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Slow-Time Modulation of Finite-Depth Nonlinear Water Waves' 
Relation to Longshore Current Oscillations 

L. SHEMER, 1 N. Dot)r), AND E. B. THORNTON 

Department of Oceanography, Naval Postgraduate School, Monterey, California 

Nonlinear dynamics of steep waves in water of finite depth are analyzed. The most unstable 
Benjamin-Feir sidebands are found for a number of values of carrier wave steepness and water depth. 
The long-time evolution of a three-wave system, consisting of the carrier and the two most unstable 
sidebands, is then studied. Such a wave system undergoes periodic recurrence. It is shown that the 
slow-time modulation leads to a corresponding periodic variation in the radiation stress when the 
propagation directions of the sidebands differ from that of the carrier. The variation of the radiation 
stress, in turn, results in slow-time modulation of longshore current. 

1. INTRODUCTION 

In recent studies of low frequency waves in a surf zone of 
a barred beach during the 1986 SUPERDUCK experiment at 
Duck, North Carolina [Crowson et al., 1988], considerable 
energetic motions were revealed in the horizontal velocity 
field along the shore. These waves were typically of O(102 
m) and had periods which could exceed 103 s. Since these 
slow waves were shorter by an order of magnitude than the 
shortest possible surface gravity waves, known as infragrav- 
ity edge waves, Oltman-Shay et al. [1989] suggested calling 
this band of nearshore wave energy the far-infragravity 
frequency band. 

The first attempt to present a model of the far-infragravity 
waves was made by Bowen and Holman [1989]. They 
assumed that these waves result from the shear instability of 
the longshore current. The form and stability of the far- 
infragravity waves were strongly dependent on the beach 
topography and longshore current velocity profile. In order 
to attack the complicated natural phenomenon of temporal 
and spatial variability of longshore current, the shear insta- 
bility approach considers a simplified model where the 
longshore current is essentially decoupled from the oncom- 
ing wavefield. The time-mean longshore current distribution 
as a function of the distance from the shore is assumed to be 

given a priori and serves as a starting point for the study of 
instability. The shear instability mechanism is thus indepen- 
dent of external forcing, and the possible time variation of 
the longshore current due to slow-time modulation of the 
wavefield is beyond the scope of shear instability studies. 
Dodd and Thornton [1990] and N. Dodd et al. (Shear 
instabilities in the longshore current: A comparison of ob- 
servation and theory, submitted to Journal of Physical 
Oceanography, 1991) have further developed this approach 
and found reasonable agreement between the wave numbers 
and frequencies of the most unstable shear flow modes, and 
the experimental observations. 

The omnipresence of the shear instabilities during SU- 
PERDUCK stimulated interest in examining the results of 
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the Nearshore Sediment Transport Study (NSTS) at Santa 
Barbara, California [see Seymour, 1989]. Although similar 
low-frequency, high-wave-number energy was observed at 
Santa Barbara, the organized motion exhibited by the dis- 
persion curves of the shear instability was not noticed. This 
motivated investigations of alternative generation mecha- 
nisms. The temporal variations of the oncoming wave field 
can force corresponding variations in the longshore current 
by a number of possible mechanisms. It is well known that 
grouping of the oncoming swell may contribute significantly 
to low-frequency energy components in the surf zone [Tuck- 
er, 1950]. Symonds et al. [1982] related surf beat to the 
time-varying breakpoint due to the wave groups. Tang and 
Dalrymple [1989] have shown possible correlation between 
wave groups and rip currents. 

The earlier studies of the forcing of the longshore current 
by the waves use an essentially linear approach. In contrast, 
in this paper we assume that the temporal variability of the 
longshore current may be forced by the nonlinear dynamics 
of steep water waves. In the absence of full understanding of 
the physics of the problem under considerations, it seems 
desirable to apply a simplest possible nonlinear model in 
order to check whether it is capable of describing the 
dominant features of the phenomenon. An attempt is thus 
made here to show the possible relation between the modu- 
lational instability of a finite-depth Stokes wave train and the 
slow-time variations in the radiation stress. We take advan- 

tage of the recent progress in nonlinear wave theory. 
Mase and Iwagaki [1986] studied the wave grouping both 

experimentally and theoretically, using the nonlinear Za- 
kharov [ 1968] wave evolution equation. They concluded that 
the wave grouping observed in a natural environment can be 
successfully described by applying the Zakharov model 
equation to the analysis of the Benjamin-Feir instability of 
the Stokes waves. 

The Zakharov nonlinear wave equation employed by 
Mase and Iwagaki is the most general model equation 
describing slow-time evolution of deepwater gravity waves. 
The important advantage of the Zakharov equation is that it 
is not limited to a narrow wave spectrum, and thus one can 
consider the interactions between waves with quite different 
wave numbers and frequencies. This equation accounts for 
nonlinear interactions at the lowest possible order in the 
small parameter •, which represents the wave steepness. For 
gravity waves, these interactions require coexistence of four 
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resonating, or nearly resonating waves (the so-called quar- 
tet, or class I interactions), and they are of O(e3). Stiassnie 
and Shemer [1984], hereinafter referred to as SS1, have 
rederived this equation for an arbitrary finite water depth. 
They have also extended the range of validity of the equation 
by including the so-called class II, i.e., five-wave resonant, 
or nearly resonant, interactions. 

It is important to stress that in the derivation of the model 
equation by SS1 it is assumed that no near-resonant inter- 
actions of three waves (the so-called triad interactions) are 
possible. As is shown in a number of recent publications 
[e.g., Elgar et al., 1990], these triad interactions may be- 
come dominant in shallow water (kh << 1). In the SS 1 model 
the presence of triad interactions will manifest itself by 
notable singularities in the interaction coefficients. In order 
to eliminate these singularities, the present study is re- 
stricted to the region of validity of the model equation, i.e., 
water of intermediate depth. 

The modified Zakharov equation was used by Shemer and 
Stiassnie [1985], hereinafter referred to as SS2, to study the 
long-time evolution of Stokes waves. Following the ap- 
proach originally used by Stiassnie and Kroszynski [ 1982] for 
long-time evolution analysis based on the nonlinear Schr6- 
dinger equation, SS2 considered a three-wave system in 
deep water: a carrier and the two most unstable disturbances 
for both class I and class II interactions. It was found in 

these studies that such a wave system undergoes periodic 
modulation, where the initially weak sidebands grow at the 
early stages of the recurrence process, at the expense of the 
carrier, and then subdue again, completing the full recur- 
rence period. This result is in agreement with the wave flume 
experiments of Lake et al. [1977] and large wave basin 
observations by Suet al. [1982]. Evolution of a wave packet 
power spectrum was studied by Su [ 1982] in a long tow tank. 
It was shown that the increase in the amplitude of the 
sidebands is accompanied indeed by simultaneous decrease 
in the power density of the carrier. As calculated by SS2, 
dimensionless recurrence periods woTr, where w0 is the 
radian frequency of the carrier, were O(e -2) for the class I 
interactions and O(e -3) for the class II interactions. For 
deepwater waves the recurrence periods for class II interac- 
tion are always notably longer than those for four-waves 
(class I) interactions. For extremely steep deep water waves 
the class I recurrence period can become shorter than 100 
carrier wave periods. 

Stiassnie and Kroszynski [ 1982] and Stiassnie and Shemer 
[1987] have studied the question of whether the truncated 
three-wave system can represent reliably the actual compli- 
cated wavefield. While these studies show that perfect 
periodicity is lost by considering additional wave compo- 
nents, the general behavior and the characteristic recurrence 
times in more complicated wave systems are still dominated 
by the most unstable modes. 

The results of SS2 and Mase and lwagaki [1986] for 
deepwater waves suggest that the Zakharov equation-based 
analysis of wave grouping due to Benjamin-Feir modula- 
tional instability in water of finite depth can shed some 
additional light on the experimentally observed temporal and 
spatial variations of the longshore current. It is important to 
note here that because of shoaling, the steepness of waves 
on the verge of breaking is very high, and the waves in this 
region can thus become strongly nonlinear. Under these 
circumstances, one can expect recurrence periods which are 
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Fig. 1. Experimentally observed time modulation of 4.3-min 

averages of radiation stress (heavy line), with confidence intervals 
(light lines). The 34.1-min average of the radiation stress is shown as 
a dotted line. 

of the order of magnitude of the typical longshore current 
variation periods. The assumption of constant water depth, 
which is intrinsic to the nonlinear theoretical model, can be 
justified in case of a beach with a mild slope. 

2. SOME EXPERIMENTAL RESULTS 

Motivation for this work is provided by an example of 
strongly modulated (in time) alongshore component of the 
radiation stress, S yx, as shown in Figure 1. The solid heavy 
line is the radiation stress block averaged every 4.3 min. The 
95% confidence limits (light lines) have been included to 
show that the variability is statistically significant. The mean 
modulation period is about 20 min, which represents an 
O(102) waves of the narrow-band, 14-s carrier period. The 
34.1-min block averages (dotted line) of the radiation stress 
are also indicated; although the total length of record is 
relatively short, an apparent longer modulation period of 100 
min is suggested, which represents about 400 periods of the 
carrier in the modulation period. 

The radiation stress was measured using a four-pressure- 
sensor, 610 square array (slope array) located in 9 m depth. 
The results are from measurements acquired during NSTS at 
Leadbetter Beach, Santa Barbara, California, in February 
1980. The radiation stress was calculated by first calculating 
the cospectrum of the orthogonal slopes (•x, •y) of the sea 
surface, which is then converted to a velocity cospectrum 
and integrated over depth using a linear theory transfer 
function H(f) [see Higgins et al., 1981] 

Syx(f) = H(f)C n•, n,,(f) (1) 

The total radiation stress, the plot of which is shown in 
Figure 1, was calculated by integrating over the energetic 
region of the spectrum 

Sy x = Syx(f) df 
.05 

(2) 

Leadbetter Beach has an east-west orientation on a pre- 
dominantly north-south coastline. The predominant wave 
direction is from the northwest. The incident waves from the 

open ocean must pass through a narrow passage between 
Point Conception and San Miguel Island, limiting the range 
of admissible angles to be 2400-258 ø and resulting in a narrow 
band (in both direction and frequency) of energy arriving 
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Fig. 2. Experimentally observed time modulation of longshore 
current (4.3-min averages, solid line; 34.1-min averages, dotted 
line). 

koHo [ 24 cosh 6 (koh) + 3 ] •= koao 1 + (k0a0) 2 (3) 
2 64 sinh 6 (koh) 

where k 0 = Ik01 is the magnitude of the carrier wave number. 
For each water depth and carrier wave steepness consid- 

ered, the most linearly unstable sidebands are then deter- 
mined using the Zakharov equation. It is then assumed that 
the wavefield is dominated by three waves, the carrier and 
the two most unstable sidebands. The long-time evolution of 
such a wave system is thus computed, again using the 
Zakhavor equation. The dependence of modulation period 
and depth on the input parameters is established. At the last 
stage, the linear approximation is adopted for each wave 
separately, and the modulation of the radiation stress is 
calculated, following the procedure adopted in the experi- 
ments. 

from the open ocean at relatively large angles to the beach 
[see Guza et al., 1986]. This was the case for February 4, for 
which the energy density, radiation stress, and mean angle 
spectra were calculated using 34.1-min records. The waves 
were narrow banded with a 14-s peak period and correspond- 
ing mean wave direction of 20 ø to the beach normal. The 
nondimensional depth is koh = 0.4, where k0 corresponds to 
the wave length at the peak of the spectrum calculated using 
linear theory. The rms amplitude of the waves was 0.26 m, 
giving a wave slope armsk0 = 0.01. Assuming a Rayleigh 
distribution for wave amplitudes gives ama x = 2arms, result- 
ing in a maximum wave slope of 0.02. 

The longshore current was relatively strong (Vma x = 1 
m/s) as a result of the relatively large incidence angles of the 
waves to the beach. The modulated radiation stress resulted 

in a modulated longshore current (Figure 2). Guza et al. 
[1986] examined the waves and currents on this beach over 
an 18-day period and found that the longshore current was 
highly correlated with the total radiation stress (correlation 
coefficient = 0.97). The reason for the high correlation is that 
the primary driving force for the longshore current is the 
cross-shore gradient of $yx. The radiation stress is con- 
served up to wave breaking and goes to zero at the shoreline. 
Therefore the total Syx before breaking divided by the surf 
zone width is a measure of the gradient across the entire surf 
zone and would be expected to be related to the longshore 
current. 

3. THEORETICAL BACKGROUND 

3.1. Outline of the Theoretical Approach 

We consider an initially nearly monochromatic nonlinear 
Stokes wave train (the carrier), which propagates in water of 
finite depth. Water depth ranging from nearly shallow to 
intermediate depth is considered. The steepest theoretically 
possible wave height Hma x for any constant water depth was 
given by Cokelet [1977]. Since we are dealing with waves 
close to breaking, steep wave trains are considered, with the 
carrier wave heights in the range 0.5Hma x < H0 < Hmax. The 
wave height H 0 is then translated to the amplitude of the first 
term in the Stokes expansion, a0, using the expression 
truncated to the third order, of Skjelbreia and Hendrickson 
[1961]: 

3.2. Zakharov Equation 

The Zakharov equation describes the temporal evolution 
of a gravity wave propagating in an incompressible inviscid 
fluid with a free surface at z = •/(x, t) and bottom at z = -h. 
The velocity potential &(x, z, t) satisfied the Laplace equa- 
tion, ß /(x, t) and &(x, z, t) satisfy the kinematic and dynamic 
boundary conditions at the free surface, and Otb/Oz = 0 at 
z = -h. The evolution equation in Fourier space, valid to 
0(s3), has the following form: 

OBo 

Ot ---fff• To,23B•B2B3 •(ko+k,-k2-k 3) 
ß exp [i(•o 0 + •o 1 - •o 2 - ro3)t ] dkl dk2 dk3 (4) 

where the nonlinear interaction coefficient T0123 = T(ko, k•, 
k2, k3, h) is given by a quite lengthy expression in SS1 and 
the frequencies are related to the absolute value of the wave 
number kj = Ikjl by the linear dispersion relation •oj 2 = 
#kj tanh (kjh). The amplitudes Bj = B(kj, t) are the linear 
parts of the complex spectral "amplitudes" bj, which are 
related to the Fourier components in the wave number space 
(denoted by a circumflex) of the surface elevation r/(x, t) and 
the velocity potential at the free surface &S[x, r/(x, t), t]' 

b(k, t)= 2•o(k) •/(k, t)+ iL-a j CS(k, t) (5) 

3.3. Linear Stability Analysis 

Equation (4) is now used to study the linear stability of the 
wave train B0. Following Crawford et al. [1981] and SS1, we 
assume that the cartier and the disturbances B• and B 2 have 
the following wave numbers: 

k0=k0(1, 0) k•-k0(1 +p, q) 

k2=k0(1-p, -q) 
(6) 

Note that in all computational results presented subse- 
quently it is assumed without loss of generality that k0 = 1. 
The system of four waves with the wave numbers given by 
(6), which includes the carrier B 0 taken twice, and both 
sidebands, satisfies the &function condition on the wave 
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numbers in (4), i.e., 2k o = k• + k 2. Equations (4) linearized 
with respect to the sidebands for B• and B 2 are' 

dB1 
i • = 2T•o•olB o 2B• 

dt 

+ T12ooBo2B • exp [-i(2w o - w 1 - w2)t ] (7a) i 

dB2 
i • = 2 T2o2o Bo 2B 2 

dt 

+ T2•ooB•Bo 2 exp [-i(2w 0 - ro•- w2)t ] (7b) 

The solution of equations (7), which are linear with respect 
to B• and B 2, has the following form: 

B• = b• exp {-i[0.5(2w 0 - ro•- w2) + 11]t} (8a) 

B 2 = b 2 exp {-i[0.5(2w 0 - ro•- w2) - f•]t} (8b) 

dB• 

dt 
•= (T• B•I 2 + 2T•o•olBo 2 + 2T•2•2B212)B• 

, 2 + T•200 B 2B0 exp [-i(2w 0 - ro • - w2)t ] (12b) 

dB2 

dt 
• = (T2222 B2[2 + 2T2020 Bo 2 + 2T2121Bll2)B2 

, 2 
+ T2•00B •B 0 exp [-i(2w 0 - ro•- w2)t ] (12c) 

The system of ordinary differential equations (12) can be 
solved either analytically, using the Jacobian elliptic func- 
tions [see SS2], or by direct numerical integration, following 
Stiassnie and Shemet [1987]. These two independent meth- 
ods of solution can be used to verify the accuracy of the 
procedure. As was shown by SS2, analytically, the evolution 
of the wave system is periodic in time. The recurrence 
period is determined from the solution of (12). 

where 

11 = (T•0•0 - T2020) B0 2 +__ D1/2 (9a) 

and the discriminant of the second-order algebraic equation 
is given by 

2(o0- co 1 -- 60 2 D= 2 - (TlolO + T2020) Bo 2)2 
_ T1200T2•00 B0 4 (9b) 

The solutions (8) are unstable when Im(ll) • 0 (i.e., D < 0); 
D(p, q) - 0 defines the stability boundaries in the (p, q) 
plane, and the most unstable mode is defined by the maxi- 
mum of-D: a(Pmax, qmax) = Drain' 

3.5. Radiation Stress 

The radiation stress, to the lowest order, is related to the 

jth wave energy Ej and the wave incidence angle aj by 

kj (cg)• sin a• cos c•j (Syx)j = Ej wj (13) 

where c a is the wave group velocity [Longuet-Higgins, 
1970]. Once the long-time evolution of the nonlinear wave 
system given by (6) and (10) is determined, the problem is 
studied at each instant during the modulation period at the 
linear level, i.e., using (13) to determine the radiation stress 
for each wave separately, thus yielding the total radiation 
stress at a given instant, 

3.4. Long-Time Evolution 

Following SS2, we now consider the long-time evolution 
of a three-wave system consisting of waves with the wave 
numbers given by (6) and with the initial amplitudes and 
phases 

a0(0) = &0 aj(O) -- tLj• 0 tLj << 1 j = 1, 2 (10a) 

0 (0) = 0 0(0) = 0b) 

where the amplitudes aj and phases Oj are related to the 
complex "amplitudes" Bj by 

B/(0) = rr(2g/wfi •/2 a/(0) exp [i0/(0)] (11) 
The selection of the three-wave system consisting of the 
carrier and the most unstable sidebands is based on the 

conclusion of Stiassnie and Kroszynski [1982] that this 
truncated system, while being simple enough for analysis, 
still provides a reliable pattern of the general behavior of 
much more complicated wave systems. The nonlinear evo- 
lution of Bj is described by a system of discretized equations 
(4): 

dBo 
i•= (T0000 B0 2 + 2r0101lBll 2 + 2T0202 B212)B0 

dt 

+ 2Too•2B•B•B 2 exp [i(2w 0 - (o 1 - w2)t ] (12a) 

3 

Syx(t)- Z [Syx(t)]j (14) 
j=l 

The energy Ej is given at the lowest order by [Stiassnie and 
Shemet, 1987] 

1 

Ej = 4z.• wj [Bj 2 (15) 
Stiassnie and Shemer [1987] have also shown that in order to 
improve substantially the accuracy of the energy calcula- 
tions, higher-order terms have to be included in the evolu- 
tion equations (12). The contribution to the total energy of 
the bounded waves resulting from the nonlinear interactions 
between the waves has also to be accounted for. Such an 

endeavor is beyond the scope of the present paper. The 
indications regarding the accuracy of (15) can be obtained, 
however, by considering the total energy of the three-wave 
system, as computed using (15). Since the Zakharov equa- 
tion describes the energy-conserving Hamiltonian system, 
variations of the total equation during the modulation pro- 
cess can serve as a measure of accuracy of the adopted 
approximation. 

Owing to conservation of the total energy in the modula- 
tion process, the cases where the propagation direction of 
the most unstable sidebands differs from that of the carrier 

are of main interest in the present context. 
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TABLE 1. Parameters of the Most Unstable Modes and the 

Corresponding Recurrence Periods 

k oh a ok o P max q max w 0 T/2 rr 

0.36 0.066 0.429 0.313 15.6 

0.0528 0.488 0.271 36.1 
0.033 0.546 0.211 114.7 

0.02 0.543 0.177 587.3 
0.51 0.123 0.492 0.326 27.6 

0.0984 0.523 0.291 49.0 

0.0615 1.145 0.0 98.0 
0.69 0.19 1.258 0.0 23.1 

0.152 1.227 0.0 38.0 
0.095 1.194 0.0 104.9 

0.92 0.26 1.250 0.0 38.2 

0.208 1.247 0.0 60.5 
0.13 1.244 0.0 157.3 

1.2 0.322 0.396 0.219 66.0 

0.2576 0.370 0.222 77.5 
0.161 0.310 0.209 145.3 

1.4 0.351 0.392 0.199 48.1 
0.2808 0.372 0.212 58.6 
0.1755 0.306 0.205 113.8 

m 0.416 0.601 0.0 29.0 

0.3328 0.464 0.0 32.4 
0.208 0.316 0.0 61.9 

4. COMPUTATIONAL RESULTS 

The summary of the linear stability results based on 
solution of (9) is given in Table 1, while the domains of 
instability in p-q space for some representative cases are 
presented in Figure 3. The calculations were performed for 
the dimensionless mean depth values koh which correspond 
to those used by Cokelet [1977]. The results in Table 1 are 
presented at each mean water depth for three carrier wave 
steepness values, which are close to 100%, 80%, and 50% of 
the maximum possible wave steepness at the given depth, as 
given by Cokelet. The single exception is the inclusion of the 
results for koh = 0.36 and aoko = 0.02, which are in close 
agreement with the actual parameters in the field experi- 
ments reported in section 2. 

For the deep water, there is a single domain of instability, 
and the most unstable modes have q = 0 and thus the 
propagation direction identical with that of the carrier, the 
so-called two-dimensional instability (Figure 3a). This result 
of the model is in good agreement with the exact solution of 
McLean [1982a]. For water of intermediate depth, koh = 
1.4, there are important changes in the stability diagram 
given in Figure 3b: the most unstable mode now has q •: 0, 
thus corresponding to three-dimensional disturbances, and 
the domain of instability now appears to consist of two 
separate domains. Following SS 1, we will refer to the larger 
domain adjacent to the q axis as the main domain, and to the 
smaller instability region at higher values ofp as the second- 
ary domain. As was discussed by SS1, the existence of the 
secondary instability domains may stem from the model 
approximations, since these domains are not shown explic- 
itly in McLean's [1982b] exact solution. 

Figures 3c and 3d show the effects of the carrier amplitude 
on the stability diagram at koh = 0.69. In contrast to Figure 
3b, the most unstable mode now is in the secondary region 
and has the transverse wave number component q = 0, thus 
being two-dimensional. This result is again in agreement 
with McLean [1982b]. For even more shallow water, koh = 

0.36, the shape of the instability domain (Figures 3e and 3f) 
remains similar to the previous case, but the most unstable 
modes are three-dimensional again. There is thus a range of 
koh where the most unstable disturbances are in the second- 
ary instability region and have q = 0, while beyond this 
range, finite-depth Stokes waves are most unstable to three- 
dimensional disturbances. At koh = 0.51, the most unstable 
disturbance for steep waves is three-dimensional, while for 
relatively mild wave steepness of 0.0615, the transverse 
wave number component q = 0. The transition boundaries 
between the two- and three-dimensional 3D instabilities in 

the wave steepness-mean depth space were delineated in 
SS1. 

Table 1 also presents the long-time modulation periods (in 
terms of the carrier wave periods) of the three-wave system 
defined by (6), for various water depths and steepnesses. 
The initial amplitude of the sidebands was in these compu- 
tations chosen to be /x• = /x 2 = 0.1, and the initial phase 
angles of the disturbances were 01 = 02 = 0. The modulation 
periods for the steepest possible wave are in the range of 15 
to 66 carrier wave periods and are correspondingly longer for 
less steep waves. The calculated modulation period for 
koh = 0.36 and aoko = 0.02 is of the same order of 
magnitude as the experimentally measured value (compare 
Figure 1). 

As was mentioned above, we are mainly interested in the 
long-time evolution of a finite-depth wavetrain most unstable 
to three-dimensional disturbances. The study of the effects 
of the initial conditions on the modulation process is pre- 
sented thus in Figure 4 for koh = 1.2 and aok o = 0.258, 
which correspond to 80% of the maximum possible wave 
steepness (see Table 1). Figure 4a shows the slow-time 
variation of the amplitudes of the three waves considered 
when the initial amplitudes of the sideband disturbances are 
both identical and equal to 0.1 of the carrier and all initial 
phase angles are assumed to be zero. The modulation 
pattern, however, remains qualitatively the same for other 
initial conditions. Figure 4b demonstrates that it is sufficient 
to have only one sideband present at the initial stage, and its 
counterpart is generated in the nonlinear interaction process 
during the long-time evolution. The modulation period in this 
case is by about 20% longer than that in Figure 4a, where 
both sidebands were present initially. Figure 4c shows that 
the initial phase of the disturbances can also affect the 
modulation process. In this case the initial amplitude of the 
sidebands is identical to that of Figure 4a, but the phase 
angles are now •l = •2 = ,r/4. The sidebands in Figure 4c 
initially decay, and the carrier amplitude grows at the 
expense of the sidebands and attains maximum above the 
initial value, but then the modulation resumes its familiar 
shape. The recurrence period is here again longer than that 
in Figure 4a. Finally, when both sidebands are weak ini- 
tially, /xi = /x 2 = 0.01 in Figure 4d, the modulation period 
becomes nearly twice as long as with stronger initial distur- 
bance. All these examples therefore demonstrate that recur- 
rence periods are only weakly dependent on the initial 
conditions, retaining the same order of magnitude for a wide 
range of amplitudes and phases of the most unstable distur- 
bance. In all cases considered, the maximum amplitudes 
attained by the sidebands are quite similar. This is in 
agreement with the deep water wave study by Stiassnie and 
Shemet [ 1987]. 

As was already noticed, the long-time modulation of the 
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Fig. 3. Stokes wave stability diagrams in (p, q) space, for (a) koh = oo, aoko = 0.333; (b) koh = 1.4, aok o = 0.281' 
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wavefield can result in corresponding variation of the total 
radiation stress only when the sidebands have a nonzero 
wave number component in the direction perpendicular to 
the cartier wave propagation. The temporal variation of the 
total radiation stress Syx computed at each instant according 
to (13) to (15), is presented in Figure 5a for intermediate 
depth, koh = 1.2, and in Figure 5b for shallower water, 

koh = 0.51. The time dependence of S yx for both water 
depths is given for two values of the incidence angle, 5 ø and 
30 ø . One can see that long-time modulation of the finite- 
depth Stokes wave train, which results from the Benjamin- 
Feir instability, can indeed lead to considerable temporal 
variations in the radiation stress. Note that in both cases 

presented in Figure 5, the modulation of S yx was much 
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deeper than the apparent variation in the total wave energy 
as calculated using the linear approximation (15). This ap- 
proximation is quite satisfactory for koh = 1.2, giving the 
total change in the wave energy in course of the modulation 
process not exceeding a few percent. The lowest-order 
energy calculation in shallow water (koh = 0.51) is of course 
less accurate, but even in this case the relative range of 
variations in S yx is larger by about a factor of 2 than that of 
the total energyß 

5. DISCUSSION AND SUMMARY 

The present study does not attempt to perform a quanti- 
tative comparison between the experimental results and the 
theoretical analysis. On the one hand, the wave's stationar- 
ity is insutficient for the long periods of time in the field 
measurements, while on the other hand, application of the 
Zakharov nonlinear equation necessarily demands adoption 
of some restrictive assumptions, as was discussed above. 
Nevertheless, there exists a reasonable similarity between 
the computational results presented here and the experi- 
ments. 

The theoretical analysis clearly indicates that in water of 
finite depth the Benjamin-Feir instability of a steep Stokes 
wave train can lead to a strong, periodic, three-dimensional 
long-time modulation of the wavefield and resulting variation 

in S yx. The period of such a modulation is of the order of 
10-10 2 carrier wave periods, and is thus close to the modu- 
lation periods in S yx as given in Figure 1. The amount of 
modulation (see Figure 5), while being dependent on the 
chosen set of parameters, also resembles the field measure- 
ments. Moreover, the transverse wave number components 
for all parameters where the modulational instability is 
three-dimensional are in the range 0.2 < q < 0.35. Hence the 
length scale of variations in the direction normal to the 
carrier wave propagation is between 3 and 5 carrier wave 
lengths. This again, is in agreement with the experiments of 
Oltman-Shay et al. [1989]. 

For water depth values where the most unstable distur- 
bances are three-dimensional, the present work thus sug- 
gests a mechanism for the observed slow variations in the 
radiation stress and the resulting longshore current. It is, 
however, plausible to assume that in the range of the depth 
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about 0.5 < koh < 0.95, where the Benjamin-Feir instability 
is two-dimensional and thus does not lead to temporal 
variations in the radiations stress, the wave grouping due to 
long-time modulation of the dominant wave system breaking 
at oblique incident angles to the beach can also result in 
variations in time of the longshore current. The present 
results indicate that the actual changes of the wave ampli- 
tudes in the course of the modulation process, which have 
periods similar to those in the three-dimensional case (see 
Table 1) can on a sloped beach lead to corresponding 
temporal variations in the location of the breaking line, as 
was discussed by Symonds et al. [1982], and thus in the 
longshore current. 

In summary, the present work suggests that the nonlinear 
resonant interactions of steep waves in water of finite depth 
in the nearshore region under certain conditions can consti- 
tute one of the possible physical mechanisms for slow 
temporal variations in the longshore current, as observed in 
recent experiments. Additional detailed experimental field 
work is necessary to determine the actual importance of the 
suggested mechanism as compared to the alternatives. In 
particular, in seems interesting to study experimentally the 
temporal variation of the short-time directional spectra of 
the wavefields at different phases of the assumed recurrence 
process, under conditions when the modulation of the long- 

shore current can actually be recorded. These spectra should 
be calculated over durations which are long compared to the 
dominant wave periods, but short relative to the expected in 
the present model modulation periods. Such experimental 
data can provide an indication of whether the nonlinear 
interactions that result in simultaneous temporal variations 
in the amplitudes of the carrier and the most unstable 
sidebands can be related indeed to the slow-time modulation 

of the longshore current, as is suggested in the present study. 
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