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ABSTRACT 

In this algorithmic and numerical analysis of Rayleigh-wave dispersion com- 
putations on a spherical, gravitating earth, we first simplify and optimize the 
exist ing algorithms based on the direct, Alterman-Jarosch-Pekeris (AJP) formu- 
lation; compare computation speed with the fastest exist ing methods; investi- 
gate the relation between integration step size when using direct-integration 
methods, and layer thickness when using homogeneous-layer methods; and give 
specif ic details concerning numerical l imitations. Even in highly optimized form, 
the AJP, direct-integration formulation is slow relative to the best of the tech- 
niques based on the flat-, homogeneous-layer approximation. This motivates the 
development of an improved computational algorithm given as the final result of 
this report. Loss-of-precision problems appear to be intrinsic to the AJP formu- 
lation. At a f ixed period, this results in the attainable accuracy of the phase 
velocity decreasing as radial mode number increases; for f ixed accuracy in the 
phase velocity, as period decreases the maximum mode number that can be 
treated successful ly decreases. Specific numerical relationships among period, 
mode number, and attainable accuracy are presented. 

For gravitating structures, a solution to this loss-of-precision problem is given 
which is based on Gram-Schmidt orthogonalization. Our analytical and numerical 
studies show that: the dispersion func t ion- - roo ts  of which determine dispersion 
proper t ies-- is  invariant under orthogonalization, which ensures a smooth, reg- 
ular variation of this funct ion as roots are sought; the required modif ications 
that orthogonalization introduces into the computation of actual components of 
motion are quite straightforward (full details are given); and, the addit ion of 
orthogonalization increases computation cost by only 5 to 10 per cent. Down to 
periods of 10 sec, for all radial mode numbers up to 90 to 100, the numerical 
tests indicate that orthogonalization brings the loss-of-precision problem under 
complete control. All analyses in our investigation show that this problem exists, 
with the same properties, when integrating the equations of motion in either 
upward or downward directions; there is no preferred direction of integration 
relative to this diff iculty. Likewise, there is no preferred direction relative to 
accuracy or overf low problems. In fact, the overf low features are shown to be 
precisely the same, in form and magnitude, for the two directions. The advantage 
that we do f ind for downward integration is the degree to which it simplif ies 
computational algorithms. 

The problem of Rayleigh-wave propagation on a gravitating, spherical earth is 
characterized by a linear system of six differential equations in six unknowns; 
for a nongravitating earth this system reduces to four equations in four un- 
knowns. We have succeeded in reducing the sixth-order system to fourth order, 
while retaining the effect of gravity. The speed of computation for a gravitating 
earth is thereby increased to about that of the nongravitating case, i.e., to 4 that 
for nongravitat ing spheres and to ~ the speed of the fastest of exist ing algorithms 
for flat, nongravitating structures treated with the homogeneous-layer approxi- 
mation. Even greater speeds are possible with the new algorithm if delta matrices 
are used to control precision loss. 

1. INTRODUCTION 

Dorman  et al. (1960) described the use of an electronic computer  to calculate 
surface-wave dispersion for multi-layered, perfectly elastic half-spaces. Their  com- 
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putations were based on the technique devised by Thomson (1950) and Haskell 
(1953). Press et al. (1961) also used the Thomson-Haskell technique, and with a 
more advanced computer, greatly improved the speed of computation. Randall 
(1967) later applied Knopoffs (1964) method to this problem and reported a further 
improvement in speed for the Rayleigh-wave case. In a later series of papers, Schwab 
(1970) and Schwab and Knopoff (1970, 1971, 1972, 1973) improved the optimization, 
for computer application, of both the Thomson-Haskell technique and Knopoffs 
method for flat, multi-layered media. These last papers also provide complete details 
for obtaining full control over the accuracy of the computations, and for generalizing 
the algorithms to include computation of attenuation due to the anelasticity of the 
earth. 

For Love waves, the use of spherical-to-flat structure transformations (Biswas and 
Knopoff, 1970; Schwab and Knopoff, 1971, 1972, 1973; Kausel and Schwab, 1973) 
makes it possible to carry out all spherical dispersion, attenuation, and focal- 
response problems using the optimized algorithms for flat structures. Several at- 
tempts have been made to develop the same type of transformation for Rayleigh- 
wave computations (Alterman et al., 1961; Bolt and Dorman, 1961; Biswas, 1972; 
Schwab and Knopoff, 1972), but these have all yielded only empirical results which 
lack general applicability. Thus, at the present time at least, it appears that one 
cannot apply transformation theory to Rayleigh-wave dispersion computations on 
any arbitrary, spherical, gravitating earth. Bhattacharya's (1976) recent results-- 
although we will not pursue this approach in the present paper--suggest the 
feasibility of an interesting new procedure for treating spherical, gravitating struc- 
tures: gravitation alone might be handled by transformation techniques, while 
Bhattacharya's approach could be used to optimize the treatment of sphericity. 

Since transformation techniques have not yet been fully successful in allowing us 
to apply the fast, flat-structure algorithms to Rayleigh-wave computations with 
spherical, gravitating structures, in this paper we return to the basic spherical 
formulation, i.e., that given by Alterman-Jarosch-Pekeris (AJP) (1959). Our primary 
purpose is the optimization and improvement of this formulation to the point where 
the efficiency and control of accuracy approach those of the best algorithms for flat, 
homogeneous-layered, nongravitating structures. The main application that we 
envision for this improved algorithm is the synthesis of relatively short-period, 
complete theoretical seismograms for the spheroidal-wave components of motion; 
for torsional waves, such seismograms are already being computed and compared 
directly with records from the long-period instruments of the WWSSN (Liao et al., 
1977, 1978). Our secondary purpose is to present--we believe for the first t ime--an 
explicit, quantitative comparison of the relative efficiencies of the two basic tech- 
niques for performing surface-wave dispersion computations: that in which an exact 
structural specification is employed with approximate mathematical methods, and 
that in which exact analytical techniques are applied to an approximate model of 
the structure, i.e., where the structure is replaced by a sequence of homogeneous 
layers. 

The main numerical limitation of the direct, AJP formulation is an intrinsic loss- 
of-precision problem, a solution to which is required if we are to compute complete 
synthetic seismograms for direct comparison with records from the WWSSN. Our 
previous work (Liao et al., 1977, 1978) has shown that this will require an effective 
treatment down to a period of 10 sec, for radial mode numbers up to about 90 to 
100. Our detailed, numerical description of this precision loss is followed by an 
analysis of its cause. The basic task of these dispersion computations is the numerical 
integration, over depth, of three independent vectors, and the precision loss appears 
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to be equivalent to a persistent tendency of these "independent" vectors to become 
parallel. Over a certain range of depths, the vector solutions contain both exponential 
and oscillatory terms; the combination of a finite-precision computer and the 
dominance of exponential over oscillatory depth dependence leads to only this 
dominant tendency remaining in the solutions, which engenders the spurious par- 
allelism. To avoid this, the first solution we have studied is the combination of 
Gram-Schmidt orthogonalization with the actual integration of the equations of 
motion. As a second approach to the problem w e  present the formalism of the 
practical solution by delta matrices. 

The problem of Rayleigh-wave propagation on a gravitating, spherical earth is 
characterized by a linear system of six differential equations in six unknowns; for a 
nongravitating earth this system reduces to four equations in four unknowns. The 
main source of dissatisfaction with computations for gravitating structures is the 
slow speed of the present algorithms. Even in our most efficient optimization, the 
full, sixth-order formulation is about five times slower than the comparable algo- 
rithm for Love (torsional) waves. An improved algorithm has therefore been devel- 
oped to increase the speed of computation for these Rayleigh-wave calculations. In 
this improvement, the sixth-order formulation is reduced to one of fourth order, i.e., 
although the effect of gravity is retained, the formulation is reduced to essentially 
that for nongravitating structures. 

2. AJP FORMULATION 
We begin with an analysis, simplification, and optimization of this formulation, 

the specific purposes being: (1) to report on our initial study of the optimization of 
the direct computations (see Wiggins, 1976, for a discussion of computations based 
on the variational technique); (2) to report the results of our study concerning 
accuracy considerations; and (3) to determine relative efficiencies of computations 
including gravity, and the analogous calculations for nongravitating structures. Also, 
a new computational algorithm is developed for the direct calculation of group 
velocities and partial derivatives of the phase velocity with respect to the structural 
variables; this direct technique, unlike variational methods, does not depend on the 
numerical evaluation of "energy integrals." 

The basic formulation for our problem (Pekeris and Jarosch, 1958) involves the 
solution of three second-order, ordinary differential equations constrained by a set 
of boundary conditions. For purposes of numerical solution, it is advisable to reduce 
this system to six, linear, first-order differential equations, as was done by Alterman 
et al. (1959). Bolt and Dorman (1961) applied this formulation to the evaluation of 
Rayleigh-wave dispersion, and reported on those numerical details which it was 
economically feasible to investigate with second-generation computing equipment. 
Detailed algorithmic testing of accuracy, precision, and efficiency characteristics 
really requires the present, third-generation machinery, which we have employed in 
the current study; the work we report here can be considered as a logical extension, 
for Rayleigh waves, of the above series of papers. 

To sketch the AJP formulation, if we let :)7i = dyi/dr, where r is the distance from 
the center of the Earth, then the sixth-order system is 

Y2 
y~ 
y~ 
y~ 
y~ 

alia12alO001 IYll a21 a22 a23 a24 0 a26 y2 

--a33 0 a33 a.u 0 0 y~ 
a41 a42 a43 a44 a45 0 y4 
a51 0 0 0 0 1 y~ 
0 0 aG3 0 a65 a6~ y~ (2.1) 
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with y l and y3 related to the components of displacement ur (r, 0, 0), uo (r, 0, ~), and 
uo (r, 0, ~) by 

Ur = y l  (r) Xlm(O) eimC'e i'~t 

d mO uo = ys ( r )  - ~ X l  ( ) e i ~ e  i'~t 

im 
u~, = ~ y3 (r) Xtm(O) eimOe i'~t. (2.2) 

For propagating surface waves diverging from the epicenter, 

1( ) 
x l m = - 2  Plm + ~r Q F  . (2.3) 

For waves converging toward the epicenter, 

(2.4) 

For a treatment of the situations that require the use of (2.3), (2.4), or their sum, 
see Schwab and Kausel (1976). In this same reference, the justification is given for 
our major departure from previously reported computations of Rayleigh-wave 
dispersion on a sphere: strictly speaking, these solutions only exist on a sphere at 
the discrete set of frequencies corresponding to integral values of the polar order 
number l. However, fixing l and evaluating the corresponding angular frequency 
does not yield the dispersion data at equal frequency intervals, which we desire to 
use in the usual numerical technique for obtaining time series by inverse Fourier 
transformation. Schwab and Kausel (1976) have shown that, for most practical 
applications of propagating surface waves, nonintegral 1 at equally spaced frequen- 
cies can be used without introducing significant errors; therefore, we adopt the 
procedure of fixing ~ and computing l, or 

c = a~o/(Z + ½), (2.5) 

where a is the radius of the earth. The relation between c and the true spherical 
phase velocity is also treated by Schwab and Kausel. In equation (2.1), y2 and y4 are, 
respectively, the radial dependencies of the rr, and the rO and r0 components of 
stress; y~ and y6 arise from the presence of the gravitational field. 

To construct the simplest possible algorithm for performing the required numer- 
ical integration, we have chosen to proceed from the free surface downward. The 
integration is then carried down to a depth sufficient to make it immaterial--to a 
significant figures in 1 or c--just how we terminate the integration: e.g., with an 
approximation of a free or rigid surface. The fact that such a termination process is 
valid has been checked by extensive numerical tests in the course of this work. 
These tests follow the lines of the layer-reduction experiments described by Schwab 
and Knopoff (1970, 1972), and are discussed in the following subsection on "Termi- 
nating Boundary Conditions." In this discussion, we also describe the termination 
of the structure at depth by either a solid or liquid, homogeneous, gravitating sphere. 

Here, we should point out that  the warnings given in the literature against 
proceeding downward from the free surface when integrating the system of differ- 
ential equations, or when forming the layer-matrix product if applying the Thomson- 
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Haskell technique or Knopoffs method, do not appear to be justified by our 
experience. In our long experience with matrix methods applied to surface-wave 
dispersion computations, the formation of matrix products upward toward the free 
surface was not found to have any advantage over formation of the product in the 
downward direction. In fact, when treating Love, or torsional waves on a sequence 
of homogeneous layers, it is important for algorithmic efficiency that  it be possible 
to form matrix products in both directions at the same time. This permits us to 
avoid [2 × 2][2 × 2] matrix products when evaluating group velocities [equations 
(18) to (25), Schwab and Knopoff (1972)] or partial derivatives in general. With 
Rayleigh waves on a sequence of homogeneous layers, formation of these products 
in both directions at once allows one to avoid (the equivalent of) [5 x 5][5 × 5] 
products in group velocity and partial derivative computations [equations (63) to 
(66) for downward formation, equations (92) to (98) for upward formation of the 
products, Schwab and Knopoff {1972)]. Our programs based on concurrent, two- 
directional formation of matrix products have received much testing in practical 
application for some years now without exhibiting any problems. In the work upon 
which we report herein, downward integration did not give rise to any difficulties 
not experienced when using algorithms based on upward integration. This statement 
is the result of comparative numerical tests carried out with each important feature 
of the computational process: overflow, loss of precision, and accuracy of calculated 
phase velocity. In each comparison the feature was investigated with a program 
based on downward integration, and then with another utilizing upward integration. 
The overflow feature is precisely the same in form and magnitude for both directions 
of integration (see following main section for details). In our numerical investigation 
of the loss-of-precision problem (subsection on "Existence of Solution" ), the results 
have the same character in the two cases; no reason for preferring either direction 
of integration is apparent from these results. The final test of absolute accuracy--at 
the four-significant-figure level--is a direct comparison of dispersion results from 
both types of programs; and, since the results agree to the specified accuracy, there 
is no obvious preference to be inferred from this feature. The important advantage 
that we have found for downward integration is the degree to which it simplifies 
computational algorithms, such as those described in the following few paragraphs. 

To begin, we consider a continental structure. In this case y2 and y4 vanish, and 
y6 = -y5  (1 + 1) /a  at r = a. thus, in a manner similar to that  of Pekeris {1966), we 
can write the starting vector as 

Ys(a)  = 

Y l ( a )  I 

3~2(a) { 

3J31a) I 

v 4 ( a ~  I 

v s ( a ~  r 

y 6 ( a }  I 

yl (a)  

0 
y3(a) 

= 0 

ys(a) 

- y s (a ) ( l  + 1)/a 

-- yl(a) 

1 
0 
0 
0 + y3(a) 
0 
0 

0 
0 
1 
0 + ys(a) 
0 
0 

0 
0 
0 
0 
1 

- ( l  + 1) la  

(2.6) 
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Ys(a)  =- y~(a)X~(a)  + y3(a)X2(a)  + y~(a)X3(a) ,  (2.7) 

and for r < a 

Ys(r)  = y~(a )X , ( r )  + y3(a)X2(r)  + ys (a)X3(r ) .  (2.8) 

The three quantities tha t  are unknown--y~(a), y3(a), and y~(a)--can be carried 
implicitly in the computations, while we integrate the vectors whose starting values 
are known exactly: )(1, X2, and X3. Tha t  is, we integrate to obtain X1 at depth; this 
is repeated, in turn, with X2 and X3. Thus we actually use equation (2.1) in the form 
Xi = AXi to integrate from the surface r = a, to the depth at which the boundary 
conditions are to be applied: r = r0, where we can again express Ys  in terms of the 
undetermined coefficients by using (2.8). 

If  we define a rigid boundary at  depth by 

yl(ro) = y3(ro) = ys(ro) = O, (2.9) 

we then obtain three linear, homogeneous equations in three unknowns-- the  un- 
determined coefficients--and the determinant  of the coefficient matrix must  vanish 
if we are to have a nontrivial solution. Thus the dispersion function takes the form 

FA(c ,  ,~) = 
[Xl(ro)]l [X2(ro)]l [X3(ro)]l I 
[Xl(ro)]3 [X2(ro)]3 [X3(ro)]3 , 
[X~(ro)]5 [X2(ro)]~ [X3(ro)]51 

(2.10) 

zeros of which define valid (c, ~) dispersion pairs. For the two approximations to 
free boundaries at depth, we have used the definitions 

and either 

y2(ro) = y4(ro) = 0 (2.11) 

y6(ro) = -ys(ro)( l  + 1)/ro (2.12) 

o r  

yG(ro) -- -ys(ro)( l  + 1)/a, (2.13) 

which yield, respectively, dispersion functions FB (c, ~) 

[Xi(ro)]2 [X2(ro)]2 
[X1(ro)h [X~(ro)]4 

/ + i  / + I  
Xl(ro)]6 + - -  [Xl(ro)]5 [X2(ro)]~ + - -  [X2(ro)]5 

ro ro 

[X3(ro)]2 
[X3(ro)]4 

/+1 
[X~(ro)]~ + -  

ro 
[X3(ro)]~ 

(2.14) 
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and Fc (c, ~) 
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[X,(ro)]~ [X~(ro)]~ 
[Xl (ro)]4 [X2(ro) ]4 

/ + 1  / + 1  
[X~(ro)]~ + - -  [Xl(ro)]~ [X~(ro)]~ + [X~(ro)]~ 

a a 

[X3(ro)]2 
[X3(r0) ]4 

/ + 1  
[X3(ro)]G + - -  [X3(ro)]5 

a 

(2.15) 

Next,  we consider an oceanic structure.  In this case, the analog of equat ion (2.1) is, 
for the homogeneous,  oceanic (liquid) layer, 

L 
[bn  bi2 b15 0 

= [b2i b22 b2~ - p  
[4~rGp 0 0 1 
[b61 b62 b65 b66 I 

1 
y2 
Y~ 
Y~ (2.16) 

At r = a, y2 vanishes and y6 = -y~ (1 + 1)/a, and we can write the starting vector  as 

y l ( a )  

YL( a ) =  y2(a) ys(a) 

y6(a) 

y l (a)  
0 

ys(a) 

-y~(a)(1 + 1)/a 

= y~(a) + ys(a) 

0 
0 
1 

- ( l  + 1)/a 

(2.17) 

or  

YL(a)  = y l (a )Z l (a )  + ys(a)Z2(a), (2.18) 

and for r < a 

Yn(r)  = y l (a)Zl (r )  + ys(a)Z2(r). (2.19) 

Again, we carry the unknown quantit ies--y1 (a)  and y5 (a)-- implici t ly ,  and integrate 
the vectors whose starting values we know exactly: Z1 and Z2, using equation (2.16) 
in the form Zi = BZi. On the oceanic side of the liquid-solid boundary  at  the bo t tom 
of the ocean, r = rl, we then  have 

YL(rl)  = y l ( a )  

[ Z l ( r l ) ] l  
[Zl(r1)]2 
[Zl(rl)]5 
[Zl(rl)]6 

+ ys(a)  

[Z2(rl)]l 
[Z2(r1)]2 
[Z2(rl)]5 
[Z2(rl)]G 

(2.20) 

At this boundary,  yl, y2, ys, and y6 are continuous, y4 must  vanish, and y3 is 



620 SCHWAB, 

undetermined. Thus on the solid side of this 

Ys(rD = yl(a) 

[Zl(rl)]l 
[Z,(rl)]2 

0 
0 

[Zl(rl)]5 
[Zl(rl)]6 
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interface, we have 

[Z2(rl)]l 
[Z2(rl)]2 

0 
+ y~(rl) 0 

[Z2(F1)]5 
[Z2(rl)]G 

0 
0 
1 + ys(a) 
0 
0 
0 

(2.21) 

or 

Ys(rl) = yl(a)Xl(rl)  + y3(rl)X2(rl) + ys(a)X3(rl), (2.22) 

and the integration proceeds and terminates, from rl to r0, exactly as in the 
continental case. 

The length of our complete analysis of the AJP formulation, plus the descriptions 
of the improvements we have developed to deal with its shortcomings, presents 
something of a problem. In order to condense this information into a single Bulletin 
article, much of the detailed information that will be needed by those interested in 
applying this work has had to be included in a set of additional notes on microfiche 
found in the back of this issue. These notes contain all figures and tables, as well as 
those details not critical to the development followed in the main text. (Full-size 
copies of the additional notes are available from the senior author.) Perhaps the 
most interesting, and potentially useful of these supplemental details is the devel- 
opment of new algorithms for calculating Rayleigh-wave group velocities and partial 
derivatives with respect to structural parameters (section 1 of the additional notes). 
These methods are natural extensions of the simplified algorithms given above, and 
we believe them to be the first direct computational techniques for the determination 
of such group velocities and partial derivatives on a gravitating earth. 

Numerical technique for integrating the system of differential equations. Relative 
to numerical integration, our main purpose is to minimize computation time for 
practical application of the direct, AJP formulation. The fundamental decision here 
is the absolute accuracy to be sought in the calculated phase velocities. To decide 
upon the accuracy that will be required for our application to the synthesis of 
relatively short-period, complete theoretical seismograms for spheroidal waves, we 
can refer to the analogous work for torsional waves. From those studies, a four- 
figure accuracy in c appears to be quite sufficient. (See section 6 of the additional 
notes for references and further discussion of this point.) We want complete control 
over accuracy in our present work, but relative to the application planned, we want 
to specify the accuracy to be as low as possible. This will allow us to use the 
maximum possible step sizes in our numerical integration (for the order of th~ 
Runge-Kutta and predictor-corrector methods utilized), thus minimizing the re- 
quired number of integration steps and expense of computation. 

To optimize these computations, it is also useful to constrain the structural 
specification somewhat. These constraints, and our empirically determined step 
sizes, are as follows. 

1. The liquid, oceanic layer is limited to a single, homogeneous layer. A special 
Runge-Kutta technique of the fourth order (see below) is used for the first three 
steps of the integration--step size of about 1 kin--and a fourth-order predictor- 
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corrector method (see below) is employed, if necessary, to continue the integration 
to the bottom of the oceanic layer (with the same step size). 

2. The sedimentary layers are limited to a sequence of homogeneous layers, each 
of which does not exceed 1 km in thickness. These layers are treated with one, 
fourth-order, Runge-Kutta step. 

3. The subsedimentary crustal layers must also be homogeneous, and each is 
treated as the oceanic layer; the step size fixed at about 1 km. 

4. The sub-Moho mantle requires continuous velocity-depth and density-depth 
distributions, although discontinuities can be approximated as closely as desired by 
specifying large gradients. As with the oceanic layer, three Runge-Kutta steps are 
followed by a fourth-order, predictor-corrector method. The initial step size is 1.5625 
km (12.5/23 km), with which we execute the Runge-Kutta and seven predictor- 
corrector steps. The step size is then doubled, and five predictor-corrector steps are 
performed; this procedure is repeated until the step size reaches 12.5 km, and the 
predictor-corrector method is then applied with this fixed step size. 

Comparison of our phase velocities computed with this dependence of step size on 
depth, with those obtained from a completely independent program, was used as a 
final test to verify that  these steps are sufficient to yield the desired, four-figure 
accuracy. More precisely, for realistic models of the earth, our comparisons show 
agreement to an average of 3.7 significant figures; however, at this time there is 
little purpose in further refining the structural specification to make the slight 
improvement to 4.0 figures. The currently incomplete state of our analysis of the 
algorithms for treating the basic numerical difficulty with the original AJP formu- 
l a t i on -an  intrinsic loss-of-precision problem--makes such a refinement premature. 
The general features of this difficulty are illustrated by the results of numerical 
experiments described in the following subsection; an extensive discussion of the 
problem, from several points of view, is given in the following main section (and 
associated sections of the additional notes), where a specific difficulty with step size 
is also pointed out for periods in the decreasing range from 25 to 10 sec; and in the 
final section, the reported numerical results indicate that loss-of-precision problems 
become noticeable near 10 sec when computations have only reached the third 
mode. All of the prior results indicate that new algorithms incorporating loss-of- 
precision control--orthogonalization or delta-matrix techniques--should be the ones 
upon which we base any final, precise statement about optimum step distribution 
with depth. 

Concerning the accuracy of four significant figures in computed values of c, one 
should review the rather detailed treatment given by Schwab and Knopoff (1972, 
pp. 107-111, 116-118, 140-141, 145), in which piecewise-continuous velocity- and 
density-depth distributions are treated with the homogeneous-layer approximation. 
Comparison will show that when four-figure accuracy is specified, the thicknesses of 
the layers as a function of a depth, in that approximation, are roughly the same as 
the integration step sizes in the present analysis. That is, to the degree of accuracy 
with which two such dissimilar methods can be compared, if the step sizes above are 
used as thicknesse s in the homogeneous-layer approximation, that technique will 
yield four significant figures in the computed values of c. This is a particularly 
appealing result in that it introduces some degree of unification between the two 
main approaches to dispersion computations by direct methods. 

To start the predictor-corrector method, we have used a Runge-Kutta technique 
designed specifically for this purpose. Here one is only, interested in being able to 
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minimize the bounds on the truncation error. Ralston (1962) has treated this 
problem, and gives the algorithm (also see section 2 of the additional notes) for 
obtaining the first four points needed to start the predictor-corrector routine. 

The fourth-order, predictor-corrector method we have used (Hamming, 1959) is 
fully described along with the details concerning doubling of step size, by Ralston 
(1960). Highly practical details, relative to the combination of these particular 
Runge-Kutta and predictor-corrector routines, will be found in Anon. (1970). One 
should be warned, however, that  the use of the subroutines described there is 
inadvisable for our present purposes. The use of these general purpose routines can 
increase computation expense by a factor of 10 to 100 over that of the optimized 
algorithm. 

Optimization of the A J P  formulation. The key to optimizing the integration is to 
apply our knowledge about this particular problem to specify all the depths, rk, at 
which aij(r) are to be evaluated. The evaluation of these elements can then  be 
removed from the innermost, integration loops of the program. The details concern- 
ing these depths are contained in the preceding section. In Figure 1, the optimized 
scheme for the evaluation of aij(rk)--for the solid sedimentary layers, subsedimen- 
tary crustal layers, and mantle--is indicated in outline form. It will be seen that 
most of the procedure for evaluating these elements can even be removed from 
within the ~ and c loops. In Figure 2, the same information is given for the elements 
bii(r) of the matrix describing integration through the liquid, oceanic layer. 

Relative to optimization, a few specific programming details are appropriate here 
since they are critical to minimizing computation time and expense. 

In the integration procedures themselves, it is very important to form matrix 
products, such as those in (2.1) and (2.16), in an explicit manner. This permits full 
use to be made of the many zero elements, and those that are independent of r, or 
are equal to another matrix element. For example, the basic AJP matrix multipli- 
cation for solid layers is illustrated in Figure 3. 

In reports on our earlier work with Love-wave dispersion and dispersion-atten- 
uation computations, for both flat and spherical structures it was possible to give 
short, key, FORTRAN program segments (Figure 2, Schwab and Knopoff, 1972; 
Figures 4 and 5, Schwab and Knopoff, 1973). These together with descriptions of 
root-bracketing and root-refining procedures completely specify the optimization 
when the multi-, homogeneous-layer approximation is employed. If this approxi- 
mation is used with Rayleigh waves on flat structures, the optimization can be 
specified in the same manner (Figures 11 to 13, Schwab and Knopoff, 1972). When 
employing the method of direct integration of the equations of motion, it is not 
possible to exhibit the complete optimization in this compact, simple manner for our 
problem of Rayleigh-wave dispersion on a spherical, radially heterogeneous, gravi- 
tating earth. However, it is possible to present the most important part of the 
algorithm as a relatively compact program segment. This is given in Figure 4a, 
which illustrates the predictor-corrector method we have applied from below the 
Moho to the selected value of r0; the automatic doubling of integration step size is 
included. Most of the computation time is spent in this segment, which is entered 
with 

COEFF1 = (4/3) H 

COEFF2 = 3H 

COEFF6 = (121/36)H 

H =  -25/16; 
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the indices for successive step-size regions of the integration are given in Table 1; 
for the details concerning B(I ,  J) ,  see the description of subroutine DHPCL (Anon., 
1970). In this type of programming there are important, machine-dependent consid- 
erations: the manner in which the 6 x 6 matrix elements are stored in memory, and 
the way in which indices are handled in the program segment given in Figure 4a. In 
fact, the indices ITP1, ITP3, ITP8, ITP9, ITP10, which are used for compactness in 
the figure, actually slow computation speed on the IBM 360/91; these subscripts are 
best used in explicit form, IT ÷1, IT + 3, IT ÷ 8, IT + 9, IT + 10. The key program 
segment is given in the form shown in Figure 4a for two reasons: (1) to illustrate the 
logic as clearly and simply as possible; and (2) to provide an illustrative example of 
the importance of handling subscripting and storage in the manner most appropriate 
for a given machine. The time required to execute DO-loop 170 once, specifies the 
necessary time to perform one integration step for each of the three vectors Xi; 
thus, to complete one integration step in forming the dispersion function, each step 
of DO-loop 170 must be executed three times. The time for one integration step in 
forming F is termed the characteristic time v, which we use to illustrate the 
importance of correct subscripting and storage. The characteristic time for the 
segment in Figure 4a is 489 x 10 -G sec/step/iteration. By simply reversing the order 
of the subscripts of B (/, J) ,  this time is improved by 92 x 10 -6 sec/step/iteration; 
if ITP1, etc., are used explicitly as IT + 1, etc., v is decreased still further by an 
amount of 67 x 10 -6 sec/step/iteration; and if aij are stored more efficiently, still 
another 44 x 10 -6 sec/step/iteration can be saved, bringing T down to 286 x 10 -6 
sec/step/iteration. DO-loop 170, in a form incorporating the above improvements, 
is shown in Figure 4b. It should be understood that  286 x 10 -6 sec/step/iteration is 
a lower bound; the corresponding effective characteristic time--given in (2.24)-- 
must reflect time spent in other parts of this particular test program, which is 
designed to treat only a few frequencies in a given run. The effective characteristic 
times of our final routines (fourth section) will be governed by lower bounds, as 
defined above, since the applications we are mainly interested in involve the 
treatment of extremely large numbers of frequencies in a single computer run, which 
means that  most of the execution time is spent in DO-loop 170. 

Although the present work was carried out with both IBM 360 and 370 equipment: 
a 360/91 computer in Los Angeles, a 360/65 in Bari, and 370/145 computers in 
Santiago and Cosenza, all timing results are given here in terms of the first computer. 
This installation was also used in our final optimization with Rayleigh-wave com- 
putations for flat structures (Schwab and Knopoff, 1972), which allows us to make 
an accurate evaluation of the relative characteristic times for calculations with flat, 
nongravitating structures, and with spherical, gravitating models. In the former case 
this time is 

F L A T T R A Y L E I G H  ----- 110 X 10 -6 sec/layer/iteration (2.23) 

(which corresponds to Knopoffs method applied to a sequence of homogeneous 
layers), and in the latter case, 

S P H E R I C A L T R A Y L E I G H  = 336 X 10 -6 sec/step/iteration (2.24) 

(which corresponds to the optimization of the AJP formulation described above). 
Since our integration "step" can be considered nearly equivalent to a "layer" in 
computations based on the homogeneous-layer approximation, and since, to the 
accuracy possible in this type of comparison, the "iterations" required in the two 
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cases can be considered equivalent (see Schwab and Knopoff, 1972, for details 
concerning iteration procedures), the relative efficiencies of the two types of Ray- 
leigh-wave dispersion computation can therefore be determined by simple compar- 
ison of their characteristic times; we find that the optimized, sixth-order, AJP 
formulation is three times slower than the fastest of the Rayleigh-wave algorithms. 
That is, the time required to integrate each of the three vectors over depth in the 
spherical, gravitating case, is the same as that  required to carry out the analogous 
operation--the formation of the matrix product--for the flat, nongravitating case. 

To obtain a valid comparison of the direct-integration method with the homoge- 
neous-layer technique, clearly we should not include gravity in the former method. 
The removal of gravity reduces to two the number of vectors that must be integrated, 
and reduces the number of elementary operations (additions and multiplications) in 
(2.1) from 34 to 23. Thus the ratio of computation times for nongravitating and 
gravitating spheres, when treated by the direct-integration method, is approximately 
(2 x 23)/(3 x 34), or, for the nongravitating case, 

SPHERICALTRAYLEIGH = 151 × 10 -~ sec/step/iteration. (2.25) 

Thus the direct-integration method, for a nongravitating sphere, is only 36 per cent 
slower than the optimized computations for a flat, nongravitating structure, where 
the latter is treated with the homogeneous-layer approximation. 

From this result we are led to speculate on the advisability of redirecting attempts 
to devise Rayleigh-wave transformation techniques. To the present time, these 
attempts have been focused mainly upon finding a single transformation that  will 
permit spherical, gravitating structures to be treated with computational algorithms 
for flat, nongravitating models. Perhaps more success could be expected if we 
attempted to make use of algorithms for nongravitating spheres, and only tried to 
include gravity by transformational methods. 

Another improvement in the lower bounds of the AJP characteristic times is 
possible. The above, limiting bound for the gravitating case was obtained by 
integrating each of Xi separately; the time is improved to 266 x 10 -8 sec/step/ 
iteration if the three vectors are treated simultaneously within DO-loop 170. If the 
two vectors of the nongravitating case are handled simultaneously within the loop 
(see Figure 4c), the lower bound of ~ becomes 143 x 10 -G sec/step/iteration. These 
times are the results of actual measurements. 

The timing results given in this section are to be considered preliminary; our final, 
most complete treatment of timing details is given in the fourth section of the main 
text, and in sections 6 to 8 of the additional notes. 

It is obviously of interest, to those involved in practical work of this type, to have 
some idea of the relative speeds of such computations for the various computers 
currently in use at the larger installations. For rough estimates of spheroidal-wave 
computation times, the conversion factors given by Porter et al. (1980) for Rayleigh 
waves can be applied to the characteristic times given here for an IBM 360/91 
computer. 

Existence of solutions as a function of numerical and algorithmic procedures. 
On IBM 360 and 370 equipment, large-scale numerical work is routinely carried out 
in double precision: the equivalent of 16 to 17 decimal digits. Except where indicated 
otherwise, this precision was used to investigate the existence criteria for solutions 
from our optimization of the basic AJP formulation. 
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Our testing procedure followed the lines of the layer-reduction experLments 
described by Schwab and Knopoff (1972): at each of a set of periods, c is computed 
for a complete range of terminating values, ro, for the integration. At each fixed 
period, by comparing the values of c as a function of ro, the range of ro over which 
c is stable to four significant figures is immediately evident. In terms of ro and 
period, our results for an oceanic, and a continental shield structure (Figure 5) are 
given in Figure 6. The fundamental and first seven higher modes ~ e  treated in each 
case. The results are similar to those previously obtained for Rayleigh waves when 
the homogeneous-layer approximation is employed (Figures 14, 15, 17, Schwab and 
Knopoff, 1972). At each period, a certain minimum amount of structure (maximum 
ro) must be retained to ensure four significant figures in c. This maximum value at 
ro is a physical limitation. For the mode and period of interest, there is significant 
energy content down to a depth of a - ro, and the structure above this point thus 
affects all four figures of c. 

In the initial program testing it is useful if one can integrate to any depth, 
irregardless of whether this results in loss of accuracy in the computed phase 
velocity, or in the expenditure of more computer time than if the integration were 
terminated at the minimum acceptable depth for the desired accuracy in the phase 
velocity. The use of a very large value of a - ro, or more precisely, a large number 
of wavelengths of structure, will result in overflow. Thus a simple, temporary 
solution to this problem is useful. Such a solution is the extension of the normali- 
zation technique described by Schwab and Knopoff (1970, 1972). Application of this 
technique to the direct-integration procedure is quite simple; it is not necessary to 
include normalization until predictor-corrector integration has begun in the mantle. 
To normalize, all one need then do is determine the maximum of the absolute values 
ofyi  at the end of each integration step; one then divides all yi(rj) and ~i(r 1) by this 
value, where rj are the seven positions at which yi and :yi must be specified so as to 
permit the next step of the fourth-order predictor-corrector method. (Seven, rather 
than four rj are required to allow the automatic doubling of step size When certain 
depths are reached.) For ease of reference, a normalization scheme is given in Figure 
7 which is appropriate for the program segment in Figure 4a. There are two 
warnings. (1) If only sparing use of normalization is planned, or if it is to be invoked 
from an IF statement, the segment in Figure 7 will be satisfactory; however, if large- 
scale use is envisioned, efficiency requires the inclusion of normalization directly 
within the coding of Figure 4a. (2) Unless absolutely necessary, this very powerful 
form of normalization should not be included in these computations; it can result in 
quite a significant increase in computation time. An inexpensive, restricted form of 
normalization will be introduced further on, along with a description of some rather 
detailed testing of overflow characteristics. Here, we wish only to establish the 
number of wavelengths of structure that  can be retained without overflow occurring. 
These tests were performed with the average (oceanic) earth structure given by 
Wiggins (1968). The results are given in Table 2. For IBM 360 and 370 equipment, 
when using the equivalent of 16 to 17 decimal digits, overflow occurs when ]F[ 
107° to 10 s°. Although these results show that it is possible to retain up to 8 to 9 
wavelengths of structure for the lowest four (radial) mode numbers, they also 
illustrate the trend of a decreasing allowable number of wavelengths of structure as 
mode number increases. This is a general trend, and it will force us to include 
normalization even for routine computations when dealing with relatively large 
mode numbers. 
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From the results shown in Figures 6 and 8 we can determine the maximum periods 
and values of c that can be treated without taking the structure of the core into 
consideration [other than to determine the values of g(r)]. These results are shown 
in Figure 9, along with the corresponding minimum order number, ~. Relative to the 
computation of theoretical seismograms, the combination of the results in Figure 9 
and those given by Schwab and Kausel (section 5, 1976), suggest potentially useful 
conclusions: (1) when l > /ram, only the crust-mantle system need be used in the 
computations; c can be computed at specified, equally spaced frequencies and 
inverse Fourier transformation can be used to calculate the theoretical seismogram 
for this range of periods; and the first term of the asymptotic expansions for P~"~ and 
Qt m can be used (possibly corrected by automatic numerical interpolation from the 
data in Figures 2 and 3 of Kausel and Schwab, 1976). (2) When l < /min, the core 
must be included in the computations; ~ should be calculated at integral values of 
l, and summation over l should replace Fourier synthesis; and the exact, integral-/ 
expressions should be used to evaluate the associated Legendre functions. 

A point of considerable interest to those involved in practical computation of 
surface-wave dispersion, is whether or not a difficulty analogous to the Thomson- 
Haskell "loss-of-precision" problem (Schwab and Knopoff, 1970; Schwab, 1970) is 
intrinsic to the AJP formulation. In calculations based on the homogeneous-layer 
approximation, when the original version (Haskell, 1953) of the Thomson-Haskell 
formulation for Rayleigh waves is used, this problem can cause serious difficulties 
if the computer is employed in a low-precision mode. To test for an analog of this 
loss-of-precision problem, in our optimization of the AJP formulation we simulated 
single-precision (the equivalent of about six decimal digits) computation by replacing 
DO-loop 160 (Figure 4a) in our double-precision program, with the segment shown 
in Figure 10. The results of these tests are similar to those from the original 
Thomson-Haskell formulation (Figure 2, Schwab and Knopoff, 1970), and are 
illustrated in Figure 11. In the ro to a range shown, where o is the number of 
significant figures in the computed phase velocity, our results indicate that there is 
no problem with modes 0 to 4 in double-precision computations; but when the 
calculations are reduced to single precision, the loss-of-precision problem is clearly 
evident. In the latter case, there is seen to exist a minimum value of ro, below which 
we cannot go and still retain a given accuracy in the computed phase velocities. 
Thus the AJP formulation does indeed exhibit the analog of the Thomson-Haskell, 
loss-of-precision problem. 

Since practical work with dispersion computations on IBM 360 and 370 equipment 
is routinely performed in double precision, it is important to estimate the numerical 
limitations imposed by loss of precision in this computational mode. The results of 
our tests at periods of 50 and 25 sec are shown in Figures 12 and 13. Less extensive 
tests were also carried out at 65 sec. At a given period, the right-most point of each 
of the smoothed curves was used to determine the maximum accuracy possible for 
each mode. This information was then collected in Figures 14 and 15. Although the 
data is necessarily sparse, due to the expense of this type of experiment, the results 
are quite clear. For a fixed period, as we go to higher and higher (radial) mode 
numbers, the attainable accuracy in c becomes less and less; for a fixed accuracy in 
c, as we go to shorter and shorter periods, the maximum mode number that  can be 
treated successfully becomes smaller and smaller. 

Our planned synthesis of seismograms for the spheroidal-wave components of 
motion, will require dispersion information from the gravest period down to a 
minimum of 10 sec for each of about 90 to 100 radial modes (Liao et  al., 1977, 1978). 
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Thus the above results clearly show that a control feature for loss of precision must 
be added to the original AJP formulation before these synthetic seismograms can 
be generated. This addition requires first, however, the development of an improved, 
high-speed algorithm for spherical, gravitating structures, thus making it economi- 
cally feasible even to attempt such a synthesis. Such an algorithm is developed in 
the fourth section, which now leaves us with the problem of selecting the best 
method for controlling loss of precision (see, e.g., Gilbert and Backus, 1966; Wiggins, 
1968; Neigauz and Shkadinskaya, 1972; Section II.D.4, Takeuchi and Saito, 1972; 
Appendix A, Nolet, 1976). In sections 4 and 5 of the additional notes these various 
control features are discussed in general. The following section of the main text 
presents a detailed investigation of orthogonalization, which is shown to control loss 
of precision when gravity is included in the model of the earth. We believe that this 
is the first such demonstration. In the fourth section of the main text it is shown 
that the AJP, sixth-order formulation of our problem can be reduced to one of 
fourth order, while still retaining the effect of gravity. This makes it possible--again, 
apparently for the first t ime--to cast the formulation in a practical, delta-matrix 
form for controlling loss of precision. The most immediate new investigation that is 
indicated by our present analysis thus appears to be the determination of which of 
these two methods is preferable in an algorithm for the generation of synthetic 
seismograms. 

Terminating boundary conditions. As noted above, our present efforts are con- 
centrated on the computation of phase velocities at arbitrarily specified (equally 
spaced) frequencies. Thus to keep our algorithms as simple as possible, and to avoid 
the difficulties involved in the evaluation of spherical Bessel functions of nonintegral 
order, we have chosen to terminate our integrations at depth with boundary 
conditions appropriate to free or rigid surfaces. We have therefore included the 
details of our numerical evaluation of the efficiency of this departure from the usual 
manner of terminating the integrations: (1) ending the integration within the mantle 
by applying terminating boundary conditions for a gravitating, homogeneous, 
solid sphere below r0; and (2) terminating at the mantle-core boundary by applying 
the conditions for a homogeneous, liquid sphere below r0. The analytic details for 
these two cases, the respective dispersion functions, and the generalization of the 
new algorithms for direct computation of group velocities and partial derivatives, 
are contained in section 3 of the additional notes. Also included there is the complete 
description of our numerical experiments for testing the efficiency of our simplified 
boundary conditions at depth; the results are summarized in item 3 of the following 
"Conclusions." 

Conclusions. An analysis of direct, Rayleigh-wave dispersion computations on a 
spherical, gravitating earth has been performed using the AJP (1959) formulation. 

1. No difficulty was encountered when we reversed the usual procedure, for 
practical purposes, and computed phase velocities (or polar order numbers) at 
specified periods. 

2. Integration from the free surface downward, again reversing the "standard" 
procedure, resulted in no unexpected difficulties. In fact, this procedure much 
simplified the specification of the algorithm for integrating the system of differential 
equations to obtain phase-velocity dispersion. This procedure also makes the gen- 
eralization from the algorithm for continental, to oceanic structures relatively trivial; 
it makes it possible to develop direct algorithms for obtaining group velocities for 
the two types of structures, as well as partial derivatives with respect to the 
structural parameters; and it was an important aid in the development of the 
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improved, high-speed algorithm described in the fourth section. The simplification 
of computational algorithms is the important advantage provided by downward 
integration. Comparative numerical analysis of integration in the upward and 
downward directions leads us to infer no preference relative to overflow, loss-of- 
precision, or accuracy features. 

3. The accuracy and efficiency of replacing the usual terminating boundary 
condition--a homogeneous sphere at depth--with boundary conditions that simplify 
the algorithm, e.g., a free or rigid boundary at depth, have been tested by numerical 
experiments. To obtain a given accuracy in the phase velocity, the boundary of the 
homogeneous sphere is situated above the free or rigid boundary. Thus computations 
with the usual condition require fewer integration steps. This advantage is signifi- 
cant, however, only for the lowest (radial) mode numbers. For computations directed 
toward the synthesis of complete theoretical seismograms, which are to be compared 
directly with those recorded on the long-period instruments of the WWSSN, this 
advantage is lost and the simplified terminating boundary conditions can be used 
without penalty. The use of these conditions also simplifies our direct algorithms for 
calculating group velocities and partial derivatives, the high-speed algorithm de- 
scribed in the fourth section, and especially the delta-matrix extension of this high- 
speed algorithm. 

4. The overflow problem in the AJP formulation can be controlled by simple 
normalization. Program segments are given which describe the procedure explicitly. 
In general, for the relatively low radial order numbers treated in this section, 
overflow is encountered only in program testing. In routine computations, it is easily 
avoided by retaining only the minimum amount of structure needed to attain the 
desired accuracy in the calculated phase velocities. The general normalization 
scheme that is given here should be avoided in routine computations due to the 
additional expense that it imposes. For use with relatively high-radial orders 
numbers, a more restricted form of normalization, the cost of which is trivial, is 
described in the following section. 

5. Our optimization of the AJP formulation is based on removing all function 
evaluations from the innermost, integration (over r) loops of the program. In fact, 
most of the evaluation procedure for aii(rk) can even be removed from the phase- 
velocity and frequency loops. The efficiency of an algorithm for dispersion compu- 
tations can be specified by its characteristic time, i.e., the time required to complete 
one integration step when using a direct-integration procedure to form the dispersion 
function, or the time needed to treat one layer when employing the homogeneous- 
layer approximation. The applications we are mainly interested in involve the 
treatment of extremely large numbers of frequencies in a single computer run. For 
such applications, the effective characteristic times of our optimizations of the AJP 
formulation are 266 × 10 -~ sec/integration step/iteration for a gravitating sphere, 
and 143 x 10 -~ sec/step/iteration when gravity is not included. These times for the 
AJP, direct-integration procedure provide a basis of comparison with the homoge- 
neous-layer approximation for a nongravitating, flat structure, which has a charac- 
teristic time of 110 x 10 -~ sec/layer/iteration (optimized form of Knopoffs method, 
Schwab and Knopoff, 1972). All of the above times apply to the IBM 360/91 
computer at the University of California at Los Angeles. These timing results are 
preliminary; our final, most complete timing details are given in the fourth section. 

6. Our results here, combined with those of Schwab and Knopoff (1972), indicate 
that an integration "step" (in the AJP procedure, when using Runge-Kutta and 
predictor-corrector methods of the fourth order) can be considered roughly equiv- 
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alent to a "layer" in computations based on the homogeneous-layer approximation. 
Also, to the accuracy possible in this type of comparison, the "iterations" required 
in the two techniques (for details see Schwab and Knopoff, 1972) can be considered 
equivalent. Thus the relative efficiencies of the two types of Rayleigh-wave disper- 
sion computations can be determined by simple comparison of the above character- 
istic times. For the applications in which we are mainly interested, these preliminary 
timing results show that  the optimized form of the AJP formulation (spherical 
structures) is 2.42 times slower than Knopoffs method (flat, nongravitating struc- 
tures) when gravity is included in the spherical model, and 1.30 times slower when 
gravity is not included. 

The fact that approximately the same number and sizes of "steps" must be used 
in the direct-integration procedure, as number and sizes of "layers" in the homoge- 
neous-layer approximation, indicates an apparent lack of validity of the usual 
assumption that the former method does a better job of treating continuous 
parameter-depth distributions. This conclusion is based on tests performed at the 
four-figure accuracy level (c o r / ) ,  with which we are concerned; the equivalence 
tests of steps and layers have not been extended to higher accuracies. 

7. A loss-of-precision problem appears to be intrinsic to the AJP formulation. 
Results of this problem: for a fixed period, as (radial) mode number increases, the 
attainable accuracy in phase velocity decreases, for a fixed accuracy in the phase 
velocity, as period decreases, the maximum mode number that can be treated 
successfully decreases. Even with the improved, high-speed algorithm developed 
below, it will be necessary to include a loss-of-precision control feature before 
attempting to compute complete synthetic seismograms that contain all of the 
energy down to a period of 10 sec. Referring to the results of the following section, 
this indicates that  the most immediate new question, relative to our work in the 
present analysis, is whether orthogonalization or the delta-matrix method is pref- 
erable to control loss of precision. 

3. LOSS-OF-PREcISION PROBLEM: SHORT-PERIOD COMPUTATIONS FOR HIGH 
RADIAL MODE NUMBERS 

In the description of this problem, four main points are of interest: the numerical 
aspects of the difficulty; the interpretive aspects; the connection between loss of 
precision and numerical instability; and the possible methods for overcoming this 
precision loss. Owing to limited space, our detailed discussions of each of these 
points are contained in the additional notes (section 4). Of the various possible 
methods for overcoming precision loss, in the present section we treat orthogonali- 
zation. To provide as complete a test as possible for this solution to precision loss, 
separate programs for propagating Rayleigh waves and for spheroidal, free-mode 
oscillations were employed. Therefore, in the additional notes (section 5) we have 
also given brief descriptions of each of these routines, along with full discussion of 
the results--other than those connected with orthogonalization--that are pertinent 
to computations at short periods, and high radial mode numbers. These results are 
also stated in the "Conclusions" at the end of the present section. 

Orthogonalization. As is explained in the additional notes, after each integration 
step some degree of independence of the solution vectors, Xi, is lost owing to the 
combination of a finite-precision machine and the dominance of exponential over 
oscillatory tendencies in the solutions. To avoid this tendency toward parallelism of 
the vectors, orthogonalization has been combined with the actual integration. 
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If we denote the vectors at  the end of an integration step by X~°ld(ri), and the 
vectors then  obtained with Gram-Schmidt  orthogonalization by X ~ ' ~ ( r i ) ,  then our 
computat ional  algori thm is given by 

X l  new _~. X l  TM 

X2 new = X2 TM -- 

X3 new = Xa TM _ 

( X2 TM, X l  new ) 
X l  new 

(X1 new, X1 new) 

( X3 °t~, X2 new) ( X3 TM, X y w) 
X2 flew 

(Z2 new, X2 new ) (Z l  new, Z l  new ) 
X l  new, (3.1) 

where the notat ion (D, E)  is used to represent  the inner product  of the vectors D 
and E. To express this in a more compact  manner,  we define the 6 × 3 matr ix 

X = [X~X2X3],  (3.2) 

each of whose columns is composed of the elements of one of the vectors Xi. It  is 
then  easy to show tha t  (3.1) can be writ ten as 

Z TM = znewT~ (3.3) 

where this linear t ransformation is described by 

t12 t13] 
T =  1 t 3  

o ; 
(3.4) 

with 

(Z2 TM, X l  new) (X3 TM, Z l  new) (X3 °ld, X2 new) 
t12 - t13 - t23 - (3.5) (X1 new, xlnew) ' (X1 new, xlnew) ' (X2 new, x2new) " 

Further  details concerning Gram-Schmidt  algorithms and their  propert ies are given 
by Lawson and Hanson (1974). 

I t  is impor tant  tha t  the introduction of orthogonalization does not  change the 
value of the dispersion function from tha t  which would result, wi thout  orthogonal- 
ization, were precision loss absent. If for upward (downward) integration we denote 
increasing (decreasing) r by increasing values of its subscript, then  each step of a 
numerical  integration procedure such as a Runge-Kut ta  method  can be writ ten for 
our system as 

X(rm+l) = V(rm) X(r~), (3.6) 

where the 6 × 6 matrix V(rm) describes the integration from rm to rm+~. If we begin 
the integration at rl and perform a steps, X becomes 

X(rl+.) -- V(r . )  V(r~- l ) .  . . V(r2) V(r l )X(r l ) ;  (3.7) 

and after  an orthogonalization at r l+ . ,  

znew(rl+a) --- V(r . )  Y ( r ~ - l ) .  • • Y(r2) V(r~)X(rl)  T-l(r l+.) ,  (3.8) 
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where a vanishes if an orthogonalization is applied before integration is initiated. 
To continue the demonstration, we proceed with another fl integration steps followed 
by an orthogonalization, ~/further steps and an orthogonalization, . . . ,  ¢ steps plus 
orthogonalization, and a final ~ integration steps, from which we have 

x°rth(rl+~+Z+...+~+~) -- V(r~+z+...+~+~).-. V(r2)V(rx)X(rl) 

x T-l(rx+~)T-l(r,+~+z)...T-X(rl+~+z+...+~), (3.9) 

o r  

x°~h(rl+~+B+...+~+~) = X(r ,+~+Z+. . .  +~+~) 

X T-I(rl+~)T-I(rl+~+B)...T-'(rl+~+z+...+~). (3.10) 

We can then define a matrix U, composed of the first, third, and fifth rows of X, 
which of course must also satisfy (3.10). Taking the determinant of both sides of the 
resulting relation, we have 

det[ u°r th ( rend) ]  = det[ U(rend)] ,  (3.11) 

where rl+~+z+...+~+~ is taken to be the final point of integration when forming the 
dispersion function, i.e., re~d. The right-hand side of (3.11) is exactly the dispersion 
function defined by equation (2.10), in terms of the vector components wi thou t  
orthogonalization; therefore, (3.11) demonstrates the invariance of the dispersion 
function under orthogonalization, when a rigid boundary is used to terminate the 
integration at depth. Simple variations of this demonstration, by redefining the 
matrix U, establish the invariance of other forms of the dispersion function for 
either upward or downward integration. The importance of this invariance is that it 
ensures a smooth, regular variation of the dispersion function as roots are sought by 
altering the value of the dispersion variable. 

Another important point concerning the introduction of orthogonalization into 
our integration process is the question of the modifications then required to compute 
the actual components of motion, i.e., the components of Y(r).  These modifications 
are straightforward, and merely require the reversal of the above procedure. In the 
following description, details concerning normalization (see section 5 of the addi- 
tional notes) will be neglected. 

Assume that the last iteration has been performed to obtain the value of the 
dispersion variable at the root of the dispersion function. After each integration step 
the values of [Xi]j have been stored; at the depths where orthogonalization has been 
applied, [Xi°ld]j are the components stored, along with t12, t13, and t23. Since each 
orthogonalization is just a linear transformation, Y at the starting point of integra- 
tion 

Y = elX1 + fiX2 + hlX~ (3.12) 

is only transformed into 

Y = e~X1 °~th + f~X2 °~th + h~X3 °~th (3.13) 

at the terminating point of the integration. The constants e~, f+, h~ are obtained by 
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application of the boundary  conditions at  the last point of integration, and with 
these constants, relat ion {3.13) yields the components  of motion for the last ~0 steps 
of the integration, i.e., at  

rl+a+fl+...+4+l 

rl+a+fi+...+~+2 

rl+a+fl+...+~+~- 

The  effect of the last orthogonalization is removed by applying 

1 - t12 hzt2a - ha l 
X new = X°ZdT -~ = X TM 0 1 - h a  

0 0 1 

to (3.13) at r~+,+B+...+~, which yields 

where 

Y = e x X l  °rth 4- fxX2 °rth 4- hxX3 °rth, 

(3.14) 

(3.15) 

e x = e~ - t12f~ + (ta2t2a - tla)h+ 

fx = f~ - t2ah~ 

h~ = h+. (3.16) 

Relat ion (3.15) can then be used to determine the components  of Y at the ~ points 

rl+a+fl+... +x+l 

rl+a+fl+.. • +X+2 

rl+a+B+...+x++. 

The  same procedure is repeated up to the point  of the first orthogonalization, rl+,, 
where (3.12) applies, and el, fl, hi are obtained from e,, f, ,  h , ,  and (3.16). Relat ion 
(3.12) is then  employed to specify the components  of motion at  the 1 + a points rl,  
r2 . . . . .  rl+,. Of course, e~, f~, h~ contain a common, multiplicative factor, which 
means  tha t  no generality is lost by applying the form of normalization described in 
the "General  Results" of section 5 in the additional notes. In our initial numerical  
tests of the above algori thm we compared the calculated components  of Y(r), from 
programs both  with and without  or thogonal izat ion,  for cases in which loss of 
precision is not  dominant.  These  tests were satisfied by obtaining the same results 
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from both programs for the components of motion. The tests with cases 
precision loss is completely dominant, in the original AJP formulation, 
well behaved yi(r) as soon as orthogonalization was introduced into the 
tions. 

633 

for which 
produced 
computa- 

The numerical tests in the present section were again performed on an IBM 360/ 
91 computer, using a precision equivalent to 16 to 17 decimal digits. The first of our 
preliminary tests showed that  even when orthogonalization is applied after every 
integration step, the cost of adding this operation is quite reasonable. In routine 
computations, the general requirement for control of precision loss appears to be an 
orthogonalization about every third step, which amounts to an increase in cost of 
roughly 5 to 10 per cent over that for the original algorithms. The second preliminary 
check concerned the invariance of the dispersion function relative to orthogonali- 
zation. Successful tests of this feature involved: (1) duplicate runs of the routines 
with and without orthogonalization, for cases in which precision loss is not signifi- 
cant; and (2) duplicate runs of the routines containing this process, in which 
orthogonalization was applied different numbers of times during the integration 
over depth. The latter runs were performed with cases dominated by precision loss. 

In the "Connection Between Loss of Precision and Instability" (section 4 of the 
additional notes) we mention that numerical instability cannot be eliminated, in an 
absolute sense, by any linear transformation applied to our three vectors. Thus it is 
a matter  of some importance to us to determine how well our linear transformation-- 
orthogonalization--suppresses this inherent instability, in a practical sense. Of 
course the critical aspect of this suppression is the degree of success we have in 
eliminating loss of precision, which has its quantitative expression in how well 
orthogonalization succeeds in transforming the situation in Figure 16a, to that in 
Figure 16b. More specifically, for each radial node n, treated without orthogonali- 
zation in Figure 16a, acceptable (r0, a) pairs must fall below the upper portion of the 
curve--structural l imitation--and above the lower portion--limitation due to pre- 
cision loss. The quantitative, practical success of orthogonalization in eliminating 
precision loss is therefore measured by its ability to remove this lower limitation. 
Pleasantly, if somewhat surprisingly, for all periods and radial mode numbers that  
were tested with orthogonalization included in the algorithms, the loss-of-precision 
problem appeared to be completely under control. For a given value of n, once the 
limit of integration, r0, fell below the solid line in Figure 16a, a, the number of 
stabilized figures in the computed dispersion variable did not decrease no matter  
how much further r0 was reduced; the practical limitation on the reduction of r0 is 
the point at which our restricted form of normalization ceases to control overflow, 
but this is always several hundred kilometers below the structural limitation 
depicted by the solid lines in Figure 16b. Our most detailed stability tests were 
performed at a period of 10 sec, with radial modes 4 and 15 of a continental structure. 
Once having passed any given (r0, ~) point on the structural-limitation curve, the 
stability of the computed dispersion variable did not decrease as ro was decreased 
by at least 1500 km. 

The dispersion function, computed with and without orthogonalization, is illus- 
trated in Figure 17 for two realistic structures and a range of ro values. This figure 
represents the fourth mode at a period of 10 sec; a case in which precision loss is 
completely dominant in the original AJP formulation. With orthogonalization 
included in the computations, we find the dispersion function to be very smooth and 
well behaved as a function of the dispersion variable. An interesting, and apparently 
quite general aspect of dispersion computations, is illustrated very strikingly in this 
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figure. We first note tha t  the vertical scale must  be compressed more and more as 
an increasing amount  of s t ructure--decreas ing r0--is included in the computations.  
As this happens, the dispersion function will be seen to become more  and more "L  
shaped." In our past  experience we have noted tha t  this is also a feature of dispersion 
computat ions with flat s tructures composed of a sequence of homogeneous  layers. 
Knowledge of this proper ty  of the dispersion function can be of importance in 
practical computations,  especially as an aid in selecting an efficient scheme for 
refining a root  once it has been bracketed. Obviously, from the curves for r0 = 4500 
km, point-slope, linear interpolat ion based on a point at the right side of the "L"  
would be a very poor  choice for root  refinement.  A two-point  (with opposite signs) 
scheme of linear interpolat ion would also be a poor choice for root  ref inement  since 
it would converge very slowly toward the root  from the right. A detailed, numerical  
example of this last case is given by Schwab and Knopoff  (1970, Table  2). Since we 
also find the "L-shaped"  form (reversed in this case) of the dispersion function in 
the vicinity of each root  in Figure 18, a common cause for this feature is suggested: 
a multiplicative, exponential  dependence of the dispersion function on the parameter  
tha t  is being varied. 

As final conf i rmat ion--based on absolute accuracy of the computed  dispersion 
var iab le - - tha t  orthogonalization solves the loss-of-precision problem represented 
by the lower portions of the curves in Figures 12 and 13, two tests were performed: 
(1) at  a period of about  50 sec the phase velocity for radial mode 13 was computed 
with the spheroidal-mode program, and was then  checked successfully to four-figure 
accuracy by comparing with the result calculated from the Rayleigh-wave routine; 
(2) at a period of about  25 sec, this same test  was performed successfully with radial 
mode 24. Thus  there  is no question tha t  orthogonalization solves the numerical  
problem to the extent  tha t  it was possible to define it in the second section, for 
realistic oceanic and continental  models of the earth. 

Still dealing with the realistic models of the ear th  tha t  are given in Figure 5, the 
tests of our solution for precision loss were extended down to the minimum period 
of interest: 10 sec. With the spheroidal-mode program the phase velocities were 
computed for increasing radial mode numbers,  at periods near  10 sec. At the period 
corresponding to each of these spheroidal modes, the Rayleigh-wave program was 
then  used to obtain a successful check of the phase velocity to four significant 
figures. This test  was performed successfully up to n = 30, at which point  the 
grouping of dispersion results indicates an interesting new problem in seismic 
interpreta t ion for realistic models of the earth 's  radial heterogeneity.  Since this 
problem is unrelated to the present  study, it will be t rea ted  elsewhere. As ment ioned 
previously, to obtain the desired theoretical  seismograms for Rayleigh waves, the 
results of Liao et al. (1978) indicate tha t  we will need a solution to precision loss for 
radial mode numbers  up to 90 to 100, at a period of 10 sec. To obtain unquest ionable 
verification of the accuracy of our new algorithms we decided to check the results 
f rom these two routines, to this minimum period and maximum n, against a set of 
dispersion values tha t  could be obtained independently,  to an arbi t rary  absolute 
accuracy. For  this purpose we replaced our realistic models of the ear th  with a 
gravitating, homogeneous  sphere of radius 6371 km, density 5.52 g m /cm  3, Lam~ 
constants  given by 

h//~ = 2.402 

tt = 1.463 × 1012 g m /cm  sec 2, 

and a gravitational constant  G of 6.67 × 10 -s cm3/gm sec 2. The  reference dispersion 
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results are given in Table 3. With orthogonalization included in our algorithms, the 
dispersion values from the spheroidal-mode program agree with the reference results 
over the entire range of n values, with the arbitrary accuracy of six significant 
figures selected in our free-mode program. As n increases from zero, the agreement 
of the results from our Rayleigh-wave routine decreases to somewhat better than 
four significant figures by the time n = 5 is reached, when the maximum step size of 
our integration is held at 12.5 km; with the maximum step size decreased to 6.25 km 
at n = 6, the accuracy of the computed results does not decrease again to four figures 
until n reaches 26; from 27 on, the maximum step size must again be decreased to 
maintain the desired accuracy. 

In the above descriptions of computations with realistic models of the earth, we 
have concentrated on cases in which the modal energy does not penetrate signifi- 
cantly into the core. To complete the present study we focus on the dispersion of 
long-period spheroidal modes. The practical consideration here is the ability to 
perform successful dispersion computations for all of those modes that  make up the 
present data set used in inversion studies (Gilbert and Dziewonski, 1975). Although 
most of the modes in this data set can be handled with the original AJP formulation, 
precision loss is encountered with some when using the 16 to 17 decimal digits 
employed by our IBM 360/91 computer. That is, even for relatively small values of 
l, loss-of-precision problems can eventually become significant as n increases and 
the modes strongly sample the core of the earth. The cases of interest here are those 
with l less than about 30, and with periods of the order of, or less than 80 sec. For 
successful handling of these cases, e.g., 25S,s, 27S16, 15S24, 17S~2, 3oS10, 34S1, it was found 
completely satisfactory to introduce orthogonalization in the mantle and outer 
section of the core. For these types of modes, no need was found to orthogonalize 
the vectors within the inner section of the core; however, this might be necessary 
for periods of 50 sec or less. 

Conclusions. When computing the dispersion of Rayleigh waves or spheroidal 
modes for a spherical model of the earth, algorithms based on the original AJP 
formulation have an intrinsic problem with precision loss which becomes increas- 
ingly severe as period decreases and/or radial mode number increases. This report 
presents, we believe for the first time with direct methods, a demonstrated solution 
to this problem for gravitating structures. 

The basic task of these computations is the numerical integration, over depth, of 
three independent vectors. The angles between these vectors were computed as a 
function of depth. The results show a persistent tendency of the "independent" 
vectors to become parallel. This spurious behavior renders the dispersion function 
meaningless, causing the calculations to lose their significance. Since the vector 
integrations are governed by equation (2.1), the numerical properties of the calcu- 
lations can be inferred from those of the matrix A. If we note that  over its interior 
the properties of the earth vary rather smoothly, this allows us to make a simplified 
eigenvalue analysis of this matrix, which provides a very simple interpretation of 
the parallelism of our vectors. Over a range of r, the eigenvalues yield vector 
solutions containing both exponential and oscillatory terms; the combination of a 
finite-precision computer and the dominance of exponential over oscillatory tend- 
encies in the solutions leads, eventually, to only this dominant tendency being left 
in the solutions; hence, the spurious parallelism. The dispersion function is a 
determinant--roots of which yield the desired dispersion results--each of whose 
columns is composed of elements from one of the solution vectors, which demon- 
strates the equivalence of this parallelism and the equally artificial roots that  define 
the loss-of-precision problem. 
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The detailed analysis of the eigenvalues of A shows that integration in both 
upward and downward directions exhibits the above problem; there is no preferred 
direction of integration relative to the loss-of-precision problem. The numerical 
tests of the second and third sections of this report fully support this conclusion. 
Another set of tests (section 5 of the additional notes) was carried out to determine 
whether there is a preferred direction of integration relative to overflow problems. 
The results show a striking agreement between the overflow features for upward 
and downward integration; these features are precisely the same in both form and 
magnitude. 

Like precision loss, the overflow problem is also a result of the inherent instability 
(see section 4 of the additional notes) of the original AJP formulation. When dealing 
with the large radial order numbers that the solution to precision loss permits us to 
treat, even routine computations encounter overflow. However, the problem is not 
so severe that its control necessitates as powerful and expensive a normalization 
procedure as that  described in the second section. A restricted form of normalization, 
the cost of which is trivial, has been found sufficient for radial mode numbers up to 
90 to 100, and for periods down to 10 sec. This method, the full details of which are 
given in section 5 of the additional notes, requires normalization only at the first 
and last points of integration. It also yields a dispersion function that has, as well as 
a meaningful sign, magnitudes that vary smoothly and regularly from iteration to 
iteration, i.e., as a function of the dispersion variable. 

To avoid the tendency toward parallelism of the solution vectors, and hence the 
problem of precision loss, we have combined Gram-Schmidt orthogonalization with 
the actual integration. To provide as complete a set of tests as possible for this 
procedure, separate programs for propagating Rayleigh waves and for free-mode 
oscillations were employed. By so doing, orthogonalization has been shown effective 
over a broad range of physical and numerical techniques. We obtained five basic 
results from the analysis of orthogonalization. 

1. The dispersion function is invariant under orthogonalization. This is demon- 
strated formally, and checked numerically. The importance of this invariance is that  
it ensures a smooth, regular variation of the dispersion function as roots are sought 
by altering the value of the dispersion variable. To be sure of this smoothness, 
overflow is controlled with the previously mentioned form of restricted normaliza- 
tion, rather than by introducing orthonormalization at each point where we or- 
thogonalize the vectors. 

2. The introduction of orthogonalization into the integration process leads to 
modifications in the means of obtaining the actual components of motion from the  
vector solutions. These modifications are shown to be quite straightforward. Specific 
details are given in (3.12) to (3.16). 

3. In routine computations, we have found it sufficient to orthogonalize about 
every third integration step. This amounts to an increase in cost of only about 5 to 
10 per cent over that of the original algorithms. 

4. Our numerical tests for all periods down to 10 sec, and for all radial mode 
numbers up to 90 to 100, indicate that orthogonalization brings the loss-of-precision 
problem under complete control. These tests employed: (1) realistic models of 
continental and oceanic structures, for which absolute accuracy of the computed 
dispersion variable was checked by comparing the results from our two independent 
programs; and (2) a gravitating, homogeneous sphere. The latter case permitted us 
to obtain unquestionable verification of the accuracy of our new algorithms, since 
reference dispersion results can be computed independently, to arbitrary absolute 
accuracy. 
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5. The first group of our orthogonalization tests were focused on cases in which 
the seismic energy is confined to the mantle of the earth. In the second group of 
these tests we concentrated on modes with significant energy within the core. In the 
latter case, we again found orthogonalization to be a completely satisfactory solution 
to precision loss. 

The combination of orthogonallzation to control precision loss, and the improved 
algorithm for high-speed computations that is described in the following section, 
now makes it possible to consider the routine calculation of complete, spheroidal- 
wave seismograms. These are designed for direct comparison with records from the 
long-period instruments of the WWSSN, where the theoretical records contain all 
of the seismic energy generated at periods above 10 sec. By comparing the results of 
our present tests at periods of 50, 25, and 10 sec, with those from the comparable 
program for complete, torsional-wave seismograms, we find that the latter routine 
can be used to estimate the maximum required values of the radial mode numbers. 
Approximately 6 to 7 significant figures in the stabilized dispersion values are 
desirable--this is not  absolute accuracy (see "Numerical Testing" in section 6 of the 
additional notes for an explanation of this point)--which indicates that  at 50, 25, 
and 10 sec we can go up to radial mode numbers of 10, 23, and 62, respectively, 
without entering the core. Thus these numbers are representative requirements for 
the spheroidal-wave program if it is to generate only those seismic arrivals that do 
not quite penetrate to the mantle-core boundary. If reflections from this boundary, 
and phases that penetrate somewhat deeper are also desired, then the approximate 
numbers of radial modes that will be required at the above periods are 18, 37, and 
93, respectively. 

With orthogonalization included, short-period computations were possible here 
with much higher radial mode numbers, n, than could be treated in the tests 
described in the second and fourth sections. It was therefore possible to examine the 
maximum integration step size required--for an absolute accuracy of four significant 
figures in the computed phase velocities--in the calculation of complete theoretical 
seismograms down to a period of 10 sec: (1) a maximum step size of 12.5 km can be 
used for all periods down to 25 sec. (2) Somewhere between 25 and 10 sec, it will be 
necessary to begin decreasing this maximum step size; the value of n at which this 
decrease is to be effected, decreases with decreasing period. (3) At 10 sec, this 
maximum must be decreased at about n = 6--the precise value of n probably being 
dependent upon the specified structure; if this decrease is to 6.25 km, this will suffice 
until n reaches about 27; one additional decrease should be sufficient to complete 
the computations at this period. 

4. IMPROVED ALGORITHM FOR H I G H - S P E E D  COMPUTATIONS 

Simpli f icat ion of  equations of  motion from A J P  formulation. Up to the present 
time, the sixth-order formulation (second section) has been the basis of direct 
computations with gravitating structures. The simplification to a fourth-order 
system involves the reduction of 

4 o{1  
ys(r) -- 21 + 1 r - ~  p(~)[lyl(~) + l(1 + 1)y3(~)]~ ~+1 d~ 

jr a } + r ~ p(~)[-(l  + 1)yl(~) + l(1 + 1)y~(~)]~ -t d~ (4.1) 
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[equation (35), Hoskins, 1920; section 5, Pekeris and Jarosch, 1958] and 

4~rG {_ l + l f o r  
y6(r) -- 21 + 1 rl+2 p(~)[lyi(~) + l( l  + 1)ya(~)]~ T M  d~ 

£a } + lr l-1 p(~)[-  (l + 1)y1(~) + l(l  + 1)ya(~)]~'-~d~ (4.2) 

to approximations 
ys(r) = csyl(r) + dsya(r) (4.3) 

y6(r) -- c6yl(r) + &ya(r), (4.4) 

which are then used to effect the desired simplification from sixth-order form 
[equation (2.1)]. The most difficult part of the present work was to determine the 
best technique for forming approximations (4.3) and (4.4). Thus this will be treated 
in some detail. 

As a preliminary question, one might ask whether highly accurate values of y5 
and y~ are actually required for dispersion computations. If it is noted that these 
quantities are directly proportional to the gravitational constant G, while y~, y2, ya, 
and y4 do not have this property, this provides an easy means for obtaining the 
rough estimate needed to answer this question. Since 

8G/G ~ 8ys/y~ ~ 8y6/y6, (4.5) 

an estimate of the effect of errors in y5 and y~ can be obtained by varying G and 
noting the effect on phase velocity when executing the program described in the 
second section. The results of this test are shown in Table 4. They indicate quite 
clearly that relatively large errors in y5 and y6 have small effects on the accuracy of 
computed phase velocities. Since this is intended only as a preliminary test, the 
illustration is limited to one period and eight (radial) modes. 

From these results it is apparent that approximations (4.3) and (4.4) need not be 
highly accurate; fairly good graphical agreement between the approximations and 
the true values of y5 and y~ should ensure satisfactory accuracy in phase velocities 
computed with algorithms based on (4.3) and (4.4). Thus the results of various 
approaches to constructing these expressions will be presented in graphical form. 
The test computations are again based on the sixth-order algorithm. At the correct 
value of c, 

[ ya(a) /y l (a) l  _ 1 

ys (a ) /yda)  J [X2(ro)]~[Xa(ro)]a [X2(ro)]a[Xa(ro)]~ 

[-[X~(ro)]~ [Xa(ro)]3 + [Xl(ro)]3 [X3(ro)]l~ 
X L [Xl(ro)]l [X2(ro)]a - [X~(ro)]a [X2(ro)]lJ (4.6) 

for rigid-boundary termination. Integration is performed with starting vector Xs(a) 

y~(a) 
y2(a) 
ya(a) 
y4(a) 
y~(a) 
y~(a) 

= y l ( a )  

1 
0 

ya(a)/yl(a) 
0 

ys(a)/yl(a) 
l + 1 ys(a) 

a yi(a) 

= yl(a)Xs(a) (4.7) 
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to determine yi(r)/yl(a) and :yi(r)/yl(a), from which any desired approximations 
(4.3) and (4.4) can be evaluated and then compared with the directly computed 
dependences ys(r)/yl(a) and ydr)/y~(a). Relations (4.6) and (4.7), of course, apply 
to a continental structure. For an oceanic model, the left-hand side of (4.6) becomes 

[ y3(rl) / yl( a )- , 

ys(a)/yl(a) 
(4.6a) 

and integration is performed with starting vector ZL(a) 

yl(a)] 
y~(~)[ 
y~(a)] 

y6(a) 1 

= yl(a) 

1 
0 

y5(a)/yl(a) 
l + 1 ys(a) 

a yl(a) 

= yl(a)ZL(a); (4.7a) 

at the bot tom of the liquid oceanic layer, 

yl(ra)] 
y2(rl)] 
ys(rl)| 
y6(rl)] 

= yl(a)  

[ZL(rl)]li 
[ZL(rl)]2 
[ZL(rl)]5 
[ZL(rl)]6. 

(4.7b) 

and integration is continued below this point with starting vector Xs(rl) 

:l(rl)] 
,2(r1)[ 
:3(rl) / 
:t(rt)[ 

~6(ri)J 

-- yl(a) 

[ZL(rl)]I 
[ZL(rl)]2 

y3(rl)/yl(a) 
0 

[ZL(rl)]5 
[ZL(rl)]~ 

= yl(a)Xs(rl). (4.7c) 

Approximation 1: if, for example, we write (4.1) in the form 

( fo  r 4~rG 1 p(~)yl(~) 
ys(r) - 21 +------1 d~ 

;o r + l(l + 1) p(~)y3(~) d~ 

Jr a - ( l  + 1) p(~)y~(~) d~ 

fr o + l ( l+  1) p(~)ya(~) d~ , (4.8) 

it is clear that  the desired approximations require yl(~) and ys(~) to be removed 
from the integrals in the forms yl(r) and ya(r), and the remaining integrals to be 
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evaluated. Since the contributions of the integrands are concentrated toward the 
points ~ =- r, the obvious approximation to try first is that arising from Taylor's 
series expansions of p (~) Yd ~) and p (~) y3(~) about ~ = r 

p(~)yi(~) = p(r)yi(r) + [fi(r)yi(r) + p(r)~i(r)](~ - r) + . . . .  (4.9) 

The test results from approximation 1 are shown in Figure 20. When only one term 
of the Taylor's series expansions is used, the results are unacceptable; if two terms 
are employed, the results improve except for the large spikes that are introduced in 
the second term by abrupt variations in ~ (r); the results of the three-term expansions 
are much worse, owing to the additional spikes introduced by X (r) and ~(r) which 
appear in the third terms. Because of these abrupt variations with depth, approxi- 
mation 1 was abandoned. 

Approximation 2: to improve on the first approximation, a bit of generality is 
sacrificed by leaving p (~) under the integral signs in (4.8) and assigning it an explicit 
specification--a sequence of linear functions of ~--to permit the evaluation of the 
integrals. Thus the Taylor's series are simplified to 

yi(~) = yi(r) + 2i(r)(~ - r). (4.10) 

The results of the second approximation are also given in Figure 20, where we see 
that although the first-term expression is unacceptable, the expression with two 
terms no longer has the large spikes of approximation 1. 

Although the smoothness of the second approximation shows improvement, the 
absolute agreement with the true result is not too good. Thus some iterative 
procedure is indicated for improving this agreement. Once the initial approximations 
to yl(r) and y~(r) have been obtained--by running the algorithm based on (4.10) 
and then evaluating the eigenfunctions yi(r)--an iterative technique can be set up 
to improve the agreement. Rewrite (4.6) as 

4 ~rG 
ys(r) - - -  

2 / +  1 
( l Idr)y~(r)  + l(1 + 1)I3(r)y3(r) 

- ( l  + 1)I2(r)y~(r) + l(1 + 1)I4(r)y3(r)} (4.ii) 

with the approximations 

l f0r I~(r) ~ -  p(~)py~(~) d~ 
pyl(r)  

pyl(r)  P(~)PYI(~) d~ 

r -  
py~(r) P(~)PY~(~) d~ 

py3(r) P (~) pys(~) d~ (4.12) 
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where pyi  are the approximate eigenfunctions predicted from the algorithm based 
on (4.10)--or from successive improvements--and expressions (4.12) arise from the 
assumption that in the neighborhood of ~ = r 

yi(~) ~ constant × pyi(~); (4.13) 

since the contributions of the integrands are concentrated toward ~ = r, the constants 
are evaluated at that point 

yi(r) 
yi(~) ~ - -  pyi(~).  (4.14) 

pyi(r)  

The proposed iterative procedure for improving approximation 2 is given in Figure 
21. With the program described in the second section, this scheme has been tested; 
the results are shown in Figure 22, where it is seen that the procedure is convergent. 
Thus these tests indicate that the outline in Figure 21 is valid, and this approach is 
discussed in detail in section 8 of the additional notes. However, this is not the most 
efficient way of employing the fourth-order simplification of the AJP formulation. 
Reference to Figure 21 shows that the key stage in the procedure--step 10--requires 
evaluation o fpy i ( r ) ,  and then Ii(r) ,  each time the dispersion function is computed. 
A much more efficient algorithm would be one in which the recalculation o fpy i ( r )  
and  Ii(r) were not required with every evaluation of the dispersion function; this is 
the type of algorithm we seek. 

A high-speed procedure of this kind will be found possible when many, equally 
spaced frequencies are treated. Here it is possible to approach computation at each 
new frequency with accurate predictions pyi(r)  and/ ,  and therefore to make use of 
the procedure given in Figure 23. There it will be seen t h a t p y i ( r )  and Ii(r) need be 
computed but  once for each frequency. The question of interest then, is how best to 
extrapolate, from data at previous frequencies, to accurate predictions py~(r) at the 
new w. 

Approximation 3: the results of the first attempt to predict accurate eigenfunctions 
from data at preceding frequencies are shown in Figure 24. In this test, (4.14) and 
the eigenfunctions at the (single) preceding frequency--0.0005 cps below each of 
those shown--are used to predict the desired depth dependences for use in (4.12). 
The obvious problems reflect the fact that py3 and y3 have cross-over points at 
depths which differ significantly. 

Approximation 4: Figure 25 illustrates the results when two preceding frequencies, 
and various extrapolation methods, are combined with (4.14). These results are 
much improved over those of Figure 24, but  the fit at the longer period can still use 
some improvement. 

Approximation 5: with the predictions pyi  based on three preceding frequencies 
spaced 0.0005 cps apart, the test results in Figure 26 appear to justify full develop- 
ment of the algorithm outlined in Figure 23. After the first few (radial) modes, say 
0 to 2, there should be enough features of yl(r) and y3(r)--depths and magnitudes 
of extrema, depths of zeros, and depth of deepest point to be retained--to permit 
extrapolation based on these features alone. The first few modes, however, require 
an additional framework upon which to base the extrapolation procedure. For mode 
0, at each depth this framework is the empirically determined, three-point extrap- 
olation formulas. 

pyl(o~) ~ y l (~  - 3Ao~)[yl(~ -- Ao~)/yl(o~ -- 2ho~)] 3, (4.15) 
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and a similar expression for pys (~)  at depths below the deepest extremum; above 
that last peak in displacement, 

py3(o~) ~ xy3(o~ - 3Ao~) - (1 + 2 x ) y 3 ( ~  - 2 A ~ )  

+ (2 + x )y~(~  - Ao~), (4.16) 

where 

x = ( [ A ( w )  - A ( w  - 2 A ~ ) ] / [ A ( ~  - A~o) -- A ( w  - 3Ao))]} 1'33. (4.17) 

A denotes wavelength, and A~0 is the constant interval between frequencies. These 
formulas are based on a wavelength-scaled forward difference formula, and "forward 
ratio" generalizations of the usual forward difference formula. For modes 1 and 2, 
bothpyl(w) and py3(~0) are obtained aspyz(~) is for mode 0. 

We now derive simplified equations of motion based on the use of approximation 
5. In this case the reduction is quite easy. The integrals Ii(r)  are approximated by 
(4.12) and y5 and y6 are given by 

~4~rG } 
ys(r)  = [ 2 / +  1 [lIa(r) - (I + 1)I2(r)] yl(r) 

4~rG } 
+ [2l  + 1 l ( l  + 1)[I3(r) + I4(r)] y3(r) 

(4.18) 

y6(r) = [2/~ 4~rG+ 1 l ( l  r + 1) [ - I i ( r )  - I2(r)]} yl (r )  

[~ 4~rG l( l  + 1) [ _ ( / +  1)I3(r) + lI4(r)]'~ 
+ [2t+ 1 ~  

y3(r). 
J 

(4.19) 

Substitution into the sixth-order equations of motion [equation (2.1)] yields the 
fourth-order system 

a~l a12 a13 0 

A21 a22 A23 a24 
a33 0 a33 a34 

A41 a42 A43 a44 

yl 
y2 
y3 
y4 

(4.20) 

where the only modified elements of the coefficient matrix are 

4TrGp l(1 + 1) 
A21 = a21 + - -  - -  [Ii(r) + I2(r)] 

2 l + 1  r 

A23 = a23 - - -  
4~rGp l(1 + 1) 

2 / + 1  r 
- -  [ - ( l  + 1 ) I 3 ( r )  + l I 4 ( r ) ]  

A41 ~- a41 
4~Gp 1 
2 / + l r  

[lIl(r)  - (l + 1)I2(r)] 

4~rGp l(1 + 1) 
A43 = a4z - - -  - -  [Is(r) + I4(r)]. 

2 / + 1  r 

(4.21) 
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The preceding development, of course, applies to the solid portions of the earth. 
The application of the above method to an ocean modeled by a single, homogeneous, 
liquid layer, reduces the original fourth-order system [equation {2.16)] to one of the 
second order 

Ye [Be, Bee] y2 ' (4.22) 

where 

Bl l  = bll + b l ~ g - -  
1 + ~  

B12 = b , 2 -  b 1 5 - -  
pl+M 

B21 = b21 + b2~g - -  1 + 2 ~  p ~ + g ~  1 1 + ~  

B22 = b22 - b 2 5 - -  + 9  1 - -  
p l + ~  I + M  

(4.23) 

with 

47rG 1 
d - 21 +--1 g [lI l(r)  - (1 + 1)I2(r)] 

47rG l ( l  + 1) 
- -  - -  [ I 3 ( r )  + I 4 ( r ) ]  

2~ = 21 + 1 r J  
4v G l ( l  + 1) (4.24) 

- -  - -  [ - / d r )  - I 2 ( r ) ]  
~ - - 2 / + 1  r 

4~rG l ( l  + 1) 
= 21 +---~ r 2 j  [ - ( / +  1)I3(r) + 1L(r)] 

and 

bll 1 { l ( l  + 1)g ) 
= r \  r J  - 2  

1 l(1 + 1) 
512 = -  r2 a) 2p 

l ( l  + 1) 
515 = 

r2~o 2 

{t( l  + 1)g 
b2l=o - 72 

l ( l  + 1)g 
522 = 

r2co 2 

l(1 + 1)pg 
525 = r2a) 2 

2_4g)r 

(4.25) 



644 SCHWAB, FREZ, PANZA, LIAO, AND KAUSEL 

Computational algorithm for high-speedprocedure. We begin with a continental 
structure. In this case, y2 and y4 vanish at  r = a .  Thus we can write the starting 
vector as 

I yl(a) 

Ys(a) = y2(a) y3(a) 
y4(a) 

~l(a) 
y3(a) 
0 

= yl(a) 

1 
0 
0 + y3(a) 
0 (4.26) 

or  

Ys(a) = yda)Xda) + y3(a)X2(a), (4.27) 

and for r < a 

Ys(r) = yl(a)X~(r) + ya(a)X2(r). (4.28) 

The two quantities which are known--y,(a)  and y3(a)--can be carried implicitly in 
the computations, while we integrate the vectors whose starting values are known 
exactly: X~ and X2. Tha t  is, we integrate to obtain X~ and )(2 individually, thus using 
equation (4.20) in the form )~ = AXi to integrate fr~)m the surface r = a to the depth 
at which the boundary conditions are to be applied: r = ro, where we can again 
express Ys in terms of the undetermined coefficients by using (4.28). 

If  we define a rigid boundary at depth by 

[001 = [Yl(r°)ky3(ro ) ]j = [[Xl(r°)]'[X2(r°)]ll[Yl(a)~ (4.29) [[X (r0)]3[X2(r0)]33 Ly3(a) J, 
then the determinant  of the coefficient matrix must  vanish if we are to have a 
nontrivial solution. Thus the dispersion function takes the form 

[Xl (rO) ]l[X2(ro) ]l , 
F (c, ~ ) = [X~(ro) ]3[X2(ro) ]3 (4.30) 

zeros of which define valid (c, w) dispersion pairs. As in the second section, we adopt 
the procedure of fixing ~ and computing l, or c as defined in (2.5). 

For an oceanic structure, we assume tha t  the liquid oceanic layer is a single, 
homogeneous layer, i.e., tha t  p (r) and h(r) are constant. The second-order formu- 
lation is then applied, with the starting vector, Z(a), specified by 

y2(a) = yl(a) 0 = yl(a)Z(a). (4.31) 

At the bot tom of the liquid layer: r = r~, continuity of yl and y2, and the vanishing 
of Y4, yield the starting vector within the solid mantle: 

Ys(rl) = 

ydrl) 
y2(rl) 
y3(rl) 
y4(rl) 

yda)[Z(rl)]l 1 yl(a)[Z(rl)]2 
y3(rl) = yl(a) 

0 

[Z(rl)]l 
[Z(rl)]2 

0 
0 

-{- y3(rl)  (4.32) 
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o r  

Ys(r l )  = y l ( a ) X d r l )  + y3(rl)X2(rl). (4.33) 

The integration from this point on is handled exactly as in the continental case. 
Although the information could be extremely useful to anyone hoping to imple- 

ment the high-speed procedure, limitations on space have forced us to relegate the 
details concerning numerical testing of this procedure to the additional notes 
(section 6). The results of this testing are included in the next paragraph, and in the 
following "Conclusions." 

The full timing details describing the algorithm for the numerical integration of 
our system of differential equations are quite complicated relative to the details 
when the homogeneous-layer approximation is used. In the latter case, the time per 
frequency is given precisely by 

T × n × ~ ,  (4.34) 

where T is the single characteristic time (to treat one layer in each iteration over c, 
n is the number of layers, and ~ is the required number of iterations over c to 
obtain the desired accuracy in the phase velocity. Precise timing details for the 
present high-speed procedure are given in section 7 of the additional notes; here, 
however, we deal with a simplified, "effective" characteristic time, ~eif (see additional 
notes, section 7), that  will allow us to make immediate comparisons with times for 
the optimized, sixth-order algorithm described in the second section, and with the 
fastest of the previously published Rayleigh-wave techniques: the optimized form of 
Knopoff's method for nongravitating, homogeneous layers. Section 7 of the addi- 
tional notes also contains the explanation of how the characteristic time of the most 
important program segment--the predictor-corrector portion of HPCMTL--was 
improved over the 143 × 10 -6 sec/step/iteration reported in the second section for 
Figure 4c. As explained there, where complete timing details (as given in section 7 
of the additional notes) were considered unnecessary, n and ~ of (4.34) can be 
equated approximately with the total number of integration steps and iterations 
over l, respectively, when using the optimized, fourth-order, Runge-Kutta and 
predictor-corrector methods outlined in the second section and in the additional 
notes (section 2). Thus, approximate relations among the computation times of the 
various algorithms can be obtained by simple comparison of the associated charac- 
teristic times. The times are given in Table 5, where all of the timing results from 
this report are summarized. These results show that  the fourth-order, high-speed 
procedure reduces Teff to 164 × 10 -6 sec/step/iteration, thus allowing gravity to be 
included in Rayleigh-wave computations on a sphere for only 5/4 the cost (or 
execution time) of calculations with nongravitating, spherical structures. For non- 
gravitating, spherical models, the fourth-order, high-speed procedure--with "r~ff 
reduced to 132 × 10 -6 sec/step/iteration--requires 6/5 the time the "fast" form of 
Knopoff's method needs to treat a sequence of flat, homogeneous, nongravitating 
layers. (The speed for nongravitating, spherical models is the same as that for our 
approximation with y5 and y6 set equal to zero while g(r )  is retained in the elements 
of the coefficient matrix. This approximation is described in the last three paragraphs 
of section 6 in the additional notes.) For gravitating structures, the high-speed, 
fourth-order procedure is roughly 1.54 times the speed of the most highly optimized 
form of the sixth-order algorithm. Section 7 of the additional notes contains the 
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explanation of how the effective characteristic time of the sixth-order algorithm was 
improved to 252 × 10 -6 sec/step/iteration, from the lower bound of 266 × 10 -6 sec/ 
step/iteration given in the second section of the main text. 

How do we control loss of precision with the improved algorithm? For computa- 
tions in which the computer carries 16 to 17 decimal digits, the numerical details of 
this problem are given in the second section. A general discussion of the methods 
for treating this problem--orthogonalization and delta-matrix representations--is 
given in section 4 of the additional notes and in the third section of the main text. 

A simplified form of the orthogonalization process described in the third section, 
is probably the easiest means of controlling the !oss-of-precision problem in the 
high-speed procedure. The treatment of the oceanic layer should be satisfactory as 
it is, in its second-order form. Since the fourth-order simplification of the algorithm 
for handling solid, gravitating structures involves just two vectors Xi, the application 
of orthogonalization requires modification of only one vector in this case. 

The application of delta-matrix representations to the sixth-order formulation 
would be a formidable task as it involves a twentieth-order system. The details for 
the delta-matrix extension of a fourth-order formulation are well known, and the 
above simplification, from sixth to fourth order, now makes the practical application 
of delta matrices possible for Rayleigh waves on a spherical, gravitating structure. 

For a continental structure, instead of integrating the two vectors X~ and X2 
separately, we treat the compound elements 

Wol = (X1)1(X2)2-  (X1)2(X2)l 

W2 = (X1)l(X2)3 - (X1)3(X2)1 

W3 = (XAI(X2h  - (Xlh(X~)I 

W4 = (X1)2(X2)3 - (X1)3(X2)2 

W~ = (X~)~(X~h - (X1)4(X2)2 

Wo6 = (Xl)3(X2)4 -- (Xl)4(X2)3. (4.35) 

The equations of motion are still governed by the elements of the coefficient matrix 
of relation (4.20) 

Wo, 

W2 

W3 

W4 
W~ 

Wo6 

a~, + a22 
0 

a42 

a33 

- A 4 1  

0 

A23 a24 -a13 0 0 
a l l  -{- a33 a34 a12 0 0 

A43 a l l  + a ~  0 a12 a13 

A21 0 a22 q- a33 a34 -a24 
0 A21 A43 a22 4- a44 A23 

- A 4 1  - a 3 3  - a 4 2  0 a33 -~- a44 

Wnl I 

W,~. 1(4.36) 

(Gantmacher, Chapter 1.4, 1959; Gilbert and Backus, Section 2, 1966; Takeuchi and 
Saito, Section II.D.4, 1972). This system can be further reduced, i.e., four additional 
zeros can be introduced, by the transformations 

W1 = 1[W01 - l ( l  + 1) W06] 

W6 = ½[Wo~ + l ( l  + 1)Wo6] ,  (4.37) 
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which yield 

w~ 
w2 
w3 
w'~ 
w~ 

:w6 

Wl l  W12 W13 W14 0 0 
0 W22 W23 W24 0 0 

W31 W32 W33 0 W35 0 

W41 W42 0 W44 W45 0 

WS1 0 W53 W54 W55 W56 

0 W62 0 0 0 W66 

W~ 
We 
W~ 
W~ 
W~ 
W~ (4.38) 

with  

wll = - 2 / r  

W12 -- - - / ( / +  1) [ r  Pg 2#(3X + 2#) l ( h  + 2g)r 214TrGpl(l+l)+ 1 - - 2 r  [l(I1 + I4) - (l + 1)(12 + I3)] 

W13 = l(l + 1 ) / r  

W14 ~-~ - l ( 1  + 1)X/(X + 2/t)r 

,( 
W22 = - -  1 

r X ~ - 2  

W23 ~--" 1//~ 

W24 ~-~ 1 / ( ~  "~- 2#) 

w31 = - 2 h / ( h  + 2tt)r 

W32 = --po) 2 -l- 
2/t[X(2/2 + 21 - 1) + 2g(/2 + 1 - 1)] 4TrGp l(1 + 1) 

(h + 2g)r 2 21 + 1 r (~ + L) 

1(2 ) 
W33---- - -  --  3 + 

r 

W35 ~ W24 

w41 ~- - W l l  

w42 = - p ~  "~ - 4pg  
r 

4/~(3h + 2g) 4~rGp l(l + 1) 
A t 

(X + 2g)P  21 + 1 r 
(I~ + I2) 

W44 ~-- --  1 
r h +-2it 

W45 ~ W23 

W51 ~- WllWl2/Wl3 
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W53 ~ W42 

W54 ~ W32 

S C H W A B ,  F R E Z ,  P A N Z A ,  L I A O ,  A N D  K A U S E L  

1(4 ) 
w55 = -  - 3 + 

r 

4TrGp 1 
W56 - -  - -  

2 / + l r  
[/(I1 - / 4 )  - (l + 1)(/2 - / 3 ) ]  

l(l + 1) 
W62 - -  - -  W56 

2 

W66 ~--- W l l .  (4.39) 

With this formulat ion for a continental  structure,  the starting vector  is given by 

W(a) = 

Wl(a) 0 
W2(a) 1 
W3(a) 0 
W4(a) -= 0 
Ws(a) 0 
Wda)  0 (4.40) 

since all [Xi(a)]j vanish except for 

[Xl(a)]l = [X2(a)]3 = 1. (4.41) 

Comparison of (4.30) and (4.35) will show tha t  the dispersion function in this case 
is just  

F(c, ~0) = W2(ro), (4.42) 

if we again employ a rigid boundary  at depth  to terminate  the integration. 
For  an oceanic structure, we handle the homogeneous liquid layer in the manner  

described earlier in this section. Within the solid mantle,  the starting values of Xi 
are given by (4.32) and (4.33). Thus  from {4.35), 

W(ri) = 

0 
[Z(rl)]l  

0 
[Z(rl)]2 

0 
0 (4.43) 

and the integration proceeds and terminates  exactly as in the continental  case. 
The  relative speeds of (4.20) and its delta-matrix extension, (4.38), are easily 
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estimated: each of the vectors X1 and X2 requires 23 elementary operations-- 
additions, multiplicagions--when (4.20) is used; the single vector W requires 38 
operations when {4.38) is applied. Thus, to first approximation, the delta-matrix 
algorithm would take roughly 38/(2 × 23), or 83 per cent of the time required by 
(4.20) if we assume that both approaches need the same number of iterations over 
1. However, it must be noted that this estimate applies only to the formation of the 
dispersion function: subroutines HPCSAC and HPCMTL in Figure 27, and that part 
of this advantage is lost in the formation of Ii(r) and in the eigenfunction evaluations 
required by the high-speed procedure. As explained in the last paragraph of section 
7 in the additional notes, the ac tua l  reduction is to 93 per cent of the time of (4.20), 
or an improvement in the effective characteristic time from 164 × 10 -6, to 153 × 
10 -6 sec/step/iteration by using (4.38). 

When r0 increases beyond the position of the "400-km discontinuity," the approx- 
imation with y5 and y6 equal to zero is used. Orthogonilization can be applied to this 
approximation in exactly the same manner as with the unmodified high-speed 
procedure. The delta-matrix formulation appropriate to this approximation is ob- 
tained from (4.38) and (4.39) by letting Ii(r) go to zero. This reduces the system to 
fifth order: VV6, W6, and the last row and column of the coefficient matrix can be 
deleted from {4.38). Thus the reduced, single vector W now requires only 33 
operations, and the conversion to the delta-matrix algorithm with vanishing y5 and 
y6 reduces computation time to 33/(2 × 23), or 72 per cent of that required by (4.20). 
The effective characteristic time is therefore improved from 132 × 10 -6, to 95 × 10 -6 
sec/step/iteration. 

The methods used in the numerical integration of differential equations include 
one-step and multi-step procedures; the initiation of a multi-step method requiring 
the results of a specified number of applications of a self-starting, one-step method. 
The high-speed procedure described here and in section 6 of the additional notes, is 
strongly analogous to such a multi-step method, and for each (radial) mode requires 
the results of three applications of a self-starting procedure that does not need an a 
pr ior i  prediction of yl(r) and y3(r) at the frequency being treated. The most obvious 
choice for this "starting" procedure is the full, sixth-order algorithm; ideally, the 
augmented algorithm of the third section which controls the loss-of-precision 
problem by means of orthogonalization. In section 8 of the additional notes we 
present an investigation of the usefulness of a fourth-order "starting" procedure, 
which is based on "assumption 2" of the present section, and look for any significant 
advantages over the sixth-order algorithm. 

Conclus ions .  Previous algorithms for the computation of Rayleigh-wave disper- 
sion on a spherical, gravitating earth, have been based on the integration of a sixth- 
order system of differential equations. In its most highly optimized form (Table 5), 
the algorithm for treating this system is still about five times slower (~eff = 252 × 
10 -6 sec/step/interation) than the comparable Love-, or torsional-wave calculations, 
and about 2.3 times slower than the fastest Rayleigh-wave calculations based on the 
nongravitating, homogeneous-layer approximation. In this section it is shown that 
the sixth-order formulation can be reduced to one of fourth order, while still 
retaining the effect of gravity. This simplification makes it possible to compute 
Rayleigh-wave dispersion on spherical, gravitating structures, with 4/5 the speed 
(Tel/= 164 × 10 -6 sec/step/iteration) of the optimized algorithm for the comparable 
calculation with a nongravitating sphere (~eff = 132 × 10 -6 sec/step/iteration). The 
new high-speed procedure for Rayleigh-wave computations on a spherical, gravitat- 
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ing earth is only three times slower than the torsional-wave computations we are 
already using to calculate complete, torsional-wave seismograms for realistic models 
of the earth. Thus, at least in terms of speed, it now appears feasible to attempt to 
compute complete, spheroidal-wave seismograms containing all of the energy gen- 
erated down to a period of 10 sec. 

This fourth-order, high-speed procedure is designed for the computation of many 
dispersion points at equally spaced frequencies. To initiate this process for each 
radial mode, eigenfunction and dispersion data at the three longest-period points 
are needed. For this purpose, a fourth-order "starting" procedure has been described 
(section 8 of the additional notes). Owing to the key optimization technique-- 
evaluation of the coefficient-matrix elements of (4.20), (4.22), (65), and (67) outside 
of the innermost, integration loops--it is possible to use the same integration 
subroutines (or program segments) for the fourth-order high-speed and "starting" 
procedures. (Equation numbers that lack periods refer to relations given in the 
additional notes.) This use of the same subroutines results in considerable coding 
efficiency, and is justified if [(N/)4th]START is not too much above (Nl)6th (see 
"Computational Algorithm" in section 8 of the additional notes). 

Automatic structure reduction is an intrinsic feature of the high-speed procedure 
as it treats shorter and shorter periods for the same radial mode. When the structure 
has been reduced to the point where the integration is terminated just below the 
low-velocity channel in the upper mantle, it is advisable to switch to an even faster 
algorithm which allows y5 and y6 to vanish while retaining g(r) in the elements of 
the coefficient matrix. Otherwise, one would have to modify the very efficient 
integration in XINTEG (Figure 27) for obtaining L(r). Since this new, faster 
algorithm--same speed as that for a nongravitating sphere--maintains the desired 
four-figure accuracy in c for these shallow depths of penetration, it should of course 
be used when ro increases beyond the depth of the "400-km discontinuity." That  the 
faster algorithm can be utilized in the channel wave-crustal wave region of the 
dispersion curves is particularly fortuitous: the eigenfunction extrapolation proce- 
dure therefore need not be attempted for these period ranges in which the energy 
associated with a given radial mode is abruptly shifting up and down, between the 
low-velocity zone and the crust, as period varies. 

If the value of [(N/)4th]START is sufficiently small (see above), then consideration 
of coding efficiency will not only indicate that  the fourth-order "starting" procedure 
be used with the high-speed procedure, but this will also be an argument for treating 
the loss-of-precision problem by orthogonalization. For the application in which we 
are mainly interested, a feature for controlling precision loss must be included with 
the high-speed algorithm. Thus the computational speeds that are really of interest 
are those which include such a feature. The use of orthogonalization increases the 
above timing estimates by 5 to 10 per cent; the argument in favor of using delta 
matrices to control precision loss is that this decreases computation time. For a 
gravitating earth, the reduction is approximately 7 per cent (rerr = 153 × 10 -~ sec/ 
step/iteration) by using representation (4.38) instead of (4.20), if we assume that  
both approaches require the same number of iterations over I to obtain the desired 
accuracy. With the structure reduced to the point where it is allowable to use the 
algorithm which permits y5 and y~ to vanish, delta matrices can be combined with 
the optimization indicated in Figure 1 to yield the fastest Rayleigh-wave algorithm 
(~efr = 95 × 10 -6 sec/step/iteration) that has been developed to date. 

For ease of reference, our final timing results are summarized in the following 
table. 
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Computational Reference Control of Precision Relative Com- Wave Type Structure 
Technique Loss putation Time 

Schwab and Love, or tor- flat, or spherical 
Knopoff --* 1.0 sional 

homogeneous- (1972) 
layer ap- Schwab and Rayleigh flat, nongravitat- 
proximation Knopoff --~ 2.0 ing 

(1972) 

direct-integra- 
tion 
methods 

high speed spherical, approx- 
procedures imate with y5 = 
(4.20) none 2.4 y6 = 0 but g(r) 
(4.20) orthogonaliza- 2.6 spheroidal left in aij 

tion 
(4.38) delta matrix 1.7 

high-speed 
procedures 
(Figure 27) 
(4.20) 
(4.20) 

(4.38) 

none 3.0 
orthogonaliza- 3.2 spheroidal spherical, gravi- 

tion taring 
delta matrix 2.8 

"starting" 
procedures 
(2.1) none 4.6 
(2 .1 )  orthogonaliza- 4.9 

tion 
(65) none 4.7 spheroidal spherical, gravi- 
( 6 5 )  orthogonaliza- 5.1 tating 

tion 
(76) delta matrix 5.1 

* There is no loss-of-precision problem in this case. 
t This case refers to the optimized form of Knopoff's method, which contains the equivalent of the 

delta-matrix approach for controlling precision loss (Schwab, 1970). 

The  ma in  appl icat ion envisioned for the  high-speed procedure  is the calculat ion 
of complete,  spheroidal-wave seismograms.  Only a few rout ine details r emain  to be 
t aken  care of  before a t t empt ing  this application. 

1. The  specific details, for all (radial) modes,  should be invest igated concerning 
the  point  at  which to switch f rom the high-speed procedure  for gravi ta t ing structures,  
to the  special a lgor i thm for shallow penetra t ion.  This  point  could be given as a 
specific f requency for each mode,  but  a more  useful and general  cri terion might  be 
a single, critical dep th  of penetra t ion.  

2. T h e  bes t  "s tar t ing"  procedure  and technique for controlling loss of precision 
should be decided upon. Considerat ions based on coding efficiency favor  the fourth-  
order "s tar t ing"  procedure,  the  mult i-step,  h igh-speed procedure  (Figure 27) using 
represen ta t ion  (4.20), and orthogonal izat ion to control  precision loss; if computa t ion  
t ime is governing consideration,  there  is little to choose be tween  the  two "s tar t ing"  
procedures,  bu t  the  mult i-step,  h igh-speed procedure  should be used in the fo rm 
(4.38), i.e., with delta matr ices  employed  to control  precision loss. 

3. I f  or thogonal izat ion is chosen to t r ea t  loss of precision, then  the  point  at  which 
to begin appl icat ion of this m e t hod  should be investigated.  This  point  also could be 
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given as a specific frequency for each (radial) mode number; however, it might be 
more desirable to represent this criterion as a single function. Extended to cover the 
entire period range of interest, this function would correspond to the line for ~ = 
four significant figures in Figure 15. 

4. Since the difficult algorithmic problems concern the solid portions of the 
structure, the main emphasis in this section has been on dealing with the crust- 
mantle system. As Liao et al. (1978) show, the complete theoretical seismograms 
that we are interested in can exhibit important body-wave phases reflected from the 
mantle-core boundary. Thus we should at least touch upon the question of including 
the liquid, outer section of the core in our integration loops. For the fourth-order 
high-speed and "starting" procedures, representation (2.16)--with p and ~ varying 
with r in this case--can be used in the outer core. Only a single vector need be 
integrated here. Its starting value is obtained from the continuity of yl and y2, and 
the vanishing of y4 at the mantle-core boundary; (4.18) and (4.19) are then used with 
the high-speed procedure, and with the "starting" procedure, (62) and (63) combined 
with the first and third equations of {65). Loss-of-precision problems may require 
that the fourth-order formulation, (2.16), be reduced to one of second order with p 
and ~ allowed to vary with r. 

5. For radial mode numbers greater than about five, as period decreases from 25 
to 10 sec the maximum integration step size must be reduced from 12.5 km to 
maintain four significant figures in the computed dispersion. (See the last paragraph 
of the third section for further details.) Since this reduction will significantly increase 
computation time, the precise details concerning when the decrease must be effected 
should be investigated. 

The high-speed procedure for Rayleigh waves on a spherical, gravitating earth 
now makes it economically feasible to do with spheroidal waves, what has recently 
been shown possible for torsional waves: to compute complete theoretical seismo- 
grams that  are suitable for direct comparison with records from the long-period 
instruments of the WWSSN, i.e., to compute synthetic seismograms containing all 
body- and surface-wave energy that  is generated down to a period of 10 sec. With 
the capability to synthesize both spheroidal and torsional contributions, comparisons 
will be possible with the experimental records of all three components. 
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ADDITIONAL NOTES 

i. 

i. ALGORITHMS FOR GROUP VELOCITY AND PARTIAL DERIVATIVE DETERMINATION 

When treating Rayieigh waves on a spherical, gravitating earth, the 

variational technique is usually employed to compute group velocities and 

partial derivatives with respect to the structural parameters (see, for 

example, Takeuchi and Saito, 1972, Section III). Here, we believe for the 

first time, we propose direct computational techniques for the 

determination of these quantities on a gravitating earth. The practical 

value of direct algorithms for these purposes became apparent when it was 

necessary to solve the problem of efficient computation of an average of 

about i00 dispersion points for each of 90-100 torsional-wave modes, all in 

a single computer run. (A full description of this method is in prepara- 

tion for future publication. Interested investigators can obtain the de- 

scription from the program package and documentation, which are availa- 

ble from the senior author. Results of the first application have been 

given by Liao et al., 1977; 1978.) The advantage of the direct approach is 

is rather obvious: Roots of a dispersion function, F, are sought to deter- 

mine phase velocities; the speed with which these roots can be 

determined, at each frequency, is improved if it is possible to calculate 

as well as F at each iteration over ~; hence, it is extremely useful to be 

able to compute this partial derivative at the same time as F. This is 

possible with a direct computational algorithm. Since 

(2) 

is also available from our direct computational scheme, and since the 

dispersion function vanishes when the point (c,~) falls on a dispersion 
m 



2~ 

F I 

[Xl(r0)] 1 

+ [Xi(r0)] 3 

[Xl(r0)] 5 

then 

c 

[X2(r0)] 1 

[x~(ro)] 3 

[X2(ro)] 5 

[x{(ro)] 1 

[Xl(rO)] 3 

[xl(r0)] 5 

[X3(r0)] 1 

[Xi(r0)] 3 + 

[X3(r0)] 5 

[x~(ro)] 1 

[X2(ro)] 3 

[X2(ro)] 5 

[xl(ro)] 1 

[Xl(rO)] 3 

[x~(r0)] 5 

and 

iS given by the same type of expression as (5), with dots replacing the 

primes. The elements [Xi(r0)] l in (5) and (6) are obtained exactly as 

described in the second section of the main text. The evaluation of 

[Xl(r0)] ~ _ and [£i(r0)]j requires a simple extension of the algorithm. 

Continental structure. In this case we start with the sixth-order 

system 

= AY ( 7 )  

[x~(ro)] 1 

[X3(ro)] 3 

[X3(ro)] 5 

[X2(ro)] 1 

[X2(ro)] 3 

[x~(r0)] 5 

[X3(r0)] 1 

[X3(r0)] 3 

[X~(r0)] 5 

(5) 

curve, we can use implicit function theory to obtain 

dc (@/B°~)cF 
d-~ = - (a/ac)~F (3) 

which yields both the group velocity 

u = C 1 - ~ ~-~ (4) 

and the slope of the dispersion curve at the frequency of interest, say ~i" 

With ~ and the slope (3) at ~i' we easily obtain an accurate extrapolate 

c(~i+l), with which to begin the iterative process for the phase velocity 

at this next frequency. If we agree to use the rigid boundary at depth, 



and form 

Y' = A'Y + AY' 

Here again, we use these equations of motion in terms of 

XI, Xi, that we know exactly at the surface: 

X!I = AlXi + AXl 
-r-- . 

X i = AX i + AX i 

Since X i can be determined independently, we can treat 

known vectors at each depth, and we have 

q = + c i 

X i = AX i + D i , 

where 

C i = A'(r) Xi(r) = -2 p(r)~ 

0 

[Xi(r)] 

0 

[Xi(r) ] 3 

0 

_ a~ (2£+1) D i = A(r) Xi(r) = c2.--~, r 

3. 

(8) 

(9) 

the vectors Xi, 

(1o) 

(11) 

A'X i and AX i as 

Oceanic structure. 

and form 

0 

[I/(I+2.)] [Xi(r)] 3 

[pg-2~(31+2~)/(l+2u)r] [Xi(r)]3+[Xi(r)] 4 

0 

[4~(I+.)/(i+2,)r] [Xi(r)] 3 

0 

[-4~Gp] [Xi(r)]3+(i/r) [Xi(r)] 5 

(12) 

(13) 

(14) 

(15) 

Here we begin with the fourth-order system (2.16), 
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Y6 

+ B 

yil 

911 Yl 

921 = 6 Y2 

9sl Y5 

.96j Y6 
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+ B Y2 

These equations are then used with the vectors for which we have 

at the surface, Zi: 

q= B'z i + Bz l 

Z i = BZ i + BZ i , 

which can be written in terms of known vectors, 

depth: 

q = BZ; + E i 

Z i = BZ i + G i , 

where 

B'Z i and BZi, 

Ei(r) = B'(r) Zi(r) = [2 %(£ + l)/r2u 3] 

-Hi(r) 

Ui(r) 

0 

[4~S p(r)] Hi(r) 

Gi(r) = B(r) Zi(r) = [-a (2% + i)/c2r2~] 

Hi(r) 

[g(r) p(r)] Hi(r) 

0 

Vi(r) 

4. 

(16) 

(i7) 

solutions 

(18) 

(19) 

at each 

(20) 

(21) 

(22) 

(23) 



5. 

and 

Hi(r ) = g(r) [Zi(r)]l - [i/p(r)] [Zi(r)] 2 - 

Ui(r) = -p(r)[~4r2/£(£+l) + g2(r)] [Zi(r)] 1 

Vi(r) = 4~G{-p(r)g(r) [Zi(r)] 1 + [Zi(r)] 2 + 

[Zi(r)] 5 (24) 

+ g(r){[Zi(r)] 2 + p(r)[Zi(r)]5} 
(25) 

[p(r) + ~2/4~G] [Zi(r)]5} (26) 

Application of (20) and (21) will allow us to carry the integration to the 

bottom of the oceanic layer at r = rl, where we can apply the boundary 

conditions of continuity of YI' YI' ~i' Y2' Y2' 92' Y5' Y5' 95' Y6' Y6' 96' 

and the vanishing of Y4' Y4' 94' to obtain the necessary starting values to 

apply in (12) and (13 

zi(rl)] 1 

Zi(rl)] 2 

0 

0 

[z~(rl)] s 

[Z~(rl)] 6 

, X~(rl) : 0 , X~(rl) : x~Ir l) = 

[Z~(rl)] l- 

[z~(rl)] 2 

0 

0 

[z~(rl)] 5 

[Z~(rl)] 6 

and a like set of starting values with primes replaced by dots. 

(27) 

The direct computation of partial derivatives of c with respect to 

structural parameters follows the same lines as the direct evaluation of u. 

pk 
(~)a, c,Pk F 

(2) F 
~'6 ~,pk,p (rk) 

(28) 

For example, 

where 

Pk = ( P(ri)'i=l(1)k-l'k+l(1)N )'( l(ri)r~(ri)'i=l(1)N ) , (29) 

i and ~ are the Lam~ constants, and N is the number of points at which the 
m _ m 

structure is defined. The partial derivative in the numerator of (28) is 

defined by an expression having the form of (5), and the expressions for 

the determination of 



< ~Xi(r) ~ 
are obtained exactly as above, with the obvious simplifications 

by the fact that here 

when rj / r~ k. 

~ (rk)/~,c,p k 0 

6. 

(30) 

introduced 

(31) 

2. RUNGE-KUTTA TECHNIQUE FOR STARTING PREDICTOR-CORRECTOR METHOD 

In terms of a single, first-order differential equation: 

= f(r,n) , ~(rstar t) = ~start ' 

at rstart+l, rstart+2, , the Runge-Kutta method is given by 

4 

nm+ 1 - tim =i[lWiWi 

Here, ~m = ~(rm)' the ~i are constants, and 

. . . .  i-i 

W i = s m f(r m + aiSm,, m +j~lSijIOj ) =  

with s m = rm+ 1 - rm, and 
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(33) 

(34) 
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(36) 



1 

w2 = (2e3 - l)/[12s2(~s - ~) (1 - s2)] 

ws = (i - 2~2)/[12~9 (~3 - s~) (1 - as)] 

W4 = ~ + [2(~2 + ~3) - 3]/[12(1 - ~) (1 - 

7. 

(37) 

3. TERMINATING BOUNDARY CONDITIONS 

When the structure used to form the dispersion function is terminated 

within the mantle by a gravitating, homogeneous, solid sphere below r 0, 

above r 0 we have 

X+(r0) = Yl(a) Xl(r0) + Y3(b) X2(r0) + Y5(a) X3(r0) (38) 

where 
a for a continental structure 

b= 
r I for an oceanic structure. 

For the homogeneous, gravitating, solid sphere below r 0, there are 

classes of solutions: Yl(r), Y2(r), Y3(r); thus, just below r0, 

Y (r 0) = D Yl(r0) + E Y2(r0) + M Y3(r0) , 

where D, E, and M are undetermined coefficients. Applying the 
m 

conditions of continuity of 
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Yi at r 0, we obtain 
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three 
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Yl(a) 

Y3 (b) 

Y5 (a) 

D 

E 

M 

= 0 

(41) 

or 

C WSOLI D SPHERE = 0 , 

and the dispersion function has the form 

F(~,c) = det (C) 

The components of Yi(r) are given in convenient form by Takeuchi and 

(1972): (r) by their 

(42) 

Y1 

(43) 

Saito 

equations (98), with the negative sign in (99); 
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Y2(r) by (98), with the positive sign in (99); and Y3(r) by their equations 

(I00). Note that their definition of Y6 differs slightly from that used 

here. 

When the structure used to form the dispersion function is terminated 

at the mantle-core boundary by the conditions for a homogeneous, liquid 

sphere below r 0, above ~0 we have (38); below, 

y_(r0) = P Yl(r0) + Q Y3(r0) , (44) 

where P and _Q are undetermined constants, and Yi in (44) have the form 

IYl (r0)~ 

Ly (rolJ 
Again, Takeuchi and Saito (1972) give the form of these vector components 

for the gravitating, homogeneous, liquid sphere. From the conditions of 

continuity of YI' Y2' Y5' Y6 at r 0, and the vanishing of y (r 0), we have 

-[Xl(r0) ] 1 [X2(r0) ] 1 [X3(r0) ] 1 -[Yl(r0)]l -[Y3(r0)]l Yl(a) 

[Xl(r0)] 2 [X2(r0)] 2 [X3(r0)] 2 -[Yl(r0)]2 -[Y3(r0)]2 Y3 (b) 
= 0 

[Xl(r0)] 4 [X2(r0)] 4 [X3(r0)] 4 0 0 Y5(a) 

[Xl(r0)] 5 [X2(r0)] 5 [X3(r0)] 5 -[Yl(r0)]5 -[Y3(r0)]5 P 

[Xl(r0)] 6 |X2(r0)] 6 [X3(r0) ] 6 -[Yl(r0)]6 -[Y3(r0)]6 Q 

(46) 

or 

R SLIQUID SPHERE = 0 , (47) 

and the dispersion function takes the form 

F(~,c) = det (R) (48) 

To obtain the group velocity we still employ (3) and (4). The forms 

of F' and F which result from (43), or (48), can be obtained by analogy 

with the way in which (5) is obtained from (2.10). In the present case, 

however, the analog of (5) will comprise the sum of six, sixth-order 

determinants when (43) is used to form the dispersion function, and the sum 



of five, fifth-order determinants when (48) is used. 

The efficiency of our simplified boundary conditions at depth was 

checked by direct numerical experiments. For the same dispersion 

calculatioz,s, both the simplified and the usual boundary conditions were 

used, and the different amounts of structure required in the two cases were 

noted. As would be expected the results showed that, to obtain a given 

accuracy in ~, less structure had to be retained with the usual conditions 

than when terminating with free or rigid boundaries within the solid 

mantle. A complete set of test~, comparable to those illustrated in Figure 

12, was performed for a period of 50 seconds. The results showed that when 

switching to the usual boundary conditions the increase in the maximum r 0 

values was surprisingly independent of mode number and o: (300±25) km, or 

in most cases, about 24 fewer integration steps when terminating with a 

homogeneous sphere. Our tests with mode 7 at 25 seconds showed the 

increase in r 0 to be approximately (100±10) km; about nine fewer 

integration steps. Thus, from our limited number of tests, it appears that 

~r0/(a - r0) is roughly constant for a given mode and value of o; r 0 is the 

maximum val~e allowed by the structural limitation when the condition of a 

rigid terminating boundary is applied, and ~r 0 is the increase in r 0 when 

one employs the condition of a terminating homogeneous sphere. For 

example, the above ratio has about the value 0.14±0.02 for computations 

with mode 7 when 4 significant figures in c are required. 

The results of these tests show the use of the usual terminating 

bour~dary conditions to be important only for the lowest (radial) mode 

numbers. For example, with mode 0 at 50 seconds, the required number of 

integration steps is improved about 42 percent by employing the usual 

boundary conditions, but this improvement drops rapidly with increasing 

mode number: to 18 percent by mode 4, and to ii percent by mode 9. 

Relative to the main application intended for the high-speed algorithm 

developed in this report--computation of complete theoretical seismograms 
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containing all of the energy generated down to a period of 

10 seconds--these tests lead to a very interesting result. When computing 

extremely large numbers of dispersion points for the first 90-100 radial 

modes--down to a minimum period of 10 seconds for each of these modes-- 

careful comparison of the present results with the r 0 values of the 90-100 

modes already being treated for complete, torsional-wave, theoretical 

seismograms, indicates an upper bound to the overall improvement of only 

12 percent by switching to the usual terminating boundary conditions. We 

estimate the actual improvement to be, perhaps, half this value. If it is 

recalled that this "improvement" involves only the required number of 

integration steps, then the true improvement vanishes because the switch 

also requires the addition of the difficult evaluation of spherical Bessel 

functions of non-integral order number each time that the usual terminating 

boundary conditions are applied. Thus we conclude that relative to the 

main application intended for the results of our present work, no 

improvement can be expected by employing the usual boundary conditions at 

depth, and that the use of simplified terminating boundary conditions is 

fully justified. 

In regar~i to the loss-of-precision problem, the above tests also yield 

comparative numerical results for the usual, and simplified boundary 

conditions at depth. After the switch to the usual conditions, the upper 

portion of the curve for each mode in Figures 12 and 13 is translated 

upward as described above, while the right-hand extreme of each curve 

occurs at the same depth as for the simplified boundary condition. As a 

result of the upward translation while the depth of this extreme remains 

fixed, homogeneous-sphere termination improves the maximum attainable 

accuracy for any given mode. However, this is only an advantage when one 

is limited to the original AJP formulation, and is dealing with relatively 

low (radial) mode numbers. For the problem of main interest at present, 

which requires results down to a period of 10 seconds for about 90-100 



Ii. 

modes, this original formulation is unsatisfactory due to the limitation 

illustrated in Figures 14 and 15. The original formulation must be 

modified to obtain control over this loss-of-precision difficuAty before 

all of these modes can be treated successfully down to this short a period. 

Hence the right-hand extremes in Figures 12 and 13 will not exist in the 

computed results from the final algorithm, which means that the last 

arguments in the preceding paragraph also apply here. Thus consideration 

of the loss-of-precision problem does not alter our previous conclusion: 

In the main application intended for the results of our present work, the 

use of simplified terminating boundary conditions is fully justified. 

4. DESCRIPTION OF THE LOSS-OF-PRECISION PROBLEM 

AS stated in the main text, in the description of this problem there 

are four main points of interest: the numerical aspects of the difficulty, 

the interpretive aspects, the connection between loss of precision and 

numerical instability, and the possible methods for overcoming this 

precision loss. 

Numerical description. Dispersion computations for spheroidal modes 

are a particular case of the numerical solution to a two-point boundary 

value problem. That is, in general the numerical methods applied to the 

AJP formulation represent the integration of three independent vectors, 

subject to boundary conditions at the top and at the bottom of the 

structure. One set of conditions will constrain the initial values of 

these vectors; the second will be used to form a "dispersion function," 

which is also called a secular or characteristic function. The dispersion 

calculation consists mainly of the determination of roots of this 

dispersion function. This is usually done in a trial and error procedure 

where one of two parameters is maintained fixed, and the second is varied 

systematically until a root is found. An algorithm for standing-wave 

computations will determine a natural period for a fixed polar order number 
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~; in the case of propagating waves, a phase velocity will be found as a 

function of frequency. In the second section of the main text, we describe 

the results from our numerical experiments with loss of precision in the 

second type of determination. A simplified illustration of these results 

is given in Figure 16a. For a particular radial mode and fixed period, a 

maximum precision, ama x, is obtained when using the optimum value 

(r0)optimum,__ in the numerical integration, where this is performed between 

the surface of the earth and the radius r 0. For several modes at a fixed 

period, the results show that when n increases, (r0)optimu ~ and ~max 
h 

decrease. Finally, ~max decreases to the point where the dispersion 

computations become meaningless. The smoothness of the lower tail of each 

curve in Figure 16a has been emphasized. Actual results, as they are 

presented in Figures 12 and 13, show a more erratic behavior. 

The situation when loss of precision completely dominates the 

dispersion computations is shown in Figure 17, where the dependence of the 

dispersion function on phase velocity and r 0 is illustrated. Solid lines 

represent the dispersion function when a numerical algorithm without any 

provision for avoiding the loss-of-precision problem is used to integrate 

~= A Y ; (49) 

dashed lines represent the same dispersion function when the algorithm has 

been modified to control this problem. The important thing to note is the 

almost completely random behavior of the dispersion function represented by 

the solid curve. The obvious conclusion here is that the calculation has 

lost all its significance. The connection between the erratic behavior of 

the lower end of the curves in Figures 12 and 13, and the random appearance 

of the solid curves in Figure 17 will be clarified later; however, it is 

obvious that an increasing loss of precision will increase the importance 

of the role played by the random fluctuations observed in each figure. 

It is not difficult to understand from a physical point of view, why 

the accuracy attainable in dispersion computations increases as more 
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structure is included in the integration, i.e. as more and more of the 

specified structure is used in the actual computations. It is also 

reasonable from a numerical Point of view to expect that, at some point in 

the addition of structure to the computational process, rounding and 

truncation errors will become important limitations to the attainable 

accuracy. That a picture that includes only these two factors--one 

physical and one numerical--may not be complete, becomes clear when it is 

noted how the computational errors also increase with mode number: the 

point at which the numerical factor becomes dominant over the physical one, 

occurring at smaller and smaller values of a as n increases. We also know 

from the numerical results of the second and fourth sections of the main 

text that this problem exists independently of whether the integrations are 

performed downward from the top of the structure, or upward from a 

homogeneous sphere at depth. 

To investigate this situation from another perspective, the angles 

between the three independent vectors were computed at different points of 

the structure as the integration was performed. This was done for modes 

where loss of precision was beginning to become, or already was, dominant. 

The results emphasize a persistent tendency of the three "independent" 

vectors to become more and more closely parallel as more and more structure 

is included in the integration; the parallelism becoming more marked as 

period decreases and/or radial mode number increases. The dispersion 

function is a determinant whose columns comprise components of these 

vectors evaluated at the terminating point of the integration. Therefore, 

when their parallelism becomes predominant, the value of the determinant 

will tend, spuriously, to be zero. Small, random errors in the numerical 

computations will then be increasingly important in this evaluation. 

Finally, the dispersion function will behave like a random variable with a 

null average value. This is the tendency which is observed in the solid 

lines of Figure 17, and which causes the erratic behavior of the lower 
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portions of the curves in Figures 12 and 13. 

Interpretation o_~f problem. A simplified, therefore qualitative 

interpretation of the above parallelism can be obtained if we model the 

earth by a sequence of thin layers. For our present purpose, in each layer 

the matrix A can be reduced to a constant by using suitable approximations 

to the actual depth dependences of the structural parameters. This makes 

it possible to avoid the complications that would be involved in the use of 

spherical Bessel functions, which would be introduced had it only been 

assumed that the properties of each layer were constant with depth. For 

each of these layers with constant matrix A, a vector solution to (49) of 

the form 

Y = Yoi ep(r - r°i) (50) 

is suggested by the first-order (scalar) case. Here, roi corresponds to 

the reference boundary of the layer. The introduction of this expression 

into (49) results in the eigenvalue problem for the matrix A: 

A Yoi = p Yoi (51) 

and, since A is not sylmaetric, in general we will have complex eigenvalues 

p. Let us consider the sixth-order case from this point on. In most of 

its interior, the properties of the earth vary rather smoothly. This 

allows us to infer that the radial dependence of these eigenvalues will 

indicate just what is causing the numerical difficulties. To obtain this 

information a complete set of numerical tests was performed. 

The results of these tests show the following general pattern. At the 

deepest points of the structure, three of the six eigenvalues have 

negative, and three have positive real values; at a smaller depth, two of 

these eigenvalues become complex conjugates; at still shallower depthsf two 

more may become complex conjugates, but at least one real negative and one 

real positive eigenvalue will always remain. All real parts of complex 

eigenvalues are negative and equal at a given depth. The real eigenvalues 

can be arranged in pairs; each member of a given pair having about the same 
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magnitude as the other, but the opposite sign. Finally, these magnitudes 

are significantly greater than those of the real parts of the corresponding 

complex eigenvalues. One straightforward interpretation of these results 

is that, as a function of the radius, complex eigenvalues represent 

oscillations of the vector solutions, whereas real eigenvalues represent 

monotonically (exponentially) increasing or decreasing tendencies. Thus, 

toward the end of the integration of the three, initially independent 

vectors, a monotonically increasing tendency will predominate over the 

smaller oscillatory and decreasing functions. The vectors therefore become 

dependent, i.e. the three solutions are most strongly affected by a single 

tendency, the dominance of which increases rapidly as integration proceeds. 

This situation is independent of the direction in which one chooses to 

integrate: (i) The positive real eigenvalues will dominate in the 

exponential tendency when the integration is performed from below, i.e. 

when r > roi in equation (50). (2) When the integration is done from the 

top downward--r < roi in (50)--the negative real eigenvalues will take on 

this role. 

The description above was motivated by similar discussions in the 

analysis of elementary vibration problems. One of these simple problems is 

sufficient to provide more insight into the occurrence of loss of 

precision. The analysis will yield a more quantitative understanding 

concerning the source of this numerical difficulty by dealing with a 

situation that is much simpler, but analytically similar to our dispersion 

computations. Consider the problem of finding the natural frequencies of a 

horizontal, homogeneous beam that is rigidly supported at its two ends. In 

this case, the dispersion function for the bending of the beam in the 

vertical plane is 

F = ~2[(sinh 7 + sin 7 )2/472 - (sinh 7 - sin 7 )2/4y2] , (52) 

where R is the length of the beam, ~ is proportional to R~II2, and ~ is the 

natural frequency being sought (Pestel and Leckie, 1963, page 192). In 



16. 

this simple problem, it is possible to note directly that (52) reduces to 

S2 
F = --~ sinh Y sin Y . (53) 

llowever, this reduction would not be immediately apparent in more 

complicated problems, and an expression similar to (52) would be used in 

the numerical evaluation of the dispersion function since this expression 

arises naturally from the matrix formulation of the problem. From (53) it 

is obvious that roots of the dispersion function occur at 

Yk = k~ ~ k = 1,2,3, "'" , (54) 

where k is the mode number. However, if the dispersion function is 

evaluated using expression (52), beyond a certain magnitude of ~ these 

roots will not be found due to loss of precision. This point is reached 

when ~ attains a magnitude such that, for the number of digits carried in 

the calculations, 

sinh y ± sin Y = sinh Y (55) 

Another interesting feature of these computations occurs as ~ increases, 

but before it has gotten large enough to produce complete dominance of loss 

of precision. In the evaluation of the dispersion function, the values of 

sin y will be magnified by the factor sinh ~, and roots of ~ will be 

bracketed by increasingly steep portions of this function. The situation 

is illustrated in Figure 18, which represents the first three roots of 

F/fl 2. One can see that the dispersion function, after the first root, 

begins to oscillate with rapidly increasing amplitude as ~ increases° 

Therefore, the slope also increases rapidly in the neighborhood of 

successive roots. Actual computations of this function, continued to 

higher frequencies, show that the maximum amplitude of each oscillation 

increases by about an order of magnitude for each successive mode. From 

this one concludes that, when refining a root to a given accuracy after 

bracketing it with a change of sign of F, one must stress the number of 

stabilized figures in the natural frequency, and not the corresponding 
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values of the dispersion function; the point being that for large ~, [ can 

take on exceedingly large magnitudes even though the trial frequency 

agrees, to several significant figures, with that at a root. The validity 

of this conclusion is unaffected by the consideration that ~ is 

proportional to the square root of the frequency. In the third section of 

the main text it is demonstrated that the behavior of the dispersion 

function for this simple vibration problem is very similar to the behavior 

of the corresponding function for spheroidal-wave computations. 

This simple example again illustrates that the explanation of most of 

the numerical difficulties in dispersion computations can be found by 

considering the relative values of exponential (hyperbolic) and oscillatory 

(circular) functions when both appear at the same time in one step, or in a 

consecutive set of steps, of the numerical procedure. Consider, for 

example, the case of surface waves on a flat, multilayered structure when 

the Thomson(1950)-Haskell(1953) technique is applied to obtain the 

dispersive properties. For Love waves, either a hyperbolic or 

trigonometric function appears at each particular step, never both at the 

same time, and loss of precision never develops. On the other hand, in 

the corresponding formulation for Rayleigh waves the transfer matrix for a 

given layer may contain both kinds of functions, and we do indeed find the 

expected numerical problems in this case. (See Schwab and Knopoff, 1970, 

for specific numerical details.) Transformations analogous to that which 

produces (53) from (52) must be introduced to remove this loss-of-precision 

problem. The first of these alternatives to the original Thomson-Haskell 

formulation was Knopoff's (1964) method; the optimization, analysis, and 

loss-of-precision testing of this method are given by Schwab (1970). The 

second alternative--delta-matrix extensions of the original formulation 

(Thrower, 1965; Dunkin, 1965; Watson, 1970)--is presented in optimized form 

by Schwab and Knopoff (1970), and is compared in detail with Knopoff's 

method by Schwab (1970). Recent, extensive testing of the 



loss-of-precision features of both of these alternatives 

Schwab, Nakanishi and Liang (1980). 

Connection between loss of precision and instability. 

18. 

is described by 

The expression 

"loss of precision" is particularly descriptive of the type of numerical 

difficulty which is our main concern in this study. The connection of this 

term with the rather general expression "inherent instability" (see, for 

example, Scott, 1973, page 37) should be made clear. To summarize, we are 

seeking the solution to a two-point boundary value problem by using an 

iterative method, where each iteration consists of carrying out three 

independent integrations of the AJP system of differential equations. Each 

individual integration is considered now as an initial-value problem. At 

the beginning of each iteration, a continuously improved estimate of the 

dispersion result is introduced into the numerical scheme; the independent 

vectors are integrated over [; and the satisfaction of a boundary condition 

is then tested. This test consists of computing the value of a 

determinant, and checking to see if it is converging toward a root. Each 

column of elements of the determinant comprises components of one of the 

vectors. The vectors may lose their independence when dominant, large real 

eigenvalues of the matrix ~ are present for consecutive steps of the 

integration, and this loss of independence will yield a determinant with 

linearly dependent columns. Thus, as more independence is lost, more loss 

of precision enters into the determination of the dispersion. 

When integrating upwards, real positive eigenvalues are a particular 

condition for instability since exponentially increasing solutions will 

tend to be unbounded as the integration proceeds; real negative eigenvalues 

play this role when integrating downwards. This instability cannot be 

eliminated, in an absolute sense, by any linear transformation applied to 

the three vectors (Gantmacher, 1959, Chapter XIV, Section 2). Therefore, 

this instability must be considered intrinsic to the system of differential 

equations. Hence it is termed an "inherent" instability. In our specific 
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problem, we have unbounded increase in magnitudes both relative to other 

forms of solutions, and relative to the maximum value that the computer can 

accept. In the former case, this increase results in loss of precision, in 

the latter, overflow; inherent instability is the basis of both these 

difficulties. 

A final point of interest here concerns the dependence of the 

loss-of-precision problem on the direction of integration. From preceding 

arguments, loss of precision can be traced back to the existence of real 

eigenvalues with large magnitudes. Were the complex eigenvalues (with 

negative real parts) to produce the predominant solutions at shallow 

depths, then integration from below would appear to be a way of avoiding 

loss of precision. This is not the case. As already indicated, both types 

of integration, either from below or above, will ultimately produce loss of 

precision due to the dominance of one exponentially increasing tendency. 

Numerical results from both the second and third sections of the main text 

amply confirm this conclusion. 

Methods for overcomin 9 loss of precision. The simplest possible 

solution for overcoming this inconvenience is to increase the number of 

digits used in the computations. Thus the alternative of using the 

extended-precision capabilities of modern computer software is appealing; 

however, one encounters the obvious problems here: Calculations become 

extremely expensive, or sufficiently high-precision capability is 

unavailable. For practical, computational purposes, the best approach 

would therefore appear to be to devise schemes that prevent the spurious 

parallelism of the vectors from developing. 

Three suggestions are found in the literature, which are pertinent to 

direct integration of the AJP system of equations. One is to improve the 

conditioning of the matrix A (Wiggins, 1968) by introducing a linear 

transformation in the depth-dependent components of Y, i.e. in Yi(r) (see 

second section of main text), and a non-linear transformation of the radius 
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r. Chapman and Phinney (1972) have analyzed this approach, and conclude 

that while it does improve things by producing a better balanced system of 

equations from a numerical point of view, it does not influence the 

fundamental difficulty. 

We are not limited, of course, to only linear transformations. A 

useful non-linear operation involves the application of delta matrices 

(Pestel and Leckie, 1963) or, what are equivalent, compound matrices 

(Gantmacher, 1959, Chapter I, Section 4). When this approach is applied to 

spheroidal-wave computations which include the effect of gravity, the three 

original vectors are arranged as the columns of a 6×3 matrix. The delta 

form of this matrix is obtained by forming the minors of order three, and 

arranging them as a 20×1 vector Y. Taking derivatives and making use of 

the original system of differential equations, we obtain a new system 

= E Y , (56) 

where the 20 elements of V are the new dependent variables, and E is a 

20×20 matrix. The problem is therefore transformed into one in which only 

a single vector needs to be integrated. However, the 400 elements of 

must be derived analytically, and it must then be shown numerically that 

this new formulation does indeed eliminate loss of precision. Discussions 

of the delta-matrix approach to the computation of dispersion for 

spheroidal waves, for the simpler, non-gravitating case, are given by 

Gilbert and Backus (1966; 1969) and Takeuchi and Saito (1972). However, 

the literature does not appear to contain any serious attempt to justify 

and apply the 20th-order technique that describes the spherical, 

gravitating case. In the fourth section of the main text, a method for 

simplifying the sixth-order, AJP formulation is developed, which makes it 

possible to use the delta-matrix approach for gravitating structures 

without requiring the use of 20th-order matrices. 

The third suggestion for treating loss of precision is much simpler, 

although perhaps not so basic as delta matrices. This is to orthogonalize 
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the three vectors after every few integration steps, and thereby to 

maintain the independence of these solutions. The earliest references to 

this approach, in the geophysical literature, seem to be Pitteway (1965) 

and Neigauz and Shkadinskaya (1972) (see also Chapman and Phinney, 1972; 

Nolet, 1976). The purpose of the third section of the main text is to 

report the numerical results of our introduction of orthogonalization into 

computations for both propagating Rayleigh waves and standing spheroidal 

modes on a spherical, gravitating earth. This technique makes successful 

computations possible for short periods and/or high radial order numbers. 

Our results concerning orthogonalization appear to be the first that report 

successful treatment of the loss-of-precision problem for a gravitating 

earth. 

As our interest in this report is in direct methods of integration of 

the AJP formulation, no discussion of the variational technique will be 

given. For a recent application of this approach we again refer the reader 

to Wiggins (1976). 

5. COMPUTATIONS FOR RAYLEIGH WAVES AND SPHEROIDAL MODES 

To provide as complete a test as possible of orthogonalization as a 

solution for precision loss, separate programs for propagating surface 

waves and for free-mode oscillations were employed. Brief descriptions of 

these routines follow, with the results--other than those connected with 

orthogonalization--that are pertinent to short-period, large-n 

computations. 

Propagating Ra~leig~ waves. Our algorithm is based on that which is 

fully described in the second section of the main text. To generate 

dispersion information at equal frequency inhervals, for use in the usual 

technique for generating time series by inverse Fourier transformation, 

computations are carried out at fixed frequencies to obtain the 

corresponding phase velocities or values of 4. Integration is performed 
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from the top downward, with the three independent vectors, Xi, satisfying 

the boundary conditions at the free surface exactly. The integration is 

then carried down to ~a sufficient depth to make it immaterial--to the 

specified accuracy in ~ or ~--just how we terminate the integration~ with a 

free or rigid boundary, for example. Almost all of the integration is 

performed using a fourth-order, predictor-corrector method, with everything 

possible being done to minimize the time required for each evaluation of 

the dispersion function. There are two main features in this optimization. 

The first is the specification of the required accuracy in the computed 

phase velocities to be as low as possible, which allows us to use the 

maximum possible step sizes in the numerical integration, thus minimizing 

the required number of integration steps and expense of computation. To 

decide upon the accuracy necessary to synthesize relatively short-period, 

complete theoretical seismograms for spheroidal waves, reference to the 

analogous work with torsional waves (Liao et al., 1978) indicates that 

4-figure accuracy is quite sufficient. The second, and most significant 

feature in the optimization is the application of our knowledge about this 

particular problem to specify all of the depths at which the elements of 

are to be evaluated. These evaluations can then be removed from the 

innermost, integration loops of the program. In fact, most of the 

procedure for evaluating these elements can even be removed from within the 

frequency and phase velocity loops. 

In the work described in the second and fourth sections of the main 

text, extremely large values of n could not be used at short periods since 

a feature for controlling loss of precision had not yet been included in 

the computational algoritbms. In those algorithms, a maximum integration 

step size of 12.5 km was found sufficient to yield the desired accuracy in 

computed phase velocities. It is reasonable to expect that at the shortest 

periods of interest here, when large values of the radial order number are 

treated, this maximum step size will have to be decreased at some point. 
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That is, as these short-period integrations are carried down to greater and 

greater depths, the natural error growth will have to be offset by a 

decreased step size. With orthogonalization included in the computations 

it is possible to determine just when the steps must be decreased. 

Although detailed analysis of this question is beyond the scope of the 

present study, our results do provide a few estimates that establish 

guidelines for future work: (i) A maximum step size of 12.5 km can be used 

for all periods down to at least 25 seconds. (2) Somewhere between 25 and 

10 seconds, it will be necessary to begin decreasing this maximum step 

size; the value of n at which this decrease is to be effected, decreases 

with decreasing period. (3) At i0 seconds, this maximum must be decreased 

at about ~ = 6--the precise value of ~ probably being dependent upon the 

specified structure; if this decrease is to 6.25 km, this will suffice 

until n reaches about 27; one additional decrease should be sufficient to 

complete the computations at this period. 

Standin~ spheroidal modes. Our algorithm here corresponds to the 

techniques devised mainly by Backus and Gilbert (1967) and Gilbert and 

Backus (1969) (see also Takeuchi and Saito, 1972). The computations are 

carried out at fixed, integral polar order numbers ~, and the dispersion 

results are the corresponding natural frequencies. Integration is 

performed from the bottom of the structural segment~ r = c0, upward toward 

the free surface where the exact boundary conditions are applied to form 

the dispersion function. The initial values of the three independent 

vectors, Xi(r0) , are obtained from the three independent solutions of the 

equations of motion for a homogeneous, gravitating sphere below r 0. A 

discussion of the two different ways of handling the boundary conditions at 

r 0 is contained in the second section of the main text, and in the 

additional notes (Section 3). The integration is performed with a scheme 

that permits the use of Runge-Kutta methods of variable order (Shanks, 

1966). Essentially, this affords a means of maintaining a fixed accuracy 
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in the computed dispersion results for different values of ~ and ~, i.e. 

the order of the Runge-Kutta method, and hence the number of evaluations of 

the elements of A, is automatically increased as radial and polar order 

numbers increase. This, of course, is equivalent to decreasing the step 

size of the fixed, fourth-order predictor-corrector method employed in the 

Rayleigh-wave algorithm. 

Other than for use in computing the acceleration due to gravity, g(~), 

the core is not of great interest in our present Rayleigh-wave 

computations. For the spheroidal-mode algorithm it is important, and 

orthogonalization has been added to our integrations both above and below 

the mantle-core boundary. With the core included in the integrations, a 

third possibility for the boundary condition at r 0 is a power series 

expansion in r (Crossley, 1975). In this last reference, a numerical 

comparison will be found between this expansion and the rigid-boundary 

approximation at r 0. 

With orthogonalization included in our algorithms, loss of precision 

is no longer a problem and ~ can be increased to the (short-period) point 

where the depth of penetration becomes dependent on the shallower 

structural features. Since these features can vary strongly from model to 

model, when dealing with shallow penetration some provision must be made 

for modifying the value of r 0 determined by the usual e~pirical rules (see~ 

for example, Bolt and Dorman, 1961, page 2967). When integrating downward, 

as in our Rayleigh-wave algorithm, it is possible to determine the optimum 

value of r 0 right as the computations proceed (see Section 6 of the 

additional notes for details), since this is the point at which the 

displacement-depth functions minimize and begin to increase without bound 

as depth increases. When integrating upward in our spheroidal-mode 

algorithm, r 0 must be specified a priori. Thus a method must be included 

in this algorithm to correct for values that are initially too small, which 

result in wasted computation time and expense, or values that are initially 
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too large, which may decrease the accuracy below that desired. For this 

purpose, after the first iteration over period at fixed ~ and ~, the depth 

dependence of the vertical component of displacement, Yl(r), is computed 

and normalized to unity at tile free surface. The location of r 0 is then 

adjusted upwards or downwards depending upon whether ly I] at the original 

location is less than, or greater than 10 -6 . 

General results. By using both of the above algorithms to test 

orthogonalization as a remedy for precision loss, we have a rather 

satisfying range of physical and numerical approaches over which this 

technique will be shown effective: computations based on free-mode 

oscillations and surface-wave propagation, with integral ~ values being 

used to obtain standing-wave periods, but with the phase velocities for 

propagating waves corresponding to non-integral ~; physical conditions at 

r 0 approximated by free or rigid boundaries, or by three independent 

solutions for a homogeneous, gravitating sphere extending from the center 

of the earth to r = r0; numerical integration carried out both upward and 

downward, either based entirely on Runge-Kutta methods, or mainly on a 

predictor-eorrecto~ technique; and computations with uniform, relatively 

high accuracy required in the dispersion results~ contrasted with 

calculations in which the main concern is computational speed, with, for 

this purpose, accuracy held to the minimum acceptable value. Before 

describing--in the third section of the main text--the results of 

numerical tests that deal specifically with the orthogonalization 

procedure, a few general results should be covered. 

A point of considerable practical interest in these algorithms is the 

question of overflow and its control. The computational quantities in 

which we are interested are the independent vectors Xi, which we are 

integrating over depth. These vectors are not highly oscillatory as a 

function of r--as is the linear combination of them that yields Y(r) 

(second section of main text, equation (2.8))--hence the overflow 



26. 

properties are easily determined by monitoring the increase in magnitude of 

each of the elements [Xi(r)] j as integration proceeds. We first note that 

these magnitudes increase during integration, independent of the direction 

of this process: When integrating upward, I [Xi(~)]iI increases with 

increasing [; when integrating downward, these magnitudes increase as 

decreases. Thus the relative overflow characteristics are obtained by 

monitoring, and comparing the increase of I [Xi(r0)]i/[Xi(a)]~I for downward 

integration, to the increase of the reciprocal of this quantity for upward 

integration, where, as before, ~ is the radius of the earth. The results 

of our numerical experiments are given in Figure 19. The results for 

downward integration are represented by continuous lines: 

I [Xl(a - depth)]i/[Xl(a)]ll long dashes 

I [X2(a - depth)]3/[X2(a)]31 short dashes 

I [X3(a - depth)]s/[X3(a)]51 
dotted lines, 

I [X3(a - depth)]6/[X3(a)]61 

since these are the only ratios with non-vanishing denominators (second 

section of main text, equations (2.6) and (2.7)) when proceeding downward 

from the free surface. The corresponding ratios for upward integration, 

I [X~(a)]~/[Xi(a --~ -- - depth)]~l, yield 18 results for each value of the depth 

since none of the denominators vanish; hence, to simplify, the range of 

solutions at each depth is represented by a bar, and the continuous 

solution range is then denoted by hatched areas. The agreement of overflow 

features for upward and downward integration is quite striking. The 

features are precisely the same in form and magnitude. The point at which 

overflow will occur is therefore only a function of r 0 and the maximum 

magnitude accepted by the computer, and is independent of the direction of 

integration. Thus the following remarks on control of overflow apply 

equally well to each of our algorithms. 

The powerful normalization scheme that is described in the second 

section of the main tezt was designed mainly for use in program testing, 



27. 

where it is desirable to have the capability to perform dispersion 

computations while retaining an extremely large number of wavelengths of 

structure. In routine applications, the integrations should be performed 

with only the minimum amount of structure required to yield the desired 

accuracy. Application of this restriction to the low radial order numbers 

treated in the second section of the main text makes it possible to avoid 

overflow in these cases without employing any form of normalization; for 

the large ~ values that orthogonalization now makes it possible to handle, 

overflow occurs even when using only the required minimum of structure. 

However, the problem is not so severe that its control necessitates as 

powerful and expensive a method as that described in the second section of 

the main text. The following procedure, the cost of which is trivial, has 

been found sufficient for radial mode numbers up to 90-.100, and £ values 

corresponding to periods down to 10 seconds. 

If the minimum magnitude that is accepted by the computer is 

MIN = 10 -m , m > 0 , (57) 

then at the starting point of integration, the non-zero elements of each 

vector X i are conservatively scaled such that their minimum magnitudes are 

set at about 10-(m - 5) The three vectors are then integrated to the 

final value of r with no normalizations during these operations. At the 

terminal point of integration, r0, to ensure that overflow is avoided while 

forming the dispersion function, all elements are multiplied by 

10-(ml + m2)/2 

before evaluating the determinant. The quantities m 1 

magnitude bounds of the 18 vector element~: 

maximum I [Xi(ro)]jl = 10 ml 

minimum I [Xi(r0)]ji = i0 m2 

The scaling factor at r0~ (58)~ is determined during the first evaluation 

and m 2 describe 

(58) 

the 

(59) 
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of the dispersion function. This same value is used in subsequent 

evaluations. By so doing, as well as a meaningful sign of the dispersion 

function, we will have magnitudes that vary smoothly from iteration to 

iteration, i.e. as a function of the dispersion variable. 

The last of our general results is really a note of caution concerning 

root refinement in the presence of precision loss. When determining roots 

of the dispersion function in the most conservative manner, we usually 

~ncrease the dispersion variable systematically until this function changes 

sign. The root is then refined to obtain a more accurate value of the 

dispersion variable, i.e. a value closer to the root of the determinant. 

However, in the presence of precision loss we have the behavior illustrated 

by the solid lines in Figure 17, and if root refinement is carried out with 

too simple a procedure we can be led into mistaking spurious stabilization 

for true accuracy. An example of such an oversimplified procedure is 

repeated bisection of the dispersion-variable interval, where only the half 

interval defining a sign change in the dispersion function is retained 

after each bisection. The error here is in not monitoring the magnitude of 

successive values of this function. The random behavior, with no 

convergence toward zero, is an obvious signal indicating precision 

problems. At the qualitative level, numerical testing for the existence of 

precision loss in dispersion computations is described by Schwab, Nakanishi 

and Liang (1980). The more expensive, quantitative analysis is described 

in the second section of the main text, and is illustrated in 

Figures 11-15. 

6. NUMERICAL TESTING OF FOURTH-ORDER, HIGH-SPEED PROCEDURE 

The subroutine structure used in the testing of the fourth-order, 

high-speed procedure is given iD Figure 27. For each new frequency, the 

eigenfunctions Yl(r) and Y3(r) and the polar order numbers ~, at the three 

previous frequencies, are used as input to XINTEG. There, predictions 
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PYl(r), py3(r), and ~ are computed for the current frequency, and Ii(r) are 

calculated in a very compact procedure using simple, trapezoidal 

integration. Even though Ii(r) are £ dependent, the accuracies of the 

predicted pyl(r), py3(r), and £ are good enough--and the dependence of the 

final ~ value on the accuracy of Ii(r) small enough--so that Ii(r) need not 

be recomputed each time ~ is varied to decrease the magnitude of the 

dispersion function in the central subroutine block of Figure 27. When ~, 

or ~, has been obtained to the desired accuracy, the program prepares to 

treat the next frequency by obtaining the eigenfunctions at the present ~. 

The corresponding subroutine block--the last in Figure 27--requires only a 

single starting vector. With the solution for £ at the present frequency, 

we obtain 

Y3 (a) [Xl(r0)] 1 
= (60) 

Yl (a) [X2(r0)] 1 

for rigid-boundary termination. Integration in EIGSAC and EIGMTL is then 

performed with starting vector XE(a): 

2(a) I -_ 0 

3(a) I Yl(a) 3(a)/Yl( a 

4(a)J 0 

= Yl(a) XE(a) (61) 

to determine the eigenfuctions Yi(r)/Yl(a). Relations (60) and (61) apply 

to a continental structure. For an oceanic model, the left-hand side of 

(60) becomes 

Y3(rl ) 
, (60a) 

Yl (a) 

and integration is performed in EIGSEA starting with Z(a) as in (4.31). 

Since (60a) is now specified, for an oceanic structure integration is 

continued in the solid mantle with (4.32) modified to start with the 

single vector XE(rl): 
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Y2(rl = ) l [Z(rl)]2 , 

Y3(rl Yl(a lY3(rl)~Yl(a ~ 

4(rl 

30. 

= Yl(a) XE(r I) (61a) 

In the subroutines of the two lower blocks in Figure 27, we use the 

numerical integration procedures described in the second section of the 

main text (Numerical Technique for Integrating the System o__[f Differential 

Equations), and in Section 2 of the additional notes. Also as described in 

the second section of the main text, the key to optimizing the numerical 

integration is to apply our knowledge about this specific problem to 

specify all the depths at which ai_~(r) ,_ Ai~(r) ,_ bij(r),~ Bij(~) are to be 

evaluated, which then makes it possible to handle all of these evaluations 

outside of the lower two subroutine blocks in Figure 27. Comparison of 

Figure 1 with (4.21), and Figure 2 with (4.23) and (4.24) will indicate the 

changes needed to include the modified elements, Aid(r) and Bi~(r) , of the 

high-speed procedure. (See Table 7 for a short-period, high mode number 

modification of the integration depths as given in the second section of 

the main text.) 

The numerical tests are directed toward eventual use of the high-speed 

procedure to compute complete theoretical seismograms, for the 

spheroidal-wave excitation at the receiver, that can be compared directly 

with the experimental records from the long-period instruments of the 

WWSSN. All body-wave and surface-wave energy down to a period of 

10 seconds is to be contained on the synthetic seismograms, which are 

obtained from standard inverse Fourier transformation of the multimode, 

frequency-domain information. This technique is described by Kausel and 

Schwab (1973) and Schwab and Kausel (1976) for torsional-wave seismograms. 

The resulting applications, at various stages of the development of the 

method, are given by Knopoff, Schwab and Kausel (1973), Knopoff et el. 

(1974), Nakanishi, Schwab and Kausel (1976), Nakanishi, Schwab and Knopoff 
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(1976), Mantovani et al. (1976), Kausel, Schwab and Mantovani (1977), 

Mantovani et al. (1977), Mantovani (1978), and by Liao et al. (1977; 

1978). Specifically, in this application the key computation is that of 

the phase velocity, or ~, down to i0 seconds, for every (radial) mode that 

is excited at periods above i0 seconds; all this dispersion information is 

to be obtained in ~ single computer run. The present tests are limited to 

penetration of energy to no deeper than the mantle-core boundary, although 

penetration into the core is covered in the Conclusions of the fourth 

section in the main text. (The core, of course, is included in the 

computation of the gravitational acceleration, ~(r).) In the tests, the 

radial modes are treated in turn, starting with the fundamental. We use a 

frequency step size of 0.0005 cps, which corresponds to A~ ~ 5. For each 

mode, a "starting" procedure (see Section 8 of the additional notes) must 

be applied to obtain ~ and the eigenfunctions at the three longest periods. 

For this purpose, in these numerical tests we have used the sixth-order 

algorithm described in the second section of the main text. The high-speed 

procedure is then applied to each successive frequency until the minimum 

period of i0 seconds is reached. At each frequency, computation begins 

with an accurate estimate of ~, or ~, and the central subroutine block of 

Figure 27 is then executed, to compute the dispersion function, four times: 

The first estimate of c to be used in this subroutine block is obtained by 

extrapolation from the phase velocities at the three previous frequencies; 

this initial estimate is increased 0.005 km/sec to compute the second value 

of the dispersion function; the third c to be used is that yielding a zero 

of the linear fit to the dispersion function from the first two c values; 

the fourth c used is that at the zero of the quadratic fit from the first 

three values. The final phase velocity is that at which the dispersion 

function vanishes when it is represented by the cubic which is defined by 

the above four c values. 

Since the initial estimate for ~, or ~, is quite accurate, this amount 
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of root refinement may appear excessive to obtain the four significant 

figures we desire; however, two further considerations lead to the 

requirement of stability past the fourth significant figure of ~, although 

with the integration step sizes and fourth-order Runge-Kutta and 

predictor-corrector methods used here, this stability does not represent 

absolute accuracy. First, the eigenfunction routines need more than 

4-figure stability in g--both for successful extrapolation, from 

frequency to frequency, of Yl(r) and Y3(r), and to keep structure reduction 

(see following paragraph) from becoming excessive--even though this extra 

stability begins to define roots of the dispersion function in terms of 

algorithmic limitations as well as physical structure of the earth. 

Secondly, the analysis of synthetic time-series computation (Figure i, 

Calcagnile et al., 1976) demonstrates that ~, or ~, should be stable 

(smooth) to at least the fifth figure to avoid unnecessary noise on the 

computed seismograms. The results of Liao et al. (1977; 1978) indicate 

that smoothness in the fifth, or later figures is sufficient for this 

purpose, and that more than four figures of absolute accuracy is 

unnecessary. It should be realized (Figures 20 and 21, Schwab and Knopoff, 

1972; or Figures 2 and 3, Schwab and Knopoff, 1971) that it is meaningless 

to attempt higher absolute accuracies when dealing with perfectly-elastic 

models of the earth. If the intrinsic attenuation of the earth is 

introduced in an exact manner (same two references), this causes 

modification in the fourth and fifth figures of the phase velocities 

obtained from perfectly-elastic models. 

Concerning the structure reduction mentioned above, this is effected 

at each frequency upon exiting EIGMTL in Figure 27. At this stage in the 

computations Yi(r) are in storage at the last (greatest) seven depths to 

which the integration has been carried. A check is therefore made to see 

whether lYl(r) I has ceased to decrease with depth for one of these values 

of ~. If it has, this value of ~ is used as r0, the point at which 
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integration is to be terminated at the next higher frequency. This 

automatic structure reduction is quite important in minimizing computation 

time, preventing overflow, and in avoiding premature difficulties with the 

loss-of-precision problem. 

Since we are interested here only in establishing the validity of the 

high-speed procedure, and since we know from the third section of the main 

text that orthogonalization can be added later to control loss of precision 

successfully, it will be sufficient to limit the numerical testing of the 

procedure to the algorithm described by (4.20) and (4.22), i.e. before 

any feature for controlling precision loss has been included. For four 

significant figures in computed values of ~, reference to Figure 15 will 

show that there is a sufficient number of modes for which it will be 

possible to test the high-speed procedure all the way down to a period of 

i0 seconds, and thus, to establish the validity of this procedure. Test 

details and ranges for the three modes used in these tests are given in 

TaOie 5. Loss-of~precision difficulties just begin to appear when the 

shortest periods of the third mode are treated~ Attainment of the desired, 

4-figure accuracy in computed values of c was checked by duplicate 

calculations with the sixth-order algorithm. This accuracy was retained by 

the high-speed procedure until structure reduction placed r 0 within the 

low-velocity zone in the upper mantle. However, even in the worst 

case--the fundamental mode when r 0 is above the axis of the channel, i.e. 

above a depth of 136 km--the accuracy falls only to slightly below 

4 significant figures. Rather clearly, th~s decrease in accuracy when only 

a small number of integration steps is retained, is caused by the use of 

simple: trapezoidal integration to form Ii(r) in subroutine XINTEG. Just 

as clearly, however, there is no need to modify this integration method. 

For this shallow penetration, gravitation can be partially dropped from the 

computations, so that when r 0 increases beyond a certain point, we switch 

to a much simpler approximation that does not require the use of XINTEG. 
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Thus 4-figure accuracy is maintained down to the shortest period treated. 

When r 0 increases beyond the position of the "400-km discontinuity," 

Y5 and Y6 are set equal to zero in the formulation although ~(~) is 

retained in the elements of the coefficient matrix. The subroutine 

structure of Figure 27 can then be used without XINTEG or the last block of 

ei~enfunctlon routines° Check computations with the s~×th-order algorithm 

show this new procedure to remove the accuracy problem with short-period 

crustal waves. Checks against values given by North and Dziewonski (1975) 

for phase velocity differences between gravitating and non-gravitating 

structures, indicate that by leaving ~(~) in the new algorithm, these phase 

velocity differences are decreased: perhaps 20 percent for the fundamental 

mode at a period of 300 seconds. At any rate, the accuracy checks with the 

sixth-order program indicate that the approximation is fully satisfactory 

as soon as r 0 has increased beyond the "400-km discontinuity," into the 

region of the low-velocity channel in the upper mantle. 

This is quite an important result since it means that the most 

diff~cul~ region in which to perform dispersion computations--that where 

the members of the low-velocity-zone, channel-wave family cross the members 

of the crustal.wave family (pages 908-910, Schwab and Knopoff, 1971; pages 

166-168, Schwab and Knopoff, 19727 Panza, Schwab and Knopoff, 1972)--need 

not be treated with the complication of gravity. Hence, we need not apply 

the extrapolation technique for predictions pyl(~) and py3(~) for these 

period range~ in which the energy associated with a given radial mode is 

abruptly shifting up and down, between the low-velocity zone and the crust, 

as period varies. This becomes a more and more important consideration as 

the minimum period to which the computations are carried becomes shorter 

and shorter. 

7. DETAILED TIMING INFORMATION 

Because of the importance and expense of the type of computations 
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described in this report, more detailed timing information is given here 

for those requiring such data. The simplified information given in the 

main text, howeve)2, should be sufficient for most purposes. 

Before presenting the final timing details, a few words of explanation 

should be given conce]~ning optimization of the subroutine structure given 

in Figure 27° After the numerical testing of modes 0-2, a final attempt 

was made to further improve the optimization. To be specific, the 

treatment of HPCMTL will be described; the analogous handling of the other 

subroutines will be obvious~ The initial form of the predictOr-corrector 

portion of HPCMTL was that of Figure 4c, with the obvious variables 

switched from the dimension statement into a common block, and with A(1430) 

increased to A(3900). The computation time was found to depend 

significantly upon the arrangement of the variables in the common block. 

To completely eliminate this difficulty, the subroutine structure was 

abandoned and HPCMTL was included as a program section in the main routine. 

The logical IF-statements within the inner nested DO-loops, e.g. loop 170 

which occurs within a loop of the form 180 (Figure 4a), require an 

inordinate amount of time and should be deleted. This leads to loop 170 

being replaced by two loops, but this is justified by the improvement in 

computation time. The above modifications lead to an improvement from 

143xi0 -6, to 131×10 -6 sec/step/iteration in the characteristic time for 

treating solid structural units with the predictor-corrector method 

described in the second section of the ~in hext. Of course a like 

improvement would be expected in the characteristic time of the comparable 

sixth-order algorithm: 266xi0 -6 sec/step/iteration (second section of the 

main text, Optimization of the AJP Formulation). Since three, rather than 

two vectors are integrated in this algorithm, the estimated improvement 

would be to 250xi0 -6 sec/step/iteration. 

The formulas for detailed computation of timing estimates are given in 

Table 6. Table 7 contains the values of the parameters used in Table 6. 
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These tables should be studied in combination with the program-section 

structures in Figures 27 and 28, data given in the second section 

(Numerical Technique for Integrating the System of Differential Equations; 

Figures 6 and 8) and third section of the main text (maximum values of 

integration step size in the mantle), and the comparative computer speeds 

given by Porter et al. (1980). In Tables 6 and 7, NSED is the number of 

sedimentary layers, NCRUST is the number of subsedimentary crustal layers, 

(ni) ~ is the number of integration steps in the ~th part of the structure 

using the ~th integration method: Runge-Kutta (RK) or predictor-corrector 

(PC) (second section of the main text, Numerical Techni~u_ee for Inte~rati~ 

th__ee S_~stem of Differential Equations), and (T_~i) i and (~__!i)l are the 

characteristic times corresponding to (hi) ~, The times (~SOLID)~ are 

about double (~SOLID)j _ because the former characterize the treatment of two 

vectors Xi(r) , while the latter describe the handling of only a single 

vector, plus of course, the storage of Yl(r) and Y3(r). This storage is 

the only difference between the program segments characterized by (TSEA) ~ 

and (¢SEA)~. Part of the reason for the Runge-Kutta characteristic times 

being so much larger than the predictor-corrector times is that a 

refinement technique (equation (23), Ralston, 1960) is applied to Yi(r) and 

~i(r) after the Runge-Kutta procedure, and is included in these 

characteristic times. The numbers of iterations over £ to obtain the 

required accuracy in ~(~): [(N£)4th]HS for the fourth-order, high-speed 

procedure, and [(N£)4th]STAR T for the fourth-orde~ "starting" procedure, 

are 4 and 5-6 respectively~ The latter estimate is probably safe to use, 

but must still be verified with numerical tests of this "starting" 

procedure° Assume that ~XINTEG and xYINTEG' and hence TXINTEG and TyINTEG, 

are approximately the same. 

The "effective" characteristic times specified in the main text for 

the high-speed procedures--164×10 "6 sec/step/iteration for a gravitating 

structure, and 122×10 -6 sec/step/iteration for the approximation with 
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vanishing Y5 and Y6' but with g(r) left in the expressions for the elements 

of the coefficient matrix--are simple averages obtained from the values in 

Table 8. Each of the characteristic times given in that table was obtained 

by equating 

~eff x [(Nz)4th]HS × (average number of integration steps) 

and the full expression from Table 6, with the above "average number of 

integratign steps" being approximated by the expression in footnote 2 of 

Table 7, where (nMTL)PC is replaced by an average value that is just half 

of the value indicated in Table 7. The continental structure was specified 

with two sedimentary layers, ~nd granitic and basaltic subsedimentary 

c~ustal layers. For the "non-gravitating" structuresr program sections 

XINTEG, EIGSEA, EIGSAC, and EIGMTL were ignored in calculating Teff. By 

analogy with the above estimates of Tef f, the corresponding "effective" 

characteristic time for the sixth-order algorithm should increase from the 

predictor-corrector time (alone) of 250x10 -6 , to about 252x10 -6 

see/step/iteration. 

When the fourth-order, high-speed procedure, (4.20), is put in its 

delta-matrix form, (4.38), the resulting, "effective" characteristic time 

is estimated by replacing (TSOLID) j in Table 6 with 38/(2x23) times the 

values given in Table 7, and by replacing (eSOLID) ~ with 38/(1×23) times 

the values in Table 7. The conversion factor for (TSOLID) j arises from the 

requirement of only 38 elementary operations when using (4.38) with the 

single vector W, whereas 23 operations with each of two vectors are needed 

when (4~20) is employed in the formation of the dispersion function. The 

different value of the conversion factor for (eSOLID} j is explained by the 

need of just one vector when representation (4.20) is used to form the 

eigenfunctions. With only these changes in the values of (~SOLID)i and 

(eSOLID)j--~XINTEG____ remains the same---the procedure described in the 

preceding paragraph can then be used to estimate Tel f for the delta-matrix 

version of the high-speed technique. The result is an improvement to 
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153xI0 -6 sec/step/iteration. The delta-matrix form of the approximation 

with vanishing Y5 and Y6' and g(r) retained in the elements of the 

coefficient matrix, again allows us to ignore program sections XINTEG, 

EIGSEA, EIGSAC, and EIGMTL. With the appropriate conversion factor of 

33/(2x23) applied to (~SOLID)i, the "effective" characteristic time of this 

approximation in its delta-matrix form becomes 95xi0 -6 see/step/iteration. 

When the fourth-order, "starting" procedure, (65), is cast in its 

delta-matrix form, (76), a like approach is used to obtain an "effective" 

characteristic time of 283×10 -6 sec/step/iteration. In this case, 

(~SOLID)j retain the same values as those given in Table 7 since both (65) 

and (76) require the same number of elementary operations--2x23 and 46, 

respectiveiy~ (~SOL!D~ are replaced by 46/(ix23) times the values given in 

Table 7. This fourth-order, "starting" procedure is described in detail in 

the following section of the additional notes. 

8. COMPUTATIONAL ALGORITHM FOR A FOURTH-ORDER "STARTING" PROCEDURE 

Simplifie d equations of motion based on assumption no. 2. If we 

apply the two-term expansion (4.10) to relations (4.1) and (4.2), we obtain 

4~G ) 
(r) 

4~G + {2-~Z(i+l)[Jl ( r )+  J, (r)]} y3(r) 

4~G + 

14~G .... ~[KI (r) + K~ (r)]} Y3(r) (62) 

4~G 
Y6 (r) z " 21+l 

4~G 
+ - 2£+1 

4~G 
+ - 2~+i 

4gG 
+ - 2£+1 

__ Z(Z+l).[jlr (r) + J2 (r)]} Yl (r) 

__ Z(i+l)[r (Z+l)Ji (r) - £J2 (r)]} Y3 (r) 

-- Z(Z+I)[KIr (r) + K2 (r)]} Yl (r) 

__ ~ (~+i) [r (Z+I)KI (r) - %K2 (r) ]} Y3 (r) (63) 
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where 
r /r~ £+I 

J~(r) =f0 P(~) ~r') d~ 

C Jz (r) = p(~) d~ 

K~ (r) = p(~) (~-r) d~ 

L o K~ (r) = p(~) ({-r) d~ 

directly which can be evaluated 

specification: a sequence of linear functions of [. 

and (63) into the sixth-order equations of motion (equation 

the fourth-order system 

(64) 

since E is assigned an explicit 

Substitution of (62) 

(2.1)) yields 

= 

~ a 0 - s9 as~ 

y~ C~I C~2 C~ 

where the modified elements of the coefficient matrix are 

4~G 
Ca~ = a21 + 2~ii 

4~G 
2~+i 

4~G 
2~+i 

_ Z(Z+l)Pr {J1 (r) + J2(r) + a11[K~ (r) + K2(r)] 

- ass[(~+l)K1 (r) - ZK2 (r)]l 

Z(£+I) p a12[K1 (r) + Ka(r)] 
r C22 = a22 + 

C~s = a2s + 

4~G 
2£+1 

i(Z+l)p { r (%+i)JI (r) - £Ja(r) + az3[K1 (r) + K~(r)] 

+ a33[(Z+l)K1 (r) - EK2 (r)]} 

_ _  Z(Z+l)p as4[(Z+l)Kl (r) - ZK2 (r)] 
r 

4~G p { 
2~+i ~ ~J1 (r) - (£+i)J2 (r) + al1[~K~ (r) 

- as3~(£+l)[K1(r) + K~(r)] 1 

4~G 
2£+1 r ~ al2[£K1 (r) - (~+I)K~_ (r)] 

(£+i) K2 (r) ] 

4~G P {£(£+l)[JI(r) + J~(r)] + a~s[£K1(r) - (~,+l)K~(r)] 
2£+1 

+ a33£(~+l)[K1 (r) + K2 (r)]} 

C24 = a24 + 

C%1 = a41 

C~2 = a~2 

C~3 = a~3 

(65) 

(66) 
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4zG 
C~ = a~ 2~tl r ~ a~£(Z+l)[Kl(r) + K2(r)] 

The preceding eqnations of motion apply to the solid portions of the 

earth, If (4.10) is applied to an ocean modeled by a single, homogeneous, 

liquid layer, the original fourth-order system (equation (2.16)) reduces to 

g2 [E21 E2~ y~ 

with 

Ell = (I+H)-I{bil(I-b2sA~+pB4) + bis[A,+b2~A4+p(AIB~-A~Bi)]} 

El. = (l+H)-l{b~. (I-b~sA.+pB~) + bI.[A3+b22A~+p(A3B~-A~Bs)]} (68) 

E~l = (l+H)-l{b21 (l-blsA~) + b l l  (b2sA~-oB2) + b2sA1 - 0B1 + P b l s  (A2BI-AIBz) 1 

E22 = (l+H)-l{b2z(l-bl~A2) + b12 (b~sA2-pB2) + b2sA3 - ~Bs + pbls (A2Bg-AsB2)} 

and 

H = - b2sA~ + pB4 + bls[p(A~B2-A~B~)-A~] (69) 

The qt~antities A i and B i are given by 

A. = [r~l 2 M1 ~ ( r  )] r~-/.~.:+~D1 - '  ~i + g - ~2Ri+S Ig lr \P'~ i /J 

1 ~2 -i ~.= [ ~r0] [~(~)] 
-=~/~ Fzl ~,. ~7 -~ 

A5 = B5 - B6 

~,: t [ ~  + o' ~+ ~- ~o0] [ ~ +  ~4-' <,o> 
1 (~2 -i 1 

rf_~ .~F '_ h i - '  L,P 1 I 

o~; ~[~-~(~i -~} [(~)-'_ ~]-' \ pl",l 1 / '~pL~ 1 



l =2 

B5 =NN--~l - 1 

B 6 = S0 - Sl 
~o2/p + Sl 

where 

M 0 = 

M I = 

N O = 

N 1 = 

R 0 = 

R I = 

SO = 

41. 

I' +.r ( I'II 
4+2 ~--zT [" - 

- (£+2)(£+3) - (Z-I)(£-2) - £-1-(4-2) 

~(~+i) ~ + 

-~ £(£+i) I " (~+2)(£+3) (£-i')(£-2) " £-1-(4-2) 

-N O 

-N 1 

4~G 
£(£+i) 

4#G £(£+i) 

(7i) 

Computational al~orithm. The details concerning the initiation and 

termination of integration with the fourth-order, "starting" procedure are 

the same as those described in Computational Algorithm for High-Speed 

Procedure (fourth section of main text). From the subroutine structure of 

this procedure, which is shown in Figure 28, it is seen that such a 

"starting" method is highly compatible with the high-speed procedure of 

Figures 23 and 27. Only one new subroutine need be added to the program 

package. This compatibility favors the use of the fourth-order, "starting" 

procedure over the full, sixth-order method since the latter would 

necessitate the addition of six new subroutines to the program package. 

Thus, if the timing efficiency of the fourth-order approach is not 

significantly worse than that of the sixth-order algorithm, the former 
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"starting" procedure should be used with the high-speed method of Figures 

23 and 27. Coding efficiency (physical length of code)is more important 

than timing efficiency here, since the "starting" procedure is applied to 

only about three percent of the frequencies treated; the rest being handled 

by the high-speed approach. 

With all possible optimization included in the sixth-order method (see 

Section 7 of the additional notes), the total time per frequency is about 

(252xi0 -6 sec/step/iteration) x nTOTA L x (N£)6t h (72} 

(Tabl~ 5), where nTOTA L is the number of integration steps and (N£)6t h is 

the required number of iterations over £ to obtain the desired accuracy in 

~(~). For the fourth-order method, reference to Figure 28 shows that each 

iteration over £ requires a time of about 

TXINTEG + THp C +TEI G (73) 

(see Section 7 of the additional notes), where we assume that 

TYINTEG Z ~XINTEG (74) 

Thus the total time per frequency for the fourth-order "starting '~ procedure 

is about 

[(Teff)4th]STAR T x nTOTA L x [(N~)4th]STAR T , (75) 

where this effective characteristic time is about 260×10 -6 

sec/step/iteration (Table 5; Table 8). Therefore, if the required number 

of fourth-order iterations, [(N£)4th]START, is not much above (N£)6th, the 

fourth-order, "starting" procedure is to be preferred. 

Loss-of-precision control. If the sixth-order method of starting is 

selected, the augmented algorithm described in the third section of the 

main text will provide this control. If the fourth-order technique is 

chosen, a simplified form of the orthogonalization which is discussed 

there, can also be used to control the loss-of-precision problem. 

As in the high-speed procedure, the simplification to a fourth-order 

"starting" procedure also makes it possible to use the delta-matrix 
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approach to control precision loss. The development of the delta-matrix 

form of the equations of motion follows that given in the fourth section of 

the main text for the high-speed procedure; the last simplification given 

there--equations (4.37)-(4038)--however, is not possible here. The result 

is 

W01 

W2 

W3 

W4 

m 

W5 

W06 

ali+C22 C23 

0 all+a33 

C~2 C43 

= 

a33 C21 

-C41 0 

0 -C41 

C24 -a13 0 0 

a34 al2 0 0 

ali+C44 0 a12 al3 

0 C22+a33 a34 -C24 

C21 C43 C22+C44 C2~ 

-a33 -C42 0 a33+C44 

Wol 

W2 

W~ 

W4 

W5 

W06 

• (76) 

The relative speeds of (65) and its delta-matrix extension, (76), are 

estimated by noting that each of X 1 and X 2 requires 23 elementary 

operations when (65) is used, whereas the single vector in (76) requires 46 

operations. Thus, to a first approximation, the computation time of the 

delta-matrix algorithm would be 46/(2x23) times that of (65), i.e. the 

computation times would be approximately the same if we assume that both 

approaches need a like number of iterations over £. This estimate, 

however, applies only to the formation of the dispersion function: HPCSAC 

and HPCMTL in Figure 28. As explained in the last paragraph of Section 7 

of the additional notes, the formation of Ii(r) and the eigenfunotions will 

increase the characteristic time from that of (65)--260x10-6--to 283xi0 -6 

sec/step/iteration. This increase of about 9 percent when using the 

delta-matrix extension of the fourth-order, "starting" method, means that 

considerations based on computation speed yield no clear preference between 

delta matrices and orthogonalization for controlling precision loss with 
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this "starting" method. 

If we assume that further testing will show that [(Nz)4th]STAR T is not 

significantly greater than (N£)6th, then the consideration of coding 

efficiency will not only indicate that the fourth-order, "starting" 

procedure be used in preference to the sixth-order algorithm, but will also 

indicate that the loss-of-precision problem be treated by orthogonalization 

rather than delta matrices; this, because orthogonalization can be included 

in the subroutine structure of combined Figures 27 and 28. The high-speed 

procedure based on (4.38), and the "starting" procedure based on (76), 

would require separate subroutine structures for each of these delta-matrix 

procedures, since (4.38) and (76) do not have the same form. 



TABLE 1 

CONSTANTS FOR INTEGRATION THROUGH SUCCESSIVE STEP-SIZE REGIONS 

ILLUSTRATED IN PROGRAM SEGMENTS GIVEN IN FIGURE 4. CONSTANTS 

CORRESPOND TO 4 SIGNIFICANT FIGURES IN COMPUTED PHASE VELOCITY. 

45. 

I NI(I) N2(1) Integration Step Size 
(km) 

1 5 Ii -1.5625 
2 12 16 -3.1250 
3 17 21 ~6:2500 
4 22 * -12.5000 

* N2(4) is specified so as to allow integration to proceed to the deepest 

point within the solid mantle, while maintaining a step size of -12.5 km. 

NEND is determined, at each period, by the input value of r0; it must 

satisfy NEND ~ N2(4). 

TABLE 2 

RESULTS OF NUMERICAL TESTS OF THE OVERFLOW PROBLEM WHEN NORMALIZATION IS 

NOT INCLUDED IN OUR OPTIMIZATION OF THE BASIC AJP FORMULATION. AN AVERAGE 

(OCEANIC) EARTH STRUCTURE (WIGGINS, 1968), AND A PERIOD OF 50 SECONDS, WERE 

USED IN THE TESTS. THE VALUE OR r 0 IS THE MAXIMUM AT WHICH OVERFLOW OCCURS; 

(a - r0)/~ IS THE CORRESPONDING NUMBER OF WAVELENGTHS OF STRUCTURE, FROM 

THE SURFACE OF THE EARTH DOWN TO r = r 0. THESE, AND LARGER VALUES OF 

(a - r0)/A, YIELD OVERFLOW. 

Mode Number r 0 (a - r0)/A 

(km) 

0 4600 8.7 
1 4300 8.3 
2 4000 8.2 
3 3800 7.9 
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TABLE 3 

REFERENCE DISPERSION RESULTS FOR GRAVITATING, HOMOGENEOUS SPHERE. 

STRUCTURAL PARAMETERS ARE GIVEN IN THE THIRD SECTION OF THE MAIN TEXT. 

PHASE VELOCITIES ARE OBTAINED FROM (2.5). 

Radial Polar Period Radial Polar Period 
Mode Order Mode Order 

No., n No., ~ (see) No., n No., £ (see) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

i0 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
3O 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 

820 10.105 
745 10.154 
730 i0.188 
720 10.184 
710 10.197 
700 10.220 
695 i0~183 
685 10.221 
680 10.194 
670 10.241 
665 10.221 
660 10.205 
655 10.191 
645 10.251 
640 10.242 
635 10.234 
630 10.229 
625 10.225 
620 10.223 
615 10.222 
610 10.222 
605 10.224 
600 10.226 
595 10.230 
5~0 10.235 
585 I0.2~] 
580 10.248 
575 10.256 
575 10.191 
570 I0 200 
565 i0 210 
560 i0 221 
555 I0 233 
550 i0 245 
550 10 184 
545 i0 198 
5~0 10 212 
535 I0 227 
530 10.242 
530 10.184 
525 10.200 
520 10.217 
515 10.235 
510 10.254 
510 10.197 
505 10.216 
500 10.236 

546 697 47 495 10o256 530 851 
934 672 48 495 10.200 889 049 
149 987 49 490 10.222 011 606 
634 500 50 485 10.243 720 617 
342 089 51 485 10.189 089 890 
909 004 52 480 10.211 461 419 
478 806 53 475 10.234 408 821 
023 634 54 475 10.180 683 044 
301 019 55 470 10.204 254 136 
289 518 56 465 10.228 394 789 
983 680 57 460 10.253 108 028 
676 104 58 460 10.200 214 171 
999 296 59 455 10.225 514 169 
261 784 60 450 10.251 385 363 
082 839 61 450 10.199 197 873 
830 574 62 445 10.225 632 605 
339 415 63 440 10.252 639 960 
469 526 64 440 10.201 087 375 
101 663 65 435 10.228 639 321 
133 300 66 435 10.177 701 662 
475 643 67 430 10.205 783 707 
051 306 68 425 10.234 439 569 
792 468 69 ~25 i0~184 028 516 
639 411 70 420 10.213 198 285 
539 321 71 415 10.242 945 251 
445 331 72 415 I0~!92 999 742 
315 713 73 410 10.223 242 864 
113 223 74 405 10.254 064 602 
424 481 75 405 10.204 523 596 
679 017 76 400 10.235 820 512 
758 353 77 398 10.218 958 427 
638 585 78 394 10.234 716 475 
298 231 79 392 10.218 270 984 
717 987 80 388 10.234 553 568 
642 793 81 386 10.218 505 023 
169 627 82 382 10.235 299 002 
398 148 83 380 10.219 631 725 
315 929 84 376 i0~236 930 863 
9~ii 896 85 374 10.221 637 113 
166 212 86 370 10.239 449 868 
680 807 87 368 10.224.538 681 
836 041 88 366 10.209 849 784 
625 269 89 362 10.228 434 933 
042 788 90 360 10.214 243 125 
102 934 91 356 10.233 748 427 
308 522 92 354 10.220 658 958 
118 681 



TABLE 4 
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RESULTS OF NUMERICAL EXPERIMENT TO OBTAIN ROUGH ESTIMATE OF EFFECT OF 

ERRORS IN Y5 AND Y6 ON COMPUTED PHASE VELOCITIES. EXPERIMENT PERFORMED 

WITH FULL, SIXTH-ORDER ALGORITHM; ERRORS IN Y5 AND Y6 SIMULATED BY VARYING 

GRAVITATIONAL CONSTANT G; AN "AVERAGE" OCEANIC STRUCTURE OF THE CIT-II 

TYPE (FIGURE 5) WAS USED. 

Period = 50 seconds; Radial t.!ode Numbers, n = 0(1)7 

~G/G ~ 6y5/y 5 ~ ~y6/Y6 1 '~  I I 
nm-'--ax + 1 c - Ctrue 

n 
(km/sec) 

0.I 0.00010 
0.2 0. 00019 
0.4 0 • 00039 
0.6 0. 00060 
0.8 0.00083 
I. 0 0. 00107 

TABLE 5A 

SUMMARY OF RANGES USED IN NUMERICAL TESTING OF FOURTH-ORDER, HIGH-SPEED 

PROCEDURE. CONSTANT FREQUENCY INTERVAL BETWEEN COMPUTED DISPERSION POINTS 

IS 0.0005 CP~. SEE TABLE 4 AND FIGURE 5 FOR STRUCTURE USED IN THIS 

PARTICULAR SET OF TESTS. 

Radial Frequencies (cps) (and Periods (sec)) Total Number 
Mode No. used in Computational Tests of Frequencies 

"Starting" High-Speed 
Procedure Procedure 

0.0020 (500) 
0 0.0025 (400) 0.0035-0.1000 197 

0.0030 (333) 

0.0035 (286) 
1 0.0040 (250) 0.0050-0.1000 194 

0.0045 (222) 

0.0060 (167) 
2 0.0065 (154) 0.0075-0.1000 18~ 

0.0070 (143) 
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:3UMMARY OF FINAL TIMING RESULTS FOR THE VARIOUS PROCEDURES DESCRIBED IN 

THIS REPORT. ALL CHARACTERISTIC TIMES REFER TO DOUBLE-PRECISION 

COMPUTATIONS ON AN IBM 360/91 COMPUTER. SEE PORTER ET AL. (1980) FOR 

APPROXIMATE CONVERSION FACTORS TO EQUIVALENT TIMES ON MANY OTHER COMPUTERS. 

Wave Type Structure Computational Control "Effective" Reference 
Method of Characteristic 

Precision Time 
Loss 

Love, or flat, or Thomson-Haskell 1 55xi0 -6 sec/ Schwab 
torsional spherical, technique -- layer/ and 

homogeneous iteration Knopoff 
layers (1972) 

Rayleigh" flat, non- Knopoff's 2 110×10 -6 sec/ Schwab 
gravitating, method layer/ and 
homogeneous iteration Knopoff 

layers (1972) 

Rayleigh spherical, high-speed none 132xi0 -6 sec/ eq. 
(spheroidal) approx, procedures step/ (4.20) 

with y5=Y6=0 iteration 

but g(r) delta 95xi0 -6 sec/ eq. 
left in aij matrix step/ (4.38) 

iteration 
3 3 

orthog. -- -- 

Rayleigh spherical, high-speed none 164xi0 -6 sec/ eq. 
(spheroidal) gravitating procedures step/ (4.20) 

(Figure 27) iteration 

delta 153xi0 -6 sec/ eq~ 
matrix step/ (4.38) 

iteration 
3 3 

orthog~ -- -- 

Rayleigh spherical, "starting" none 260×10 -6 sec/ eq. 
(spheroidal) gravitating procedures step/ (65) 

(Figure 28) iteration 

delta 283xi0 -6 sec/ eq. 
matrix step/ (76) 

iteration 
3 3 

orthog. -- -- 

Rayleigh spherical, full, none 252xi0 -6 sec/ eq. 
(spheroidal) gravitating sixth,-order step/ (2~!) 

algorithm iteration 

orthog. ~3 3 
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1 There is no loss-of-precision problem in this case. 

2 This case contains the equivalent of the delta-matrix approach for 

controlling precision loss (Schwab, 1970). 

3 When orthogonalization is employed to control precision loss, the 

"effective" characteristic time increases by 5-10 percent over that when 

no feature is included to eliminate this problem. The reference equation is 

unchanged when orthogonalization is added to the formulation without control 

of precision loss. 



TABLE 6 
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FORMULAS FOR DETAILED TIMING ESTIMATES FOR RAYLEIGH-.WAVE DISPERSION 

COMPUTATIONS WHEN THE FOURTH-ORDER FORMULATIONS ARE USED FOR A SPHERICAL, 

GRAVITATING EARTH 

Section of Execution Time per Frequency in Different Sections 
Algorithm of the Algorithm 

Partial Total 

XINTEG nTOTA L × TXINTEG TXINTEG 

(nSEA)RK × (TSEA)RK 
HPCSEA 

+ ..[nSEA)PC x ( ~SEA)PC 

NSE D × nSE D × (TSOLID)RK 

HPCSAC + NCRUST x (nCRUST)RK x (~SOLID)RK THp c 

+ NCRUS T × (nCRUST)PC × (TSOLID)PC 

HPCMTL 
(nMTL)RK x {¢SOLID)RK 

(nMTL)PC × (TSOLID)PC 

EIGSEA 
+ 

(nSEA)RK x (aSEA)RK 

(nSEA)PC x (¢SEA)PC 

NSE D × nSE D x (ESOLID)RK 

EIGSAC + NCRUS T × (nCRUST)RK × (~SOLID)RK TEI G 

+ NCRUS T x (nCRUST)PC x (¢SOLID)PC 

(nMTL)RK × (~SOLID)RX 
EIGMTL 

+ (nMTL)PC x (~SOLID)PC 

Fourth-Order Procedures Total Time per Frequency 

high-speed 

"starting" 

TXINTEG + [(N£)4th]HS x THp C +TEI G 

[(N£)4th]STAR T × (TyINTEG + THp C +TEI G) 



TABLE 7 
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VALUES OF PARAMETERS APPEARING IN TABLE 6 

1 Characteristic Times 

(10 -6 sec/integ~ation step) 

2 Number of Integration Steps 

Long-Period 3 Short-Period 3 

58.2 ~XINTEG 

(~SEA)RK 41.6/iteration 

(TSEA)PC 31.5/iteration 

(~SOLID)RK 183/iteration 

(TSOLID)PC 131/iteration 

(~SEA)RK 43.9 

(eSEA)PC 33.8 

(~SOLID)RK 91.0 

(ZSOLID)PC 69.7 

(nSEA)RK 3 same 

(nSEA)PC 2 same 

nSE D 1 same 

(nCRUST)RK 3 same 

(nCRUST)PC 7 same 

(nMTL)RK 3 same 

(nMTL)4 PC 242 467 

1 These times correspond to double-precision computations on an IBM 360/91 

computer. Approximate conversion factors to equivalent times on many other 

computers will be found in Porter et al. (1980). 

2 
nTOTA L = (nSEA)RK + (nSEA)PC + NSE D × nSE D + NCRUS T 

x [(nCRUST)RK 4 (DCRUST)PC} + (nMTL)RK + (nMTL)PC 
3 See second section of main text (Numerical Technique for Integrating the 

System of Differential Equations) for further details concerning step 

sizes. Maximum step size must be reduced below 12.5 km, as period 

decreases from 25 to 10 seconds and radial mode number increases (see final 

paragraph of Conclusions in third section of main text). 

4 The numbers given above for (nMTL)PC correspond to the use of all of the 

mantle down to the mantle-core discontinuity, for an oceanic mantle. From 

the information given in the second section of the main text (Numerical 
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Technique fo___~r Integratin~ the System of Differential Equations; Figures 6 

and 8), estimates can be obtained for the reduced values of (nMTL)PC as a 

function of radial mode number and frequency. 

TABLE 8 

"EFFECTIVE" CHARACTERISTIC TIMES FOR TYPICAL OCEANIC AND CONTINENTAL 

STRUCTURES, AND LONG- AND SHORT-PERIOD (SEE FOOTNOTES 3 AND 4 OF TABLE 7) 

COMPUTATIONS. TIMES ARE IN UNITS OF 10 -6 SEC/INTEGRATION STEP/ITERATION 

ON AN IBM 360/91 COMPUTER (SEE FOOTNOTE 1 OF TABLE 7). 

Fourth-Order, 
High-Speed 
Procedure 

Gravitating Structures Approximation with vanishing 
Y5 and Y6 ' but g(r) left in 

elements a~.~ 

Oceanic Continental Oceanic Continental 

long-period 162 167 130 135 
computations 

short-period 163 164 131 133 
computations 

Fourth-Order, 
"Starting" 
Procedure 

Gravitating Structures 

Oceanic Continental 

long-period 258 264 
computations 

short-period 258 262 
computations 



Elements to be evaluated external 
to both ~ and c loops: 

all a12 a22 a26 a33 a34 

a~l a~2 a~4 a45 a51 a66 

Auxiliary quantities to be evaluated 
external to both ~ and e loops: 

dl3=lal2/r d21=4~(31+2~)a~2/r 2 

d43=-2p/r 2 d53=-4~Gp 

d65=i/r 2 e43=4p(l+~)a12/r 2 

53. 

~ loop 

OMEGSQ=~ ~ 

DO i0 I=I,N 

TEMP=-a26(I)xOMEGSQ 

a21(1)=d21(I)-TEMP 

10 f43(I)=d43(I)-TEMP 

--c loop 

ORDER=%(~+I) 

DO 20 I=I,N 

aI3(I)=dI3(I)xORDER 

a23(]~)=a41(I)×ORDER 

a63(I)=d63(1)xORDER 

a24(1)=a33(I)xORDER 

a65(I)=d65(I)xORDER 

20 a43(I)=f43(I)+e43(I)×ORDER 

Integration loop, in which 
all of XI, X2, X3 are 
treated at the same time 

FIG. i. Schematic representation of optimized method for evaluating 
the matrix elements (r k) in the treatment of Lhe solid sedimentary 
layers, the aij subsedimentary crustal layers, and the mantle. 
The quantities I and ~ are Lam~'s constants, p is the density, G is £he 
gravitational constant, and N is the number of depths at which ai:(rk) must 
be evaluated. It is seen that most of the procedure for J eval- 
uating aij(rk) can even be removed from within the ~ and c loops: Within 
the c 100p, each new c value requires only 6N + 1 assignments, 
6N + 1 multiplications, and N + 1 additions; within the ~ loop, each new 
value requires only 3N + i assignments, N + 1 multiplications, and 2N 
subtractions. All other portions of the element determinations are 
performed external to these loops. 



Evaluate b56 external to both ~ and 
c loops. Auxiliary quantities to be 
evaluated external to both ~ and c 
loops: 

PI2 = -i/r2P 

~iS = -!/~a 

P22 = -g(r)/~2 

P25 = P22P 

P21 = -P25 g(r) 

P62 = 4~G/r2 

P55 = P62P 

PSl= -P55 g(r) 

s21 = -4~g(r)/r 

XLAINV = i/a2p 

loop 

RHMOSQ=-p~ 2 

OMSQIN=I/~ 2 

DO 10 I=!,M 

h21(I)=P21(1)×OMSQIN 

q21 (I)=s21 (1)+RHMOSQ 

hsl (I)=p61 (1)xOMSQIN 

hI2(I)=pI2(I)xOMSQIN 

h22 ( I )=P22 ( I )xOMSQIN 

h62 (I)=p52(1)×OMSQIN 

hlS(I)=PI5(1)xOMSQIN 

h25(I)=P25(1)×OMSQIN 

i0 h65(I)=P55(I)xOMSQIN 

-c loop 

ORDER=£(£+I) 

DO 20 I=I,M 

b22(I)=h22(I 

bll(I)=h66(I 

b21 (I)=h21(I 

b61 (I)=h61 (I 

bl2(I)=hl2 (I 

b62 (I)=h62 (I 

b15 (I)=hl 5 (I 

b25(I 

20 b65(I 

54. 

)×ORDER 

)-b22(I) 

)×ORDER+q21(I) 

)xORDER 

)xORDER+XLAINV 

)xORDER 

)×ORDER 

)=h25(I)xORDER 

)=[h65(1)-Pls(1)]×ORDER 

Integration loop, in which both 
z I and Z 2 are treated at the 
same time 

FIG. 2. Schematic representation of optimized method for evaluating 
the matrix elements b..(r~) in the treatment of the homogeneous oceanic 
(liquid) layer. The 13 K quantity ~ is the compressional-wave velocity, 
g(r) is the acceleration due to gravity, and M is the number of depths at 
which bij(rk) must be evaluated. 
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(a) 

YBAR(1)=AI(IPT)*Y(1)+A7(IPT)*Y(2)+AI3(IPT)*Y(3) 
YBAR(2)=A2(IPT)*Y(1)+A8(IPT)*Y(2)+AI4(IPT)*Y(3)+ 

1 A20(IPT)*Y(4)+A32(IPT)~Y(6) 
YBAR(3)=AI5(IPT)*(Y(3)-Y(1))+A21(IPT)*Y(4) 
YBAR(4)=A4(IPT)*Y(1)+AI0(IPT)*Y(2)+A16(IPT)*Y(3)+ 

1 A22(IPT)*Y(4)+A28(IPT)*Y(5) 
YBAR(5)=A5(IPT)*Y(1)+Y(6) 
YBAR(6)=AI8(IPT)*Y(3)+A30(IPT)*Y(5)+A36(IPT)*Y(6) 

(b) I[ YBAR, IPT 

(c) 

I A1 A7 AI3 0 0 0 
A2 A8 AI4 A20 0 A32 

-AI5 0 AI5 A21 0 0 
aiJ = [ ~i AI00 AI60 A220 A280 lC 

0 AI8 0 A30 A36 

FIG. 3. (a) FORTRAN IV program segment for the basic matrix 
multiplication in our optimization of the AJP formulation for solid layers; 
(b) symbolic representation of (a), which is used in Figure 4a; and (c) 
definition of one-dimensional array used in (a) to represent 6×6 matrix in 
(2.1). The integer IPT is the index specifying the value of r, and A1 
through A36 are dimensioned to 300. 
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C BEGIN APPLICATION OF PREDICTOR-CORRECTOR METHOD. 
DO ll0 I=i,6 

110 PMNUSC (I) =0.0D+00 
HH=0.5D+00*I.5625D+00 

C LOOP OVER REGIONS WITH DIFFERENT STEP SIZES. 
DO 180 IREG=I,NUMREG 
HH=HH+HH 
NSTART=NI(IREG) 
NSTOP=N2(IREG) 
NTEMP=5 
IT=0 

C LOOP OVER DEPTH IN CURRENT STEP-SIZE REGION. 
DO 170 N=NSTART,NSTOP 
IF(IT.EQ.4] GO TO 115 
IT=NTEMP-4 
ITPI=IT+I 
ITP3=IT+3 
ITP~=IT+8 
ITP9=IT+9 
ITPI0=IT+I0 

115 DO 120 I=1,6 
C SET PREDICTOR P(I). 

P(I)=B(IT,I)+COEFFI*(2.0D+00*(B(ITPI0,I)+B(ITP8,I)) 
1 -B(ITP9,I)) 

C SET MODIFIED PREDICTOR XM(I). 
120 ~M(1)=P(I)-.9256198347107438D+00*PMNUSC(I) 

IPT=IPT+I 

X B E,IPT ii 
DO 130 I = 1 , 6  

C SET CORRECTOR C(I) 
C(I)=.I25D+00*(9.0D+00*B(ITP3,1)-B(ITPl,I) 

1 +COEFF2*(XMBAR(I)+2.0D+00*B(ITPI0,I) 
2 -B(ITP9,I))) 
PMNUSC (1) =P (I) -C (I) 

C SET SOLUTION VECTOR AT NTH DEPTH. 
130 Y(I)=C(I)+.07438016528925620D+00 

1 *PMNUSC(I) 
IF(N.EQ.NEND) RETURN 

C SET DERIVATIVE OF SOLUTION VECTOR AT NTH DEPTH. 

140 

150 

IF(NTEMP.GT.7) GO TO 150 
NTMPP7=NTEMP+7 
DO 140 I=i,6 
B (NTEMP, I) =v (I) 
B (NTMPP 7, I) =YBAR(I) 
NTEMP=NTEMP+l 
GO TO 170 
DO 160 I=i,6 
B(I,I)=B(2,1) 
B(2,I)=B(3,I) 
B(3,I)=B(4,I) 
B(4,1)=B(5,I) 
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B(5,I)=B(6,I) 
B(6,I)=B(7,I) 
B (7,I) =X(I) 
B(8,1)=B(9,I) 
B(9,I)=B(10,I) 
B(10,I)=B(II,I) 
B(II,I)=B(12,I) 
B (12, I) =B(13,I) 
B(13,I)=B(14,1) 

160 B(14,I)=YBAR(I) 
170 CONTINUE 

C RESET STORED VALUES OF COEFFICIENTS IN PREPARATION FOR 
C DOUBLED STEP SIZE. 

COEFFI=COEFFI+COEFFI 
COEFF2=COEFF2+C0EFF2 
COEFF6=COEFF6+COEFF6 

C RESET STORED VALUES OF Y(I),YBAR(I),and PMNUSC(I) IN 
C PREPARATION FOR DOUBLED STEP SIZE. 

DO 180 I=i,6 
PMNUSC(I)=8.962962962962963D+00*(Y(I) 

1 -B(I,I))-COEFF6e(YBAR(I)+B(8,I) 
2 +3.0D+00*(B(12,I)+B(10,I))) 
B(2,1)=B(3,I) 
B(3,I)=B(5,I) 
B(4,I)=B(7,I) 
B(9,I)=B(10,I) 
B(10,I)=B(12,I) 

180 B(II,I)=B(14,I) 

FIG. 4a. FORTRAN IV program segment in which the predictor-corrector 
portion of the integration from below the Moho to r0 is handled. Most of 
the computation time is spent in this segment. The boxed segments refer to 
the basic AJP matrix multiplication illust~ated in Figure 3. 
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DIMENSION B(6,14) ,Y(6) ,YBAR(6) ,XM(6) ,XMBAR(6) ,P(6) ,C(6) ,PMNUSC (6), 
1 A(2090) 
EQUIVALENCE (Y(1) ,YI) 
EQUIVALENCE (XM(1),XMI) 
EQUIVALENCE (~MBAR (i) ,XMBARI) 
IPT=-I8 

58. 

C LOOP OVER DEPTH IN CURRENT STEP-SIZE REGION. 
DO 170 N=NSTART,NSTOP 
IF(IT.EQ.4) GO TO 115 
IT=NTEMP-4 

115 DO 120 I=i,6 
C SET PREDICTOR P(1) • 

P (I) =B (I, IT)+COEFFI* (2. O1)+00' (B (I,IT+I0)+B (I, IT+8) )-B (I, IT+9) ) 
C SET MODIFIED PREDICTOR XM(I). 

120 XM (I) =P (I)-. 9256198347107438D+00*PMNUSC (I) 
IPT=IPT+I9 
EMBAR (I) =A (IPT) *XM (i) +A (IPT+I)*XM(2) +A (IPT+2)*XM(3) 
XM-BAR (2) =A (IPT+3) *XM(1)+A (IPT+4) *XM(2)+A (IPT+5)*XM(3) 

1 +A(IPT+6) *XM (4)+A (IPT+7)*XM (6) 
XMBAR (3) =A (IPT+8) * (XM (3)-XM (i))+A (IPT+9)*XM (4) 
XMBAR (4) =A (IPT+I0) *XM (1)+A (IPT+II)*XM(2) +A (IPT+I2) *~M (3) 
1 +A(IPT+I3) *XM (4)+A(IPT+I4) *XM(5) 
XMBAR(5)=A (IPT+IS) *XM(1)+XM(6) 
XMBAR(6) =A (IPT+I6) ~XM (3)+A (IPT+IT)*XM (5)+A(IPT+I8)*XM (6) 
DO 130 !=1,6 

C SET CORRECTOR C(I) . 
C (I) =. 125D+00' (9.0D+00*B (I, IT+3) -B (I, IT+I)+COEFF2* (XMBAR (I)+2.0D+O 

1 ~B (I, IT+I0)-B (I, IT+9))) 
PMNUSC (I) =P (I)-C (I) 

C SET SOLUTION VECTOR AT NTH DEPT}{. 
130 Y (I) =C (I)+. 07438016528925620D+00*PMNUSC (I) 

IF(N.EQ.NEND) RETURN 
C SET DERIVATIVE OF SOLUTION VECTOR AT NTH DEPTH. 

YBAR (i) =A(IPT) *Y (1)+A (IPT+I)*Y (2) +A (IPT+2) *Y (3) 
YBAR(2) =A(IPT+3) *Y (i) +A (IPT+4) *Y (2)+A(IPT+5) *Y (3) 
1 +A(IPT+6)*Y (4)+A(IPT+7)*Y (6) 
YBAR (3) =A(IPT+8) * (Y (3)-Y (i)) +A (IPT+9) *Y (4) 
YBAR(4) =A(IPT+I0) *Y(1)+A(IPT+II) *Y (2)+A(IPT+I2) *Y (3) 
1 +A (IPT+I3) ~Y (4) +A(IPT+I4) *Y (5) 
YBAR(5) =A(IPT+IS) *Y (i) +Y (6) 
YBAR(6) =A(IPT+I6) *Y (3) +A (IPT+IT)*Y (5)+A (IPT+I8) *Y (6) 
IF(NTEMP.GT.7) GO TO 150 
DO 140 1=1,6 
B (I ,NTEMP) =Y (I) 

140 B (I,NTEMP+7) =YBAR(I) 
NTEMP=NTEMP+I 
GO TO 170 
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C RESET STORED VALUES OF Y AND YEAR 
C STEP. 

150 DO 160 I=1,6 
B(I,I)=B(I,2) 
~(1,2)=B(1,3) 
B(I, 3)=B(I,4) 
B(I,4)=B(I,5) 
B(I,5)=B(I,6) 
B (I, 6)=B (I, 7) 
B(z,7)=x(z) 
B(I,8)=B(I,9) 
B(I,9)=B(I,10) 
B(I,IO)=B(T,n) 
B (I, 11) =B(l, 12) 
B(I,12):B(I,13) 
B(I,13):B(I,14) 

160 B (I, 14)=YBAR(I) 
170 CONTINUE 

IN PREPARATION FOR NEXT INTEGRATION 

FIG. 4b. FORTRAN IV program segment demonstrating subscripting and 
storage improvements, relative to the segment in Figure 4a, that are 
required to optimize computation time on an IBM 360 computer. 
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DIMENSION B(4,14) ,D(4,14) ,X(4) ,Y(4) ,XBAR(4) ,YBAR(4) ,~(4) ,YM(4), 
I XMBAR(4) ,YMBAR(4) ,P (4) ,Q(4) ,C(4) ,F(4) ,PMNUSC (4), 
2 QMNUSF (4) ,A (1430) 
EQUIVALENCE (X(1) ,X1) 
EQUIVALENCE (Y(1) ,YI) 
EQUIVALENCE (XM(1) ,XMI) 
EQUIVALENCE (YM(1) ,YMI) 
EQUIVALENCE (XMBAR(1) ,XMBARI) 
EQUIVALENCE (YMBAR(1) YMBARI) 
IPT=-I2 

60. 

C LOOP OVER DEPTH IN CURRENTmSTEP-SIZE REGION. 
DO 170 N=NSTART,NSTOP 
IF(IT.EQ.4) GO TO 115 
IT=NTEMP-4 

115 DO 120 I=i,4 
C SET PREDICTORS P(1) , Q(1) . 

P (I) =B (I, IT)+COEFFI* (2.01)+00" (B (I, IT+IO )+B (I, IT+B) )-B (I, IT+9) ) 
Q ( I ) =D (I, IT) +COEFFI* (2.01)+00" (D ( I, IT+lO ) +D ( I, IT+8 ) )-D ( I, IT+9) ) 

C SET MODIFIED PREDICTORS XM(I) , YM(1) . 
XM(I) =P (I)-. 9256198347107438D+O0*PMNUSC (I) 

120 YM(I) =Q (I)-. 9256198347107438D+00*QMNUSF (I) 
IPT=IFT+I3 
XMBAR (i) =A(IPT) *XM(1)+A(IPT+I) *XM(2)+A(IPT+2) *XM(3) 
YMBAR (i) =A(IPT) *YM(1)+A(IPT+I) *YM (2)+A(IPT+2) *YM(3) 
XMBAR (2) =A(IPT+3)*XM (1)+A (IPT+4)*XM (2)+A (IPT+5) *XM (3) 
1 +A(IPT+6) *XM(4) 
YMBAR (2) =A(IPT+3) *YM (1)+A(IPT+4)*YM (2)+A (IPT+5) *YM(3) 
i +A(IPT+6)*YM(4) 
XMBAR (3) =A(IPT+7)* (XM(3)-XM (i))+A(IPT+8)*XM(4) 
YMBAR(3) =A(IPT+7) * (YM (3) -YM (i)) +A (IPT+8) *YM (4) 
XMBAR (4) =A(IPT+9) *XM (1)+A (IPT+I0) *XM(2)+A(IPT+II) *XM(3) 
1 +A(IPT+I2)*XM(4) 
YMBAR (4) =A(IPT+9) *YM(1)+A(IPT+I0) *YM(2)+A(IPT+II) *YM(3) 
1 +A(IPT+I2)*YM (4) 
DO 130 I=1,4 

C SET CORRECTORS C(1) , F(I) . 
C (I) =. 125D+00" (9. OD+O0*B (I, IT+3) -B (I, IT+l)+COEFF 2* (XMBAR (I) +2.0D+0 

1 *B (I, IT+I0)-B (I, IT+9) ) ) 
F (I) =. 125D+00' (9. OD+OO*D (I, IT+3) -D (I, IT+I)+COEFF2* (YMBAR (I) +2.0D+0 
1 *D (I, IT+IO)-D (I, IT+9) ) ) 
~MNUSC(I)=P(I)-C(I) 
QMNUSF (I) =Q(I)-F (I) 

C SET SOLUTION VECTORS AT NTH DEPTH. 
X(!) =C (I)+. 07438016528925620D+O0*FMNUSC (I) 

130 Y (I) =F (I) +. 07438016528925620D+00*QMNUSF (I) 
IF(N.EQ.NEND) RETURN 
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C SET DERIVATIVES OF SOLUTION VECTORS AT NTH DEPTH. 
XBAR(1)=A(IPT) *X(1)+A(IPT+I) *X(2)+A(IPT+2) *X (3) 
YBAR (i) =A (IPT) *Y (I) +A (IPT+I) *Y (2) +A (IPT+2) *Y (3) 
XBAR (2) =A (IPT+3)*X (1) +A(IPT+4) *X (2)+A (IPT+5) ~X (3) 
1 +A(IPT+6)*X(4) 
YBAR (2) =A (IPT+3) *Y (1)+A(IPT+4) *Y (2)+A (IPT+5) *Y (3) 
i +A(IPT+6)*Y (4) 
XBAR(3) =A (IPT+7) * (X (3) -X (i)) +A (IPT+8)*X (4) 
YBAR(3) =A(IPT+7)* (Y (3)-Y (i))+A(IPT+8)*Y (4) 
XBAR(4) =A (IPT+9) *X (1)+A (IPT+I0) eX (2)+A (IPT+II) *X (3) 
1 +A (IPT+I2) *X (4) 
YBAR(4)=A(IPT+9)*Y (1)+A(IPT+I0)*Y (2)+A(IPT+II)*Y (3) 
I +A (IPT+I2) *Y (4) 
IF(NTEMP.GT.7) GO TO 150 
DO 140 1=1}4 
B (I,NTEMP) =X(I) 
D (I, NTEMP) =Y (I) 
B (I,NTEMP+7)=XBAR(1) 

140 D (I,NTEMP+7)=YBAR(I) 
NTEMP=NTEMP+I 
GO TO 170 

C RESET STORED VALUES OF X , Y AND XBAR , YBAR IN PREPARATION FOR NEXT 
C INTEGRATION STEP. 

150 DO 160 1=1,4 
B(I,I):B(I,2) 
B(I,2)=B(I,3) 
B(I,3)=B(I,4) 
B(I,4)=B(I,5) 
B(I,5)=B(1,6) 
B(I,6)=B(I,7) 
B(T,7)=X(I) 
B(I,8)=B(I,9) 
B(I,g)=B(I,10) 
B(I,10)=B(I,II) 
B(I,II)=B(I,12) 
B(I,12)=B(I,13) 
B(I,13)=B(I,14) 
B(I,14)=XBAR(I) 
D(I,I)=~(I,2) 
D(I,2)=D(I,3) 
D(I,3)=D(I,4) 
D(I,4)=D(I,5) 
D(I,5) =D(I,6) 
D(I,6)=D(I,7) 
D(I,7)=Y(1) 
D(I,8)=D(I,9) 
D(I,9)=D(I,10) 
D ( l , lO)=D(l , l l )  
D (I, ii) =D (I, 12) 
D(I,12)=D(I,13) 
D(I,13)=D(I,14) 

160 D (I, 14)=YBAR(I) 
170 CONTINUE 

FIG. 4c. FORTRAN IV program segment illustrating our final 
optimization, from the second section of the main text, for the 
non-gravitating case. Further improvement is discussed in the fourth 
section of the main text and in Section 7 of the additional notes. 
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FIG. 5. Oceanic and continental (shield) models used in program 
testing. 
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FIG. 6. Values of r0, the depth at which integration is terminated, 
which yield 4-significant-figure accuracy in the computed values of c with 
the optimized version of the basic AJP formulation. At each period, 
4-figure accuracy is attained only if r 0 is specified to be smaller than 
the value indicated by the curve. 



C NO~IALIZATION. 
AMXINV=I.0D+00/D~XI(DABS(B(7,1)),DABS(B(7,2)), 
1 DABS(B(7,3)),DABS(B(7,4)), 
2 DABS(B(7,5)),DABS(B(7,6))) 
DO 165 I=i,6 
PMNUSC(I)=PMNUSC(1)*AMXINV 
Y(I)=Y(I)*AMXINV 
YBAR(I)=YBAR(I)~AMXINV 
DO 165 J=l,14 

165 B(J,I)=B(J,I)*AMXINV 

65. 

FIG. 7. Normalization scheme appropriate to program segment in 
Figure 4a. The procedure should be included between statement numbers 160 
and 170 in Figure 4a. See text for warnings concerning loss of efficiency 
when this general form of normalization is employed. 
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FIG. 8. Collected results from multimode tests for determining maximum 
permissible values of r0, when the computed phase velocities are to be 
accurate to 4 significant figures. 
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FIG. 9. Maximum periods, maximum phase velocities, and minimum polar 
order numbers £, that can be used if c is desired to 4-figure accuracy, 
when the integration is limited to the mantle and the core is excluded from 
the computations (other than for use in the determination of g(r)). 



150 DO 160 I=1,6 
B(I,I)=SNGL(B(2,I)) 
S(2,I)=SNGL(B(3,I)) 
B(3,1)=SNGL(B(4,I)) 
B(4,1)=SNGL(B(5,1)) 
B(5,1)=SNGL(B(6,I)) 
B(6,I)=SNGL(B(7,1)) 
B(7,1)=SNGL(Y(I)) 
B(8,I)=SNGL(B(9 ,I)) 
B(9,I)=SNGL(B(10,I)) 
B(10,1)=SNGL(B(II,I)) 
B(II,I)=SNGL(B(12,I)) 
B(12,I)=SNGL(B(13,I)) 
B(13,I)=SNGL(B(14,I)) 

160 B(14,I)=SNGL(YBAR(1)) 

68. 

FIG. i0. FORTRAN IV program segntent used to simulate single-precision 
computations when using our double-precision optimization of the basic AJP 
formulation. The function SNGL accepts a double-precision argument, and 
returns the single-precision equivalent. This program segment is used to 
replace DO-loop 160 in Figure 4a. 
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(:Figure ii. Second of two pages) 

FIG. ii. Results of testing the effect of reducing IBM 360 
computations from double (16-17 decimal digits) to single precision (about 
6 decimal digits), while keeping the period fixed at 50 seconds. For a 
given radial mode, in order to obtain ~ significant figures in the 
computed phase velocity, r 0 must not exceed the value given by the upper 
portion of the dashed line (structural limitation) nor fall below the lower 
portion (loss-of-precision limitation). 
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FIG. 12. Results of IBM 360, double-precision tests of 
loss-of-precision problem at a period of 50 seconds. At left are shown the 
raw results of our structure-reduction experiments; at right, the 
corresponding smoothed curves for each mode. The latter curves are drawn 
such that all data points, for a given radial mode, fall to the right of 
the corresponding smoothed curve. 
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FIG. 13. Results of IBM 360, double-precision tests of 
loss-of-precision problem at a period of 25 seconds. 
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FIG. 14. Maximum possible (radial) mode number, nmax, for which 

a significant figures can be obtained with our optimization (for speed of 
computation) of the AJP formulation. This limitation of the original AJP 
formulation is due to the loss-of-precision problem. 
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FIG. 15. Relationship between maximum possible (radial) mode number, 
nmax, and minimum period, for several values of d. This limitation of the 

original AJP formulation is due to the loss-of-precision problem. 
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FIG. 16. Schematic illustration of results of numerical-accuracy tests 
applied to dispersion computations. Numerical integration is performed 
between the surface of the earth and radius r0, n is the radial mode 
number, and c is the computed phase velocity. Insert at left represents 
the situation when the algorithm contains loss-of-precision problems; 
right-hand insert (solid lines) illustrates the situation when these 
problems are absent. Further details are given in second section of main 
text (Existence of Solutions as a Function of Numerical and Algorithmic 
Procedures; Figures 11-15). 
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(Figure 17. Second of two pages) 

FIG. 17. Representation of detailed behavior of dispersion function 
when precision loss dominates the original AJP formulation for the 
computation of Rayleigh-wave dispersion on a spherical, gravitating model 
of the earth. Results are for the fourth radial mode at a period of 
I0 seconds, for both continental and oceanic structures; effect of 
decreasing r 0 is also included. Solid lines denote the results when a 
feature for controlling precision loss is not included in the computational 
algorithm. In this case only the points are significant; the continuous 
lines have only the purpose of connectlng~-~---~omputed results. Dashed lines 
illustrate results obtained when orthogonalization is used to control 
precision loss. In this case, note both the stability of the 
solution--position of the root of the dispersion function--and the 
smoothness maintained by this function as r0 is decreased by 1320 km. 
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FIG. 18. Dispersion function for the case of a horizontal, homogeneous 
beam that is rigidly supported at its two ends. See Section 4 of the 
additional notes for further details. 
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FIG. 19. Results of numerical tests comparing the overflow properties 
when integrating the vectors X. over depth in the downward direction 
(dotted and dashed lines), and in i the upward direction (hatched areas). A 
realistic, continental model of the earth was used in these tests of two 
radial modes, and a period of 25 seconds was employed. 
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FIG. 20. Results of numerical tests of "approximation no. i" and 
"approximation no. 2" in forming (4.3) and (4.4). In the representations 
of ys(r)/y](a), the true values are illustrated by solid lines, the dotted 
lines denote the computed results when one term of the Taylor's series 
expansions is used, and the dashed lines, the computed results for two 
terms. See Table 4 for structure used to model the earth. 



81. 

Enter procedure with specified angular frequency, e, the order number at 

which to start the root-bracketting (of dispersion function) procedure, Z0 (e), 

and step size, ~. 

i. Set Z = ~0 (~). 

2. Run algorithm based on (4.10). 

3. Set £ = £-~Z. 

4. Set Z = £+AZ. 

5. Determine eigenfunctions pyi(r). 

6. Evaluate integrals Ii(r) using (4.12). 

7. Run algorithm based on (4.11) and (4.12)* to determine dispersion-function 

value. 

8. If root of dispersion function has been bracketted, proceed; otherwise, 

return to step 4. 

9. Interpolate for value of Z yielding a root of the dispersion function. 

10. Repeat steps 5, 6, and 7. 

ii. If sufficient accuracy has been obtained for £, computation is complete; 

otherwise, return to step 9. 

See "approximation no. 5." 

FIG. 21. Outline of iterative procedure for improving "approximation 
no. 2," which is based on relation (4.10). 
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FIG. 22. Results of numerical tests of procedure outlined in Figure 21 
for improving "approximation no. 2." 
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Enter procedure with specified angular frequency, ~, and 

accurate estimates (from data at previous frequencies) of 

and pyi(r) at ~. 

i. Evaluate integrals Ii(r) using (4.12). 

2. If this is the first iteration, set Z to its predicted 

value; otherwise, interpolate for value of ~ yielding 

a root of the dispersion function. 

3. Run algorithm based on (4.11) and (4.12). 

4. If sufficient accuracy has been obtained for £, go to 

step 5; otherwise, return to step 2. 

5. Determine eigenfunctions Yi(r). 

6. Predict £ and pyi(r) at next frequency to be treated. 

FIG. 23. Outline of high-speed procedure to be used with the fourth-order 
simplification of the AJP formulation for Rayleigh-wave dispersion computa- 
tions with a spherical, gravitating model of the earth. 
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FIG. 24. Results of numerical testing of "approximation no. 3." 
Predictions Pyl(r) and py3(r) are obtained from the (single) frequency 
0.0005 cps below each of those represented in the figure. Solid lines 
denote true depth dependences; plotted points indicate test results. See 
Table 4 for structure used to model the earth. 
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FIG. 25. Results of numerical testing of "approximation no. 4." 
Predictions pyl(r) and py3(r) are obtained from the pair of frequencies 
0.0005 and 0.0010 cps below each of those represented in the figure. See 
caption of Figure 24 for further details. 
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Predictions pyl(r) and py3(r) are obtained from the three frequencies 
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XINTEG 

HPCSEA 

HPCSAC 

HPCMTL 

1 
T 

EIGSEA 

EIGSAC 

EIGMTL 

Form Ii(r)of (4.12), and 

thereby Aij of (4.21) and 

B.. of (4.23). Formation 
13 

of Aij and Bij require rather 

obvious generalizations of 

Figures 1 and 2. 

Form dispersion function. 

Loop over Z until desired 

accuracy of £(~) is obtained. 

Form eigenfunctions Yi(r)/yl(a) 

as described in (60)-(61a). 

FIG. 27. Subroutine structure of high-speed procedure outlined in 
Figure 23. Subroutine HPCSEA performs integration of (4.22), taking Z(a) 
down to Z(rl); HPCSAC integrates (4.20), taking Xi(a), or Xi(rl), down 
through the sediments and subsedimentary crustal layers; HPCMTL 
then carries the integration of X i from the base of the crust, through the 
mantle, to r 0. Using the results Xi(r0) , the corresponding eigenfunction 
determinations of (60)-(61a) are then made by integrating a slngle 
vector through the oceanic layer (EIGSEA), sediments' and s~bsedim~ 
crustal layers (EIGSAC), and mantle (EIGMTL). 
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FIG. 28. Somewhat expanded version of key part of Figure 21, showing 
more detailed outline of fourth-order, "starting" procedure. Note that the 
subroutines used to form the dispersion function--HPCSEA, HPCSAC, 
HPCMTL--and the subroutines used to form eigenfunctions--EIGSEA, EIGSAC, 
EIGMTL--are exactly the same routines that are used in the high-speed 
procedure of Figures 23 and 27 (see caption of Figure 27 for more details 
concerning the subroutines). This is possible because (i) the key 
optimizing technique is the evaluation of the coefficient-matrix elements 
prior to entering these subroutines, and (2) these matrix multiplications 
have the same form in both the "starting" and high-speed procedures. For 
example, both (4.20) and (65) use the same multiplication scheme for 
[Xl(r)] i and [X2(r)] i in HPCSAC and HPCMTL: evaluation of XBAR(I) and 

YBAR(1) following statement number 130 in Figure 4c. The only new 
subroutine required by the "starting" procedure is YINTEG. 
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