical model can simulate the flow within the transitional regime very

well.

2. The circulation of the vortex above ripples were limited by ripple form and the free
stream velocity. Of Cases 7.2 and 7.3 the maximum circulation |l"95| was about
0.4U,L.. Of Case 7.1 the maximum circulation |F95| was smaller because it was not

sufficiently large to be limited.

3. The asymmetric property of the surface elevation resulted the non-identical maximum
circulation |F95| of the clockwise vortex and the counterclockwise vortex. With the
sharp crest and flat trough of Cases 7.2 and 7.3, the circulation of the clockwise vortex
was larger with shorter duration, and that of counterclockwise vortex was smaller with

longer duration.

4. The circulations of irregular-wave cases were measured automatically and the different

number of the surface elevation and the introduced vortices was found.

177



Chapter 7—Vortex dynamics aboverigid vortex ripples

178



Chapter 8 Conclusions and Recommendations

“If you thought that science was

certain—well, that is just an error on your
part.”

—Richard P. Feynman,

American physicist

8.1 Conclusions

8.1.1 Linear irregular wavesand the associated properties

The deterministic spectral amplitude method performed by the fast Fourier transform
was applied to generate irregular waves in the numerical viscous wave flume. The
Goda-JONSWAP spectral density was chosen as the target wave spectrum.
Characteristics of the wave spectra and the spectra of the bottom shear stresses caused by
irregular waves were discussed in terms of the spectral frequency, the zeroth spectral
moment and the spectral bandwidth parameter. Based on the numerical results the

following conclusion can be drawn.

1. The wave spectrum of the simulated irregular waves was in good agreement with the

target spectrum; and the numerical and theoretical transfer functions coincide with each
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other. This testified the accuracy of this numerical wave model.

The comparison of the maximum bottom shear stress obtained by this wave model with
that obtained by Myrhaug’s model indicates that Myrhaug’s model underestimates the

maximum bottom shear stress caused by laminar irregular waves.

The bottom shear stresses obtained from this wave model agree closely with those
obtained from the transfer function between the wave spectrum and the shear stress

spectrum.

8.1.2 Nonlinear properties beneath irregular waves

Applying the method in Chapter 4, Chapter 5 focused on the nonlinear properties of

irregular waves. The model deduced by Dean and Sharma (1981) was used to

demonstrate the irregularity of nonlinear waves and to provided a comparison. With the

numerical results the following conclusions were carried out.

1.

The bound waves, subharmonics and superharmonics, were found in the numerical

results of the studied cases.

Despite the bound waves of the surface elevation are identified, the transfer function of
the surface elevation and the associated bed shear stress are only departed from the
theoretical one slightly. The theoretical transfer function is satisfied for estimating the

bed shear stress if the small bias is acceptable.

The spatial-varied skewness of surface elevation and bed shear stress is with a phase

difference. The phase difference evidences the statistical properties of bed shear
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stress can not simply extent by that of the surface elevation, and it should have a roll in

the shear stress forecasting using statistical manner.

8.1.3 Interaction of irregular wave s and submerged breakwater

The present numerical model with a rectangular submerged breakwater was used on

the study of the vortex dynamics about the breakwatrer. Base on the repeatable properties

of the numerical wave tank, the reflected waves were identified by subtracting the surface

elevation of the pure incident waves from that of the listed cases without assumptions. Of

the numerical results, the conclusions were stated as following.

1.

The vorticity-major method were stated and utilized with the applied vorticity

threshold Q; =0.05|Q

.- By means of this method, the vortex region were found

automatically and the properties of vortices can be obtained if the swirling velocities

centered on the location of the MAV.

The normal pattern of the lifecycle of the vortices were as results shown in Figures
6.10 and 6.13. At the both corner of the breakwater, although the vortex pattern were
different, the formation process of the vortices above breakwater increased the

breakdown rate of the nearby counter-vortex about three fold.

The lifecycle within the irregular wave train had similar patterns before large wave
packet, and had different patterns while a large wave followed by small waves, which
induced the flow motion not sufficient large to diminish the vortex which formed by

the large wave. Therefore, the vortex formed by the large wave last for a longer
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duration.

8.1.4 Vortex dynamicsaboverigid vortex ripples

Using the curvilinear coordinate discussed in Chapters 2 and 3, Chapter 7 reveals the

properties of vortices above ripples beneath regular waves and irregular waves. The

method for identifying the region of vortex in Chapter 6 was applied to have the vortex

circulations and trajectories of the vortex center. After verifying the reliable regime

which the numerical model satisfied, the numerical results were carried out on and off the

equilibrium ripple pattern, and can be concluded as following.

1.

The circulation of the vortex above ripples were limited by ripple form and the free
stream velocity. Of the cases on or over the equilibrium state, the maximum
circulation |1"95| was limited about 0.4U L . Of the case with mild hydraulic
condition, say A <L,, the maximum circulation |F95| will not reach the limitation

0.4UL, .

The asymmetric property of the surface elevation resulted to the non-identical
maximum circulation |F95| of the clockwise vorteies and the counterclockwise one.
With the sharp crest and flat trough of the waves with larger Ursell number, say
Ur >10, the circulation of the clockwise vortex was larger with shorter duration, and

that of counterclockwise vortex was smaller with longer duration.

By the vortex-automatic-recognition method, the vortex -circulations beneath

irregular-wave cases were studied. Similar to the borrom phenomena of Chapters 4
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and 5, the statistical pattern of vortex circulations can not be predicted directly with

that of the surface elevation.

8.2 Recommendations for Future Research

The following recommendations were stated in the four topics studied herein.

8.2.1 Linear irregular waves and the associated properties

1.

The study of Chapter 4 can be extended by generating an irregular-wave train with a
longer duration, about O(10° s) or longer for approaching the amount of field data, in

order to have more rigorous statistical statement.

The transfer function of surface elevation and bed shear stress is only useful for a
measured wave train or an artificial irregular waves. For estimating critical events or

long term properties, a rigorous statistical model for bed shear stress is helpful.

The 1% difference with free stream velocity are usually applied to recognized the edge
of boundary layer. However, the criterion is not satisfied for identifying the edge of
boundary layer beneath irregular-wave motion. A new criterion is inevitable in order

to determine boundary layer thickness by statistical manner.

Of time or space domain, the occurrence of freak waves can be calculated numerically
with linear dispersion relation, if both amplitudes and phases of an irregular-wave train
over a smooth-flat bed are identified. The results can provided a basic understanding

about freak waves and help building the associated statistical model.
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8.2.2 Nonlinear properties beneath irregular waves

1.

The comparison of spatial-varied skewness of surface elevation and bed shear stress
can provide good knowledge base to build a more robust statistical model about bed

shear stress.

The statistical parameters of bed shear stress can be studied and compared with
statistical formula of surface elevation. Thus, the statistical results can be built and

the true statistical relation can be revealed instead of using parametric estimation.

8.2.3 Interaction of irregular wave s and submer ged breakwater

1.

Vorticity-based method is easy to perform, but is with discrepancy about recognizing
swirling center or the region of a vortex when the vorticity is small. The invariant of

velocity deformation can be used for further and detailed study (Kolar, 2007).

Since the width of the submerged breakwater is larger than the extent of vortex, the
vortices formed above the submerged breakwater do not interact with each other. A
submerged breakwater with small width can be tested to study the interaction of

vortices and have the knowledge about the effects of momentum transfer.

More cases have to be tested to build the relation of vortex circulation and the

geometry of submerged breakwaters.

Since reflected waves are non-stationary, active wave absorber is malfunction. A new
boundary treatment to deal with offshore reflected waves is essentially important for

having a wave train with longer duration, and therefore the statistical properties can be
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built.

The procedure of determining the region of a vortex can be further refined to diminish
the misunderstanding of the circulations of vortices next to a submerged breakwater, in
which the un-convex distribution of vorticities makes the procedure in Section 6.4.2

have a long discontinuity.

8.2.4 \Vortex dynamicsaboverigid vortex ripples

1.

If the study of the momentum transfer above y=2H, is inevitable, a turbulent model
should be combined in the present numerical method. Base on the conclusion of
Chang and Scotti (2004), only large-eddy simulation is suggested for the rippled bed

problem.

The near-bed drift can be calculated numerically and make a comparison to improve
the knowledge of ripple migration. However, the grid resolution have to be finer than

the present study.

For further study, e.g. waves over a non-equilibrium ripples or irregular ripples, a more
flexible boundary treatment or grid regenerated technique can be built in the present

numerical model in stead of the body-fitted boundary.

Because of the no-slip boundary condition, the shear region near boundary is no sense
about vortex core, and the near-boundary elements were excluded in this study to avoid
misconception about vortex region. As studied cases in the present work, the

maximum circulation appeared at near the ripple slope and taking-out the near-bed

185



Chapter 8—Conclusions and Recommendations

elements probably introduce the underestimation about circulations. Similar with the
recommendation in Section 8.2.3, the invariant of velocity deformation are suggested

to implement the vortex recognition more accurate.
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