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When a block on the rigid bottom of a layer of slightly compressible gravitating liquid is instan- 
taneously jerked upwards, acoustic and gravity waves are developed. In this paper a two-dimen- 
sional problem is set up, with an infinite-strip block in a layer of uniform depth. There are two 
distinct regions in space and time; in one (the first in time), the acoustic disturbance predominates 
with gravity entering as a perturbation, in the other the gravity disturbance is dominant, with com- 
pressibility producing a small correction to the motion. In both cases, the ratio of the velocities 
of long gravity waves and of sound in the medium characterizes the perturbation terms. 

The form of the acoustic pulses from a source of this type appears to be of theoretical interest, as 
point and line sources are usually treated in the literature. The gravity waves are akin to Cauchy- 
Poisson waves and have been much studied in connexion with tsunamis and ocean waves in 
general, but the treatment of the compressibility effect is t;hought to be original. 

INTRODUCTION 

The aim of the present work is to study the disturbance at the free surface of a gravitating 
and slightly compressible liquid layer (ocean) of constant finite depth, when a block of the 
solid bottom is suddenlyjerked upwards through a small distance. The problem is treated as 
two-dimensional, that is, the block is taken to be a very long strip of constant width. 

This form of initial disturbance is a possible representation of the sea-bed earthquake 
or volcanic action which generates tsunamis, or long gravity waves of destructive effect; 
indeed, it is essentially the form used by Hendrickson (I962) in his appendix to a general 
survey of tsunamis (Wilson, Webb & Hendrickson I962). Stoneley (I963) followingJeffreys 
& Jeffreys (I956, ?17.09), uses a similar block elevationr at the water surface, and derives 
a result for the surface displacement at the head of the gravity wave trainl, modified slightly 
by compressibility. Takahasi (nj47) derives the formal solution (without compressibility) 
for a general two-dimensional bed disturbance and then assumes that the wvidth of the dis- 
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turban ce is very large (of order 100 kin) compared with the depth of the ocean and accord- 
ingly evaluates the integrals very approximately. Hendrickson (i962) works on the oppo- 
site hypothesis, namely that the width is small compared with the depth. 

Earthquake fault lengths of the order of tens of kilometres, or many times the ocean depth, 
are known, so this representation of an ocean bed disturbance as a long strip is not neces- 
sarily unrealistic, although the solution, regarded as a function of the disturbance, will be 
of demonstrable value only at a distance from the strip small compared with its length. 
This need not be inconsistent with the requirement, posed in later sections of this paper, 
that this distance be large compared with the layer depth. Moreover, we later derive a 
result for the compressible-fluid effect on the velocity of the gravity wavefront which depends 
only on the layer depth and not on any other length scale of the problem, and we may expect 
that the strip length will likewise have little effect on this velocity. However, in the realm 
of finite initial disturbances, Unoki & Nakano (I953) have considered the Cauchy-Poisson 
problem for circular disturbances at the surface (similar to Stoneley in this respect), of 
both impulse and elevation type, and they examine two distributions of impulse over the 
surface, block and smoothly heaped; they ignore compressibility. 

It is almost certain that the locality of the recording station is of great importance in 
determining the essential characteristics of a distant tsunami record. Unoki & Nakano 
(1953) successfully isolated some features of their records and showed that the initial dis- 
turbance (assumed to be at the surface) was of impulse rather than elevation type; more- 
over, they were able to distinguish between block or heaped-up distributions by the pre- 
sence or absence of beats in the record; but their tsunamis were generated comparatively 
locally, and presumably the effect of the run-up to the station was not as marked as it would 
have been at a more distant station. Munk (i 962), discussing distant tsunami readings, has 
this to say: 'In general it is found that the spectra of different tsunamis at any one station 
look alike, whereas one tsunami at different stations has no reproducible spectral features. 
The inevitable conclusion is that tsunami records are governed principally by the bottom 
topography near the recording station, and not by the character of the source.' 

Thus the determination of the type of earthquake responsible for a given tsunami is 
difficult except from local or sea station records. 

Little seems to have been written on compression waves in the ocean. Pidduck (I912) 

gave the formal solution, as an integral, for a point source in a liquid layer of finite depth, 
and showed that the Cauchy-Poisson formula is obtained by passing to the limit of infinite 
sound velocity, so that the disturbance manifests itself instantaneously at any point. Bondi 
(1947) investigated the effects of gravity and surface tension on a compressible fluid half- 
space, with a point source of waves at a finite depth; he found that 'faster-than-sound' 
propagation along the bounding free surface is possible under the action of surface tension, 
but that no such phenomenon can occur under gravity action alone. As remarked above, 
Stoneley (X963) has noted the first-order effect of the sound velocity on the gravity wave 
near the front. In Bondi's work the shape of the compression wave (and its reflexion in the 
boundary surface) is given by elementary acoustic theory, but the other authors do not treat 
the direct and reflected waves which are the sine qua non of seismology, beside the various 
surface and interface waves which may arise. Stoneley (1963) comments that the sound 
waves will presumably show up as the T-phase on a seismogram, but does not investigate 
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them further. However, the compressible ocean is taken into account in the theory of sub- 
oceanic Rayleigh waves (Stoneley I926), which thus belong to the family of interface waves 
just mentioned. 

In this work, it will be shown that the acoustic surface disturbance separates into two 
parts. There is in general a system of sound waves, direct and due to reflexion alternately 
at the free surface and the bottom, from the edges of the block disturbance (hereafter 
referred to as 'the block', for convenience), but for an observer directly over the block, 
another system arises from the point of it nearest to the observer. The first system is de- 
scribed in ? 2 (exact pure acoustic disturbance, with gravity correction) and in ? 3 (asymp- 
totic expansion at very large distances), the second system is treated in ?4. This second 
system is an alternating set of discontinuous jumps, again direct and reflected. Unoki & 
Nakano (I953) report that a vessel which happened to be passing over a submarine volcano 
at the moment of eruption received a violent 'sea shock'; this agrees with the predicted 
theoretical result for the direct wave. In practice the subsequent reflexions would not be as 
strong as in the theory, because of transmiission of some energy as seismic waves and pos- 
sibly owing to absorption at a soft layer on the sea-bed-both these factors reduce the re- 
flexion coefficient at the bottom. Also in practice the initial shock is less severe than that 
given here, as the block is not instantaneously disturbed. M 

In the theory of the sound waves, we regard gravity as a small correction or perturbation 
near the beginning of each wave; the correction is calculated to the first-order in the 
parameter (gh/c2) and its product with dimensionless time (ct/h), where h is the layer depth 
and c is the sound velocity, and gravity is otherwise regarded purely as a means of maintain- 
ing contact between the liquid and the bottom. We can describe the sound wave system 
as a pure acoustic disturbance, modified by a gravity perturbation. Since this perturbation 
involves the time, it increases in importance as time goes on, and eventually the acoustic 
disturbance is swamped by the gravity terms. For a heavy and slightly compressible liquid 
this occurs in a comparatively short time, so that the gravity waves will predominate 
rapidly and the acoustic disturbance will be hardly noticeable to an observer. Apart 
from this, we have the dissipative effects mentioned above for an acoustic reflexion at the 
bottom in a practical case such as the sea, which induce something of the order of exponen- 
tial damping in the acoustic waves. 

In both the acoustic wave and the following gravity wave treatment, the problem is 
fully linearized; this is satisfactory for not too large times, since the disturbance amplitude 
is assumed small compared with the depth. Thus, possible non-linear effects, such as a 
steepening, unpredicted by the linear theory, of the wave fronts are ignored. 

After the sound waves come the gravity waves, modified only slightly by compressibility. 
In the incompressible case, we find that the surface initially heaps up over the block, but 
the displacement decays to zero at large distances as we would expect; then the heaped-up 
elevation spreads out into progressive waves in each direction; the development of the first 
wave is described by three terms in an expansion in power series of an appropriate dimen- 
sionless time variable (? 6). Webb (1962) claims, without appending calculations, that in 
an incompressible fluid, on passing to the limit of an instantaneous block upthrust, the 
surface profile matches the block immediately; this idea seems to have been due to a con- 
sideration solely of the second system of ' sea shocks ' rnentioned above, and is an erroneous 
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conclusion as the present calculation reveals. In fact, this paper shows that the result of 
adding all the compression arrivals together in both systems and proceeding to the limit of 
infinite sound velocity and zero time-this being the time at which all the arrivals come in 
together in this limit-is exactly the same as the formula for the initial elevation over the 
block in the incompressible theory. 

At large distances, the gravity wave takes on more and more the appearance of an Airy 
function, exponentially small in front and oscillatory behind (? 7). The leading wave propa- 
gates with the velocity (gh) of long waves in liquid of depth h, with a decaying wave train 
behind it. The effect of compressibility is now of the first-order of small quantities, again 
involving the parameter (ghlc2), and can be approximately inserted into the expression for 
the leading wave to show that the velocity of this wave is decreased by a factor ( 1- gh/c2). 
Lastly, in ? 8, the tail or coda of the wave is examined for times long after the passing of the 
leading wave, and is found to be an exponentially damped non-dispersive train of waves 
moving a little faster than ordinary long waves and with wavelength about 5 6 times the 
depth. The compression effect is again calculated, and is found to be an increase in the coda 
velocity, by a factor {1 - 009 ghl/c2}, together with a decrease in the damping coefficient 
with regard to time. The coda is not the limit for large time of the Airy function describing 
the leading wave; a tranlsition takes place from one form to the other as the time increases 
beyond a certain value, depending on the observation point, but certainly greater than the 
leading wave travel time. 

It will be noticed that in all steps ofthe solution-for both the acoustic disturbance modified 
by gravity, and the gravity wave rnodified by compressibility-expansion in powers of a 
dimensionless parameter (gh/c2) is involved, and squares and higher powers have been 
neglected. The occurrence of g in the numerator makes the parameter relevant for the first 
type of disturbance-if g tends to zero, a pure acoustic problem develops (which has been 
completely solved in this paper); the factor C2 in the denominator causes the parameter 
likewise to tend to zero as the sound velocity increases and becomes infinite in the limit of 
incompressible fluid with gravity waves only. The parameter is thus very useful in both 
types of approximate treatment of the problem. 

1. THE GOVERNING EQUATIONS AND THE FORMAL SOLUTION 

We take a system of Cartesian co-ordinates (x, z) with the origin at the midpoint of the 
block on the ocean floor, the x axis in a horizontal direction perpendicular to the edge of the 
block, and the z axis vertically upwards (see figure 1). The total width of the block is 2 a, 
so that its edges are at (+ a, 0), the ocean will be taken as having uniform length h, and we 
suppose that the block is jerked suddenly upwards through unit distance at time t 0, 
so that the displacement of the sea-bed in the z-direction is given by 

H(t) I x I a.( 1) 
0 otherwise 

The linearized equation for the displacement potential 0, defining displacements 
( aq/ax, d54/az), in a gravitating comnpressible fluid with constant sound velocity c throughout; 
its depth, is (Lamnb I957; Bondi I947; Stoneley I926) 

12 .t=202 (1.2) 



CHANGE OF SHAPE OF BOTTOM OF COMPRESSIBLE OCEAN 499 

where y zgl2c2. (1.3) 

We may put 0 = eyz (1.4) 

and then the equation for 3b is V214y2- (1.5) C2 at2 

z 

h 

a a 

FIGURE 1. The physical situation. 

Let us take an even Fourier transform in x and a Laplace transform in t, 
00o 00 

T - dxcos (kx) dte-tPs. (1.6) 
o o 

Then from (1.5), T satisfies the ordinary (lifferential equation 

d2'F 2 

dZ2 = kt2+r2+-t6 T, (1.7) 

with the general solution T - B(k,p) e/tz+ C(k,p) e--z, (1 8) 

where , - (k2+y2+p2/C2)I (k > 0) (1.9) 

B and C must now be chosen to satisfy the boundary conditions at the bottom z 0 
and at the free surface z -- h. At the bottom, the vertical displacement 

aA/az =(a#/az+yO) e-z 

is given by the formulae (1 1); we take the double transform of these expressions, as given by 
(1.6), and note that the Laplace transform of H(t) is I/p and the even Fourier transform of the 
function (0, Ixl > a; 1, Jxl <a) is 

fcos (kx) dx sin (ka). (1.10) 

Substituting (1 8) into the transformed boundary condition and putting z = 0, we find 

(1 + y) B- -- y) C I 
sin (ka). (1.11) 

At the free surface z = h, if the surface displacement is i, we have the kinematic condition 

a/ - 0Z)= (1.12) 
and from Bernoulli's equation gq + (d2qS/t2)z=h=0, (1.13) 

so that gs+~ -t = g(2Y)+n21e 0 (1.14) 
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at z =-- h. The transform of this equation (1 14) with (1 8) yields 

[p +g(,p+7)] e11B+[ _-g(p7)] ehdC 0. (1.15) 

The solution of equations (1 11), (1.15) is 

[p2 _g(p _y)]e -t _ 
sin (ka) 1.16 

_(-y) [p2 +g(/j_7) ] &1+ (1+ y) [p2 _g(p _y) ] C- pk -- 

C - [p2+ g ( 
- 

7) ] e/h sin (ka) 1.17 
(l> - ) [p2 + g (p + 7) ] e/," + (1- + ny) [pi2 g(p-_ )] e--11 p2k(-) 

Now the inverse transform of (1.6) is 

1 2 GoP 

2fifLdPtdfePt TJ dkcos (kx), (1.18) 

where L is the Bromwich contour in the complex p plane running froM K-iooo to K+izo 

in such a way that all the singularities of the integrand lie on the left. Then the surface dis- 

placement q is given from (1.4), (1-8), (1.13), (1-16) and (1.17) as 

1y f dhptf1 dk cos (kx) sin (ka)___ 
C -=ef12i JL /S dte sk p2 cosh(ph) +pgsinh(ph) _1(7g +p2) sinh(p,h) /, * ( 

The remainder of this work is devoted to a discussion of C as given by (1.19). We shall 
find it very useful to consider the sine and cosine product as two sines: 

cos (kx) sin (ka) '[sin k (x + a) -sin k (x -a)] 

-Fsink(a+x) +sink(a-x)]. (1.20) 
We accordingly consider 

1 ' dk sin (kX) 1 
eh2T2. ji d e 30 k p2cosh (uh) +1agsinh (1h)t-l)-y(yg+p2) sinh (uh)/(1 

with the understanding that X > 0 and that when this function has been evaluated, C is to 
be found by adding the result for X a - x to that for X== a + x, when both these are 
positive, that is, when lxl < a and the displacement is being observed at a point directly 
over the block; while, when x > a, q is to be found by subtracting the result for X --x - a 
from that for X - x+a. This corresponds to all other points on the surface. The case 
x < -a follows from x > a since the disturbance is an even function of x. 

2. THE PURE ACOUSTIC ARRIVALS FROM THE EDGES, WITH 

GRAVITY PERTURBATIONS 

We consider the integral (1 21) for the surface displacement qx. 
From theoretical experience, we know that at least part of the integral will contain 

terms representing a disturbance travelling with the speed of sound in the liquid. The ocean 
is treated as an acoustic medium with gravity acting as the mechanism holding it in contact 
with the bottom anld exerting onlly a perturbing influence on the acoustic waves. A para- 
meter characterizing the perturbation is clearly y times some characteristic length scale; 
this may be taken as h near X =0, and may possibly be X when X/It is large, that is, at a 
great distance from the block. (Later on, observing the motion at a fixed X, we obtain the 



CHANGE OF SHAPE OF BOTrOM OF COMPRESSIBLE OCEAN 501 

well known gravity waves in an almost incompressible medium. For long waves, their 
velocity is (gh) 4 and since the ratio of this velocity to c is small for most oceans, the two kinds 
of motion are well separated in time.) 

It is accordingly convenient to expand the expression for 1x in powers of y times some un- 
known length, or velocity-time, scale, and retain the zero-order term as the pure acoustic 
disturbance while the first-order term will be a measure of the gravity perturbation. We 
treat g similarly, since g - 2c2y (but keep g and y separate for convenience, for the moment). 
It is fortunate that this attack is available, since the factor ,u-(y2 + k2 +p7c2) t in the 
hyperbolic arguments causes great mathematical difficulties in exact treatment of the 
problem. The neglect of y2, however, renders it comparatively simple. 

The method which we will apply in thlis section is to expand the integrand in (1.21) 
in powers of e-/h (wave expansion), as well as of y, and then use Cagniard's (I939) tech- 
nique to transform the double integrals inato single convolution integrals the first few of 
which can be evaluated exactly. The idea is to write the double integrals essentially in the 
form of a Laplace transform and its inverse; Cagniard's original paper was applicable to a 
more complicated type of integral with two radicals, but the present case-with the simpli- 
fications described above-is straightforward. 

We start by writing, in (1.21) 
sin (kX) = - f e'1X (2.1) 

Then the wave expansion gives 

[p2 cosh (ph) +F {#i2g - y(p2 + yg)} sinh (ph) /u] -1 

= p2 z (-)n 1 + (2n + 1( ) (Y1-g P? + O( C22, g4 i)} e-(2n+ )th. (2.2) 

We now change the variable k to 8, to factor p out of the exponents, by 

k pO, (2.3) 

so that , = (k2 +p2/C2) p= , (2.4) 

and the nth exponent is 

-ikX- (2n+ 1) fh = -{ioX--F (2n + 1) vh}, (2.5) 

where v1 (02 + IC2) (2-6) 

Since (2.1) has introduced a simple pole singularity at the origin k 0 (now 8- 0) 
in the integrand (1.21), we must replace the lower limit 0 by a small real positive number 
a in the 0-plane, take the imaginary part required by (2.1) and then the limit as a -? 0. 
The result of all these operations on (1 21) is 

= eyh212. rpdpet.ep-2 hf fdOE( )nexp -p[(2n + 1) vh+i8X] 

x {I + (2n + 1 ) (y -_ gV2) /pv}. (2 7) 
For brevity, write (2n+ 1) h (2.8) 

and Rn2 (2n (2.9) 

We change the variable againl, to C defined for each n by 
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Solving for 8, we find: RI 8 - -- iXg + H, (C' - Rlicl) (2.11) 

where the positive radical is to be taken for C real and C > Rn/c; 
dO H __ 

R2ddg-- (C2_ ??2Cz6292-ix, (2.12) 

84-- 0 corresponds to H Ic, (2.13) 

R22 Hn C -iX(C2 _ R2lC2) 1 (2-14) 
The contour of integration F in the ' plane is shown in figure 2. 

g plane 

| n Rn 

ta Hn) 

FIGURE 2. The Cagniard integration contour. 

At C Hn/c, dr/dO iX, so the contour starts out in the direction of the imaginary axis. 
The point 0 -- 3 goes over into ( -- Hn/c + iX8, to first-order in S. As 0 increases without limit, 
arg C approaches the value tan-' (X/Hn), by (2.10), so F has an asymptote along the line 
shown. 

We now distort r into the following path: a small quadrantal arc of radius XS described 
in the negative direction, bringing us to the real axis; the real axis from this point 

g-Hn/c+X& to +oo; 
and an arc at infinity connecting the real axis to F and the asymptote. The contribution 
to the integral from the arc at infinity vanishes because of the exponential factor exp(-pa); 
the contribution from the small quadrantal arc is the residue at C - Hn/c multiplied by 
(-i 7), and is denoted by qB and evaluated in ? 4; the contribution from the real axis we 
shall call qA. 

Substituting (2.10) to (2.14) into (2.7), and making use of the fact that over the range 
C = Hnlc +X to g Rn/c, the radical (C2 R2/c2)' is pure imaginary for sufficiently small S 
and X + 0, we find that the integrand is real over this segment of the real axis, so that there 
is no contribution to (2.7) from the segment and we may replace the lower limit of the 
integration by C RnIc. Since this point is a branch point singularity only, we can inte- 
grate over it. The imaginary part can be extracted and simplified, and in the perturbation 
terms we use the relation g = 2c2y to cancel two terms, but still retain y and g separately; 
then the contribution from the real axis to qx becomes 

U -y21rdPept~ fEZ - 

ln Oetd 
A g 27Ti JL n=~O l 2JR' (g2 Rn/c2) (g2 

- 
Hn/c2) 

+ (2n+ 1)X Jf -g_R2 /C2)/IR2-y] 
g e-P (2.15) 

J n/c (Cv2 R2/c2)l (C2Hf2/c2)}J 
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Now, either by use of the convolution theorem for Laplace transforms or by interchanging 
the order of integration and carrying out the p integration, we have for m > 0 

2ii fL pm+ lJT f(C) eX dg =m!TH(t -- T) f (t g) mf(g) dg. (2.16) 
Hence 

2 00 Hx 
t(n+iXf [( -Hd2)R-y Ct~)d 

2A eyh E (-)nH(t RnIC) (-62 Jr -6 (g2_R21c2)i (g2Hn/c - 

7T~~~~~~~~~~~ ( /R/c H2_RC2) (_H/) ) 

=- i )nHt-c)(a c2t2(X2-Hn2) +RnH2 

n=O Rl 

A-2+ 1) 
rgx 

(2 R2\Agtan 
-1 

1ct-2A 
t- 

2HnXct(c2t2-R2]) 
1 

+ ( n+ ) ER2 t Vt--2} --tan [g + 22 H21C2) /t 2 _ y] C(t - f2 d 

(2.17) 
The arctangents are to be taken between 0 and tR. 

The leading term in (2417) is exactly the pure acoustic disturbance from the edge corre- 
sponding to X. We here recall that for Ix l< a, the values for X = a Jr x are added together, 
and for xI> a, the value for X-x-a is subtracted from that for X-x + a. 

The behaviour of the pure acoustic part, which we may denote by qv,eYh to remove the 
factor erh, near the arrival tirnes tn R'c is given by 

7T~ ~ C_2 CE (n(X2 - H)6 ( R n) . 2.8 
n=O n n n n== 

So the profile rises and falls steeply from its values at t =Rn/c, for each n, in approximately 
parabolic manner. The separate terms are bounded as t -*oo, and the bound of the (n +1 lth 
term inq11c is 1- tan 2Ht x _ 2 tan- tan-' 

it X2--H~~~~~~ ~~ x. ~(2.17) 

2h ss 

h \?.. " 

h l 

ob'~~' / 

// 

The (2r9)tanentrias are to irec tak n bewe 0) and n-ief elctdwvsa re.ufc n 
bttom laing tcrmdance217 with texatheoy the pueaoustrica dpicsturbance frmthe taeldties core- 

spondin from X. sysem her recages thatder reflxio I(figurte valuhechnes foof sig are addch togter, 

fctorreysponea to hane arriva tirnseo th wanC Sgveon bylxo tte ii otm 

6h VOL.- /25 18A 

ic I~~~~~ 

parabolicmann FIGURE 3.art therm iage systdem for reflected arrivals. f he( +)t 

bttom in accorane it thethor ofgoetia opisH ic h tae ie r 
those rom asyste of iages andeelein(fgr 3).n- Th chngsofsgno1ec 9tr 
corresond toa chane it o phseo thwv on rel Xinathrgdboom 

63 VOL. 258. A.~~~~~~~~ 
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There are two such sets of arrivals, one from each edge. For a point not over the block, 
with x > a, the first arrival is from the nearer edge, is in the same directional sense as the 
block upthrust, and so represents a compression wave; but the first direct arrival from the 
back edge is in the opposite sense (indicated by a negative sign) and can be described as a 
rarefaction wave. This is because the block can be split into two terms and written 

z H(a-x) -H(-a-x); 

H(a - x) is 0 for x > a and I for x < a, so this is a positive step pushed into the liquid which 
one expects naturally to produce a compression wave; the term - - a - x) is 0 for x> - a 
and -1 for x < -a, which leads one to expect a rarefaction wave from this edge. At a 
point directly over the block, with -a < x < a, both first arrivals are rarefactive. Actually 
these are not the leading manifestations in time of the whole disturbance y, for there is also 
an arrival 1B from the nearest point of the block, the foot of the perpendicular to it from 
the observation point, which reaches the observation point first. This will be studied in ? 4. 

To facilitate computation, we now introduce the dimensionless time and distance 
quantities T =ct/h, Y -x/h (2.20) 

and we write also N= 2n+1. (2.21) 
Then (2.17) gives 

I ()N)[(2?2itn 2NYT(T2- Y2-N2)1 2.2 
' 
If 

N=1( 
)NH[T (Y2+N i] tan I 

T2(Y2 (N2) N2(Y2 N2) (222) 
N odd 

We may recall that for x > a, we subtract the result for X x - a from that for X x + a. 
Hence, for X= x-a, Y (x-a)/h > 0, the leading arrival (N 1) of 1L is positive. 

The first five arrivals of the purely acoustic disturbance for the particular value Y = 1 
are shown in figure 4. The behaviour at the beginning of each arrival is well exhibited, as 
also the arctangent behaviour which takes over fairly soon after each steep rise or fall. 
A particular term in (2-22) starts at T = (Y2 + N2)i and tends to (2/ff) tan- ' (N/IY) in absolute 
value as T -> oo; thus at a fixed Y, after a large number of arrivals N->ea, the oscillation 
tends to the value 1. 

We can describe in general terms the effect of varying Y. As Yincreases, the arrival time 
for each N increases, so that the record is stretched in the direction of the T axis. Also the 
limiting value (2/1) tan-' (N/Y) of each term decreases, so that the individual peaks of the 
arrival record are flattened out. Ultimately, however, the oscillation still tends to 1. 

The composite record of pure acoustic waves from the edges is a superposition of the 
record for arrivals from the nearer edge and a similarly alternating record for arrivals 
from the farther edge. If the observation point is over the block, the first arrivals will both 
be negative, in the contrary case that from the nearer edge will be positive. Moreover, 
after a sufficiently long time, the two sets of arrivals will interlace. The condition for the 
nth arrival from the farther edge to lie between the nth and (n + 1) th arrivals from the nearer 
edge is (x > 0) 

fx-af2+(2n-\)2h2 < (x-Fa)2+(2n-1)2h2 < lx-aI2?(2n1)2h2. 

The first inequality is obviously satisfied; the second gives 

So the arrivals will inlterlace after the time corresponding to this value of n. 
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In practice, as mentioned in the Introduction, there will be considerable loss in ampli- 
tude of the reflexion arrivals, perhaps bec ause a soft bottom will cushion the disturbance, 
and certainly because some of the associated energy will be transmitted into the solid 
medium as seismic waves. Thus the oscillation in each record will not tend to 1, but will 
decay to zero with time. 

04 

a0-2 -1 4 1 
02 

0 2 4 6 8 10 or 

-0.2 

FIGURE 4. Arrivals from near edge, at a point not over the block disturbance. 

It remains for us to consider the effect of gravity on the acoustic-dominant disturbance 
CA. By (2.17), after some algebra, the first-order terms (involving g) are found to behave 
like (t-Rn/c)Y' near the arrival times, and so are less important than the terms Cc which 
suffer discontinuities in slope at the arrival times. Over a period of a few reflexions, t-RI/c 
is of order hlc if X/h is small, and of order X/c if X/h is large, so that the ratio of the perturba- 
tion terms to q, (about g(t- R/c) /c) is gh/c2 or gX/C2 in the two cases. The length scale must 
be of the order of hundreds of kilometres for this ratio to be significant for the ocean. At 
much later times, however, the gravity terms will dominate; this will represent the tran- 
sition zone. 

By use of (2.2) we may show rigorously that the higher powers gm or ym of gravity are 
associated with higher powers (t- Rn/C)m+? of the retarded time, for each integer value of 
m, near the (n +1) th arrival time. The proof first associates these powers with descending 
powers of p; the behaviour of the Laplace transforms for large p is connected with that of 
the pulses near their arrival times (see, for instance, Friedlander 1958), and this is verified 
directly by the remainder of the proof. 

3. ASYMPTOTIC FORM OF THE EDGE ARRIVALS AT A GREAT DISTANCE 

In ? 2 we obtained exact forms for the acoustic disturbance, and a perturbation due 
to gravity. But, by use of a different approach to the original integrals, we can obtain 
another result which is an approximation only, but should be mathematically valid when 
X is so large that yX becomes comparable with unlity. This arises because of a curious term 

63-2 
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in the integrand of (1.12). It may possibly give a better picture of the acoustic arrivals 

1A (now coupled with gravity) at large X/h than the expressions (2.17), as we have doubts 
about the effects of gravity on one pulse, between arrival times, for yX - 1. 

The approximate technique which we shall apply here is due to Sommerfeld, and depends 
on the branch lines in the integration with regard to k, when k (and p) are considered as 
complex numbers. We write 

sin (kX) i 2 (eikX- e -ikx) (3.1) 

and take a wave expansion of the integrand as it stands, without performing any expansion 
in powers of y, 

[p2 cosh (ph) +ug sinh (1h) y (yg +p2) sinh (ph) /#j -1 

2________ (p2 -4g+y(yg+p2#n _ _ 2/1 W t192 _g+y(y9ff+p2)l\ e-(2n+1),ah (3-2) 
y(yg +p2) -p2 jt2g0 ()fljp +g } en+ +p2) 32 

The integration contour for eikX(X > 0) is now distorted in the k plane into a small quad- 
rantal arc about the origin, which is now a pole, to the positive imaginary axis, and along 
this axis to a large quadrantal arc connecting it to the positive real axis at infinity; on ac- 
count of the factor eikX, the contribution from this last is vanishingly small (Jordan's lemma). 
Similarly, the integration contour for e-ikX is distorted to the negative imaginary axis and 
two other quadrantal arcs. The contributions from the two imaginary axis integrals are 
found to cancel. The contributions from the quadrants round the pole are equivalent to 

qB (see ? 4). 
Now (1.21) has no branch point as it stands, because it contains only even functions of 

411. But under the wave expansion this property fails and a branch point appears at ,I --0, 
from (1.9). When the Laplace transform is inverted, p is a complex number which can 
always be taken to have positive real part, but the imaginary part runs from negative to 
positive values. For Jp > 0, there is a branch point pu 0, k= i(p2/c2 +y2) in the fourth 
quadrant of the k plane, which lies between the paths for e-ix and so will contribute to that 
integral; for Xp < 0, the branch point k = i(p2/c2 +y2) 2 in the first quadrant contributes to 
the integral for eikX. 

If we take the branch cuts to be given by Rp u 0, so that the correct branch of,u in the 
k plane is Mu > 0, the cuts are hyperbolic arcs from these points to ? ioo respectively, and 
the contours must include loops about these cuts as shown in figure 5. These loops form the 
Sommerfeld contour (Lapwood I949). On these loops we set 

i - iv, (3.3) 

where v is real. Then on the corresponding branch cuts, we find to order v2 

eTikX exp [-( ( 2 )2x-(p2/c2y2)J (34) 

By (3.4) the principal contribution will come from the neighbourhood of the branch 
points v-0 (i.e. ,lC = 0). So the classic technique is to expand the rest of the integrand in 
powcrs of,ua (or v); integration term by term then yields the asymptotic expansion in powers 
of h/X, so the method is best applied for small values of this parameter. We shall keep only 
the leading terms here. Using (3.2), (3 3), (3 4) and (1.9), the k integral in (1.21) is 
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transformed by the change to variable v (which runs from -0o to oc for fp < 0, and from 
oo to -oo for -fp > 0), and eventually yields (for allp) to order X-i 

__- eyh z28 1 E1 r I pdp eXp [pt- (p2lCl + 72) -Rnl 
VA * \Te7( XI7) > =0 2-i I L (P2 + yg) (p2/c2 y2)+ ( 

The integrand in (3 5) has branch point singularities at p ? Jyc and simple poles at 

p =+ii(yg)= ?iycj2. 

k plane \ \(p22\& 

-fp O 

0 0 

S2 ' 

I/J 

FIGURE 5. The Sommerfeld integration contour. 

When the contour L is folded over the two branch lines from p - jiyc to ,i ? i)c-00 
for t -Rn/c > 0, the contributions from the poles can be evaluated exactly by the calculus 
of residues: 

+ contributions from the branch lines. (3.6) 

These arrivals begin with an impulsive start, the value of the cosine at the start being 

cos {yRn (V2-1) -47} 

Thus, for large X/h or yX of order unity, a new mathematical form appears for the acoustic 
response, which includes both compression and gravity effects. For example, the period of 
a cosine is 2irJ/(2)c/g (which is of the order of 1000 sec for the ocean). 

The contributions from the branch points in (3X5) can be shown to be O(1/y2X2), as 
against O(a/(yX)a) for (3.6), and to begin like (t -Ri/c)mh on considering their behaviour 
for large p, by Friedlander's (I958) argument. Hence,ars yX>1, (36) is a fair 
representation of u . 

The result is interesting because it cannot appear for an incompressible layer for which 
T 0, but apparently 'blows up' as y nc0. The reason is not far to seek. In the expression 

on the left-hand side of (3a2), the quotient sinh (4uh)/u is bounded near yX 0, and as y fair 
the term involving this quotient becomes negligible. But the wave expansion splits sinhi(,h) 
into 2 (e/th-e-uh) and then separates the two exponentials. Hence nears 0e this term in the 
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denominator assumes overriding importance in the power series expansion, which leads 
to (3.6) as shown. 

We remark that if we expand in powers of y (times a length scale), as in ? 2, before taking 
the wave expansion, thus starting from equation (2.2), we eventually obtain equation (2.18) 
anew for the behaviour of 1A near the arrival times, with slight differences due to the fact 
that the asymptotic expansion implies X/h > 1. 

4. THE ACOUSTIC ARRIVALS OVER THE BLOCK 

We now turn to the contribution qB from the small arc about C = Ha/c in figure 2 (? 2). 
Substituting from (2-10) to (2.14) in (2.7) and taking the residue at C' Ha/c, multiplied by 
(-2iir), and then the imaginary part as indicated for the ( integration, we find 

qB =eryh Ii 1wd () -(2n+l) g jexp p t- n)) (4.1) 2iri J Pn=O 2pc \C/ 

This follows also from (2.7) at 0 = 0 directly, since the transformation (2.10) is regular 
there. 

Following Jeffreys (I93I), or Jeffreys & Sells (i963), we may effect a (possibly more 
realistic) combination of the pure acoustic terms with the variation due to gravity. For 
n not too large, we put '21" 

1- (2n+ 1) - exp [- - gl (4.2) 
2pc x 2pc 

in (4.1); then (Jeffreys &Jeffreys I956, ?21.011) 

n=o \C/I]) CC/ 

The initial behaviour of each arrival 

can be determined directly from the equation (4.1). 
Now, the result (4.3), and indeed the result (4.1) from which it was derived, is inldepen- 

dent of X. That this would happen, we could foresee since X appears only through e-ikX 
and when the residues at k- 0 (0 - 0) are taken, Xdisappears from the calculations. Hence 
when x> a, the operation described under (1 2 1) means that we are to subtract two equal 
terms, so that qy receives no contribution from q7B for points not over the block; when however 
Ix < a, we add two equal terms and obtain a contribution to a which is twice the value of 
(4 3). 

The reason for this behaviour of rn iS as follows. For lxi > a, the observer is not directly 
over the block, and the nearest point of the blt the observer is the near edge; the farthest 
point is, of course, the far edge. We thus find travel times from each edge, as described in 
? 2 with figure 3. This corresponds to the record 17A. But when the observer is directly over 
the block, the nearest point of the block is the foot of the perpendicular to it from the 
observer (figure 6), and since this perpendicular has length h the first arrival, for which 
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n 0, comes in at time t = hlc. The wave is then reflected at the surface and returns to the 
bottom, at the point from which it started. The amplitude of the disturbance has been 
assumed small compared with the typical length scale of the system, so the return travel 
path is also of length h; the wave suffers a further reflexion at the bottom and again travels 
up to the free surface, reaching it at time 3h/c, and the process is repeated. 

This record qB is superposed on the two records from the edge discussed in the preceding 
section, for the case IxI < a. 

By (4.3) or (4.4), each arrival begins with an impulsive start, and since q 2qB+ terms 

(qA)I the jump is twice the size of the initial disturbance. This would explain the violent 
shock felt by an ocean vessel which happened to pass over a submarine volcano at the 
moment of explosion, as reported by Unoki & Nakano (I953). The subsequent shocks would 
not be so severe, because the reflexions at the sea bottom are subject to attenuation (in the 
same way as the reflexions qA), and also because a volcano, being more triangular than 
block in shape, would reflect the rays returning from the surface in a different direction. 

, ,, 

ih 
.. a 

2a 

FIGURE 6. Direct arrival paths at point over the block. 

The factor 2 arises because 'B is made up from both the incident wave and the reflected 
wave. The alternations in sign are due to the change 1T of phase in the waves on reflexion 
at the rigid bottom. The pure acoustic effect associated with qB resembles that of a pipe, open 
at one end and with a piston at the other end, when the piston is suddenly displaced a 
short distance along the tube. 

As in the working for the disturbance iq, we may substitute T -ct/h, from (2.20), and 
write the whole contribution to v from (4.3) as 

2[H(x+a) -H(x-a)] eyh , (-)nJ (2n+l)g (T-2n-1) H(T-2n-1) 
n==O 

= 2[H(x + a) -H(x - a)] eyh Yb* (4 5) 

The Heaviside operators in x give the block locality, and the factors 2 eyh are left out of the 
definition of 1b for convenience. 

For the comparatively large value gh/c2 - 1 and 0 < T ?25, the behaviour of qb 
is depicted in figure 7. The first six arrivals or so are nearly straight line portions following 
the arrival times, in agreement with (4I4), the later terms show concavity upwards until 
the twelfth (23 ? T ? 25) which begins to curve downwards; simultaneously, the rise of the 
initial value of the odd swings (first, third, . ..) is halted. Later, the oscillatory nature of the 
Bessel functions will cause the arrivals to fluctuate after the impulse; this begins earlier 
or later according as the value of gh/c2 is larger or smaller. 
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We observe thatlb = 0 when T 4m, where m is an integer; for (4 5) gives 

qb = E 2 (2n+1) (4m-2n- 1) (4.6) 
T=4m n=O C 

and the terms E and E cancel in pairs. 
n=O 2m-1 

I ' 
VIB 

12 )B 150 

0.8 - 

0.4- 

0- 
1 5 9 13 17 21 25 T1 

FIGURE 7. Jump arrivals fB over the block. 

By treating (1P21) in a different way, we can obtain some information about the cumu- 
lative behaviour of the terms in lb for large times. Removing the factors 

2 eyh [H(x + a) -H(x-a)], 

and neglecting 72, but not performing the wave expansion, we find that the residue at 
k -0 (6 = 0) gives from (1.21) 

tlb 12Pd (4.7) 2f i L p cosh (ph/c) + yc sinh (phlc)' 

g has been replaced by 2yc2. 

If we expand in powers of e2PhIc, we will obtain (4.4) anew. But instead of this we may 
evaluate (4 7) approximately by residue calculus. The integrand has an infinity of simple 
poles on the imaginaryp axis, and also atp 0; each of these will contribute a residue when 
the contour L is closed by a large semicircle on the left for t > h/c. 

Whent p 0, replace p by ico where @ is real; then the poles occur where 

cot ,)- (y'h) (,,n) (4.8) 
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of which an approximate solution is 

C (N- )2) (N?) (4.9) 

for integer values of N. If yh < 1, this is a good approximation even for N- 0; it is certainly 
good for sufficiently large N. 

We note that if we had taken higher powers of y, they would have yielded higher 
powers of (yh) on the right-hand side of (4.9). 

At the poles p- i, with w given by (4 9), 

dj (Pcosh(Lk)rd ycsinh(c)} (-)+1((N+ )iT+(N4[h7>)} (4.10) 

So, pairing N 0, 1, 2, ... with N= -1,-2,-3, ..., we find forlibin (4.7) the value 

b * H(tjC) [~N ( os{(N+-) 7+yh/(N+ l) X} T++y (4.11) (N+vI)rt-v+2,yh/(N+1)n '1 I+Yhj 

The last term is the residue atp 0. We have written T -ctlh as before. 
We look next for an approximate form of (4.11) for large T. Although, as it happens, 

the sum can be found exactly for 0 < T < 1, by writing z for (N+ 1) ir, inserting a factor 
(sec z) and integrating round a contour which first encloses the positive integers and is 
afterwards suitably distorted to give the residue at the other pole, the method breaks down 
for T > 1 because the distortion cannot be performed. For the same reason, the steepest 
descent technique fails with the new integral. 

A different way out is therefore sought for large T. We apply the Euler-Maclaurin 
approximation to (4.11), replacing the sum by an integral over the range -o to oo; we 
may also change the variable to z, where 

z (N+2) 7. (4.12) 

elilTf 2 (4.13)2y Then lb = C211 eWirrexp [iT(z+ )-ln (z+- )+iz] dz+ 
2 (413) 

For values of yh and Twith yh < 1, (yh) i T? 1, the integral can be evaluated by the method 
of steepest descent. There are two saddle points, at 

z - (yh)l +l+ 6h)i (4.14) 

and they give (substituting for T) 

'b i (2) t-sin (( _ t (4.15) 

Thus as time goes on, this component oscillates about the mean height 1 of the pure acoustic 
impulses, since qB- 2 eyhlb in I x I < a. The period of the motion is X (2h/g) I and the amplitude 
decays as t-1. 

We note that the effiect of compressibility, manifest through the sound velocity c, no longer 
appears for this part of the disturbance (this being not the whole but only a component 
that is expected in jxj < a together with 'lA); the gravity wave dominates and we are in the 
last stage of the transition zonle between the two governinlg phenomena. 

64 VOL. 258. A. 
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5. THE INITIAL SURFACE DISPLACEMENT IN THE INCOMPRESSIBLE LIMIT 

Before we turn to the regions in space and time where the controlling mechanism is that 
due to gravity, with compressibility playing only the part of a perturbation of the motion, 
there is one aspect of the purely acoustic disturbance, which deserves a glance. Let us 
consider what happens to the sum total of this disturbance when c -> so and t - 0 in such a 
way that ct -> oo, so that all the arrivals which make up ;A and B come in together in an 
infinitesimally short time after the initial block disturbance. The sum total in this limit 
must be the same as that obtained by taking an incompressible fluid in (1 2 1) and calculating 
the initial elevation of the surface over the block; that is, this initial elevation can indeed 
be regarded as a pure acoustic effect. 

First, let us consider CA as given by (2.17). 
In the limit we are considering, the gravity terms contribute nothing; for the first two 

have t(-- 0) as a factor, and the last one has 1/C2 (-? 0). So only the acoustic part of qA will 
give any contribution. We have 

tan-1 2H Xct(ct2-Rn)1 - 2 tan-' HnX+?I(Xt4) (5.1) 

Hence, as ct -> oo, (2.17) gives (compare (2.19)) 

since eyh - 1; we replace Hn by (2n + 1) h. 
Now, if 00 

S-- S(w)-EI ( -)n tan-' (2n +1) w, (5-3) 
n=o 

then ~~~~ds 002n+1 iT then dw= n(-) +(2n+1)2w24w2coSh(/2w) (5.4) 

(by contour integration) is uniformly valid in any region not including w 0. To recover 
S, we now require its value for some w. Taking w oo, all the terms in (5 3) are numerically 
equal to '-r, the sum oscillates between the limits 0 and 17T with equal weights, and may be 
taken to have its mean value 17r (Cesaro convention). Taking w > 0, and making a change 
of variable, we have 

_ dw' I IT/l2w dw" 7 
S =~i -4T I '2 cosh (ff/2w') = cosh w =tan-lexp(2w) (5.5) 

We observe that as w -> 0 through positive values, S given by either (5 3) or (5 5) tends to 0 
also. When w < 0, we find similarly 

S =-tan- {exp (7rl2w)}. (5.6) 

So S is indeed an odd function of w, as one expects. 
Now, let us put w h/X and see what I'A contributes to q when two values of Iix are com- 

pounded as described under (1.21). First, let us take x > a. Then (x-a) and (x+a) are 
both positive, and subtracting the value for X x - a from that for X x + a, we obtain 
(continuing to write CA for this part of the disturbance) 

2 r l {______ a))_ 
________ 2 sinh_(ita/2h) 11A= T ta- xpt- 2h J-a~ x - 2h Jj = ita- cosh (itx/2h) ( Ixl> a). 

(5.7) 
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For IxI < a, the results for X a -x and X a+x are added, and we find here 

/A =--tan-1 cosh (-ffx/2h) (IxJ < a). (5.8) I sinh (-fa/2h) 
We now turn to the contributions qB which give the arrivals over the block as in ?4. For 

x > a, we are not directly over the block, and the contribution is 

t/B ? (|X| > a). (5 9) 

02 _ 

0-2 

0 2 4 6 E/cX 

FIGURE 8. The initial elevation (incompressible fluid). 

For JxJ < a, we will obtain values for IB twice those given by (4.3) or (4.4). Proceeding to 
the limits c -? oo, t -. 0, with ct -? oo, we again find that the gravity correction disappears 
so that the initial disturbance is still pure acoustic, and the oscillatory sum results: 

00 

B- =2 i (-)n 2 -2+2 -2.... 
n=O 

We use the same convention as before and take the value of the sum as 1, the mean of the 
fluctuations. This is physically sound, for we can use the pipe analogy discussed in ? 4, 
and argue that the unit movement of the piston at one end induces unit movement at the 
other end, if the pipe is filled with an incompressible block of fluid or matter. So 

^1B- (Ix < a).(50 
Then I -- 

IA+7B 

- -tanl cosh (irx/22h) + 2 1 sinh (-fa/2h) (II <a) (5.11) 
IT sinh (-flh T cosh fx2h 

by (5.8) and (5.10); and the same result follows from (5.7) and (5.9) for jxJ > a. So, for 
all x, the initial elevation in incompressible fluid is 

2 t lsinh (ita/2h) (.2 

The graph of i,0 as a function of x/h =46 is shown in figure 8 for the value a/h =x- 
64-2 
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The function i0 has the expected properties of being symmetric about the axis x 0, 
with a maximum at that point, of diminishing to zero as x ->oo and as alh - 0 and approach- 
ing the value 1 as a -> oo for IxI < a. It is, of course, also a smooth curve. This property is a 
little difficult to foresee from the start, as the pipe effect might be hastily assumed to be the 
only contribution (Webb i962). 

6. THE DEVELOPMENT OF THE GRAVITY WAVE 

We proceed now to examine the form of the disturbance y when gravity is the dominant 
mechanism, as in the classical theory of waves in incompressible media. To begin this 
investigation, and also to include to first-order the effects of compressibility on the motion, 
we expand the integrand of (1 21) in powers of each of the two quantities (p/kc)2, g/kc2, 
and neglect squares and products tllereof. It is convenient to write p = iw, so that 

(02 2 

ju2 == k2 2y _-C2 - k2 _ -2 , (6.1) 
C2 C2' 

and to the first-order 

-e7h 2If o) ,, dk sin (kX) qx - 2- )X2 i d k 02 cosh (lh) -1ag sinh (ph) ? y(yg - (02) sinh (ph) l/ 

e T! sin (kX) 'wcoh d(et = 
T k 2li JQ2cosi (kh) -gk sinh (kth) 

X + 2 (k 2sinh (kh) -gk cosh (kh)) (6 2) 
2 kc (2 cosh (kh) -gk sinh (kh) 

Here Q is a contour in the cd plane which runs from -oo to oc below all singularities of the 
integrand. In (6.2) these singularities are poles, and the integration with regard to wd can 
be performed by the calculus of residues. For t < 0, we complete the contour Q with a large 
semicircle in the lower half-plane, and since Q has no singularities below it the integral is 
zero. For t > 0, Q is closed by a semicircle in the upper half-plane; the first term in the 
integrand of (6 2) has simple poles at w ? {gk tanh (kh)} , and these contribute together 

1 f dk sin (kX)_ eYhH(t) J dkk cosh (kh) cos{gktanh (kh)} t. (6.3) 

The poles are the values of the frequency of simple harmonic gravity waves in water of 
depth h. 

The second term (first-order approximation) has double poles, and after some algebra 
the residues are found to give for this term 

eYhH (t) 2 gh f dk sin (kX) [{2 tanh2 (kh)-1} cos {gk tanh (kh)}- t 2e c yh csh(kt 

+ (t{gk tanh (kh) } t sech2 (kh) sin {gk tanh (kh) '} t]. (t64) 

We substitute in terms of dimensionless parameters and variable: 

kh- A) x/h z6, a/h- zG, X/hrz1/, (g/h)lt-r. (6.5) 
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Then, combining (6.3) and (6A4) 

1 Go? dA sin (/?A) 
/X =- eyhH(r)J -Tcosh A jcos (A tanh A)G T 

gh 0IA}co(66) 
+ 

I gh [(2 tanh2 A-i) cos (AtanhA)- r+2(AtanhA)i rsech2A sin (A tanhA) T] . (66) 

We now see that the velocity scale implicitly assumed small compared with c in the expansion 
leading to (6.2) is (gh)1, the velocity of waves long compared with the depth. This is exactly 
the same as the assumption yh < 1 in the discussion of the acoustic waves, and holds equally 
good for terrestrial oceans. 

Let us write an expansion 

S/X = ()Er-()T H(T) H(T C+1c (6 7) 

and we approximate here also to 

eyh exp (e ) -1 (6.8) 

Combining (6.6) and (6 8), we find 

IydA sin(/?A) 
?'T) -J c - oscA os (AtanhA)IT, (6.9) 

Cl=1 (fi T) 1 Tf J dA sin (A) {tanh2 A cos (A tanh A)l T 
+4sech2A (A tanhA)I Tsin (AtanhA)I T}. (6d10) 

In this section, we concern ourselves only with the initial behaviour of the gravity wave, 
that is, the initial surface elevation and its spreading out to either side. We may expand the 
integrands in powers of T2 and integrate the first few terms exactly, while it will appear that, 
in principle, the whole series could be integrated. Three terms will suffice to display the 
generation of the first wave from over the block. 

The principal contribution to the integral, under expansion, comes from the neighbour- 
hood of the origin, /IA 0 O(1), so that the expansion will be valid for T2//? < 1 or gt2/X K 1; 
in order for a few terms in the series to give a good approximation we therefore require 
that gt2/a or gt2/x shall be small compared with 1, according to whether we are directly over 
the block or not. At X 0 the method possibly breaks down; but we assume physical con- 
tinuity of the surface over the edges of the block, since Ix = 0 when X= 0. Then (6.9) 
becomes !0 fodAsin (flA) 

0 
()s AtanhA)s 1 () s s 

lo I 
T ahA S1 )(-1 

7/O i 0 A. cosh A s=O (2s) . 19s.0 (2s)! s-s' (1) 
where Im, n f< 

os A) Am tanhn AdA. (6.12) 

For s 0, we have m -1, n 0, and 

1, - f sin (,BA) dA l f oeifiA dA (6.13) 

For ,Bi> 0 the contour in the complex A plane can be completed by a large semicircle 
in the upper half-plane passing between two of the points A =(N+ 1) ri, where N\ is a 



51.6 C. C. L. SELLS 

non-negative integer, which are zeros of cosh A, and also a small semicircle over the origin. 
The residues at the poles give oni summation 

-Iff g- 2tan-Iexp -I-fff) (fl> 0). (6-14) 

Similarly -1, 0 -{ tl-2tan-1exp (-raf)} (f5 <0). (6.15) 

To find q from vx we have to subtract the result for X = X- a from that for X = x - a, 
or (which in this case is the same thing) add the result for X a - x to that for X= a + x. 
The results hold for both Ixi > a, since 10 (and in general, 'm n) is an odd function of 
/ X/h. So, when 0 has been found, we add its values for fi - X- and af+i , a and 
being defined by (6.5), and this gives q0, the correct surface elevation over the block at time 
t. Likewise for Th1 5V2 .... The analogue of (6 7) is 

^/ H(T) r) (-2 H /(3Tf(T) r?n()6) ) (6-16) n=O C Jra? n=O C 

From (6'11), (6.14) and the above, the value of qO(a, 60 O) is 

2 2 sinh 
1 _2 [tan-I exp {-ff(a )}+ tan- exp{-r-1 )}] - _tan-l sinh ((21); (6*17) 

19 2 2 19~~~~~~~~i cosh (17E)' 

the same result is obtained if 6 > a and the other results are used, as a check. 
This value of qO(ac,60), the initial elevation of incompressible fluid, is in complete 

agreement with the expression (5.12) found by adding all the pure acoustic arrivals in the 
limit c -* vo. Thus qo(a, 6, 0) can be looked upon either as this acoustic limit or as the effect 
of the block displacing a volume of fluid upwards and to one side. 

As remarked in ? 5, and shown by figure 8, the function qo(aQ 6, 0) exhibits the properties 
of taking a maximum value at g 0, about which it is symmetric, and of decaying to zero 
at large e. 

The further terms in iOj(and hence 10), which represent the spreading out of the initial 
elevation into waves, are given by (6-1 1) in the form of more complicated integrals. For 
s > 0, the pole at the origin disappears but multiple poles appear at the zeros of coshA and 
the residues become awkward to determine and to sum. We therefore apply other methods. 
First, we need Io 1. Introduce a new parameter K into I10, and we obtain from (6.14), 

(6.15) d-s-inh-(/?A)- = (sgn/l) I,ff-2tan-lexp (il)} (K>0). (6.18) 
Acosh (AK) 2\2K1 

Differentiate both sides of (6.18) with respect to K and then put K 1. Then 

'0,1 cosh (Iffl) (19) 
This gives the next term in (6-11) for #0, and hence CO. The new term in qO is found to be 
positive for E rather larger than a, and negative when 6 is in the neighbourhood of zero, 
so that at first the profile falls in the centre and rises farther out from the block; this is the 
first stage in the development of the wave motion. 

To find more terms in principle, we return to the general expression (6 12) for Im n. 

Integrating by parts twice and rearranging, we have for m, n > 0 

(t+ 1) (n+2) Im, n+2 =2m(n+ 1) Im_i,n l++{n2? (7a?1)2fl2}Im,n 
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The recurrence relation (6.20) serves to reduce the suffix n to 0 or to 1, and we can obtain 
the further terms in (6 11) successively. It is convenient to keep /o in the form of a sum over 
two values of/I; to order T6, we find 

2 1sinh (Pit) 1 2 /7 

+4! 2 T A 
osh (pt/I) 'cs c(A oshT (t) 

1 6/ I [OA 17Tr(3-,2) 
ta 

(*lt/I) / / {coh (i7/) 
6! 2 Lcosh(P/I) 24cosh (T)csh(t/I) 3}]( 

0 4 

2 2 

FIGURE 9. Development of first wave (incompressible fluid). 

For a = that is 2a =h or the block width equal to the liquid layer depth, the develop- 

series (6621) were taken, and the wave is seen to be fully developed when T (g/h)(t 212; 
after this time, the fourth term (which is negative near 4 0) becomes important and 
forces the water surface down again near the origin, to start the next wave. In detail, the 
hump which is formed originally at the origin falls at first and begins to separate into two 
wave crests a little before r - 1 2, one in x > 0 and the other in x < 0; these both travel 
outwards (only x > 0 is shown in the figures), and the trough in each develops at about 
T _P *8 and follows the crest outwards. When the development of the first wave is complete, 
at X- 2X2, the amplitude of the wave is 007 times the bottom initial disturbance, and the 
wavelength is about twice the layer depth h. 
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We now turn to the modification of i10 by compressibility, as exemplified by (6.7) and 
particularly the first term il, given by (6.10). The expansion in powers of T gives 

1/2iro ()s), T2s {(2 t-s) Is- ls+2-sI 1,J. (6.22) 

The integral IL1, 2 (corresponding to s = 0) cannot be expressed in terms of elementary 
functions, but it can be manipulated into a series akin to that for Euler's dilogarithmic 
function, or expressed as a finite integral. The other integrals are all calculable in principle, 
and after much algebra we find to order T6 

--- -i tan1 exp ( iT/j) 
- 8 exp (-Inifl) (tandp) (Inp)4}p 

72 fl(3- fl2) 74 1 8fl(4-fl2) + f T(3-8fl2 +[-l){tanh(Irfl) 
2 ! A 8 cosh (-l) 4 ! 48 ,B 7 cosh ( iTfl) 

T 6 [1 fl(27 -5fl2) IT (,5,B4- 54l2 + 29) tanh(I -ff,B) 
6! . i 24 cosh (IiTfl 96 cosh (I 2gAf) 

_f 27 fl(f - 1 8,B_+ 29) {coAsh (-fff) - 3})(6 3 

No convenient law seems to follow for the successive terms in either to or tl, and for 
further terms, although they can be computed in principle, the labour of computation 
increases. 

010i 

0-10 1 W 

0 

-0-05 2 

-0v10 0 

FIGURE 10. The 'compressibility wave' to first order. 

For the same value of nu as before, x 2- the curves for Cl are shownk in figure 10. As the 
time taken for the first acoustic pulse in compressible fluid to reach the surface is at least 
h/c, and (followinlg the argument of ? 5) many such pulses will have to arrive before the 
surface is effectively smoothed out, we require values of (g/h)it considerably larger than 
(gh/c2)i. For an ocean 2 5km deep, with c-15 2 x 104 cm/s gh/c2 is about 0 01, so the first 
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time shown, r = 06, is fairly plausible, and the development of q1 is continued from this 
time. There is a depression on each side of 6 0, which travels outwards and releases a 
crest and trough in a manner similar to q0. 

Since the scales of the two figures 9 and 10 are in the ratio gh/c2 001, we see that the 
average difference between q0 and I . 0 + q1gh/c2 is about 1/200 q0, so that in the develop- 
ment ofthe first gravity wave over the block, the effect of compressibility is hardly noticeable. 
It can be easily visualized, for two corresponding curves q0, 81 at given r, 6 and ax, as a very 
slight perturbation or bulge, on one side or the other according to the sign of a1, of the q0 
curve. 

7. THE ASYMPTOTIC BEHAVIOUR OF THE LEADING GRAVITY WAVE 
AT LARGE TIMES 

We again consider the equation (6 6) which gives jx as a gravity wave with a compression 
perturbation term. We obtain I from ax by putting f - a +6, oc 6, and adding. Let us 
perform this operation and then make a change also in the definitions of Co, 11, of equation 
(6.16) if.; keep eyh as a constant multiplying factor representing the effect of decreasing 
density as we rise from the layer bed, and write instead of (6416) 

v eyh17 q+9c2 1l+-- v (7.1) 
Then, by (6.6) 

1 00 dAA 2 sin (QA() cos ( AA) 1 

I1O ITJo A. cosh A cos (A, tanh A)'T (7.2) 

=1 0 dAA 2sin (aA)) cos (6A) 
ff30 A. coshA. {(tanh2 A-) cos (A tanh A) -T 

+ ]I (A tanh A)W sech2 A sin (A tanh A)W 4. (7.3) 

When 6 and r are comparable and both large compared with unity, while a << 1, the 
integral (7.2) becomes one which has been approximately evaluated by Hendrickson (i962). 
Takahasi (I947) has also treated a form of (7.2) approximately for a > 1, that is, when the 
block width is very large compared with the liquid depth; however, the Hendrickson 
method would apply equally well to this case, if we were to start from (6 6) instead and 
work with T and ,. We here describe Hendrickson's method, applied to (7.2), and then apply 
it to (7 3) also. For simplicity of description of the method, we assume a < 1; later, analogous 
results will be derived for rather larger values of a. 

By a Dirichlet theorem, if we prescribe a suitable lower limit, say 1, instead of 0 for the 
integral (7 2), then as the parameters 6 and T increase without limit, separately or together, 
the integral tends to zero like 1/6 or 1 /r. Physically, this is because interference between 
neighbouring crests and troughs of the integrand becomes very marked as 6 (or r) increases. 
So we may consider the integral from 0 to 1 for the moment. In 0 < A < 1, we can expand 
the integrand into a power series in a special way; the two cosine terms, which contain the 
two large and important parameters, are left as cosines but their argument is put into power 
series to two terms; the rest of the integrand is cast directly inl this form, because the signifi- 
cant contributions to the integral come from a neighbourhood A.-0(1 /g, 1 /T) of the origin 
and 6, T are both large compared with unity, so that A. is small. Since 6, T are also large com- 
pared with a, and oc <t 1, the factor sin (aA), which is 0 (oc/t,/T) in this neighbourhood of 
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A, can be treated as a second-order small quantity approximately equal to (aA), so that 
we have first 

[cos {fA- +( AtanhA)r dohA. (74) 

Since the argument of the second cosine in (7A4) has no turning point on the positive axis, 
for 6, r > 0, we can either apply Riemann's lemma or integrate by parts to show that this 
second term is O(1/6). (Hendrickson expands in power series and retains only the first 
term; this is satisfactory for 0 < A < 1 if r ., but the above seems more general.) 

In (7.4) we put Of = rl16=(gh) tlx. (7.5) 

Since 6 and r are comparably large, as mentioned earlier, r- will take values in a neighbour- 
hood of 1. We shall soon see that a must be restricted to be less than about 2 for this method 
to be valid. 

In order to take account of the initial variation of (cosh A)-1, we expand this function, 
as well as the cosine argument, in a power-series, retaining the first two terms only, and 
then rearrange the integral in the form of an Airy function: 

lo = J (1-2A2+...) cos6{A(j -) + 1o-A3+...}dA 

a 
a cos{A(l-) + &orA2} dA-rf (1-o+a+ -A2) cos 6 {A( -o) + 1 oA3} dA 

- a (g&jbfcos(*u3+( (-) (1(--)u) du+O(j) -lo sin6(1-o+1r) 

-r ) Ai 0 ) ( i-)), (76) 

since (Jeifreys & Jeifreys I956, ?17.O7) 

Ai(z)s cos(3-u3+uz) du. (7L7) 

Hendrickson (I962) has plotted the function (7 6) graphically, using the separate re- 
presentations for positive and negative argument of the Airy function in terms of Bessel 
functions of order zy- (Watson 922, ? 6 4). The Airy function Ai (z) is also tabulated for 
all real values of z by Miller (9946). In order to see physically what happens as 10 
varies rom small to fairly large values (compared with 1), we content ourselves here with 
noting the asymptotic expansions for large positive or large negative values of the argument 
(Watsonl I922, ?7.23) 1 

Ai (z) ~2 Aexp(-szA), (7.8) 

Ai(-z) isin (2z'4 r (z l) (7-9) 1 z z4 
Now, for ar < 1, that is, from (7.5) x > (g)- t (7.10) 

the argument (262/of)1 (1- o) is positive and tends to infinity as ou - 0. Hence, by (7.8), 
the disturbance is exponentially small. In fact Ai (z) is monotonic decreasing for z > 0, so 
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that the disturbance begins effectively at x (gh)l t, that is, the head of the wave propagates 
with the velocity (gh)l of waves long compared with the depth. 

After the first swing, the Airy function decays in amplitude and behaves like (7.9) for 
z less than about -2. When C > 1, the argunment is negative and tends to -oo as Cr increases; 
then (7.6) and (7.10) give 

8 Cri 1sin(( -) (C 1)l+4 1 (7.11) 

However, the growth of Cr is restricted by the necessity for the point of stationary phase of 
(7.6) to be given by a value of A within the approximate range of integration, 0 < A < 1, 
in order that the power-series approximation shall hold good; the stationary point is 

A -{2(-r-1)/Cl}o 

and hence Cr should be roughly between 1 and 2. For Cr < 1, the stationary point recedes to 
the negative A axis, there is no dominant term and (7.8) is appropriate, as remarked above; 
but for C > 2 the stationary point lies in A > 1 and the extension of the range to 0 < A < oo 
in (7.6) will include it and introduce spurious effects. This restriction was not noted 
by Hendrickson. 

We shall expect the method to break down when C > 1 since then the behaviour of the 
cosine argument in (7.4) is not well represented by the power-series development to two 
terms. This inequality means that a time long compared with the travel time of the leading 
wave has elapsed, and we are well into the tail or 'coda' of the disturbance. But when 
Xr > 6, the integrals (7.2) and (7.3) can be attacked by a more powerful method (this is 
done in the next section), and we find that the numerical values of the constants are rather 
different, while the amplitude decays like rT- exp (-yi r), where Yi is a positive constant, 
which feature is not exhibited by (7.11). We therefore conclude that the results of this 
Section are valid only when Cr is not too large. 

We observe that near the leading wave r = 1, i0 is O(6 W), and when Cr is a little larger, 
say, for the next nine or ten waves, by (7.11) q0 is O(6-4). Thus the term retained in (7.4) 
and (7.6) is indeed larger than any of the terms neglected, which are O(6 1). 

One of the restrictions placed by Hendrickson on the data can be removed, namely the 
condition that a is to be small compared wit;h unity. If we demand only that a be small com- 
pared with 6 and r, so that within the significant neighbourhood A. O(1/6, 1/r) of the 
origin the factor sin (oA) is still 0(a/c, alr) but not necessarily of the second-order of small 
quantities, we can take account of sin (oA) as well as cosh A, and we find 

qo ={ +( _ff 132}( )A(2 (1- -)} (7.12) 

Thus, considering the effect of the block to this order for a 0- O(1) makes little difference 
near the leading wave C - 1, but will cause the amplitude to fall off as Cr increases beyond 
the value 1. This may be taken as the effect of destructive interference between the two wave 
trains which are generated from the front and back edge of the block; if we start from (6.9), 
giving 1l, we obtain an analogue of (7.6) involving the integral of the Airy function, and the 
two such expressions arising from fi z ? i represent two superposed wave systems which 
interfere. 

65-2 
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The formula (7.6) is in fact a good approximation for ca <x as stated by Hendrickson, 
since then in (7.12), 1a2 < I 

We now proceed to examine the effect of compressibility, exemplified by (7.3), near the 
leading gravity wave. For ac < 1, the same kind of rearrangement as in the working of (7 6) 
leads to 

a 5- 4 2 Ar 10-7o- 2 { 262) 3o) 
qf 

--- A 
- (u()+- Ai'- ((-) (7 13) 

on use of the formal result 

Ai' (z) -f u sin (u3l +uz) du. (7.14) 

Now, comparison with rpo as in (7 6) leads to an anomaly at r = 1. For any fixed cr, the first 
term in 1 bears the ratio (gh/c2) to ?o; but when o= 1 (taking this value to keep the Airy 
function arguments fixed at zero), as 6 increases the second term increases relatively to qo; 
putting r =, the ratio of (q1 gh/c2) to qo is 

21Ai' (0) gh= (.23ock. (7.15) 
4 Ai (0) Jc2 C 

Consequently, as 6 increases, this ratio increases as C and will eventually exceed unity. 
But we know that gravity, and not compressibility, is the dominating influence at the head 
of this disturbance. Thus we are forced to conclude that r- 1 no longer represents the head 
of the disturbance exactly, that is, the velocity of the leading wave (and the associated value 
of cr) is slightly affected by compressibility so that, when 6 is sufficiently large, the scale of 
the wave is such that the point o= 1 is at a significant distance from the leading wave. 

To determine what the effect on the velocity is, to the first order in (gh/c2), we try to 
combine (7.6) and (7.13) into a single formula which gives these expressions for y0 and 

as coefficients when it is expanded in powers of (gb/c2), being thus a kind of generating 
function for o, I, and which more clearly depicts the effect of this parameter on the motion. 
The form of the second term in (7.13), with Ai', suggests a representation as the first two 
terms of a Taylor series (we might call it Taylor synthesis). Thus inserting (7.6) and(7.13), 
(7.1) becomes to order (gh/c2) 

gh 

W(t) ( -S ( 2g)[h i (22) (O-)} 

(22) K( 10 72)Ai'f(( 6) (1} ] 

g)AiL c2 1 2 ) i[ f)(-fq-h(-? f)](7.16) 

Equation (7.f16) is now the required single formula. The head of the disturbance still 
corresponds to the value of a which causes the argument of the Airy function to vanish: 

lS+gb a(10-7af) - 0. (7.17) 

1212O 
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A first approximation is a - 1. Substituting this into the small term, the approximation 
to order (ghlc2) is ( 

a'= 1+ 4gh/c2. (7418) 

So, from (7 5), the head of the disturbance is associated with a value of xlt (velocity) with 

xlt = (gh) I(I - 4ghlcl). (7.19) 

Thus, the effect of compressibility on the head of the long gravity wave at large 6 is to 
decrease the leading wave velocity by a factor (1-4ghlc2); by (7-16) the amplitude of the 
leading wave is decreased by a factor (1 -- 'gh/c2), and if ghlc2 is small this exactly counter- 
acts the effect of the factor eyh so that amplitude variation at the head is at most of the second 
order in gh/c2. 

We see that in this formulation, the troublesome point a- = 1 gives the Airy function in 
(7.16) the value (7.20) 

Ai {(22) gh/c2}, (720) 

so that, as 6 increases, the disturbance is exponentially small by (7.8). This point a= 1 
is not in the region of the gravity disturbance proper-from (7 1 8), this region is 

a > 1+ Igh/c2. 

Stoneley (I963) has given a brief treatment of the compressibility approximation for 
the problem of an initial surface elevation of block type, for example, a block dropped into 
water with bottom face horizontal. He makes an approximate modification of the incom- 
pressible-fluid solution given by Jeffreys & Jeffreys (I956, ? 17.09), and derives a corre- 
sponding Airy function and hence a correction to the speed of the leading wave 

x/t (gh)i (1-gh/C2)i (gh) (1-1ghlc2) (7.21) 

in our notation. Thus in Stoneley's problem the increment in wave slowness is twice the 
increment in the present problem. This is introduced by the different forms of integrals 
representing the solution; for example, the factor 1 /cosh A does not appear in Stoneley's 
integrand, and this leads in our problem to an extra factor 1/a to modify the wave attenua- 
tion as af increases. We obtain different results for surface disturbances and bed disturbances; 
a not unexpected phenomenon. 

The formula (7.16) is derived for ao < 1; but by the same method as was used to obtain 
(7-12), we can find the effect of the finite block width for rather larger values of at. The 
working is the same, and we find that the analogous equation to (7.12) is 

C=e7ha[- {1+(j_-a) 3a2}-2g2 (1+-a (5 + 12)|](2 

x Ai 2(2 O+ gh 021+(10+ca2) (1-oa)/3a (7.22) 
(( a A L +4 2 1+(1-a)y2/3 ] ( 

If os2 is neglected we obtain (7.16), and if (gh/c2) is neglected (7.12) appears. 
Since the terms in x2 also contain a factor (1 - ), to this order in (gh/c2) the block width 

has no effect on the velocity of the leading wave, which is still given by (7.19). 
65-3 
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8. THE CODA OF THE GRAVITY WAVE 

In this section we analyse the residual gravity disturbance which prevails at times large 
compared with the arrival time of the leading wave discussed in the last section. At such 
times, a > 1, r > 6, we expect that the true behaviour of the expression (A tanh A)' in 
(7.2) and (7.4) will become important in the evaluation of the integrals; the error in re- 
placing it by its power series and then cutting it off at the second term increases with a. 

We can attack this problem for unrestricted values of 4 as far as lower bounds are con- 
cerned; the only condition we now impose is that T shall be large compared with as, ? and 
unity. This ensures that the leading waves from both edges have already passed, and also 
that the variation in cos (A tanh A)W T will outweigh the variation of terms like 1/A and cosh A, 
as well as of sin (flA). 

With these facts in mind, we may return to (6.6) which gives qx as a function of fi. We 
begin with a consideration of (6.9): 

I0d sin os AtnhA) I_ 0dsin (/?A) 
o r C cA coshiK A cos (A tanh A) A fr -- 2ff A cosh A exp {i (AtanhA)'. (8.1) 

We now apply the saddlepoint technique to (8.1). The saddle points for an integral with 
exp {f(A) T} are the zeros off'(A); here 

f'(A) A + 
I 

sinh 2A 
2cosh2A(Atanh A) (82) 

We remark that if we had included sin (flA) in the exponential in (8 1), we would have had 
an extra term i,l/lT in the expression (8 2) forf'(A). For general values of fi/T this would 
require extensive numerical computations to find the saddle points as functions of this 
parameter; and as we have the powerful method of ? 7 to obtain asymptotic expansions for 
fll/ around the value 1, this work would not tell us much. But then r > fi, the Hendrickson 
approximation for (A.tanhA)' T will be in error by an amount significant compared witlh 
(flA), as explained above, and the method becomes dubious; it is just in this instance that 
we can neglect /]/T and conveniently simplify the problem by using equation (8 2) as it 
stands. The saddle points in the complex A plane are now given by 

2A + sinh 2A 0 (A =0). (8.3) 

The equation (8.3) has no roots on the real or imaginary axis. By separating (8.3) into 
real and imaginary parts, we find that the roots are symmetrically placed in sets of four with 
regard to the axes, that when f A > 0 the solutions lie in regions (N+ 1) 1T < J A < (N+ 3) 1T 

where N is a positive integer or zero, and that the first pair of saddle points (corresponding 
to N~ 0O) are at AG = i (1 1251) + i(2.1062). (8.4) 

The computation of (8.4) was performed manually by a method of successive approxima- 
tion, using a set of tables. The saddle points are taken in the upper half A plane since 
(A tanh A) - has positive imaginary part in this half-plane. The lowest set of points (N ) 
is taken to avoid crossing the isolated essential singularities at the zeros A - (N? 2) n 
of cosh A. The Kelvin contour of stationary phase 

X (AtanhA)~ 2-<A?tanhA )2 0 6863 (8.5) 
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is found to be suitable for the problem; it crosses the imaginary axis at i(0-744), which is 
between the real axis and the first isolated essential singularity, A =iff, so that no contribu- 
tion arises therefrom, and by Jordan's lemma and the choice of half plane there is no con- 
tribution from the arcs at infinity connecting the contour to the real axis. The contour of 
stationary phase is shown in figure 11. 

FIGURE 11. The contour of stationary phase in the A plane. 

For positive f larger than about unity, the combined stationary phase contributions to 
(8.1) are approximately 

#0 0i1455 e-YTi+x1i cos(y2T-X2fl - 
Z1), (8.6) 

where xl,X2, Yi, Y2 are positive numbers associated with the saddle points: 

Xi = 241062, x2 -1d251, A+ - x2+ix1j (8.7) 

Yi 0-6863, Y2 =1476 
and z- 0-694. 

For incompressible fluid, the coda of the gravity wave is seen from (8 6) to be an exponen- 
tially damped progressive wave with velocity 

(Y21X2) (gh) (1.31) (gh)l (8.8) 

and wavelength (2ir/x2) h (5 6) h (8.9) 
or 5-6 times the depth. 

There are two such waves, one corresponding to each edge of the block. For a point over 
the block, we put a = + , a - 6, and add; in the half 0 < 6 < a the contribution from 
/, - a + will be more important because of the exponential factor. For points not over the 
block, > a, we subtract the result for (6 -- a) from that for (6 + a); if 6 is not far removed 
from a, the contribution from f +i a is again dominant. But if az < 6, still with 6 < T, 

we can write 

ex1(9? ) cos {Y2- x2(6+ ) - zl}- ex1("-) cos {Y2 -x2(6-a) -Z1} 

20 6{eX16 cos (y2r -x2&- Z1)} 

2a (x2 + x22) I ex1 sin (y2r-x26-z1 +tan- x/x2). (8.10) 

Then h (0.695) ex eY1s?x1in (y2r-x26+0 386). (8.11) 

This result could also have been obtained by putting sin (xsA) .aoA in the integral for /0, 

as in ? 7. The essential characteristics (wavelength and velocity) of the disturbance are 
again given by (8.8) and (8.9). 
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We finally turn to the effect of compressibility on the coda. This is again given by (6410) 
here; for r > 1, the dominant term here is the second (containing the factor r), and this 
integral may be likewise evaluated at the saddle points A, to give 

Cl-=:- -42- cosh3) (A tanhA) exp{i(AtanhA)' r} 

(0'0275) T- exp {--yjr+xl /} coS (Y2T- X2 +z2), (8412) 

with Z2 0'078. (8413) 

We now observe the same kind of anomalous behaviour of the ratio of vIgh/c2 to io as 
we found between the corresponding terms in the preceding section, discussed under 
(7.13); the ratio is here 0(rgh/c2), and increases without limit as T -? r. But we can over- 
come this difficulty by use of the same technique; we combine -f and ij into a single formula 
by regarding them as the leading terms in a Taylor expansion. We have, from (6.7) 

X- 0 c O1455 expf-YIT+X fll cos (Y2T-x -2 -zl) +ZT-ghcos (y2T-X2 pl-Z +Z3) C 2 
T_i P i1C2 )2 

(8.14) 
with Z = 0*7721, Z= 041897. (8*15) 

If this is the Taylor expansion of a first-order correction formula 

0'1455 h l h \ 
j7 --= T2 exp -yT(1 + 1) +x1/1j cos tY2T (1 +h32 

2 
X2fl 4z1 

145-5 exp {-y1T+Xl fl} [cos (Y2-x2 -- Z1) 
T 

T& gyYlhcs(Y2T x2IJ-zi)+y2b2sin(Y2T-X2flzj)}], (816) 

then equating cos/sin (Y2T-x2 /-z1) in (8'14) and (8.16), 

1 =-Zcosz31Y --0 20, (8.17) 

2= ZsinZ3/sn y2 0'09. J 

We may substitute all the numerical values from (8 7), (8415) and (8-17) in (8416), and 

then 041455 F4g8h ~102)} (206)l 

7x ---- exp L-(0 6863) r (1 (0c20) } (2)062 

xcos [(1.476) T (1 +(009) 
h 

- (1.1251) f-(0 694)] (8'18) 

The velocity of the progressive wave is now 

Y (gh)' (l+ 2) (1 31) (gh) (1+ d (009)YG}. (8.19) 

The effect of compressibility on the coda is that the velocity is increased by about (0.12) 
(gh) (gh/c2) and that the decay coefficient in T is reduced by about (0.14) (gh/c2). 

By the same process as that used for deriving (8*11), if a < 6 < T, 

a- (0.695) Ti exp (-Y T (1 - i2 1) +xl6)}sint(Y2 T(1 +>622)- x26+(0'386)}. (8'20) 
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We see that the coda exhibits different properties from the tail of the Airy function 
discussed in ? 7; the coda is a non-dispersive progressive wave and is exponentially damped 
in time, whereas the asymptotic expansion of (7.6) for large r r/6 gave an inverse power 
law only. There is thus a transition from a profile (7.16) to a profile (8.20) as o increases 
from 0 through 1 to infinity. 

The increase in velocity of the coda due to compressibility is remarkable in comparison 
with the decrease in velocity of the head wave. 

CONCLUSION 

The formal solution of the problem set up in this paper is the double integral (1.21), 
but-as is quite usual in wave propagation problems-this is only the beginning of the road 
towards physical interpretation of the solution. This task is lightened by the separation of 
the disturbance into two parts, acoustic and gravity-controlled; in each type, the other 
effect assumes the role of a small perturbation, and is discussed as such together with the 
principal phenomenon. In both perturbation studies, the parameter (gh/c2) is of paramount 
importance. 

As mentioned in the Introduction and developed in ?? 2 to 4, the acoustic waves, travelling 
with the sound velocity c, are of two kinds; one kind is derived from each of the two edges 
of the block, and is continuous, suffering only steep rises and falls at the arrival times (these 
are derived from geometrical ray theory) and exists everywhere, while the other kind is a 
series of direct arrivals observed only over the block, resembling the effect of a piston in a 
pipe, and suffers jumps which are discontinuous in time and are twice the amplitude of the 
initial disturbance (because there is an incident and reflected wave). The arrival times are 
governed by the (still simpler) geometry of the problem. The signs in all three sets alternate 
because of changes of phase at the bottom. 

Gravity terms, small in the first stages, assume more and more importance as time goes 
on (at a fixed point), and finally dominate in the manner observed in most ocean wave 
studies, including tsunamis, which can be generated by such means as described here. 
For slightly compressible fluid, the initial gravity wave is determined and numerically 
calculated in ? 6, and the compression perturbation is inserted; this result is expected to be 
valid for times large compared with the travel time of the first acoustic pulse, but small 
compared with the travel time of long waves (for which kh < 1, typical of tsunamis)- 
or, certainly, not large. It is thus restricted in application, but is still of interest. In a bridge 
passage (? 5) we show that the sum of all the acoustic waves, in the limit of zero time and 
infinite sound velocity, reduces to the initial surface elevation for the problem with in- 
compressible fluid, so that this initial elevation is to be regarded as primarily an acoustic 
effect. 

At large distances (? 7) the leading gravity wave propagates with the long-wave velocity 
(gh) 

I 
(< c), and behaves like an Airy function which is small in front and sinusoidal behind 

(compare the first arrival of a tsunami); as time proceeds, this wave becomes a non-dis- 
persive progressive wave with an exponential tail (the coda) which is not the Airy function 
limit, so that there is yet another transitional stage (? 8). The correction to first order for 
compressibility in the velocity of the head wave is of the same sign as, but smaller than, that 
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found by Stoneley (I963) for a different tsunami generation problem (using a different 
method). It is a decrease in the velocity. On the other hand, the correction in the coda 
represents an increase in velocity. This suggests that some of the energy in the disturbance 
is trapped in the acoustic reflexion zone and in some way transferred from the leading wave 
of incompressible fluid, and spread out over the coda. 

This paper is abridged from the author's doctoral thesis. During its preparation the 
author was supported by a grant from the Department of Scientific and Industrial Research. 
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