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Horizontal Lagrangian velocities and accelerations at the surface of steep water-
waves are studied by Particle Tracking Velocimetry for gradually increasing crest
heights up to the inception of a spilling breaker. Localized steep waves are excited
using wavemaker-generated Peregrine breather-type wave trains. Actual crest and
phase velocities are estimated from video recorded sequences of the instantaneous
wave shape as well as from surface elevation measurements by wave gauges. Effects
of nonlinearity and spectral width on phase velocity, as well as the relation between
phase velocity and crest propagation speed are discussed. The inception of a spilling
breaker is associated with the horizontal velocity of water particles at the crest
attaining that of the crest, thus confirming the kinematic criterion for inception of
breaking. C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4860235]

I. INTRODUCTION

The concept of wave breaking, although intuitively clear, defies exact and generally accepted
definition. While breaking of shoaling waves approaching the shore is more familiar, sufficiently
steep waves also break in water of large and intermediate depth; the breaking of those waves is of
cardinal importance for the energy balance in the ocean. Possible definitions of the wave breaking
phenomenon were recently reviewed in Babanin1 and Perlin et al.2 Distinction is made between
spilling and plunging breakers; additional types of breakers are also considered. Spilling breakers
usually do not generate foam on the water surface; their shape is strongly affected by viscosity
and surface tension effects.3–6 Plunging breakers are characterized by wave overturning, so that
the surface elevation profile ceases to be single-valued. In this process air is entrapped and foam
appears on the water surface. The breaking process is characterized physically by dissipation of a
substantial part of the wave energy, mostly to turbulent kinetic energy of water velocity fluctuations
and eventually to heat. Nevertheless, up to the inception of a plunging breaker the wave field can
usually be described by potential flow models with a reasonable accuracy.

One of the most important unresolved questions in breaking waves’ mechanics is determining
the conditions required for waves to break. Numerous breaking criteria were suggested over the
years; these criteria may be divided in a broad sense into three types: geometric, kinematic, and
dynamic.6,1, 2 Various geometric criteria are related to the wave shape on the verge of breaking.
Stokes showed that the highest possible wave has steepness of ak ≈ 0.443, with surface eleva-
tion forming an angle of 120◦. For a random sea, the actual values of the wave steepness are
lower than the critical Stokes limit; Ochi and Tsai7 suggested that waves in the sea break when
H/gT2 ≥ 0.02, H and T being the local wave height and period respectively. Bonmarin8 and Babanin
et al.9, 10 invoke the horizontal wave asymmetry, as well as skewness (the vertical asymmetry), as pa-
rameters affecting wave breaking. Chalikov and Sheinin11 assumed in their numerical computations
that the wave breaks when the instantaneous slope becomes vertical.

Since for sufficiently long water waves gravity is the only restoring force, Phillips12 argued
that the maximum possible negative value of the Lagrangian vertical acceleration is av = −g.
Although physically straightforward, this dynamic criterion of Phillips remains unsupported either
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experimentally or numerically. In fact, as shown by Longuet-Higgins,13 the maximum negative value
of the Lagrangian vertical acceleration in Stokes 120◦ corner flow is only av = −g/2. Computations
of the vertical component of the Lagrangian acceleration at the crest of a steep wave were performed
by Shemer.14 Analysis accurate to the 3rd order in wave steepness was carried out for deterministic
nonlinear focused unidirectional wave groups with wide spectra that were studied experimentally in a
300 m long wave tank by Shemer et al.15 Computations were performed for conditions corresponding
to experimental conditions where the single steep wave was either on the verge of breaking, or actual
breaking was observed. It was found that accounting for higher order terms significantly increases
the “apparent” vertical acceleration ∂2η/∂t2 at the free surface η as compared to the linear calculation
due to increased weight of higher harmonics. Nevertheless, the Lagrangian acceleration accurate to
the 3rd order does not differ notably from the linear result since the convective terms that contribute
at the 2nd and higher orders are positive at the crest of the steepest wave, effectively canceling the
negative higher order contributions to ∂2η/∂t2. The negative vertical accelerations at the crest thus
do not significantly exceed g/3.

This failure of the dynamic criterion suggests that a closer look at the kinematic wave breaking
criteria that relate water velocities at the surface with those of wave propagation is appropriate. The
kinematic condition states that waves break when the water particle velocity at the crest of the wave
exceeds the crest velocity that is often represented by the phase velocity cp at the dominant wave
frequency. Alternatively, since the envelope of a narrow-banded group propagates with the group
velocity cg, the value of cg sometimes is taken as the characteristic wave velocity. For example, Tulin
and Landrini16 state that as long as the fluid particle velocity at the wave’s crest is lower than cg, the
wave does not break.

In numerous experiments on breaking waves initially monochromatic waves were generated by
a wavemaker; these waves either break rapidly as a result of initially high steepness,17 or at a later
stage in the process of evolution due to wave instability.18, 19 In such experiments plunging breakers
were usually observed. Perlin et al.17 and Chang and Liu19 report on measured maximum horizontal
velocities in the plunging jet exceeding phase velocity cp, while simultaneous measurements of the
horizontal velocity u and of the surface elevation by Melville and Rapp18 seem to indicate that the
values of u remain below cp even when large velocity excursions were observed in the breaking
waves.

It is well known that nonlinearity strongly affects the kinematics of water particles under steep
waves as well as the crest velocity.20 Laboratory measurements of kinematics under steep waves
were performed by Jensen et al.21 and Grue and Jensen;22 when possible, results were compared with
those accumulated during field experiments. Nonlinear dependence of surface velocity on wave’s
steepness was suggested on the basis of those studies. The measured surface velocity of breaking
waves was reported to be significantly below the phase velocity of the dominant waves.

It should be stressed that for a wider spectrum, neither cp nor cg corresponds to the highest wave
crest propagation velocity even if nonlinear effects are neglected.14 Hence the kinematic criterion
for wave breaking should be applied to the relation between the water particle and actual crest
velocities.23 This criterion was examined experimentally by Stansell and MacFarlane24 who applied
various direct and indirect methods to determine the effective phase velocity for the conditions
prevailing at wave breaking. Measurements performed for both plunging and spilling breakers
indicated that the maximum horizontal velocity at the water surface never reaches the local crest
speed. Three-dimensional breaking waves were studied by Wu and Nepf.25 Horizontal velocity
exceeding local wave phase velocity was shown to be a good indication for spilling breakers
occurrence, while the horizontal velocity exceeding 1.5cp is the indication of the occurrence of a
plunging breaker. Qiao and Duncan5 performed simultaneous measurements of the crest velocity
and of the horizontal velocity near the water surface under a gentle spilling breaker. Although their
results exhibit considerable scatter, they seem to indicate that the maximum horizontal velocity of a
fluid particle at the surface of a spilling breaker may exceed that of the crest.

The present study deals with the kinematics of breaking waves as well as of waves on the verge of
breaking and differs from the previous experimental investigations in several important aspects. The
first difference is associated with generation of breaking waves in a laboratory tank. Two approaches
to generate breaking waves in a laboratory tank were employed in all studies cited above. The most
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popular method, originally used by Davis and Zarnick,26 is the linear focusing in which the wave
train is generated with numerous spectral harmonics that have initial phases prescribed so that all
waves arrive at a certain location in phase. In realizations of this method by different authors a
number of spectral shapes and widths were employed. Since nonlinear interactions between waves
lead to significant spectral changes that cannot be neglected in the process of focusing of numerous
harmonics, actual breaking occurs at locations different from the designed value. A nonlinear version
of this method applied by Shemer et al.15 enables obtaining a single breaking wave at a prescribed
location. In an alternative approach, steep monochromatic waves are generated by the wavemaker and
undergo breaking either close to their generation location, if the initial steepness is sufficiently high,
or at some randomly varying distance from the wavemaker as a result of developing instabilities.

In the present study a different approach based on the so-called Peregrine27 breather (PB), that
represents an analytic solution of the nonlinear Schrödinger (NLS) equation, was implemented. In
an attempt to verify whether the PB can be obtained in a wave tank, Chabchoub et al.28 observed
that an initially small “hump” in a nearly monochromatic wave train generated by a wavemaker in
a tank becomes strongly amplified, so that a very steep wave is observed at some distance from the
wavemaker. Shemer and Alperovich29 demonstrated that the behavior of the wave group envelope
differs significantly from that of PB. Nevertheless, the PB approach offers a convenient method to
excite steep waves with and without breaking using the focusing properties of the NLS equation.

The next difference is related to the technique of velocity measurements. In all previous studies,
Eulerian velocities at fixed locations beneath breaking waves were measured, mostly using Laser
Doppler Velocimetry (LDV) or, more recently, Particle Image Velocimetry (PIV). We use Particle
Tracking Velocimetry (PTV) that enables us to study variation in time of the horizontal coordinate
of floating tracer particles and thus to obtain a varying in time Lagrangian kinematic characteristic
of the flow at the surface of a steep wave. In addition, special care is taken to accurately determine
the instantaneous crest velocity.

To the best of our knowledge, only limited data on the Lagrangian description of the breaking
process exist (see, e.g., Pen et al.30 who studied breaking of shallow water waves approaching a
beach). The present experimental approach allows one to study the variation of the fluid particle
velocity in the vicinity of the crest for nonbreaking waves, as well as prior to and during the
appearance of a spilling breaker, and thus to determine conditions at the inception of breaking.

II. METHODOLOGY

The Peregrine27 breather represents an analytic solution of the NLS equation. This equation is
the simplest theoretical model describing evolution in space and time of nonlinear gravity waves
propagating in deep water, valid for narrow-banded wave groups. Consider a narrow banded wave
group with carrier frequency ω0 and wave number k0 that satisfy the deep-water dispersion relation
ω0

2 = k0g. At the leading order the group can be presented as

η(x, t) = Re
[
a · ei(k0x−ω0t)

]
, (1)

where a(x, t) is the complex envelope. Following Mei et al.31 the following dimensionless scaled
variables may be defined in the frame of reference moving with the group velocity cg:

τ = εω0(x / cg − t), X = ε2k0x, A (X, τ ) = a/a0, (2)

where a0 is the characteristic wave amplitude, and ε = a0k0 is the wave steepness that is the
small parameter of the problem. In these variables, the evolution of the normalized envelope of the
surface elevation A(X, τ ) as a function of the “slow” spatial X and temporal τ variables (note that τ

corresponds to negative time) can be described by the spatial version of the NLS equation:

− i
∂ A

∂ X
+ ∂2 A

∂τ 2
+ |A|2 A = 0. (3)

The envelope of the Peregrine breather given by

A (X, τ ) = −
√

2

[
1 − 4 (1 − 4i X )

1 + 4τ 2 + 16X2

]
e−2i X (4)
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FIG. 1. Variation with the dimensionless distance X of the relative envelope amplification in the Peregrine breather.

represents an analytical solution of (3). At the origin of the scaled coordinate system |A(0,0)|
= 3

√
2, while |A(X→±∞, τ→±∞)| = √

2, so the maximum wave amplitude at the origin ex-
ceeds the background amplitude η0 = √

2a0 by the factor of 3. The dependence of the maximum
amplification factor |A(X, 0)|/√2 calculated from (4) is plotted in Fig. 1.

Shemer and Alperovich29 demonstrated experimentally that the spatial evolution of the PB from
the initially nearly monochromatic wave train (at large negative values of X), to the appearance of a
strongly amplified wave is characterized by spectral widening. The narrow spectrum assumption of
the NLS equation is thus violated resulting in quantitative behavior of the wave group envelope that
significantly deviates from that of PB. They also showed that the modified NLS equation32 in which
the requirements on the spectral width are relaxed provides a better quantitative agreement between
the experiment and the theory. Experiments of Shemer and Alperovich29 indicated that acceptable
quantitative agreement between the NLS solution and the experiment can only be expected as long
as X <−0.3. As can be seen from Fig. 1, this limitation practically means that the PB solution
remains reasonably accurate provided that the maximum amplitude at the leading order does not
exceed about 2η0. These considerations were taken into account in selection of the experimental
parameters.

The experiments were performed in an 18 m long, 1.2 m wide, and 0.9 m deep (water depth
of 0.6 m) wave tank equipped with a programmable wavemaker. A wave energy absorbing beach
is installed at the far end of the tank. Wave trains with the carrier wave period of T0 = 0.8 s (wave
length L0 = 1.0 m) were generated by the wavemaker according to (1), (2), and (4). Each wave train
contained 70 carrier waves; tapering windows were applied at 2 periods at both ends of the train. In
order to mitigate the effect of the waves reflected from the beach, a measuring station was set at a
distance of about �x = 8.75 m from the wavemaker. The carrier wave amplitude in all experiments
was a0 = 0.021 m (η0 = 0.026 m), corresponding to ε = a0k0 = 0.116. The maximum wave
amplitude at the measuring location can be controlled by selection of the dimensionless coordinate
of the wavemaker that in the present experiments covered the range −1.43 ≤ Xwm ≤ −1.11. To
obtain statistically significant data, at least three realizations of the wave train were excited for each
one of the nine dimensionless wavemaker coordinates within the prescribed range employed in the
present experiments.

Visualization of the evolving and breaking waves was made using two identical cameras mounted
on an instrument carriage. Both cameras provided synchronized video recordings at 2 Mpix resolution
at the rate of 60 fps. The 1st camera was pointed at the wall of the tank providing records of
instantaneous water contact line (Figure 2), covering an area of 64 by 36 cm2 at spatial resolution
of 20 pix/cm. The imaged area therefore covers about 2/3 of the carrier wave length, corresponding
to the dimensionless longitudinal length of the image of 0.064. The second camera was aimed
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FIG. 2. Video clips showing simultaneously recorded variation of the waves surface contact line and the movement of
the PTV particles for (a) X = 0.69 and (b) X = −0.43 (inception of breaking). The video clips recorded at 60 fps are
played at 30 fps and show only several periods around the steepest wave in the train. Frames were cropped and resized
to emphasize the important flow features; actual frames’ dimensions are given in the text (Multimedia view). [URL:
http://dx.doi.org/10.1063/1.4860235.1] [URL: http://dx.doi.org/10.1063/1.4860235.2]

vertically down and imaged the water surface area that was twice smaller than that of the 1st camera
in both directions (32 by 18 cm2) with spatial resolution of 40 pix/cm. The centers of fields of view
of both cameras were located at the dimensionless distance of �X = 0.737 from the wavemaker.
It was observed that the inception of breaking occurred in the vicinity of X = −0.43, so that for
the range of the prescribed initial conditions at the wavemaker the dimensionless location of the
center of the field of view varied from X = −0.37 to X = −0.69. Figure 2 presents video clips
showing simultaneously recorded variations of the water surface contact line and the movement of
PTV particles, to emphasize the presentation of the video clips both frames were cropped and videos
were slowed to 30 fps. In the videos taken upstream of the breaking (X = −0.69, Figure 2(a)), as
well as at the inception of the breaking (X = −0.43, Figure 2(b)), the periodic change of direction of
particle’s movement accompanied by the mean Stokes drift is clearly detectible. Strong horizontal
acceleration of the particles can be seen in Figure 2(b) prior to the inception of the spilling breaker.

Frames depicting the water contact line are presented in Figure 3 and exemplify three distinct
stages of the wave train evolution. The lines visible in this figure are drawn for image calibration
purposes required because of optical distortions. Panel 3(a) shows the steepest wave in the train

FIG. 3. (a) Far from breaking (X = −0.65), (b) near breaking (X = −0.50), (c) at the breaking (Xwm = −1.38; X = −0.43),
and (d) as in (c), 0.1 s later; the breaking the spiller is visible.

http://dx.doi.org/10.1063/1.4860235.1
http://dx.doi.org/10.1063/1.4860235.1
http://dx.doi.org/10.1063/1.4860235.2
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at X = −0.65, the wave form is nearly symmetrical and the surface is smooth. Panel 3(b) shows
the shape of the steepest wave in the train at X = −0.59, the wave is characterized by a pointy
shaped crest and exhibits strong front-back asymmetry. Panels 3(c) and 3(d) depict a wave during
the inception of breaking (the center of the frame is at X = −0.43). In panel (c) the “pointy” wave
shape resembles that in panel (b), while in the panel (d) taken 0.1 s later a gentle emerging spiller is
visible. The estimated crest displacement between panels (c) and (d) is 0.12 m, yielding crest velocity
ccr = 1.1 m/s. It should be stressed that the breaker continues to develop beyond the field of view of
the camera, with foam appearing at water surface at a distance of about one wave length downstream
of the imaging location.

The water surface was seeded with buoyant particles (specific density of ∼0.92) of approximately
3 mm in diameter, dispersed from above at the distance of about 1 m upstream of the imaging location.
The particles then drifted towards the field of view of the cameras due to the orbital motion and mean
Stokes current. Detecting positions of individual particles in each consecutive recorded video frame
allowed obtaining instantaneous local horizontal velocities using Particle Tracking Velocimetry
(PTV) algorithm described in details in Liberzon and Shemer.33 Note that the particles are small
as compared to the carrier wave length. The accuracy of the PTV measurements was verified in
preliminary experiments with monochromatic wave trains of small and moderate steepness. In these
experiments, the measured orbital velocity amplitude and the Stokes drift current were in agreement
with theoretical predictions.

The parameters of the PTV algorithm were selected in view of the expected range of measured
surface velocity variation. The characteristic scale of the water surface velocity can be estimated
as η0ω0 = 0.204 m/s, while the highest horizontal velocity in the vicinity of the steepest crest
may be expected to exceed the linear phase velocity cp0 = 1.25 m/s. Hence the sensitivity of the
PTV algorithm was adjusted to allow particle displacement up to 100 pixels, yielding a maximum
detectable velocity of 1.50 m/s. It was observed that for cases where breaking occurred prior to the
imaged location (i.e., for Xwm = −1.11 and −1.13), white scattered foam that appeared on the water
surface did not allow reliable identification of the tracers. The results of the PTV measurements for
these cases are therefore not presented.

To complement the video imaging, the instantaneous surface elevation fluctuations were
recorded by four resistance type wave gages. The first gage located at x = 8.75 m from the
wavemaker and the rest are distanced from it by 10, 22.5, and 38.0 cm, respectively. Data ob-
tained by the wave gages were sampled at 1280 Hz so that each carrier wave period contained
1024 points.

III. RESULTS

The case corresponding to X = −0.65 for which the breaking occurs only far downstream of
the measuring location is considered first. All longitudinal velocities of individual particles at the
water surface recorded during the passage of the wave train in the course of three runs with identical
conditions are presented in Figure 4(a). Each point in this figure represents all recorded particle
velocities within the images frame, showing that different runs have yielded repeatable results.
The jitter in the velocity values at any given time is attributed to different instantaneous particle
longitudinal positions (within ±0.15L0), and thus to somewhat different phases along the wave.
Extreme velocities at the crest and trough for a monochromatic linear wave ±η0ω0 are plotted as
well for comparison. The variability of the horizontal velocities at wave crests and troughs between
consecutive waves increases notably after the appearance of the steepest wave. This qualitative
difference between the behavior of the wave train before and after the steepest wave can be observed
also in the corresponding temporal variation of the surface elevation during a single run plotted in
Figure 4(b).

The effects of nonlinearity are clearly visible in Figure 4. Crests in Figure 4(b) are larger than
troughs, and the velocity at crests significantly exceeds η0ω0, while the values of particle velocity
at the troughs are smaller than those corresponding to the linear theory. The mean Lagrangian
longitudinal velocity at the water surface was found to be Ū = 0.024 m/s, while the calculated
Stokes drift velocity for a monochromatic deep water wave train is USt = ω0k0η0

2 = 0.033 m/s. The
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FIG. 4. Records at X = −0.65. (a) PTV velocities at the water surface. The linear amplitude of the velocity variation, as well
as the measured by PTV mean velocity and the calculated Stokes drift velocity are shown; (b) surface elevation.

somewhat lower measured value of the drift velocity may be attributed to the finite duration of the
wave train propagating over nearly deep (k0h = 3.8) water and its essentially unsteady character, as
well to experimental inaccuracy.

Note that the maximum particle velocity at the crest of the steepest wave in Figure 4(a) is
0.6 m/s, well below the linear phase velocity of the carrier wave cp0 = 1.25 m/s. As already stressed,
the maximum particle velocity has to be compared with the crest propagation velocity rather than
with cp0. Before proceeding to the experimental determination of crest velocities, it is instructive
to take advantage of the fact that prior to breaking and at sufficiently large values of |X|, the wave
train is expected to evolve in reasonable agreement with the PB solution given by (2)–(4). Thus, the
velocity of the steepest crest can be calculated from these expressions. The results are presented in
Figure 5.

The crest velocity of individual steep wave in the PB wave train decreases with |X|, with
discontinuity associated with the carrier wave length and arrival of the next wave that becomes the
steepest one. For X → −∞ the wave train appears as a nearly monochromatic, and the variations
of the crest velocity vanish. It should be stressed, however, that the calculated PB crest propagation
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velocity ccr(X → −∞) = 1.29 m/s, exceeding cp0 = 1.25 m/s. It can be easily shown that due to the
term e−2iX in (4) the steepest PB crest velocity for large values of |X| is given by

ccr(X → −∞) =cp0/(1 − 2ε2). (5)

For finite carrier wave amplitude the PB wave train is therefore in fact essentially nonlinear
at the leading order even at very large |X| where it appears as a monochromatic wave. For values
of X approaching zero, the variations of the crest velocity increase, and as evident from Figure 5,
the most probable crest velocities become significantly lower than cp0, ranging from about 1.1 to
1.2 m/s.

In the context of the present investigation, these results can only serve as estimates, and actual
crest velocities have to be determined experimentally. An attempt has been made to find the actual
crest velocity from the records made by the 1st video camera. Evaluation of the steepest crest
velocity presented in the legend of Figure 2 indeed yields a value that is in a good agreement
with the PB-based estimates. It was found, however, that the very flat crest shapes as visible in the
images of Figure 2 inevitably resulted in a large scatter in the values of ccr derived from the video
imaging. Results reported by Qiao and Duncan5 on crest propagation velocity that were obtained
by application of a similar technique also exhibited considerable scatter. It was therefore decided to
use wave gauges records to measure crest propagation velocities. For a signal of permanent shape,
a cross-correlation technique is used routinely for determination of the characteristic time lag for
a known probes’ spacing. For the conditions of the present experiment, this technique can only be
used for determination of mean crest velocities in the quasi-monochromatic part of the wave train
preceding the steepest wave, see Figure 4(b). Two probes with spacing of 0.255 m (about L0/4) were
used for this purpose. Attempts to use closer probes resulted in considerable scatter in determination
of the time lag. Application of this method for numerous records with different Xwm yields the mean
estimated value of the steepest crest velocity of ccr, exp = 1.318 m/s. Application of the 2nd order
Stokes correction to ccr calculated according to (5) results in the theoretically expected crest velocity
of ccr,th = 1.29 m/s. The theoretical and the experimentally evaluated values of ccr thus agree well
and exceed notably cp0.

To find the propagation velocity of the steepest wave crest, the cross-correlation technique has
to be replaced by direct determination of the instant of the passage of the surface elevation peak at
each probe. A typical record of the temporal variation of the surface elevation in the vicinity of the
steepest wave is presented in Figure 6. A second order polynomial fit was applied in the vicinity
of the crest; the instant of the occurrence of the maximum surface elevation was defined according
to the peak of the fit. The propagation velocities of the steepest crests at the measuring location
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FIG. 6. Records of two wave gauges around the steep crest. Solid dots are the detected crests positions.
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FIG. 7. The Lagrangian velocities at the water surface at (a) X = −0.69, (b) X = −0.50, (c) X = −0.46, and (d) X = −0.43.

determined in this way for all experimental runs are also plotted in Figure 5. There is a reasonable
agreement between the measured crest velocities and estimates based on the PB.

The measured Lagrangian horizontal velocities during the passage of the wave train are presented
in Figure 7 for four dimensionless coordinates of the imaging window. The corresponding wave
gauge records of the surface elevation variation are given in Figure 8.

The increase in both the maximum crest velocity and the crest elevation approaching the
inception of breaking at X = −0.43 is obvious. The increase is, however, non-monotonic, in qualita-
tive agreement with Figure 5. Both the maximum horizontal velocity at the crest and the crest height
in Figures 7(c) and 8(c) are lower than in Figures 7(b) and 8(b), respectively. This is due to the fact
that the local maximum values depend also on the relative phases of the slowly varying complex
group envelope and of the carrier wave. For X = −0.46, these phase relations result in appearance
of two steep peaks with comparable heights that are lower than those observed at locations where
the extreme values correspond to the envelope phase close to zero.

Comparison of Figures 7 and 8 reveals that the relative amplification of the horizontal velocity
at the steepest wave crest as compared to that at the background carrier wave is significantly stronger
that the corresponding crest heights ratio. The stronger amplification of the horizontal velocity of
water particles at steep crests can be attributed to the contribution of the 2nd and higher order
bound waves. For surface elevation, this contribution manifests itself in crests larger than troughs.
As discussed recently in Shemer,14 higher order terms associated with the bound waves contribute
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FIG. 8. Surface elevation measured by a wave gauge in a single run. Coordinates as in Figure 7.

even more to the horizontal velocity at the crest of a steep wave due to the enhanced weight of the
higher frequency harmonics.

A closer look at the velocities in the vicinity of the steepest wave is taken in Figure 9. The
measured crest velocities are also plotted in this Figure. Far from breaking (Figure 9(a)), the steepest
crest velocity considerably exceeds the maximum recorded surface horizontal velocity. Closer to
the breaking location (Figure 9(b)) maximum water particle velocities approach that of the crest.
At the inception of breaking (Figure 9(c)), the maximum horizontal fluid particle velocities at the
surface and the crest velocities become virtually identical. Note the enhanced scatter around the
steep crests. This scatter is attributed to the strong acceleration that particles at the surface undergo
when approaching crest and trough of the wave. The differences in the particle velocities at the same
instant but somewhat different longitudinal position within the imaged frame therefore become more
pronounced.

The PTV technique employed in the present study enables estimates of the Lagrangian horizontal
accelerations. Strong acceleration of the tracer particles associated with the steepest crest is apparent
in the video clips presented in Figure 2. Ensembles of instantaneous horizontal accelerations ah,L

for all particles for three experimental conditions are presented in Figure 10. The linear estimate of
the range of variation of the horizontal acceleration given by ±η0ω0

2 = ±160.4 cm/s2 is denoted
by a broken line. For the quasi-monochromatic part of the wave train, the range of variation of the
Lagrangian horizontal acceleration only slightly exceeds the linear estimate. As expected the phase
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FIG. 9. Comparison of Lagrangian particle velocities in the vicinity of the steepest peak (dots) and the measured crest
velocities (diamonds): (a) X = −0.69, (b) X = −0.50, and (c) X = −0.43.

of ah,L leads that of the surface elevation and the horizontal velocity by π /2. Note also that for that
part of the train, the measured dependence of ah,L(t) is symmetric with respect to the horizontal
axis, with the mean value close to zero. For the steepest waves in the train, however, the nonlinear
contributions to the Lagrangian horizontal acceleration by both high frequency bound waves and
convective acceleration terms becomes significant, so that the maximum absolute values of ah,L

notably exceed the linear estimate. The vertical symmetry is retained as long as the amplification is
not too strong, see Figure 10(a). Maximum acceleration increases as the steepest crest height grows,
so at the inception of breaking (Figure 9(c)) the maximum Lagrangian acceleration that is observed
prior to the highest crest exceeds the linear estimate by a factor of about five.

It is interesting to note that while for linear deep-water waves the amplitudes of horizontal
and vertical accelerations are identical, it is not so for the strongly nonlinear steep waves. As
mentioned above, all available theoretical and experimental results indicate that the negative vertical
Lagrangian acceleration at the crest of very steep wave does not exceed about g/3. The reported
maximum horizontal accelerations of fluid particles at the surface of very steep waves exceed this
value for all cases examined.
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FIG. 10. Temporal variation of the Largangian horizontal acceleration: (a) X = −0.69, (b) X = −0.50, and (c) X = −0.43.
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IV. CONCLUSIONS

Contrary to earlier investigations of breaking waves, steep waves in the present study were
excited using an essentially nonlinear mechanism associated with the solution of the nonlinear
Schrödinger (NLS) equation known as Peregrine breather (PB).27 Due to focusing properties of
the NLS equation, this mechanism causes an initially small “hump” in the envelope of a nearly
monochromatic wave train to grow along the tank, eventually attaining crest height that at the
leading order exceeds the amplitude of the background carrier wave by a factor of three. Shemer
and Alperovich29 experimentally demonstrated that this amplification is in fact never attained for
water gravity waves due to spectral widening that renders the NLS equation invalid. Nevertheless, it
can be concluded from these results that as long as the steepest crest height does not exceed about
twice the carrier wave amplitude, the Peregrine analytical solution remains reasonably accurate. It is
demonstrated here that the PB approach to studying breaking waves has two important advantages
as compared to linear wave focusing that was routinely applied in the past. First, within the limits
of validity, the availability of theoretical solution allows to obtain fairly accurate estimates of the
expected wave parameters, thus facilitating the design of the experiment. Second, for a given carrier
wave, the steepest wave crest height at the measuring location can be accurately controlled by
varying a single governing parameter – the dimensionless location of the wavemaker in the frame
of coordinates appropriate for PB. This approach thus made it possible to investigate kinematics of
a steep wave with gradually varying crest height, to the inception of a spilling breaker.

Kinematics of steep waves on the verge of breaking and beyond was studied by two synchro-
nized video cameras and a set of wave gauges distributed along the tank. The 1st, side-looking
camera, provided records of the temporal variation of the contact line at the tank wall, thus enabling
identification of the inception of breaking. The 2nd camera imaged the water surface from above
and provided records of the instantaneous location of tracing particles floating at the water surface.
Application of the PTV algorithm provided data on the Stokes drift and the instantaneous Lagrangian
horizontal velocity, as well as on acceleration of the tracers.

The goal of this study was to determine the criterion for the inception of breaking. Two criteria
based on physical considerations were considered: dynamic and kinematic. Since Phillips12 dynamic
criterion apparently cannot be satisfied for Stokes waves13 as well as for a broad-banded wave
group,14 special attention was given to the kinematic criterion. It is argued here that this criterion
relates the maximum velocity of a fluid particle at the crest of the steep wave to the crest velocity.
It was demonstrated that the determination of the actual crest velocity and its relation to the phase
velocity of the carrier wave cp0 requires particular attention.

At all stages of its evolution, PB consists of a localized “hump” that has duration of few
carrier wave periods; the rest of the wave train appears as a nearly monochromatic wave. It was
demonstrated, however, that the essentially nonlinear character of PB given by (4) results in the
effective phase velocity of this quasi-monochromatic part somewhat exceeding that of a Stokes
wave. This observation was confirmed by measurements. The situation is different in the vicinity
of the “hump.” Simple analysis based on the analytical expression for the PB demonstrated that the
propagation velocity of a steep crest is considerably reduced as compared to the phase speed of the
carrier wave cp0. The actual crest velocity is strongly affected by the finite width of the wave train
spectrum, with the instantaneous location of the crest resulting from constructive interference of
numerous spectral components contributions with different phases. The slower than cp0 velocity of
propagation of the steepest crest is therefore mostly determined by linear effects and the free wave
part of the spectrum. At the same time both the horizontal and the vertical velocity components
at free water surface in the vicinity of the steep crest are strongly affected by the higher order
contributions.14

These theoretical estimates were supported by experiments. Two independent methods to mea-
sure crest velocity were applied in this study. The first method was based on estimating the rate of
crest displacement from the video images acquired by the 1st camera. While this method yielded
reasonable estimates, the scatter of the results that stemmed from the flat shape of the crest as well
as from optical distortions was quite substantial. It was decided therefore to determine the steepest
crest propagation velocity from wave gauges measurements that were acquired at 1280 Hz/channel.
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Even at this relatively high sampling rate, the distance between the probes of about 1/4 of the carrier
wave length was required to obtain accurate enough results, at the expense of the ability to record
the short-scale variations in the crest velocity.

The measured steep wave propagation velocities in the present experiments were in good
agreement with calculations based on PB. As long as no breaking was observed, the propagation
velocities of the steepest wave crest exceeded the maximum recorded surface particle horizontal
velocity. An essentially nonlinear growth of the horizontal velocities of water particles at the surface
with the increase in crest height was observed. At the inception of a spilling breaker, the horizontal
velocities at the surface attained a value equal to that of the crest. This observation confirms the
validity of the kinematic criterion for inception of breaking.

To attain high velocities at the crest, the Lagrangian accelerations of water particles grow
significantly reaching very high values. It is therefore plausible to assume that once the material
horizontal velocity at the surface attains that of the crest (at the inception of breaking) and then
exceeds it as the wave breaking process evolves to advanced stages, the accumulation of mass at the
crest leads to formation of a “bulge” on the forward face of the crest of a gentle spilling breaker as
reported by Duncan et al.4

ACKNOWLEDGMENTS

This study was supported by a Grant No. 2010219 from US-Israel Binational Science
Foundation.

1 A. Babanin, Breaking and Dissipation of Ocean Surface Waves (Cambridge Univ. Press, Cambridge, 2011).
2 M. Perlin, W. Choi, and Z. Tian, “Breaking waves in deep and intermediate waters,” Annu. Rev. Fluid Mech. 45, 115–145

(2013).
3 M. S. Longuet-Higgins, “Progress toward understanding how waves break,” Proceedings of 21st Symposium on Naval

Hydrodyn, Trondheim, Norway (National Academy Press, Washington, DC, 1997), pp. 5–28.
4 J. H. Duncan, H. Qiao, V. Philomin, and A. Wenz, “Gentle spilling breakers: Crest profile evolution,” J. Fluid Mech. 379,

191–222 (1999).
5 H. Qiao and J. H. Duncan, “Gentle spilling breakers: Crest flow-field evolution,” J. Fluid Mech. 439, 57–85 (2001).
6 J. Gemmrich, “On the occurrence of wave breaking,” Rogue Waves: Proceedings of ‘Aha Huliko’a Hawaiian Winter

Workshop (Univ. Hawaii at Manoa, Honolulu, HI, 2005) pp. 123–130.
7 M. K. Ochi and C.-H. Tsai, “Prediction of breaking waves in deep water,” J. Phys. Oceanogr. 13, 2008–2019 (1983).
8 P. Bonmarin, “Geometric properties of deep-water breaking waves,” J. Fluid Mech. 209, 405–433 (1989).
9 A. Babanin, D. Chalikov, I. Young, and I. Savelyev, “Predicting the breaking onset of surface water waves,” Geophys. Res.

Lett. 34, L07605, doi:10.1029/2006GL029135 (2007).
10 A. Babanin, D. Chalikov, I. Young, and I. Savelyev, “Numerical and laboratory investigation of breaking of steep two-

dimensional waves in deep water,” J. Fluid Mech. 644, 433–463 (2010).
11 D. Chalikov and D. Sheinin, “Modelling extreme waves based on equations of potential flow with a free surface,”

J. Comput. Phys. 210, 247–273 (2005).
12 O. M. Phillips, “The equilibrium range in the spectrum of wind generated waves,” J. Fluid Mech. 4, 426–434 (1958).
13 M. S. Longuet-Higgins, “Accelerations in steep gravity waves,” J. Phys. Oceanogr. 15, 1570–1579 (1985).
14 L. Shemer, “On kinematics of very steep waves,” Nat. Hazards Earth Syst. Sci. 13, 2101–2107 (2013).
15 L. Shemer, K. Goulitski, and E. Kit, “Evolution of wide-spectrum wave groups in a tank: An experimental and numerical

study,” Eur. J. Mech. B/Fluids 26, 193–219 (2007).
16 M. Tulin and M. Landrini, “Breaking waves in the ocean and around ships,” Proceedings of 23rd Symposium on Naval

Hydrodyn, Val de Reuil, France (National Academy Press, Washington, DC, 2001) pp. 713–745.
17 M. Perlin, J. He, and L. P. Bernal, “An experimental study of deep water plunging breakers,” Phys. Fluids 8, 2365 (1996).
18 W. K. Melville and R. J. Rapp, “The surface velocity field in steep and breaking waves,” J. Fluid Mech. 189, 1–22 (1988).
19 K.-A. Chang and P. L.-F. Liu, “Velocity, acceleration and vorticity under a breaking wave,” Phys. Fluids 10, 327–329

(1998).
20 T. E. Baldock, C. Swan, and P. H. Taylor, “A laboratory study of nonlinear surface waves on water,” Philos. Trans. R. Soc.

London, Ser. A 354, 649–676 (1996).
21 A. Jensen, D. Clamond, M. Huseby, and J. Grue, “On local and convective accelerations in steep wave events,” Ocean

Eng. 34, 426–435 (2007).
22 J. Grue and A. Jensen, “Orbital velocity and breaking in steep random gravity waves,” J. Geophys. Res. 117, C07013,

doi:10.1029/2012JC008024 (2012).
23 M. L. Banner and D. H. Peregrine, “Wave breaking in deep water,” Annu. Rev. Fluid Mech. 25, 373–397 (1993).
24 P. Stansell and C. MacFarlane, “Experimental investigation of wave breaking criteria based on wave phase speeds,”

J. Phys. Oceanogr. 32, 1269–1283 (2002).
25 H. Wu and H. M. Nepf, “Breaking criteria and energy losses for three-dimensional wave breaking,” J. Geophys. Res.

107(C10), 3177, doi:10.1029/2001JC001077 (2002).

http://dx.doi.org/10.1146/annurev-fluid-011212-140721
http://dx.doi.org/10.1017/S0022112098003152
http://dx.doi.org/10.1017/S0022112001004207
http://dx.doi.org/10.1175/1520-0485(1983)013<2008:POOOBW>2.0.CO;2
http://dx.doi.org/10.1017/S0022112089003162
http://dx.doi.org/10.1029/2006GL029135
http://dx.doi.org/10.1029/2006GL029135
http://dx.doi.org/10.1017/S002211200999245X
http://dx.doi.org/10.1016/j.jcp.2005.04.008
http://dx.doi.org/10.1017/S0022112058000550
http://dx.doi.org/10.1175/1520-0485(1985)015<1570:AISGW>2.0.CO;2
http://dx.doi.org/10.5194/nhess-13-2101-2013
http://dx.doi.org/10.1016/j.euromechflu.2006.06.004
http://dx.doi.org/10.1063/1.869021
http://dx.doi.org/10.1017/S0022112088000898
http://dx.doi.org/10.1063/1.869544
http://dx.doi.org/10.1098/rsta.1996.0022
http://dx.doi.org/10.1098/rsta.1996.0022
http://dx.doi.org/10.1016/j.oceaneng.2006.03.013
http://dx.doi.org/10.1016/j.oceaneng.2006.03.013
http://dx.doi.org/10.1029/2012JC008024
http://dx.doi.org/10.1146/annurev.fl.25.010193.002105
http://dx.doi.org/10.1175/1520-0485(2002)032<1269:EIOWBC>2.0.CO;2
http://dx.doi.org/10.1029/2001JC001077


016601-14 L. Shemer and D. Liberzon Phys. Fluids 26, 016601 (2014)

26 M. C. Davis and E. E. Zarnick, “Testing ship models in transient waves,” Proceedings of 5th Symposium Naval Hydrodyn,
Bergen, Norway, 1964, edited by J. K. Lunde and S. W. Doroff (US Office of Naval Research, Washington, DC, 1966),
pp. 507–543.

27 D. H. Peregrine, “Water waves, nonlinear Schrödinger equations and their solutions,” J. Aust. Math. Soc. B 25, 16–43
(1983).

28 A. Chabchoub, N. P. Hoffmann, and N. Akhmediev, “Rogue waves observation in a water tank,” Phys. Rev. Lett. 106,
204502 (2011).

29 L. Shemer and L. Alperovich “Peregrine breather revisited,” Phys. Fluids 25, 051701 (2013).
30 U.-Y. Pen, M.-C. Chang, and I. Lin, “Lagrangian-Eulerian dynamics of breaking shallow water waves through tracer

tracking of fluid elements,” Phys. Rev. E 87, 023017 (2013).
31 C.-C. Mei, M. Stiassnie, and D. K.-P. Yue, Theory and Applications of Ocean Surface Waves (World Scientific, Singapore,

2005).
32 K. B. Dysthe, “Note on the modification of the nonlinear Schrödinger equation for application to deep water waves,” Proc.

R. Soc. London, Ser. A 369, 105–114 (1979).
33 D. Liberzon and L. Shemer, “Experimental study of the initial stages of wind waves’ spatial evolution,” J. Fluid Mech.

681, 462–498 (2011).

http://dx.doi.org/10.1017/S0334270000003891
http://dx.doi.org/10.1103/PhysRevLett.106.204502
http://dx.doi.org/10.1063/1.4807055
http://dx.doi.org/10.1103/PhysRevE.87.023017
http://dx.doi.org/10.1098/rspa.1979.0154
http://dx.doi.org/10.1098/rspa.1979.0154
http://dx.doi.org/10.1017/jfm.2011.208


Physics of Fluids is copyrighted by the American Institute of Physics (AIP). Redistribution of
journal material is subject to the AIP online journal license and/or AIP copyright. For more
information, see http://ojps.aip.org/phf/phfcr.jsp


