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The Near-Surface Current Velocity Determined from
Image Sequences of the Sea Surface

Christian M. Senet, Jörg Seemann, and Friedwart Ziemer

Abstract—A method to measure the ocean’s near-surface cur-
rent velocity vector based on the analysis of remote sea-surface
image sequences was developed. The spatial and temporal records
were transformed to the wavenumber-frequency domain, resulting
in a three-dimensional (3-D) image power spectrum. In the spec-
trum, the signal energy of the waves is localized on a shell de-
fined by the dispersion relation of surface waves. The sum of the
sensor’s velocity and the near-surface current profile deforms the
dispersion shell due to the Doppler-frequency shift. An iterative
least-squares fitting technique and an error-estimation model was
implemented. To improve the method’s accuracy, spectral wave en-
ergy found in higher harmonics of the dispersion shell and aliasing
effects are taken into account. The most important nonlinear mech-
anism leading to higher harmonics is explained as resulting from
wave shadowing due to the low grazing angles typical for ground-
or ship-based radars. The low rotation time of nautical radar an-
tennas causes temporal undersampling, which leads to aliasing in
the frequency domain. In this paper, the improved method is ex-
amined analytically and is tested with Monte Carlo simulations.
The variation of the shape of the measured or simulated 3-D image
spectra, especially the peak wavenumber, the directional spread,
and the main travel direction, controls the behavior and accuracy
of the technique. A comparison of velocities acquired by nautical
radar and independent Doppler Log current measurements is pre-
sented. The technique’s accuracy, its limits, and its adaptability are
discussed. Additional improvements are proposed, which lead to
higher accuracy considering the shape of the spectral background
noise and the technique’s applicability to high ship speeds. The pre-
sented method is an important step toward operationalization of a
commercial wave-monitoring system based on nautical radars.

Index Terms—Aliasing, coast, current, image-sequence analysis,
least-squares, nonlinearity, ocean surface, operationalization,
optics, radar, remote sensing, ship, wavenumber-frequency
spectrum.

I. INTRODUCTION

I MAGES of a nautical radar include sea-state information.
Electromagnetic microwaves are backscattered by the small-

scale roughness of the sea surface. This radar backscatter is
modulated by long surface gravity waves. This phenomenon is
calledsea clutter[1]. A nautical radar measures in spaceand

and time . This instrument therefore is suitable to measure
the spatial and temporal evolution of the sea-surface wave field

.
The wave monitoring system (WaMoS) has been developed

at GKSS, Geesthacht, Germany, [2], [3] and is now an oper-
ationally used instrument [4], [5]. The system provides digi-
tized time series of sea-clutter images. The spatial and temporal
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Fig. 1. Illustration of a time series of nautical radar images in the spatial
and temporal domain. In the operational mode, the area selected for analysis
(indicated by the white boxes) has a spatial size ofx = 2560 m andy = 1280
m and a temporal size of 75.8 s.

sea-state information is stored as a image sequence cube of gray
values (see Fig. 1). A three-dimensional fast Fourier
transformation (3-D FFT) is used to transform the spatio-tem-
poral information into the spectral wavenumber-frequency do-
main

(1)

where and are the components of the
wavenumber vector, and is the angular frequency.
The result of (1) is a 3-D image power spectrum .
The spectral energy (or gray-level variance) of the imaged sur-
face waves is located on a surface in the-domain defined by
the dispersion relation of surface gravity waves. This surface is
called a dispersion shell. The dispersion shell is deformed by
the relative movement between the sensor and the sea surface
due to the Doppler effect. The relative movement is a superpo-
sition of the near-surface current velocity and the sensor’s ve-
locity relative to the ground. If the relative velocity or velocity
of encounter is known, the dispersion relation is used to lo-
cate spectral energy belonging to the surface waves and there-
fore can be used as a filter to separate this spectral part from
the background noise. The spectral background noise originates
from speckle (see [6]).

The determination of the velocity of encounter is a precon-
dition to the integration of the sea-state signal over the positive
frequencies, which allows the calculation of low-noise and un-
ambiguous directional spectra, [7], [8]. Therefore,
the improvement of the algorithm’s accuracy and the introduc-
tion of an error model to determine that accuracy is an important
step toward the operationalization of WaMoS II. An empirical
calibration procedure to determine the significant wave height
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using buoy data for comparison with radar data has been devel-
oped based on the assumption that the SNR of the radar spectra
correlates with the significant wave height, which is also well
known from synthetic aperture radar (SAR) image spectra [9].
After calibration, WaMoS II yields fully directional spectra and
significant wave height in real time [10]. Another application of
WaMoS II is the determination of the wind velocity vector based
on the directional and magnitudinal dependence of the spectral
background noise on the wind field [11].

An algorithm based on a least-squares method (LSM) pro-
posed by Younget al. [12] has been improved recently. The
improvements are as follows: 1) the consideration of nonlinear
spectral structures to increase the number of regression coordi-
nates and therefore also increase the accuracy significantly, and
2) the application of a spectral refolding technique to allow the
correction of temporal undersampling (aliasing) due to the slow
rotation time of a nautical radar antenna. The latter increases
the number of regression coordinates as well. The improved al-
gorithm, consisting of a linear regression and an error model,
will be presented here. To examine the response of the algo-
rithm to variations of the wave field, Monte Carlo simulations of
nautical radar image sequences and analytical examinations are
performed to test the algorithm. Accordingly, a comparison of
ship-based radar measurements and Doppler Log current mea-
surements are presented and discussed. Thus, for the first time,
the method is validated with an independent current sensor. Fur-
thermore, it will be shown with land-based radar measurements
that a typical temporal evolution of a coastal tidal current is re-
produced qualitatively. For this case no comparable data sets
have been acquired. The application of the algorithm to optical
image sequences is discussed briefly.

II. V ELOCITY OF ENCOUNTER

In this section, the measured quantity is introduced and the
principle of the method by which it is determined is given. In
addition, an error model to describe the accuracy of determina-
tion is presented.

A. Definition

The velocity of encounter is the vector sum of the plat-
form’s (i.e., a ship) velocity and the near-surface current ve-
locity , where is the vertical coordinate. The accuracy of
the near-surface current velocity measured by a radar depends
on the actual sea state (frequency-shifted by the Doppler effect)
since the imaged wave field is the carrier of the velocity infor-
mation. The Doppler-frequency shift is induced by the near-sur-
face current down to the penetration depth of the waves. The
penetration depth for a single wave is approximately half of its
wavelength 2. Stewart and Joy [13] have shown that
the component of the velocity of encounter in the direction
of the wavenumber vectoris a weighted mean current over the
upper layer of the ocean. This result has been extended [12] to
consider the full current vector

(2)

Fig. 2. (a) Intrinsic and (b) Doppler-shifted dispersion shell in the
-domain.

where is the vertical velocity vector profile. This defini-
tion is for a single wave. The extension of (2) to a wave field
(assumed to be a superposition of waves) is given in Section IV.

B. Determination

The method used to determine the velocity of encounter is
based on an adaptation of the dispersion relation of sea-sur-
face gravity waves to the wavenumber componentsand
and frequency coordinates of the sea-state signal found in
the spectrum . This adaptation was realized with a
least-squares regression method.

In the -domain, a curved plane described by the dispersion
relation of linear gravity waves is defined

(3)

where
intrinsic frequency;
acceleration due to gravity;
modulus of the two-dimensional (2-D) wavenumber
vector ;
water depth.

The dispersion relation (3) is valid when the sensor velocity and
the near-surface currents are zero.

The so-calleddispersion shell(3) is illustrated in Fig. 2(a).
Imaging of surface waves by nautical radar is nonlinear. The
linear part, described by an image transfer function (ITF), re-
sults in spectral energy, which is localized on the dispersion
shell. The impact of the Doppler term added to the intrinsic
frequency is illustrated in Fig. 2(b) and is described as

(4)

where

(5)

is the frequency of encounter (or the absolute frequency), and
is the angle between and . The dependency on the co-

sine function of implies that only the component of par-
allel to the wave’s travel direction given by the wavenumber
vector effects the Doppler-frequency shift. The Doppler term

in (4) can be written in Cartesian coordinates
as follows:

(6)
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The minimum criterion

(7)

leads to a linear system of two equations

(8)

where
and components of the velocity of encounter;

number of coordinates collected for the LSM;
expected standard deviation of the error differ-
ence.

(9)

where is the th frequency component of a selected regression
coordinate found in , and is the theoretical
frequency value calculated with following (4).

The standard deviation must be estimated (see Section II-C).
The equation system in matrix notation is given as

(10)

or in the abbreviated form

(11)

The coefficients of matrix in (10) and (11) are

and

(12)

The components of the vectorare

and (13)

To determine the unknowns and (which are the com-
ponents of the velocity of encounter), the matrix must be
invertible [i.e., ]. If matrix is invertible, the solu-
tion vector is given by .

C. Error Estimation Model

Here, an error model for the determination of the velocity of
encounter is introduced. The calculated velocity of encounter
is assumed to be the most likely vector of the “true” vector .
The difference vector is defined as the absolute error.
A priori, the absolute error is unknown. An assumption for the
accuracy is only given as a probability. For the 2-D vector

, a two-dimensional (2-D) probability is represented by
a confidence ellipse. This confidence ellipse is represented by

the length of the ellipse’s half axesand and the ellipse’s
orientation angle .

The error model is based on the assumption that the frequen-
cies of encounter follow a Gaussian distribution around
the discrete frequency bins ( is limited due to the fi-
nite measurement duration, e.g., spectral leakage). With this as-
sumption, the values of are -distributed. The number of
degrees of freedom are given by 2; the number of
spectral regression coordinatesreduced by the number of re-
gression parameters (, ). Estimating with the expecta-
tion value of the distribution 2 results in the
error’s standard deviation, which is normalized to the resolution
in frequency of the discrete spectrum

(14)

where the normalized is . The error of the deter-
mined velocity of encounter now can be assumed to be a 2-D
random Gaussian probability function

(15)

A contour line of the 2-D probability function forms a con-
fidence ellipse with the center and the probability that the
“true” value is included in the ellipse. The equation of the
confidence ellipse is given by

(16)

or substituting the eigenvalues and and eigenvectors
and of matrix into (16)

(17)

The lengths of the confidence ellipse’s half axesand are

and (18)

The orientation angle of the confidence ellipse is given by

or (19)

The scaling factor 0.683 is 2.3 for a 68.3% confidence
ellipse. A detailed derivation of the error model’s concept can
be found in [14].

D. Consideration of Higher Harmonics and Aliasing

The first version of the algorithm to determine the velocity of
encounter considered the spectral sea-state energy localized on
the dispersion relation following (4). It became apparent that the
number of regression coordinates could be increased by orders
of magnitude if the higher harmonic signals and the signals that
are folded by temporal aliasing are also considered for the least-
squares method.
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Fig. 3. Spectral nonlinearities and aliasing. (a) In ak � !-slice, the fundamental mode dispersion relation is given (solid line). Choosing two spectral wave
components (F1 and F2) allows a vector construction of nonlinear quadratic interactions:2 � F1 = H1; 2 � F2 = H2; F1 + F2 = sum peak, andF1� F2 =

difference peak. The nonlinearitiesH1; H2 are located on the dispersion relation of the first orderp = 1. The first-order dispersion relation (dashed line) locates
additional spectral signal used to increase the accuracy of the algorithm. (b) The spectral representation of temporal undersampling due to a slow-rotating nautical
radar antenna is given (thin lines). Applying spectral symmetries as a method to reconstruct the signal enables the Nyquist limit to be overcome (thick lines).

1) Higher Harmonics: One source of additional spectral
signal structures in the spectrum are the higher
harmonics. The reasons for the appearance of higher harmonics
are the nonlinearity of the imaging of the sea state by a nautical
radar and the relatively weak nonlinearity of the sea-surface
waves themselves. The nonlinearity of the radar’s ITF is caused
mainly by shadowing effects, since a nautical radar works
at grazing incidence angles. The following equation of the
harmonic dispersion relation of the orderresults by scaling
(4) with the factor 1 ( for the “fundamental mode”
dispersion relation

(20)

A schematic diagram of the first-order nonlinear structures is
given in Fig. 3(a). Regression coordinates found in nonlinear
dispersion relations apart from the fundamental mode are also
used to increase the accuracy of the algorithm.

2) Aliasing in the Three-Dimensional (3-D) Spec-
trum: Aliasing occurs if a signal of a certain wavelength
or certain wave period is spatially or temporally undersampled.
Due to the relatively slow repetition time of a nautical
radar antenna, signals that have a shorter period than 2are
temporally undersampled. The repetition time normally is
of the order of 2 s.

In the spectrum , two symmetry conditions of
the FFT are used to reconstruct signals, which are temporally
undersampled: 1) the 2 periodicity (here the Nyquist fre-
quency ) is given by )

(21)

and 2) the point symmetry to the point of origin

(22)

here is an integer used to index the intervals
. The reconstruction of aliased dispersion shells (see

Fig. 3(b) for the reconstruction scheme) to overcome the
Nyquist limit is described in detail in [8] and [15].

III. CURRENT REGRESSIONALGORITHM

The current regression algorithm is based on a two-step pro-
cedure. It starts with a rough first guess estimation of the cur-
rent vector, taking into account the fundamental mode disper-
sion relation. After the first guess estimation of the current ve-
locity, the spectral coordinates of the fundamental mode, the
harmonics (20) and their aliased dispersion shells reconstructed
with (21) and (22) are included in the regression algorithm, thus
increasing the accuracy of the method. The implemented algo-
rithm is restricted to the fundamental and first harmonic mode
because the spectral energy of higher harmonics is very low.

A. First Guess

The first guess estimation of the current velocity is based
on the assumption that the spectral coordinateson the fun-
damental mode are discriminated by a spectral-energy
threshold from the nonlinearities, the aliases, and the back-
ground-noise component. The spectral peak is assumed to be lo-
cated in the frequency interval

(23)

The spectral energy of the signal’s aliased high-frequency part
of the signal is below . The least-squares algorithm (7) and
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(10) and the error model (18) and (19) are carried out if a suf-
ficiently high number of regression coordinates (at least of the
order of ten) is selected.

B. Iterations

The iterative part of the least-squares algorithm starts with
the collection of the spectral coordinates whose energy exceeds
a much lower spectral-energy threshold than .
should discriminate the background-noise component from the
Doppler-shifted spectral signal. Next, the frequency , in
relation to the wavenumber, is calculated according to (20).

The Doppler term is estimated with the current value
of the previous iteration step 1 or of the first guess. The
estimated frequency is assigned to the interval

(24)

multiplied by the (positive or negative) integerand by the
Nyquist frequency . If the frequency is located in
the interval with an even integer , the frequency is shifted
to the interval , and the periodicity (21) is applied

(25)

If the integer is odd, the spectral coordinate
is mapped to the coordinate according
to the point symmetry to the origin (22). The coordinate

is located in the frequency interval .
This spectral coordinate is shifted to the intervalby applying
the 2 periodicity (21)

(26)

The model , where is the harmonic order, and the
indicator of the Nyquist interval, with the minimal distance
MIN is used for the linear regression if this
magnitude is less than a frequency difference value .
Therefore, for the iteration steps, (7) becomes

(27)

now extended by a dispersion-model selection. The data sets
have been processed with the frequency distance criterion

. This value takes into account only the finite frequency
resolution.

IV. A NALYTICAL INTERPRETATION

The error model was introduced in Section II-C. The results of
the error model are dependent on the spectral distribution of the
regression coordinates selected for the algorithm in Section III.
Here the variation of the spectral distribution of the regression
coordinates will be examined using simple scaling arguments.

A. Variation of the Measurement Duration

If the measurement duration is changed by changing the
number of sampled images or by changing the antenna rotation

time , the frequency resolution will vary. The frequency
resolution also is the minimal Doppler frequency ,
which can be resolved. Therefore, the resolution at which the
velocity of encounter can be determined is directly propor-
tional to , i.e., . If one scales the measurement duration

by , it follows that . Thus, the half
axes and of the confidence ellipse are scaled by

and (28)

This means that, for example, a doubling of the measurement
duration leads to a halfing of the expected error.

B. Variation of the Spatial Dimensions

The spatial extension of an image is given byand . The
following remarks are valid for a large number of regression
coordinates . A local spectral change of is then proportional
to a change of the spectral point density
of the regression coordinates. Following this, it is presumed that
a variation of or is directly proportional to . Let be a
scaling constant for . Here, is the initial number of
regression coordinates for or , and is the scaled number
of regression coordinates for or . Using this relation for
matrix of (10), all of the coefficients in (12) are multiplied
by , and holds. For the lengths of the half axes of the
error model’s confidence ellipse [see (18)], it follows that

and (29)

Consequently, the lengths of the half axes (i.e., the error) are pro-
portional to . Introducing two separate constants

, gives .

C. Variation of the Peak Wavenumber

Let and be scaled wavenumbers of the regression coor-
dinates scaled by the relations and . Substi-
tuting these into (10), the scaled matrixis given by .
Then, the lengths of the confidence ellipse become

and (30)

Therefore, the lengths of the half axes with varying wavenumber
are proportional to . For wave regimes mainly consisting

of long waves (e.g., swell), poorer results are expected than for
regimes consisting of waves of small wavelengths (e.g., wind
sea).

D. Variation of the Directional Spread

Just as the component of the velocity of encounterparallel
to the wave’s travel direction is shifted in frequency, the spectral
directional distribution (i.e., the directional spread) is important
for the accuracy of the determination of the component di-
rected perpendicular to the mean wave travel direction.

The effective influence of the directional spread is shown by
using a spectrum symmetric to theaxis as an example. In this
case, it follows directly that the coefficients and in
(10) disappear. The directional spread is varied by multiplying
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the component of the regression coordinates by the factor.
The scaled matrix is therefore given by

(31)

The eigenvalues are

(32)

From (32) and (10), it follows that

(33)

The half axis (giving the error of the component) and the
coefficient are assumed to be constant. The half axisis
then proportional to . The broader the directional spread per-
pendicular to the mean wave travel direction is, the more accu-
rate the calculated perpendicular component ofwill be.

E. Extension of the Stewart and Joy-Weighting Function

With (2), the definition of for a single wave was intro-
duced by Younget al. [12]. The spectral regression coordinates
of the least-squares algorithm originate from a wave field as-
sumed to be a superposition of waves. Let us assume a spec-
trum of a wave field that consists of a set of
wavenumbers with belonging to the coordi-
nates selected by the algorithm’s last iteration step (see Sec-
tion III-B). A weighting function is introduced extending (2),
which is for a single wave to an expression which is for a set

of waves

(34)

or in its abbreviated form

(35)

where
matrix of (10) and (11);
th element of ;

th current vector of encounter, calculated using (2).
The sum is substituted by when considering a con-
tinuous spectrum. In order to consider the impact of the Doppler
term of (4) for waves, the matrix form has been chosen.
It is obvious from (34) that the velocity vector of encounter

is quadratically weighted with and waves traveling
perpendicularly to the current direction do not contribute.

V. ANALYSIS OF SIMULATED AND MEASURED IMAGE

SEQUENCES

Data sets were generated by a numerical model to investi-
gate the algorithm outlined in Section III under controlled con-
ditions. A description of the data sets and the presentation of the
algorithm’s results will be given in Section V-A. Data sets ob-
tained from measurements and their interpretation will be pre-
sented in Sections V-B and V-C.

A. Monte Carlo Simulations

A numerical model to simulate image sequences of the sea
surface and the imaging by nautical radars has been imple-
mented at GKSS Research Center, Geesthacht, Germany, in
cooperation with Clima Maritimo, Madrid, Spain [16]. The
algorithm to determine the velocity of the encounter has been
applied to these image sequences to test the behavior of the
algorithm with regard to external hydrographic parameters. The
parameters used to calculate the image sequences are the spatial
and temporal dimensions, the frequency spectrum (JONSWAP
in this examination), the directional spread (MITSUYASU
in this examination), the water depth, and the velocity of en-
counter. The input parameters are listed in Table I. The specific
parameters of this work are listed in Table II. Initially, the
discrete grid points for the spatial and temporal coordinates are
set by a simulation software. The elevation of the water surface
is processed for each spatial grid point. The amplitudes of the
waves are calculated with a Rayleigh probability distribution.
The wave’s first time step is realized by calculating a random
phase. During subsequent time steps, the waves propagate
according to the linear dispersion relation (6). An example
of a simulated sea surface is shown in Fig. 4(a). The radar
images are calculated based on geometrical optics. An image
of a binary shadow mask is calculated by geometrical optics
[Fig. 4(b)]. On a combination of the shadow mask and a surface
modulated by the surface tilt is shown in Fig. 4(c). Speckle is
not included in the simulated image sequences, and thus the
SNR is much higher than those for real measurements.

1) Statistical Test of the Error Model:To prove the statis-
tical significance of the error model described in Section II-C,
an ensemble of 50 deterministic realizations (i.e., 50 sea-surface
sequences) of a stochastically equivalent situation were calcu-
lated by random variation of the phases and the amplitudes. Pa-
rameter set 1 of Table II was chosen. A set of 50 current compo-
nents and the accompanying confidence ellipse values
were calculated for these 50 realizations.

The model’s input current vector ( ) is (1.5, 0.0) ms .
The mean value for all 50 current components for the first guess
iteration step is (1.487, 0.073) ms. After ten iteration steps,
a value of (1.505, 0.001) ms is obtained. The increase of
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TABLE I
INPUT PARAMETERS OF THESIMULATION SOFTWARE

TABLE II
PARAMETER SETTINGS OFSIMULATIONS

accuracy of the algorithm is shown by comparing the first guess
and the last iteration step, as shown in Fig. 5.

The histograms for the first guess and the last iteration step
of the number of the collected regression coordinates, the

Fig. 4. Examples of images of (a) a simulated sea state, (b) the shadow-mask
calculated by geometrical optics, and (c) the simulation of a radar image that is
the multiplication of the shadow mask with the tilt modulation mask.

error’s standard deviation , and, as an example, the half axis
of the confidence ellipses (the histogram of half axishas the

same qualitative behavior) is shown in Fig. 6.
The histograms over show the significant increase of col-

lected regression coordinates. This increase can be explained by
the decrease of the spectral-energy threshold value of the
iterations and by considering the higher harmonics and aliases.
The increase of the mean value by a factor of 14.5 leads
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Fig. 5. Accuracy of the LSM. The calculated velocity vectors of 50 realizations
are given as points in the two-dimensional (2-D) velocity plane. The upper
diagram shows the results of the first guess, and the lower diagram shows the
results of the last iteration step.

directly to an increase of the accuracy of the algorithm by a
factor of 3.8 [see also (29)]. The histograms over the error’s
standard deviation indicate a narrow-banded convergence
to the value of 0.39. The existence of values which differ
strongly from this value is an indication that the algorithm fails
for those cases.

The histogram over the half axisshows a strong narrowing
to a significantly lower value (i.e., higher accuracy) offor the
last iteration step. The statistical significance of a single mea-
surement is therefore much higher.

2) Variation of the Directional Spread:The directional
spread of a given spectrum strongly influences the accuracy of
the result (see Section IV-D). In the simulation, the directional
spreading function following a Mitsuyasu distribution was
varied artificially by scaling the spreading parameterwith
fixed factors 1, 10, 20, and 30. Here, 1 denotes the
normal Mitsuaysu distribution and higher values oflead
to a narrowing of the directional spread. An ensemble of 15
realizations was calculated for each of the cases1, 10, 20,
and 30. The results for the half axesand are given in Fig. 7.
For the half axis , which gives the error in the mean wave
travel direction, no significant change withis observed. For
the half axis , which gives the error normal to the wave travel
direction, an increase of the error with the narrowing of the
directional distribution is obvious. The results of the numerical
simulations and those from the analytical examination [see
Section IV-D] agree qualitatively.

3) Variation of Mean Wave Travel Direction:A series of
simulations of parameter set 1 in Table II was calculated for di-
rections between the current vector and the mean wave travel di-
rection of 0 , 30 , 60 , and 90. For each of these directions, an
ensemble of 15 realizations was calculated. The algorithm was
applied 1) to the sea state spectrum and 2) the shadow mask of
the same realizations representing the case of an extreme radar
ITF, resulting in a strong effect of the ITF. Furthermore, the en-
sembles were calculated from directional spectra with a narrow
spread, for which the effect of the directional change can be seen
more clearly. Fig. 8 shows the spectral distribution.

In Fig. 9(a), one can see that the change of mean wave travel
direction directly leads to a rotation of the confidence ellipses.
Other effects such as a change in the sizes of the half axes are
not significant. The rotation of the confidence ellipses can also
be seen in the results calculated from the shadow-mask spectra
given in Fig. 9(b), but there is a strong effect on the sizes of
the confidence-ellipse half axes. This change in the quantitative
properties of the confidence ellipses becomes more clear if one
regards the shape of the integrated wavenumber spectra. There
is no change of the spectral shape when there is a directional
change (see Fig. 8, left). However, due to the directional depen-
dence of the ITF of the shadow mask, the change of direction
leads to a completely different shape of the spectra. The direc-
tional spread of the image spectrum is dependent on the mean
wave travel direction because of the azimuthal dependency of
the geometrical shadowing (see [17]).

4) Variation of the Velocity of Encounter:One simulation
with parameter set 2 in Table II for each interval of 1 ms
was calculated for a range in the velocity of encounter between

ms and (0.0, 16.0) ms . Not all
results of the algorithm are reasonable when using the funda-
mental dispersion shell given in (4) as the model function for the
first guess. Looking at Fig. 10 of [see (14)], one can see that
for all results lower than 6 ms the least-squares al-
gorithm has failed. The reason for the failure is the misinterpre-
tation of aliased spectral energy belonging to the fundamental
mode in the first guess. Fitting the wrong dispersion model leads
to high values of .

When extending the algorithm by calculating all dispersion
models of the fundamental mode, by including the aliased
models, and , a decision can be made as to which of the
models (whether the fundamental-mode model or its aliased
model) the collected energy belongs. This is visualized in
Fig. 10. Here of the fundamental mode (solid line) and
the first aliased (aliased from the interval ,
dotted line) are given. Reasonable results are given for

ms . For higher values of , the fun-
damental-mode model’s indicates a failure due to a
misinterpertation. Between and 13 ms , the
aliased model yields reasonable results.

The velocity ranges marked by the very high values of
indicate the transition zone where the sea-state energy is located
close to the Nyquist frequency. Here, the low-frequency part
of the spectrum is not aliased but the spectral high-frequency
tail already is aliased and therefore backfolded. This leads to a
misinterpretation resulting in the very high values of for
both models.
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Fig. 6. (Top) Histograms over the numberN of regression coordinates of 50 realizations. (Middle) Histograms over the error’s standard deviation� . (Bottom)
Over the confidence-ellipse half axisa. The left column denotes the first guess for all histograms and the right column denotes the last iteration.

Fig. 7. Diagrams of mean values of the half axes of the confidence ellipsea

andb (solid lines) and those of the scatter ellipsea andb (dashed lines), all
depending on the spread factorc.

B. Ship-Based Measurements

The data presented were taken aboard the R.V. Gauss (cruise
no. 268). The cruise took place from November 24 to December
13, 1995 in the North Sea and the Norwegian Sea.

1) Description of Radar and Doppler Log Data:For com-
parision, Doppler Log (DOLOG) data are used. For this in-
strument, the principle of measurement is based on determina-
tion of the frequency shift between the transmitted and received
acoustic ultrasonic signals. The DOLOG has two modes: the
bottom trackand thewater track. In bottom-track mode, the
sound wave is reflected at the bottom: the speed of the ship rel-
ative to the bottom is determined. In the water-track mode, the
sound wave is reflected from suspended matter at a certain water
depth defined by the time offset of the actual signal. The water
track depth here is 40 m. The accuracy of the DOLOG aboard
the R.V. GAUSS is 10 ms .

The radar parameters 1) number of images, 2) antenna rota-
tion time, 3) gridsizes, 4) antenna height, 5) numbers of grid
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Fig. 8. Simulated wind-sea spectra for mean wave travel directions. (Top) 0and (bottom) 90. In the left column, the sea-state spectra are given and on the right
side, the shadow-mask spectra are given.

points, and 6) thresholds were similar to the Table II parameter
set 1 on cruise no. 268.

2) Measurement Results:For a sufficiently high number of
297 radar data sets, the current vectors of encounter were cal-
culated and compared with the respective water-track DOLOG
current vectors. In Fig. 11, the comparisons of the algorithm’s
first guess and last iteration step are given.

The scatter of the vector velocity difference
for the first guess (top) and the

last iteration step (bottom) is given on the left side. The magni-
tude of scatter is given as a scatter ellipse, which includes 68.3%
of all values. A significant decrease of scatter is obvious for the
last iteration. This decrease is caused by the increase in the algo-
rithm’s accuracy due to the consideration of a higher number of
spectral regression coordinates. That there still is a noticeable
scatter for the last iteration is explained by the different mea-
surement principles of the radar and DOLOG instruments: the
DOLOG measures the velocity of the encounter based at a water
depth of 40 m, whereas the radar measures specifically in the top
layer of the ocean integrating over a huge measurement area.

Because of these principal differences, a minor scatter cannot
be expected. This hypothesis has been proved by [18].

On the right side around the same vector velocity differences
the confidence ellipses, indicating the estimation of error cal-
culated by the algorithm (see Section II-C), are given for the
first guess and for the last iteration step. The confidence ellipses
calculated by the algorithm decrease significantly from the first
guess to the last iteration. The confidence ellipses for the last it-
eration are much smaller than the scatter explained by the prin-
ciple differences in measurement. This fact predicts a higher ac-
curacy unevaluated at the present time. Therefore, a future step
must be a validation of the radar algorithm’s data comparison
with current meters resolving the vertical current profile (e.g.,
acoustic doppler current profiler).

C. Coastal-Based Measurements

In coastal waters, horizontal gradients of the tidal current are
induced by the changing water depth. Static radar signatures are
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Fig. 9. Confidence ellipses for the mean wave travel directions. (Top) 0and (bottom) 90 resulting from (a) sea-state spectra and (b) shadow-mask spectra.

Fig. 10. First-guess error’s standard deviation� versus theu component
of the velocity of encounter. The fundamental mode (solid) and the aliased
dispersion model (dotted; aliased from the interval! y; � � � ; 2! y).

generatedbythehydrodynamic interactionof thesmall-scalesur-
faceroughnesswiththecurrentgradients.Thewavesarerefracted
duetotheinhomogeneitiesofthewaterdepthandthetidalcurrent.

1) Description of Radar Data:The data sets used for the
analysis were taken by a nautical X-band radar mounted on the

island of Sylt in the German Bight in the period from February
to June 1997. Measurements were taken once an hour. One data
set consists of 32 images from successive antenna rotations. The
antenna rotation time is 2.25 s. The images cover an area
with a radius of 2 km. The observed area is of high interest
since morphological changes that are likely to lead to changes
of the flood stream situation have occurred in recent years and
are still in progress. Measurements taken hourly on February
13 from 03:00 UTC to 16:00 UTC 1997 were analyzed for the
tidal periodicity of the current velocity. The method presented
here is based on the assumption of spatial homogeneity and
temporal stationarity. The assumption of stationarity is not vi-
olated due the short duration of each measurement. However,
most of the water surface scanned by the radar is inhomoge-
neous with varying water depth. A nearly homogeneous area
873 m 873 m ( 128, 128) in size and 1400 m west
of the antenna was chosen for the analysis (Fig. 12). Except for
the measurement taken at 11:00 UTC, the static radar signatures
did not extend into the analysis area, indicating that the hori-
zontal current gradients are small. The bathymetry was acquired
by echo sounding during the period from July to September
1997. The water depth was corrected with a tidal gauge.

2) Measurement Results:The results produced by the re-
gression algorithm, the calculated current vectors and error el-
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Fig. 11. (Left) Scatter and confidence ellipses around the (right) same scatter for (top) the first guess and (bottom) the last iteration step of the vector difference
(u � u ; u � u ) given in the~u plane.

lipses, together with the mean water depth of the analyzed area
are outlined in Fig. 13. The current vector shows the temporal
evolution as expected for the tidal influence. The length of the
half axis perpendicular to the mean travel direction exceeds the
length of the half axis parallel to the mean travel direction, espe-
cially for large regression errors, because the directional spread
of the image spectrum is small. The error of the current estima-
tion is large for a low water level and small for a high water level.
This can be explained as follows: the signal-to-noise ratio of the
image spectra over the analyzed tidal cycle is correlated with
the water level. The current vector was estimated with the spec-
tral-energy threshold of the iterations adapted automati-
cally to the signal-to-noise ratio. The water level was highest
(Fig. 13) at 05:00 UTC, and 132 regression coordinates
were collected with the threshold value 0.061. At 12:00
UTC, the water level was lowest, and 52 regression co-
ordinates were selected with the threshold value 0.132.
The measurement at 11:00 UTC with the largest error ellipse is
not reliable. The SNR was so low that the 15 spectral coordi-
nates with the highest energy selected for the first guess already
corresponded partially to the background-noise component, and

thus the first guess failed. The result presented in Fig. 13 was
obtained by setting 0 m/s manually. During this mea-
surement, a static radar signature extends beyond the analyzed
area, indicating inhomogeneities of the tidal current. The mea-
surements taken from a land-based station on the island of Sylt
indicate the limitation of the method. The FFT implicitly as-
sumes spatial homogeneity on a large scale. The extension of
the current regression method to inhomogeneous areas requires
the development of new algorithms for the estimation of the
wavenumbers on a local spatial scale.

VI. DISCUSSION

As it was made clear in the Sections IV and V-A, the LSM to
determine the velocity of encounter from the wavenumber-fre-
quency spectrum is directly dependent on the shape and the dis-
tribution of the spectral sea-state signal. The wider the signal’s
directional spreading, the more accurate the component of the
current velocity perpendicular to the mean wave travel direc-
tion. Therefore, the quality of the measurements of the velocity
of encounter and the following steps of the analysis are strongly
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Fig. 12. Radar image of a sequence obtained from a land-based station on
the island of Sylt in the German Bight on February 13, 1997, at 04:00 UTC.
The square of 1400 m in width west of the antenna was chosen for the current
estimation because this area is nearly homogeneous. The bathymetry was
obtained from the Amt für Ländliche Räume (ALR).

Fig. 13. Tidal cycle of the current velocity. (Top) Time series of the calculated
current velocities and (bottom) error ellipses and water depth from a tidal gauge.
The same scale is used for both components of the current velocity. The radar
data sets were acquired on February 13, 1997 from a land-based station on the
island of Sylt in the German Bight.

dependent on the actual sea state. As an example, the quality
of the results is better for a well-developed wind sea than for
swell during calm wind conditions, where the spectral distri-
bution both in direction and in frequency is narrow. The error
model (confidence ellipse and error’s standard deviation) allows
a quantification of the confidence.

The accuracy of the method is physically limited by the spec-
tral frequency resolution for optimal cases and is on the order
of 0.1 ms to 0.2 ms in the operational mode where 32 im-
ages are sampled by the nautical radar. This accuracy can be

increased by a prolongation in time, and thus by collecting a
higher number of images.

The accuracy is increased significantly by considering of the
higher harmonic and aliased signals. Taking into account aliased
signals allows utilization of the WaMoS II, even on fast cruising
ships. In addition, the adaptation of the threshold to the SNR for
the first guess and the iterations increased the reliability of the
algorithm. The automatic adaption of the threshold calculates a
constant spectral-energy threshold for the entire spectrum. As
the 3-D image spectrum is folded by the low-pass filter impulse
response function of the sensor, which lowers the spectral den-
sity for high wavenumbers, one comes to the conclusion that a
constant threshold is not the proper quantity to separate signal
from noise, especially for high wavenumbers. A task for the near
future is the consideration of the spectral shape of the impulse
response function. Two methods could be applied to obtain a
threshold value depending on the wavenumber. One method
involves a 2-D fitting algorithm to parameterize the shape of
the spectral background noise. A second alternative is to deter-
mine the spectral impulse response function by regarding the
sensor’s properties, such as spatial resolution, the shape of the
transmitted electromagnetic field of the antenna, etc.

VII. CONCLUSIONS

A reasonable method to determine the velocity of encounter
was developed. In combination with the implemented error
model, the method is a convenient tool that is now in opera-
tional use. The analytical interpretations agree well with the
Monte Carlo simulations and with the measurement results.

The limits of the presented method are the assumptions of
homogeneity and stationarity of the sea state or the near-surface
currents in the observed area. These limitations become critical,
especially in coastal regions where processes such as wave re-
fraction or diffraction and current gradients due to strong hori-
zontal bathymetric gradients occur. To overcome this limitation,
a method is under development that allows the determination of
the near-surface current and other hydrographic parameters on
a local spatial scale [17], [19]. Recent advances include the ap-
plication of the presented method to optical image sequences
acquired in hydraulic wave tanks for harbor or offshore plan-
ning purposes [20] or to determine the wind-drift velocity in
wind-wave facilities [21].
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