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[1] Unidirectional random waves generated by a wavemaker in a 300-m-long wave tank
are investigated experimentally. Spatial evolution of numerous statistical wavefield
parameters is studied. Three series of experiments are carried out for different values of
the nonlinear parameter e. It is found that the frequency spectrum of the wavefield
undergoes significant variation in the course of the wavefield evolution along the tank.
The initially narrow Gaussian spectrum becomes wider at the early stages of the evolution
and then narrower again, although it still remains wider than the initial spectrum at the
most distant measuring location. It is found that the values of all the statistical wave
parameters are strongly related to the local spectral width. The deviations of various
statistical parameters from the Gaussian statistics increase with the width of the spectrum
so that the probability of extremely large (the so-called freak) waves is highest when
the local spectral width attains maximum. The deviations from the Rayleigh distribution
also become more pronounced when the nonlinearity parameter e is higher. It is found
that the Tayfun and Fedele 3rd order random wavefield model provides an appropriate
description of the observed phenomena. An attempt is made to relate the spatial variations
of the wavefield statistics reported here to the wavefield recurrence, as suggested recently.
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1. Introduction

[2] Nonlinear interactions of ocean waves are usually
stochastic in nature. A large number of harmonics with
various frequencies exchange energy and transfer it to
shorter scales at which wave energy is dissipated by
breaking or otherwise. This phenomenon is sometimes
called ‘‘wave’’ or ‘‘weak’’, turbulence, to acknowledge
similarity to Kolmogorov energy cascade in fluid turbu-
lence. Hasselmann [1962] was the first to apply statistical
approach and the kinetic theory to describe ocean wave
turbulence. Recently water wave turbulence theory was
advanced considerably by Zakharov and his colleagues
[see, e.g., Zakharov, 1999, and references therein]. The
kinetic wave theory serves as a basis for modern wave
climate prediction. The kinetic theory of random ocean
waves is based on two fundamental assumptions: weak
nonlinearity of waves and randomness of their phases.
The random phase approximation is an essential assumption
used for turbulent closures for all stochastic wave systems
and even for a much broader range of turbulent systems.
[3] Numerous attempts have been made to explore the

possibility to use deterministic nonlinear wave theories to
forecast the evolution of a random wavefield [see, e.g.,

Stiassnie and Shemer, 2005; Annenkov and Shrira, 2006a,
2006b; Onorato et al., 2007]. These studies reveal the
crucial role of nonresonant interactions in the evolution of
nonlinear random water waves. This understanding makes
the experiments in a wave tank, where nontrivial exact
resonances do not exist since only near-resonant interactions
between unidirectional waves are possible, a very conve-
nient vehicle to study nonlinear random waves in laboratory
conditions. Some experiments in a long wave tank have
recently been performed on deep narrow-banded waves
with random phases [Mori et al., 2007, and references
therein]. Results of these experiments indicate that in spite
of lack of exact resonances in a unidirectional wavefield,
nonlinear effects are essential and they strongly affect the
statistical properties of the wavefield. Similar conclusions
were reached in a numerical study of shallow-water random
wavefields modeled by Pelinovsky and Sergeeva [2006]
using the Korteweg-de Vries equation.
[4] Theoretical investigations aimed at describing the

statistical properties of nonlinear wavefields were originated
by Longuet-Higgins [1952] who showed that for a narrow-
banded wavefield with random phases, wave heights satisfy
the Rayleigh distribution. An improved model that takes
into account nonlinear effects has been suggested later by
Longuet-Higgins [1963]. More recently, numerous models
appropriate to unidirectional wavefields were proposed
[Naess, 1985; Tayfun, 1980, 2006; Tayfun and Fedele,
2007, and references therein]. In particular, these models
were applied to address the problem of unusually steep (the
so-called freak, or rogue) waves of considerable interest.
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Such waves, often dubbed killer waves, appear and disap-
pear fast and unexpectedly, and have the potential of
causing substantial damage to marine traffic. The relatively
high occurrence of those waves that exceeds the predictions
based on the Rayleigh distribution suggests that the occur-
rence of freak waves is related to nonlinearity of the wave-
field. Mechanisms leading to freak wave appearance, as
well as the determination of their probability for a given sea
state are thus not only of practical importance, but they also
demand in depth study using the most advanced theoretical
approaches and laboratory experiments.
[5] In the present study we carry out an experimental

investigation of the evolution of a random wavefield in a
large wave tank. Variations along the tank of various statis-
tical properties of the wavefield of relevance to appearance
of freak waves are investigated. The contribution of non-
linear effects to deviations of the wave statistics from the
Rayleigh distribution is demonstrated. In particular, the
spatial evolution of wave spectra is considered. The spectral
shape varies noticeably along the tank due to the nonline-
arity of the wavefield. The spectral widening is related to
the variation of the high-order statistical moments of the
surface elevation, and of the probability distribution func-
tions of wave heights, crests and troughs.

2. Experimental Facility and Procedure

[6] The experiments were carried out in the Large Wave
Channel (GWK) in Hanover, which is about 300 m long,
5.0 m wide and 7.0 m deep. The water depth in the present
experiments was set at h = 5 m. A sand beach with a slope
of 30� is located at the far end of the facility, starting at
x = 270 m. The computer-controlled piston-type wave-
maker is equipped with a system to absorb the energy of
reflected waves.
[7] In the present experiments, the spatial evolution of

numerous realizations of a wavefield that all have identical
initial frequency power spectra for the free wave compo-
nents, but with random phases in each realization is
studied. To generate the wavemaker driving signal for each
realization, we start with a deterministic Gaussian-shaped
unidirectional wave group, with the surface elevation vari-
ation in time given by

h tð Þ ¼ h0 exp �t=mT0ð Þ2 cos w0tð Þ; ð1Þ

where w0 = 2pf0 = 2p/T0 is the carrier wave circular
frequency, h0 is the maximum wave amplitude in the group,
and the parameter m defines the width of the group. The
wave number k is related to w by

w2 ¼ kg tanh khð Þ: ð2Þ

The spectrum of (1) also has a Gaussian shape with the
relative width at the energy level of half of the maximum
that depends on the parameter m:

Dw=w0 ¼ 1

mp

ffiffiffiffiffiffiffi
ln 2

2

r
: ð3Þ

The value of the spectral width parameter in the present
experiments was selected to be m = 3.5, yielding a quite
narrow spectrum with Dw/w0 = 0.054. Note that the Fourier
transform of (1) is real, i.e., all spectral components are in

phase. The discrete frequency spectrum is calculated for the
surface elevation variation in time given by (1) for
�1024Dt � t < 1024Dt, where Dt = 0.025 s is the
sampling interval at 40 Hz. The total duration of a single
group is thus 51.2 s (2048 data points), and the frequency
resolution of the spectrum Df is better than 0.02 Hz.
[8] To study spatial evolution of the wavefield, it is

desirable to follow its variation over distances containing
as many dominant wavelengths l0 as possible. Since the
length of the facility is fixed, the shortest carrier wave
period T0 was selected based on the frequency response of
the hydraulically driven wavemaker. All experiments were
carried out for a carrier wave of period T0 = 1.5 s,
corresponding to the wavelength l0 = 3.51 m and the
dimensionless water depth k0h = 8.95 � 1. Hence, in view
of (3), the deep-water dispersion relation is satisfied for all
significant harmonics in the spectrum. For the parameters
chosen, the wavefield propagates along the tank with the
group velocity cg = 1.17 m/s.
[9] The spectrum of (1) was then truncated to leave 60

harmonics around the carrier frequency f0 = 1/T0 containing
all components with nonnegligible amplitudes that can be
faithfully excited by the wavemaker. For every realization
of the surface elevation generated at the wavemaker, the
amplitude of each spectral component ai (i = 1, . . ., 60) is
assigned a phase 8i = np/256, where n is a random integer,
�255 � n � 256. To obtain the corresponding spectral
component of the required wavemaker stroke, the linear
transfer function for a piston-type wavemaker [see, e.g.,
Dean and Dalrymple, 1991] is applied. Minor empirical
corrections for both the amplitudes and the phases of each
stroke harmonic appropriate for the Hanover facility were
introduced into the theoretically derived transfer function.
The inverse Fourier transform of the resulting complex
amplitude spectrum yields the wavemaker driving signal
required to excite a 51.2-s-long realization of a random
unidirectional wavefield. In view of the 200 s limit on the
total continuous operation time of the wavemaker in the
facility, this signal was actually repeated three times, yield-
ing three nearly identical wave groups with the total extent
of 153.6 s. To eliminate finite wavemaker displacements at
the beginning and at the end of the wave excitation period,
and thus the piston acceleration and velocity beyond the
mechanically acceptable limits, windowing was used by
multiplying the wavemaker driving voltages by w1(t) = 1 �
exp(�a2t2), a = 1.0 s�1 at the initial stages of excitation,
when 0 � t < 4 s, and by w2(t) = exp[�a2(t � t0)

2] when
t0 = 149.6 s at the final stages.
[10] The instantaneous water height is measured using 25

resistance type wave gauges, distributed along the tank and
attached to the tank wall. The wave gauges are located at a
distance of about 0.5 m from the wall. For technical reasons,
the nearest wave gauge is placed at about 50 m from the
wavemaker. To reduce contamination of the results by
waves reflected from the far end of the tank, the last wave
gauge in the present experiments was located at 214 m from
the wavemaker, so that the tail of group passes through this
sensor before the arrival of the reflected waves from the
beach at the far end of the tank. Besides those gauges,
additional wave height sensors attached to the wavemaker
and placed on a bridge at the distance of 3.5 m from the
wavemaker are available.
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[11] The calibration of the wave gauges was done by
filling the tank first to the depth of 6 m and then reducing
the depth in steps of 0.5 m to 3.5 m, thus covering the range
of surface elevations relative to the undisturbed value from
�1.5 m to 1.0 m. The calibration curve for each wave
gauge was obtained by best fit to the linear dependence.
Due to the size of the facility, the calibration procedure
takes a whole work day. The wave gauges were therefore
calibrated only once for the experimental session that lasted
about 2 weeks. It is estimated that the absolute error in the
measured instantaneous surface elevation did not exceed a
few millimeters.
[12] The output voltages of all wave gauges, as well as

the wavemaker driving signal and the output of the wave-
maker position potentiometer that provides information on
the instantaneous wavemaker displacement were sampled at
40 Hz for the total sampling duration of 400 s, sufficient for
the wavefield excited by the wavemaker to propagate
beyond the most distant wave gauge.
[13] Each experimental run started only at a sufficient

interval from the previous experiment when the water
surface was quiescent and all remaining disturbances
decayed totally. The reflected wave energy absorption sys-
tem effectively eliminated the remaining long waves in the
tank and enabled relatively short (about 15 min) intervals
between consecutive experimental runs.
[14] The maximum possible for a deterministic wave

group (1) wave steepness defined as e = h0k0 is adopted
as the measure of nonlinearity of the wavefield. For deter-
ministic wave groups, the distance at which nonlinearity
effects become essential scales as e2 [Shemer et al., 1998,
2002, 2007]. Higher values of e therefore allow more
prominent manifestation of the nonlinear effects along the
tank. Visual observation of the wavefield during initial runs
performed with e = 0.3 showed occasional wave breaking
within the tank. Since wave breaking is not accounted for in
the deterministic models of wavefield evolution such as the
equation of Dysthe [1979] or equation of Zakharov [1968],
it was decided to run most experiments for e = 0.25, for
which no breaking was observed. In addition, to estimate
the effect of nonlinearity on the wavefield evolution, some
experimental runs were carried out for e = 0.2.
[15] The limited access time to such a large-scale facility

as GWK and the considerable duration of each experimental
run restrict the number of realizations of a random wave-
field that can be investigated experimentally. The total
number of experimental runs in this study is 69 (10 for
e = 0.2, denoted as series A in sequel, 46 runs for e = 0.25,
series B, and 13 runs for e = 0.3, series C).

3. General Definitions and Models of Probability
Distributions Function

[16] In a unidirectional wavefield, the variation of the
surface elevation h(t) at any fixed distance x from the
wavemaker can be written as

h tð Þ ¼ Re
XM
m¼1

am exp iwmtð Þ
" #

; ð4Þ

where the complex amplitudes am = a (wm, x) consist of a
sum of free and bound waves:

a wm; xð Þ ¼ a1 wm; xð Þ þ ea2 wm; xð Þ þ e2a3 wm; xð Þ þ . . . ð5Þ

[17] In any laboratory experiment, the free wave spectrum
a1(wj) contains a finite number of discrete harmonics

w 1ð Þ
j ¼ wmin;wmin þDw; . . . ;wmax;

wmax ¼ wmin þ N � 1ð ÞDw; j ¼ 1; . . . ;N : ð6Þ

The frequency resolution of the spectrum Dw is determined
by the duration of the forcing signal Ttot, Dw = 2p/Ttot. The
wavenumbers of free waves obey the dispersion relation
given by (2).
[18] The amplitudes of higher-order bound waves a2 and

a3 at each location depend on the free wave amplitudes a1.
The wavenumbers and the phase velocity of these compo-
nents depend on the parent free waves and cannot be
determined using (2) [Stiassnie and Shemer, 1987].
[19] The amplitude of random waves is characterized by

the standard deviation of the sea surface elevation, s:

o2 ¼ h2
� �

: ð7Þ

Note that (7) contains contributions of free and bound
waves. The characteristic spectral frequency of the free
waves, wm, the characteristic wave period, Tm, and the free
wave spectral width, n, are defined:

wm ¼ 2p
Tm

¼ m1

m0

; n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0m2

m2
1

� 1

r
ð8Þ

where

mj ¼
Zwmax

wmin

w jS wð Þdw ð9Þ

and wmin � w � wmax defines the free wave frequency
domain. For a Gaussian spectrum, the spectral width
definitions (3) and (8) are related throughDw/w0 = n

ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
.

[20] As long as the free wave spectrum is sufficiently
narrow, the frequency domains of the free and bound
waves are separated. However, even for an initially narrow
free wave spectrum, the widening in the course of evolu-
tion can lead to the overlapping frequency domains of free
w(1) and bound waves w(2). Frequencies w(2), which result
from the interaction of the free harmonics wl and wm,
where l, m = 1, . . ., N, can be subdivided into the second
harmonicsw(2+) =wl +wm and subharmonics w(2�) =wl�wm.
The second-order bound waves thus occupy the domains
w(2�) < wmax � wmin and 2wmin < w(2+) < 2wmax. The
frequency domains of third-order harmonics w(3) that have
even smaller amplitudes can be defined using a similar
approach.
[21] Spectrum widening can cause certain ambiguity in

definition of the integration boundaries of the free-wave
domain in (9). It appears, however, that the computed
characteristic frequencies wm and spectral widths n are quite
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robust and depend only weakly on the values of wmin and
wmax selected.

4. Results

[22] The beginning and the end of the wave packet
generated as described in section 2 are affected by the
transient effects and the smoothing window applied on the
wavemaker driving signal. To reduce the influence of
the end effects on the data, at each fetch the midpoint, t0, of
the recorded wave packet was determined, and the data for
�51.2 s � t � t0 � 51.2 s, i.e., representing the duration of
102.4 s corresponding to two full periods of the driving
signal and thus containing two practically identical wave
groups, were considered. At each location, the mean value
for each distance from the wavemaker and for each realiza-
tion was subtracted before further processing. A typical
appearance of extremely high waves is illustrated in
Figure 1. This phenomenon repeats itself. Clearly, Figure 1
does in fact display two similar sequences of 2–3 waves
considerably larger than the waves in the background.
[23] It is customary to characterize waves by the signif-

icant wave heights H1/3 representing the average trough-to-
crest height of 1/3 highest waves in each record [Goda,
2000]. Values of H1/3 were calculated here by considering
the wave records at each fetch and averaging over the
ensemble for each experimental series. The variation of
H1/3 with the fetch presented in Figure 2 indicates that for
each forcing amplitude, the significant wave height remains
approximately constant. In spite of the presence of exper-
imental errors within about ±0.5 cm that can be attributed
to inaccuracies in the calibration of wave gauges, a certain
systematic decrease in wave heights along the tank can be
noticed. This effect is quite weak but seems to increase
with the forcing amplitude, suggesting that sporadic wave
breaking plays a dominant role in the wave energy
dissipation.
[24] Alternatively, the amplitude of random waves can be

characterized by the standard deviation of the sea surface
elevation, s, see (7). For linear narrowband waves with
Rayleigh-distributed amplitudes, the following relations

holds between the significant wave height H1/3 and the
root-mean-square of the surface elevation,

H1=3 ¼ 4:004 s: ð10Þ

[25] The spectral shape of free waves component at
the wavemaker was prescribed to be Gaussian. The
spatial evolution of the ensemble-averaged spectral density
S( f = w/2p) for the series B is shown in Figure 3. In the initial
stages of evolution shown in Figure 3a, the spectral density
widens around the carrier wave frequency f0 = 0.67 Hz up to
the distance of about 100 m, or 30 carrier wavelength l0.
This is more pronounced at the high-frequency side. At the
subsequent stages of the spatial evolution, presented in
Figure 3b, the spectrum tends to its initial shape at a distance
of about 200 m or 60 l0 from the wavemaker. The patterns of
spatial evolution of the spectra at both lower (series A) and
higher (series C) initial forcing amplitudes are similar, and
also exhibit the effect of quasi-recurrence.
[26] The characteristic wave frequency wm remains nearly

constant along the tank with the average value of wm =
4.21 rad	s�1 for the series A, wm = 4.20 rad	s�1 for series B
and wm = 4.16 rad	s�1 for series C. The frequency limits wmin

and wmax in (9) are defined by the first minima of S( f ) on
both sides of the characteristic frequency fm = wm/2p. As
shown in Figure 4, the spectral width n varies notably along
the tank and does not recover to its initial value fully. In the
narrow spectra at x = 3.5 m (x/l0 
 1), and at x = 214 m
(x/l0 
 60), the domain of free waves around f0 is clearly
separated from the second-order bound waves around 2f0,
which in turn are quite distinguishable from the weaker
third-order bound waves around 3f0. The widening of the
free-wave spectrum around 100 m from the wavemaker
causes even stronger widening of the bound-wave spec-
trum. As a result, the free-wave spectral widening around
x/l0 = 30 smears the spectral boundaries between the free
and bound waves, thus making it impossible to differen-
tiate between the second- and the third-order bound-wave
frequency domains.
[27] The variation along the tank of the spectral densities

at frequencies close to fmin and fmax is shown in Figure 5 for

Figure 1. Measured wave sequence with two nearly
identical extreme events (series B, x = 132 m).

Figure 2. Variation of the measured significant wave
height along the tank.
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all three forcing amplitudes. In all cases, these components
attain a maximum at a certain distance from the wavemaker
and then decrease strongly again. Note that at higher forcing

amplitudes, the maximum is attained at shorter distances
from the wavemaker.
[28] The skewness and the kurtosis coefficients of the

surface elevation are defined, respectively, as

l3 ¼
h3
� �
s3

; l4 ¼
h4
� �
s4

: ð11Þ

[29] For a normally distributed wavefield, l3 = 0 and l4 =
3. The variations of l3 and l4 along the tank are presented
in Figure 6. In particular, Figure 6a demonstrates that for all
conditions, the skewness l3 that characterizes the vertical
asymmetry of surface elevation is positive and it increases
with the nonlinearity of the wavefield. According to Tayfun
[2006], the upper limit of the skewness coefficient in a
narrowband wavefield was composed solely of second-
order bound waves in deep water is

lup
3 ¼ 3m

1=2
0 w2

m=g: ð12Þ

Figure 4. The variation of the spectral width along the tank.

Figure 5. (a) Variation along the tank of the spectrum
density at the frequency of f = 0.31 Hz. (b) Variation
along the tank of the spectrum density at the frequency of
f = 1.15 Hz.

Figure 3. (a) Evolution of the frequency spectrum for series
B: spectrum broadening during the initial stages of the
evolution. (b) Evolution of the frequency spectrum for series
B: partial relaxation to narrower spectrum farther away from
the wavemaker.
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[30] As demonstrated in Figure 4, the values of the
spectral width parameter n are almost always below 0.1.
So, the narrow spectrum approximation is valid for our
experiments. The upper limits of l3 as given by (12) are
also plotted in Figure 6a for all three experimental series
and they clearly underestimate the measured values, except
near the wavemaker where near-resonant free-wave inter-
actions have not yet became effective. Note also that for
every experimental series, the values of the coefficient l3
seem to increase first and decay farther away from the
wavemaker. The kurtosis coefficient l4 in Figure 6b
exceeds the value of 3 for all forcing amplitudes and at
all distances x from the wavemaker, indicating a significant
presence of large amplitude waves in the distribution. The
values of l4 grow as the wave nonlinearity increases.
Similarly to the skewness dependence on x, the variation
of kurtosis with x is not monotonous, attaining a maximum
at shorter distances from the wavemaker as the forcing
amplitude is increased. A somewhat similar behavior of l4
was reported by Mori et al. [2007].

[31] Probability distribution functions are considered next.
For linear narrow-band Gaussian waves, Longuet-Higgins
[1952] demonstrated that the distributions of wave crest/
trough heights A and of the wave heightsH, scaled by s, tend
to follow the Rayleigh exceedance distributions

F Að Þ ¼ exp �A2

2

	 

; ð13aÞ

F Hð Þ ¼ exp �H2

8

	 

: ð13bÞ

[32] Longuet-Higgins [1963] also has shown that non-
linearities can cause the statistics of surface elevations to
deviate from the Gaussian statistics. Numerous laboratory
experiments, in situ measurements and numerical simula-
tions indeed support this conclusion [see, e.g., Mori and
Yasuda, 2002;Mori et al., 2007, and references therein]. The
present results on the variations of higher-order moments

Figure 6. (a) Spatial evolution of the skewness. Solid
denotes the upper limit of l3 according to Tayfun [2006].
(b) Spatial evolution of the kurtosis.

Figure 7. (a) Variation along the tank of the probability
distribution functions of wave crest amplitudes, series B.
(b) Variation along the tank of the probability distribution
functions of wave trough amplitudes, series B.
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and cumulants of surface elevations along the tank also
serve as a clear indication of deviations from the Rayleigh
distribution and suggest that the extent of these deviations
may vary with the distance from the wavemaker.
[33] The crest amplitude, say A+, is calculated as a

maximum of surface elevation between two zeros of the
surface elevation, while the trough amplitude, A�, is the
minimum of surface elevation between two consecutive
zeros. Both parameters are scaled by m0

1/2. The crest-to-
trough wave height, H, is defined as a sum of these two
values.
[34] The qualitative similarities and quantitative differ-

ences in probability distribution functions for crest and
trough amplitudes are demonstrated in Figure 7. The dis-
tributions are shown for three locations: relatively close to
the wavemaker, at the distance corresponding to the max-
imum of the spectral width n, and at the far end of the
measuring domain. The distributions for both A+ and A�
exhibit initial widening and then become narrower farther
away from the wavemaker. For wave trough amplitudes, the

distributions do not differ notably from the Rayleigh shape,
except for the location with the maximum local spectral
width at x = 100 m. Contrary to that, the wave crest
amplitude probabilities exceed significantly the Rayleigh
distribution. The difference in the behavior of crest and
trough amplitudes is clearly related to the positive skewness
as shown in Figure 6a.
[35] The accuracy of the second-order (marked as TF2)

and the third-order (marked as TF3) estimates of distribu-
tions for the wave crest probabilities according to the model
of Tayfun and Fedele [2007] is examined in Figure 8. The
values of the statistical parameters used in computing TF2
and TF3 curves at each location are given in the
corresponding figures, where l40, l22, l04 are the fourth-
order joint cumulants and m* is a measure a surface slope or
steepness [Tayfun and Fedele, 2007, equations (40) and
(56)]. Figure 8 demonstrates that the second-order model
distribution TF2 underestimates the deviations from the
Rayleigh curve as compared to the experimentally measured
dependencies. The higher-order TF3 distribution offers a
much better description of the experimental results for the
quite different spectral widths at both locations.

Figure 8. (a) Comparison of the experimentally measured
wave crest amplitude distributions with the Rayleigh and
the second (TF2)- and the third (TF2)-order Tayfun and
Fedele distributions, series B, at x = 108 m. (b) Same as
Figure 8a but for x = 199.1 m.

Figure 9. (a) Same as Figure 8a but for trough amplitudes.
(b) Same as in Figure 8b but for trough amplitudes.
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[36] An analysis of the accuracy of TF2 and TF3 distri-
butions for the trough amplitudes is carried out in Figure 9.
For low amplitudes (A� < 2) both distributions reflect
qualitatively correctly the lower (relative to the Rayleigh
distribution) probabilities of trough amplitudes. For A� > 2,

both the measured values and the curves according to the
TF3 model remain above the Rayleigh distribution, while
the TF2 model strongly underpredicts the probability of
higher trough amplitudes.
[37] Wave height probability distributions for the exper-

imental series B are presented in Figure 10 and compared
with the corresponding third-order TF3 curves. For low
wave heights (H < 5) the distribution follows the Rayleigh
shape at x = 52.2 m, Figure 10a. However, at larger
distances from the wavemaker deviations from the Rayleigh
distributions can be identified, see Figures 10b and 10c,
with the measured probabilities being below the Rayleigh
values. Note that the third-order TF3 distribution seems to
describe this effect appropriately. For larger wave ampli-
tudes, the deviations from the Rayleigh distribution exist at
all locations, being more pronounced at x = 100 m, the
distance that corresponds to the maximum of spectral width
n, as shown in Figure 10b. The TF3 distribution seems to
remain valid for all locations along the tank, although the
agreement of TF3 with experimental data in Figure 10b is
somewhat less impressive.
[38] The effect of nonlinearity is studied in Figure 11. The

wave height distributions are presented here for the lowest
(series A) and highest (series C) values of the wave
steepness e. The distributions presented at distances
corresponding to the maximum of the spectral width n are
compared in Figure 11 with the third-order theoretical
curves TF3. The experimentally determined probability of
very high waves exceeds predictions based on the Rayleigh
distribution, with the deviation that increases with the
nonlinear parameter e. For low waves the dependence of
the deviation from the Rayleigh distribution on e is less
pronounced. The TF3 curves are in a good agreement with
the experiment.

5. Discussion

[39] The results of the previous section clearly demon-
strate the variations of different wavefield parameters along
the tank. While the total energy of the wavefield is approx-
imately conserved, and the occasional breaking does not
seem to cause significant dissipation (Figure 2), the spectral

Figure 10. (a) Wave height probability distribution at x =
52.2 m, series B. (b) Same as Figure 10a but for x = 100 m.
(c) Same as Figure 10a but for x = 199.1 m.

Figure 11. Wave height probability distributions for series
A and C.
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width undergoes noticeable variation in the evolution
process. The initially narrow spectra become wider and
attain maximum width at a certain distance from the wave-
maker (see e.g., Figures 3, 4, and 5). The larger the
nonlinearity of the wavefield, the more pronounced is the
change in the spectral width and the shorter the distance
where it attains a maximum. The present results suggest that
the characteristic linear scale of the spatial evolution of the
wavefield is proportional to e�2, as is the case for the
evolution of deterministic nonlinear wave groups that is
adequately described by the spatial versions of the equation
of Dysthe [1979] for the narrow wave spectrum [Shemer et
al., 2002], or of the equation of Zakharov [1968] for an
arbitrary initial spectral width [Shemer et al., 2001, 2007].
[40] Other statistical wavefield parameters studied here

also exhibit spatial variations strongly related to the local
spectral width n. For example, the kurtosis of the surface
elevation attains a maximum at those locations where n is
large. Similarly, the tails of probability distribution func-
tions of the wave heights, wave crests and wave troughs
attain maximum deviation from the Rayleigh distribution at
similar distances from the wavemaker. For locally wider
spectra, considerable deviations from the Rayleigh shape
are observed not only for the distribution tails, but also for
low values of crest and trough amplitudes, as well as for low
wave heights. It appears that the third-order model distri-
butions presented by Tayfun and Fedele [2007] capture

these phenomena adequately for the whole length of the
tank and for all values of the nonlinear parameter e.
[41] Dysthe et al. [2003] carried out numerical simula-

tions of the temporal evolution of a narrow-banded random
wavefield using the two-dimensional version of the Modi-
fied Nonlinear Schrödinger (MNLS) or Dysthe equation.
They observed the widening of the wave number spectrum
and its evolution to an asymmetric shape. These results are
in general agreement with the present measurements. Dysthe
et al. [2003], however, concluded that the wave number
spectrum evolves relatively fast toward a quasi steady state.
Such a quasi steady state is apparently not attained in our
experiments. The wavefield in the present experiments was
nearly perfectly unidirectional. This fact may constitute a
possible reason for this qualitative difference in the long-
term behavior between the two-dimensional wavefield sim-
ulated numerically by Dysthe et al. [2003] and the present
measurements.
[42] However, the recent publication by Stiassnie et al.

[2008] prompts us to suggest a plausible alternative reason
for the spatial variation of the statistical parameters of
the random wavefield. In this paper, the recurrence effect
for the correlation function was discovered numerically in
the framework of Albers’s equation for narrow-banded
random surface waves on deep water [Alber, 1978]. Alber’s
equation is a random counterpart of the nonlinear Schrö-
dinger equation and it describes the temporal evolution of

Figure 12. Example of recorded low-amplitude long wave that is clearly visible after wavemaker-
excited short waves pass by the wave gauge at x = 3.59 m.
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the ensemble-averaged correlation function K(t, t) = hhi(t +
t/2) 	 hi(t � t/2)i. It appears that in the presence of a small
disturbance to the cross-correlation function, it undergoes
periodic recurrence similar to the Fermi-Pasta-Ulam recur-
rence observed for the deterministic narrow wave groups in
the framework of the nonlinear Schrödinger equation and
obtained analytically for a three-wave system by Shemer
and Stiassnie [1985] using the Zakharov equation. It is
important to stress that Stiassnie et al. [2008] indicate that
the recurrence period (or the recurrence length in the spatial
evolution case) scales as e2, in agreement with the present
observations and with the characteristic time scale in the
computations of Dysthe et al. [2003]. In a subsequent paper,
Regev et al. [2008] demonstrated that the instability of
cross-correlation function is related to the inhomogeneity of
the random wavefield. They have shown that interaction of
a deterministic swell that serves as an inhomogeneous
disturbance with a homogeneous narrow-banded random
sea wavefield results in periodic recurrence on a long
timescale.
[43] While the temporal wavefield excited at the wave-

maker can be considered approximately stationary, the end
effects related to the initiation and the end of the wavefield
generation lead to the appearance of long shallow-water
waves in the tank (seiche). This effect is known to exist in
every laboratory wave channel. While long waves excited
during the transient stages have different frequencies, the
most persistent are usually those in resonance with the tank
geometry, the so-called resonant sloshing waves. The tank
depth of h = 5 m for those waves corresponds to shallow-
water conditions so that their propagation velocity is c =
(gh)1/2 = 7 m/s. At larger distances from the wavemaker
these waves tend to become more regular. Such waves
with an apparent period of about 80 s can be attributed
to the longest resonant sloshing mode with the length
corresponding to twice the channel effective length, i.e.,
about 550 m. Their amplitude is less than 1 cm. These waves
are indeed present in some realizations in our experiments,
as demonstrated in Figure 12.
[44] The results of Regev et al. [2008] suggest that the

recurrence period is of the order of hundred dominant
wavelengths. This is in a qualitative agreement with the
present results where the spectrum varies from its initial
narrow shape to its widest form, the variation that can be
seen as about half of the total recurrence period, at distances
of about 30 to 40 dominant wavelengths.
[45] Two comments can be made with respect to the

comparison of the numerical results of Regev et al.
[2008] and of the present experiments in a wave tank.
First, Alber’s equation, which serves as the theoretical
model in their numerical simulations, can be seen as a
random counterpart of the nonlinear Schrödinger (NLS)
equation. The NLS equation, however, proved to be inad-
equate as a quantitative model for prediction of evolution of
deterministic wave groups [Shemer et al., 1998, 2002;
Dysthe et al., 2003]. It is thus reasonable to assume that
Alber’s equation can at best describe only some general
qualitative features of the evolution of a random wavefield.
Second, the spatial extent of the present measurements does
not cover even one full spatial recurrence period and thus
does not allow to state definitely that spatial variations

observed in the experiments can indeed be attributed to
the recurrence as suggested by Stiassnie et al. [2008] and
Regev et al. [2008]. It appears that additional numerical
simulations of the spatial evolution of narrow-banded
random wavefields with and without inhomogeneous
disturbance carried out using advanced theoretical models
and performed over extensive spatial domains are required
to determine whether the significant variations of the
statistical wavefield parameters observed in the present
study can be related to the wavefield recurrence.
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