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[1] A parametric inversion scheme for the retrieval of two-dimensional (2-D) ocean wave
spectra from look cross spectra acquired by spaceborne synthetic aperture radar (SAR) is
presented. The scheme uses SAR observations to adjust numerical wave model spectra.
The Partition Rescaling and Shift Algorithm (PARSA) is based on a maximum a posteriori
approach in which an optimal estimate of a 2-D wave spectrum is calculated given a
measured SAR look cross spectrum (SLCS) and additional prior knowledge. The method
is based on explicit models for measurement errors as well as on uncertainties in the SAR
imaging model and the model wave spectra used as prior information. Parameters of
the SAR imaging model are estimated as part of the retrieval. Uncertainties in the prior
wave spectrum are expressed in terms of transformation variables, which are defined for
each wave system in the spectrum, describing rotations and rescaling of wave numbers
and energy as well as changes of directional spreading. Technically, the PARSA wave
spectra retrieval is based on the minimization of a cost function. A Levenberg-Marquardt
method is used to find a numerical solution. The scheme is tested using both simulated
SLCS and ERS-2 SAR data. It is demonstrated that the algorithm makes use of the phase
information contained in SLCS, which is of particular importance for multimodal sea
states. Statistics are presented for a global data set of 11,000 ERS-2 SAR wave mode
SLCS acquired in southern winter 1996.
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1. Introduction

[2] Spaceborne synthetic aperture radar (SAR) is still the
only instrument providing two-dimensional (2-D) spectral
information on a global and continuous basis. SAR data as
acquired by the European Remote Sensing Satellite 2
(ERS-2) or the Environmental satellite (ENVISAT) launched
in 1995 and 2002 respectively are particularly valuable for
the assimilation of numerical ocean wave forecast models.
Today’s operational forecast systems run at various weather
centers have reached a level of accuracy where further
improvements seem to require the use of more detailed
spectral information only available from SAR so far.
[3] The first proposed SAR wave measurements tech-

niques were based on single ‘‘frozen’’ SAR images
[Hasselmann et al., 1996; Krogstad et al., 1994]. Different

algorithms for the inversion of the respective SAR image
variance spectra were developed and it was demonstrated
that these data contain useful information on the 2-D ocean
wave spectrum [Heimbach et al., 1998]. A more advanced
approach is based on the use of SAR look cross spectra
(SLCS), which enable the resolution of wave propagation
direction ambiguities and which have lower noise levels
[Engen and Johnsen, 1995]. Furthermore approaches to
estimate sea surface elevation fields in the spatial domain
from complex SAR data have been proposed recently
[Schulz-Stellenfleth and Lehner, 2004]. Although the SLCS
technique has been known for a longer time now, the
operational availability of SLCS from the ENVISAT ASAR
has caused new interest in the method in particular among
the ocean wave modeling community.
[4] This paper is concerned with a rigorous statistical

treatment of the SLCS inversion problem, i.e., the estima-
tion of 2-D ocean wave spectra dealing with the SLCS
distortions and the information loss caused by the nonlinear
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SAR imaging mechanism as, e.g., described by Engen and
Johnsen [1995]. The approach is geared toward the retrieval
of complete 2-D wave spectra and is thus different to the
methods, e.g., described by Chapron et al. [2001] and
Engen et al. [2001], where the SAR measurement is
restricted to the long wave regime.
[5] The type of retrieval problem described above is very

common in remote sensing and is usually solved by using
some a priori information from other sources like, e.g.,
models or other sensors. Attempts to find solutions without
prior information have been made [Lyzenga, 2002; Engen
and Johnson, 1995]. These approaches are restricted to the
long wave regime and the missing regularization makes it
more difficult to retrieve realistic wave spectra. For con-
ventional SAR image variance spectra different approaches
have been proposed to blend SAR measurement and prior
knowledge. Hasselmann et al. [1996] and Krogstad et al.
[1994] used model spectra as prior information, whereas
Mastenbroek and de Valk [2000] took collocated ERS-2
scatterometer measurements as additional input. Several
studies showing the performance of the schemes have been
carried out [Heimbach et al., 1998; Mastenbroek and de
Valk, 2000; Breivik et al., 1998].
[6] A first very general study on the SLCS inversion

problem using prior knowledge was presented by Dowd and
Vachon [2001]. The study contains no statistical analysis
and the proposed scheme obviously has a problem with
discontinuities of the retrieved spectra at the azimuthal cut-
off wave number. As will be shown the scheme presented in
this paper is able to solve this problem using some addi-
tional prior assumptions. The method proposed here extends
the basic concepts of the inversion scheme introduced by
Hasselmann et al. [1996], which are as follows: (1) the
scheme uses 2-D wave spectra provided by numerical
models as a priori information and (2) the method is based
on a parameterization of the prior wave spectrum using a
partitioning approach. The method described in this paper is
referred to as Partition Rescale and Shift Algorithm
(PARSA) in the following. It has several additional features
compared to the scheme described by Hasselmann et al.
[1996]: (1) the scheme has the directional spreading of the
different wave systems as an additional parameter; (2) the
algorithm is based on explicit models for the measurement
error, errors in the forward model, and uncertainties in the
prior wave spectrum; and (3) the scheme is based on a
maximum a posteriori approach. The second iteration loop
used by Hasselmann et al. [1996], where the prior wave
spectrum is adjusted and fed back into the optimal estima-
tion problem is avoided. This approach has two advantages:
the sensitive cross assignment procedure used by
Hasselmann et al. [1996] is not required and based on the
rigorous formulation as an optimal estimation problem it is
possible to estimate the error covariance of the retrieved
parameters: (1) the scheme makes use of the phase infor-
mation contained in SLCS to resolve ambiguities in the
wave propagation direction; (2) the scheme provides esti-
mates for uncertain parameters in the SAR imaging model
in addition; and (3) a new partitioning method is used which
allows overlapping partitions and thus avoids discontinu-
ities occurring in the inverted catchment algorithm [Gerling,
1992] used so far. The design of the PARSA scheme was
guided by the requirements of wave model assimilation,

which is regarded as the most important application of
global SAR data as provided by the ENVISAT ASAR.
[7] The paper is structured as follows. In section 2 a brief

introduction to SLCS is given. Section 3 explains the
maximum a posteriori approach which is the basis for the
PARSA scheme. Models for the measurement error as well
as for errors in the forward model and uncertainties in the
prior wave spectrum are presented in section 4 as important
components of the retrieval procedure. Section 5 is about
the numerical retrieval procedure, which is based on a
Levenberg-Marquardt method. The discussion includes cri-
teria for the termination of the iteration and the computation
of the error covariance matrix for the retrieved wave
parameters. In section 6 the performance of the scheme is
illustrated using simulated data. In particular, the benefit of
the phase information contained in SLCS is demonstrated.
In section 7 the PARSA scheme is applied to a global data
set of reprocessed ERS-2 SLCS introduced by Lehner et al.
[2000]. Global maps as well as scatterplots comparing
retrieved and prior wave spectra are presented.

2. Synthetic Aperture Radar (SAR) Look Cross
Spectra (SLCS)

[8] In this section SLCS are introduced, which are the
basis for the PARSA inversion scheme. It is well known that
SLCS have the following two advantages compared to
conventional SAR image variance spectra [Engen and
Johnsen, 1995]: (1) SLCS help to resolve the wave prop-
agation direction ambiguities present in symmetric SAR
image variance spectra and (2) SLCS have lower noise
levels. SLCS are based on two looks which are processed
from the azimuth spectrum of complex SAR data [Engen
and Johnsen, 1995]. The looks show exactly the same area
of the sea surface and are separated in time by typically one
second. The looks can thus be used to gain information
about wave motion and in particular about wave propaga-
tion directions. A standard approach to detect the respective
phase shifts is to compute the SLCS [Honerkamp, 1993],
which is defined as the Fourier spectrum of the respective
cross covariance function rIs1Is2:

FIs
1Is

2

k ¼ F rI1s I2s

� �
: ð1Þ

There are different approaches to estimate the cross
spectrum from a given measurement [Honerkamp, 1993].
The SLCS is a complex valued function with symmetric
real and antisymmetric imaginary part. The positive peaks
of the imaginary part indicate the propagation direction of
the different harmonic wave components. A physical
model describing the relationship between ocean wave
spectra and SLCS has been derived by Engen and
Johnsen [1995] and is summarized in Appendix C. Noise
properties of SLCS including the impact of estimation
errors and speckle noise were analyzed by Schulz-
Stellenfleth and Lehner [2005].

3. Retrieval Strategy

[9] A big challenge in SAR ocean wave retrieval is the
consistent blending of SAR information and respective
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prior knowledge. The strategy followed in this study is
based on the so-called maximum a posteriori approach
[Rodgers, 2000]. The objective of this concept is to
maximize the conditional probability of the retrieved
wave spectrum given the SLCS and the prior wave
spectrum. Using the Bayes theorem this probability can
be written as

pdf Fk;AjFkð Þ ¼ pdf FkjFk;Að Þ pdf Að Þ pdf Fkð Þ
pdf Fkð Þ ; ð2Þ

where pdf(FkjFk, A) is conditional distribution of the
measured SLCS Fk given an ocean wave spectrum Fk and a
forward model, which contains a stochastic parameter
vector A, pdf(A) is the prior distribution of parameters in
the forward model, pdf(Fk) is the prior distribution of the
ocean wave spectrum Fk, and pdf(Fk) is the prior
distribution of the SLCS, which is irrelevant for the
inversion procedure. The overall structure of the retrieval
scheme based on equation (2) is depicted in the flowchart
shown in Figure 1. The different components will be
explained going from top to bottom, starting with
probability models for both SLCS estimation errors and
uncertainties in the prior wave spectrum.

4. Error Models

4.1. Measurement Errors

[10] For an optimal wave spectra retrieval it is neces-
sary to quantify the potential errors contained in the
SLCS measurement. The analysis by Schulz-Stellenfleth
and Lehner [2005] showed that real and imaginary part
of the estimated SLCS can to first order be regarded as
uncorrelated. Standard deviations of the real and imagi-
nary part of the SLCS associated with spectral estimation
errors can be estimated based on the SLCS coherence.

Denoting the exact SLCS with Fk
obs, the estimated SLCS

is written as

Fobs
k ¼ F

obs

k þ �Sk; ð3Þ

where �k
S is a zero mean complex Gaussian process with

standard deviation given by

stdv �Sk
� �

� jFI1I2

k j
Ns

0:75; 0:25ð Þ ¼: sRSk ; sISk
� �

: ð4Þ

Here, Ns is the number of samples averaged in the SLCS
estimation procedure. The chosen values for the standard
deviations stem from an analysis carried out by Schulz-
Stellenfleth et al. [2002] and Schulz-Stellenfleth and Lehner
[2005] assuming a SLCS coherence of 0.7, which is
regarded as typical. It is of course possible to adjust the
error model for each spectrum based on the estimated
coherence, but to keep the further discussion simple a
constant coherence is assumed in the following.
[11] To keep the computational effort low, the PARSA

scheme uses a polar grid with logarithmic spacing in the
frequency dimension according to

kj ¼
4p2 f 20

g
C

2 j�1ð Þ
0 j ¼ 1; ::; nk ; ð5Þ

where g is the gravitational acceleration. To make full use of
the wavelength range between 20 m and 1000 m covered by
the official ENVISATASAR SLCS product [Johnsen et al.,
2002], a value of f0 = 0.0395 Hz is chosen for the lowest
frequency bin, which is slightly lower than in the standard
setup of the wave model WAM with f0

WAM = 0.04177 Hz
[Heimbach et al., 1998]. To have a frequency sampling
comparable to the WAM model the inversion scheme uses
nk = 25 wave number bins. To cover the high-frequency part
of the WAM model, which goes up to 0.41 Hz, one then has
to choose C0 = 1.102405. The grid has nj = 36 equally
spaced directions, which is in agreement with the grid of the
official ENVISAT SLCS product. Figure 2a shows the
average number of Cartesian grid points contained in
the logarithmic wave number bins assuming that ERS-2
wave mode imagettes are used for the spectral estimation
[Lehner et al., 2000]. One can see that for shorter waves the
number of averaged spectral bins is so high that the impact
of estimation errors on the retrieval (compare equation (4))
becomes negligible. However, for longer swell it has to be
taken into account. The fact that there are only few or even
none Cartesian grid points in the high-frequency part of the
PARSA polar grid is because the respective bins lie partly
outside the spectral regime covered by the wave mode
imagettes. The exact intervals in the wavelength and
frequency domain covered by the bins of the polar grid
are shown in Figure 2b.
[12] It is important to note that the ocean wave imaging

process is influenced by waves with frequencies higher than
0.41 Hz not contained in the PARSA frequency grid. This is
simply due to the fact that these waves contribute signifi-
cantly to the orbital velocity variance [Alpers et al., 1981;
Lyzenga, 1986; Schulz-Stellenfleth and Lehner, 2002]. To
take these waves into account the spectrum is extrapolated

Figure 1. Flowchart of the Partition Rescaling and Shift
Algorithm (PARSA) retrieval scheme.
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assuming a k�4 power law [Phillips, 1985] as described by
Schulz-Stellenfleth and Lehner [2002].

4.2. Uncertainties in the SAR Imaging Model

[13] It is well known that the SAR ocean wave imaging
model contains significant uncertainties. In particular, the
phase and magnitude of the RAR modulation mechanism is
known only with low accuracy [Brüning et al., 1994;
Schmidt, 1995]. This circumstance is only to some degree
due to the lack of respective measurements, but there is
some indication that the real aperture radar (RAR)
modulation mechanism itself has stochastic components
[Schmidt, 1995].
[14] To take into account uncertainties in the forward

model, we assume that the simulated SLCS Fsim calculated
according to the nonlinear integral transform derived by
Engen and Johnsen [1995] (compare Appendix C) can
deviate from the ‘‘true’’ SLCS denoted by F. The proposed
error model has three components, which refer to different
characteristic features of the SLCS and can be written as

Fk ¼ a1 exp �k2x b2 a2

� �
Fsim
k þ �Fk : ð6Þ

Here, a1, a2 and �k
F have the following meanings: (1) a1 is a

Gaussian distributed variable with unit mean and standard
deviation sa1

, which describes errors in the overall energy
level of the spectrum as, e.g., caused by uncertainties in the
magnitude of the RAR MTF; (2) a2 is a Gaussian
distributed variable with zero mean and standard deviation
sa2

, which describes uncertainties in the cut-off wavelength
of the forward model; and (3) �k

F is additive white Gaussian
noise with independent real and imaginary part and zero
mean. It is supposed to take into account errors in the fine-
scale structure of the SLCS, e.g., caused by errors in the
phase of the RAR MTF. For the standard deviation of �F we
assume relative errors for both real and imaginary part of the
SLCS, i.e.,

stdv �Fk ¼ sRFk ; sIFk
� �

¼ nRF max
k

jReFobs
k j; nIF max

k
jImFobs

k j
� �

:

ð7Þ

Here, nRF and nIF denote the expected error in the fine-scale
structure of the real and imaginary part expressed as a
fraction of the respective maximum values.

[15] Combining the models for estimation errors and
uncertainties in the forward model, the conditional proba-
bility of the measured SLCS given an ocean wave spectrum
Fk and a parameter vector A is given by

pdf FkjFk;að Þ 	
Y
k2�

exp �
Re a1 e

�k2x b2 a2 Fsim
k � Fk

� �� �2
2 sRFkð Þ2þ 2 sRSkð Þ2

2
64

3
75

Y
k2�

exp �
Im a1 e

�k2x b2 a2 Fsim
k � Fk

� �� �2
2 sIFkð Þ2þ 2 sISkð Þ2

2
64

3
75;
ð8Þ

where it was assumed that both error contributions are
independent. The set of wave number vectors of the half
polar grid � is given by

� ¼ ki j 1 � i � Nf g; ð9Þ

with N = nknj/2 and the wave number vectors ki, i = 1, . . .,
N defined according to

k i�nkþj ¼ kj cos
2p
nj

i

� �
; kj sin

2p
nj

i

� �� �
; 1 � j � nk

0 � i � nj

2
� 1: ð10Þ

Here we have assumed that the total number of directional
bins nj is even.
[16] Table 1 summarizes the standard deviations describ-

ing uncertainties in the SLCS model. As the standard
deviation defines the 65% confidence interval for a Gauss-
ian distributed variable, it is thus expected, that the given
deviations of the parameters from their mean values will be
exceeded in about 35% of the cases.
[17] The impact of the exact choice of the standard

deviations is very case-dependent. In situations with strong
signals in the SLCS the retrieval turned out to be robust
with respect to changes of the values. In cases where the
retrieval is less dominated by the SAR measurement the
impact of the parameters is stronger.
[18] The values given in Table 1 represent estimates of

the uncertainties, which are regarded as reasonable. They

Figure 2. (a) Average number of Cartesian grid points contained in the wave number bins used in the
PARSA scheme (compare equation (5)). An image size of 10 by 5 km was assumed corresponding to the
ERS wave mode. (b) Respective range of wavelength and frequency for each bin.
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should be seen as a first guess of more accurate estimates,
which are expected from a statistical analysis of the retrieval
results.

4.3. Statistical Model for the Ocean Wave Model
Spectrum

[19] The prior information needed for the SAR wave
spectra retrieval can be either taken from collocated mea-
surements of other sensors [Mastenbroek and de Valk, 2000]
or from models [Hasselmann et al., 1996; Krogstad et al.,
1994]. In the work ofMastenbroek and de Valk [2000], ERS
scatterometer measurements, which are exactly collocated
in time and space with the corresponding wave mode
acquisition were used to add the missing information
beyond the cut-off wavelength. Although, it is certainly
reasonable to use additional and independent measurements,
the approach is not followed in this study mainly for two
reasons: (1) the most important application of the presented
retrieval scheme is the inversion of ASAR wave mode data
provided by ENVISAT, which does not carry a scatterom-
eter and (2) the method proposed by Mastenbroek and de
Valk [2000] is based on a simple parametric JONSWAP type
model describing the relation between wind speed U10 and
the corresponding wind sea. In this study wind sea spectra
calculated with a third generation numerical ocean wave
model are used as prior information. These spectra are
believed to be more realistic, because they contain the best
available information about the history of the wind field and
the wave dynamics. The approach of this study is to take the
overall shape of the spectrum from a numerical ocean wave
model and to use the SAR information to adjust parameters
like wavelength, wave height, directional spreading and
propagation direction. The statistical model used for the
prior spectrum is based on the partitioning scheme de-
scribed in Appendix A, where the spectrum is decomposed
into a sum of different wave systems Bi, i = 1,. . ., np. In
contrast to the method proposed by Gerling [1992] the
partitions are allowed to overlap, which has the advantage
of avoiding discontinuities in cases where partitions are
close together.
[20] For the internal calculations the spectral energy

values of the wave spectrum Fk and the respective partitions
refer to the cartesian wave number grid, i.e., the unit is m4.
This convention is used for reasons of computational
efficiency, because the SAR ocean wave imaging forward
model applied several times during the inversion process
requires the wave spectrum to be provided in these units.
The conversion of Fk to the standard directional frequency
spectrum Ff,j with unit m2 Hz�1 rad�1 is done by the
transformation (assuming deep water)

Ff ;j ¼ 32p4 f 3

g2
Fk; ð11Þ

with gravitational acceleration g.

[21] For each subsystem a stochastic model is used,
which prescribes the probability that the energy, the prop-
agation direction, the wavelength, or the directional spread-
ing deviates from the prior spectrum. Using a polar grid (j,
k) for the partitions Bi, the corresponding processes ~Bi can
be written as

~Bi j; kð Þ ¼ X i
E XDj X i

k Bi ji
0 þ j� X i

j � ji
0

� ��
XDj;X

i
k k
�

i ¼ 1; . . . ; np; ð12Þ

where j0
i is the peak direction of the ith partition. The

definition of the partition process ensures that rotations,
shifts, and changes in the directional spread keep the total
energy constant. The variance contribution from the ith
partition is thus solely controlled by the parameter XE

i .
Furthermore, the approach of changing the wavelength by
rescaling of the wave number ensures that power laws in k,
e.g., the k�4 high-frequency tail of wind seas [Phillips,
1985] is maintained by the transformation.
[22] For a given set of transformation parameters the

corresponding spectrum is computed with a bilinear
interpolation method, which turned out to give sufficient
smooth results. Figure 3 illustrates the different trans-
formations used in the PARSA scheme. The prior spec-
trum with a single wave system of 250 m wavelength is
shown in Figure 3a. The four allowed transformations
applied to this system are depicted in Figures 3b–3d.
One can see that the wave number rescaling factor of Xk =
1.2 shifts the peak wavelength from 250 m to 300 m.
The directional spreading is increased if XDj is less than
one 1 and vice versa.
[23] The four transformation parameters for each partition

are collected in a vector

X̂i ¼ X i
E;X

i
k ;X

i
j;X

i
Dj

� �
; i ¼ 1; . . . ; np; ð13Þ

which is assumed to be Gaussian distributed with
independent components. The mean is given by

Ni ¼ hX̂ii ¼ 1; 1; 0; 1ð Þ i ¼ 1; ::; np; ð14Þ

and the standard deviation is defined as

stdv X̂i
� �

¼ siE;s
i
k ; s

i
j;s

i
Dj

� �
i ¼ 1; ::; np: ð15Þ

As the different partition processes are assumed to be
independent, the prior wave spectrum can be expressed as

~F

�
X̂1; . . . ; X̂np

�
¼
Xnp
i¼1

~Bi X̂i
� �

: ð16Þ

In summary, the prior pdf of the wave spectrum can be
written as

pdf Fð Þ ¼ pdf X
� �

	
Y4 np
i¼1

exp �
Xi � Ni

� �2
2S2

i

" #
; ð17Þ

Table 1. Standard Deviations of the Parameters a1, a2, nRF, and
nIF Used to Describe Errors in the SAR Ocean Wave Imaging

Model (Compare Equation (6))

sa1
sa2

, m2 snRF snIF
0.2 250 0.1 0.1
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where the partition parameters X̂i were collected into a
vector X of dimension 4 np:

X ¼ X̂1; . . . ; X̂np
�
:

�
ð18Þ

The respective mean and standard deviation of X are
denoted by N and S. The statistical parameters used for
the model describing errors in the prior model are
summarized in Table 2. Again the given parameters are
regarded as reasonable, however it is clear that the values
strongly depend on the performance of the numerical
model used to compute the prior wave spectrum, as well
as the quality of the driving wind fields. It is obvious that
any user of wave model data would benefit from
knowledge about parameters like the ones used in this
study and we think that it is simply a question of time
until such information will be provided by weather
centers on a routinely basis.

5. Numerical Inversion Procedure

[24] Inserting equations (8) and (17) in equation (2) and
taking the logarithm we see that maximizing the conditional
probability density function pdf(Fk, AjFk) is equivalent to
minimizing the following cost function:

J Xð Þ ¼
X
k2�

Re a1 e
�k2x b2 a2 Fsim

k � Fobs
k

� �� �2
sReFkð Þ2

þ
Im a1 e

�k2x b2 a2 Fsim
k � Fobs

k

� �� �2
sImF
kð Þ2

þ
X4npþ2

i¼1

Xi � Xa
i

� �2
S2
i

;

ð19Þ

where sk
ReF and sk

ImF are defined by

sReFk

� �2¼ sRSk
� �2þ sRFk

� �2 ð20Þ

sImF
k

� �2¼ sISk
� �2þ sIFk

� �2
: ð21Þ

The transformation variables X and A were collected into
the vector

X ¼ X;a1;a2

� �
; ð22Þ

and mean and standard deviation are defined accordingly as

Xa ¼ N; 1; 0ð Þ S ¼ S;sa1
;sa2

ð Þ: ð23Þ

Equation (19) represents a nonlinear minimization problem
with NX := 4 np + 2 variables, which is solved on the grid
introduced in section 4.1.

5.1. Levenberg-Marquardt Method

[25] The inversion procedure is based on an iterative
correction of the unknown vector X,

X nþ1ð Þ ¼ X nð Þ þ DX; ð24Þ

Figure 3. Transformations of wave systems used in the PARSA retrieval scheme (compare equation (12)).
(a) Prior wave system with 250 m peak wavelength. Transformed wave spectra with (b) wave numbers
rescaled, (c) directional spreading changed, and (d) simultaneous rotation and energy rescaling.

Table 2. Standard Deviations of the Parameters Used for the

Model Describing Errors in the Prior Wave Spectrum (Compare

Equation (12))

sE sk sj, deg sDj

0.1 0.1 20 0.1
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in each step replacing the nonlinear minimization problem
equation (19) by a quadratic approximation, which is
equivalent to a system of linear equations.
[26] The inversion is performed on a polar grid with

nk � nj/2 = 25 � 18 = 450 bins, which is an order of
magnitude lower than the typical number of spectral bins of
Cartesian grids (e.g., 128 � 128 = 16384) used by
Hasselmann et al. [1996] or Krogstad et al. [1994]. The
reduced dimension is an important feature of the proposed
retrieval scheme as it becomes possible to include the
coupling of different wave components in the imaging
process in a numerical feasible way. It is thus possible to use
an extension of the quasi-linear approximation of the SAR
imaging model proposed by Hasselmann and Hasselmann
[1991]. A disadvantage of that approach was the fact that
the change of the cut-off factor resulting from a correction
of the wave spectrum was not represented in the resulting
quadratic problem. Away to deal with this shortcoming was
later presented by Hasselmann and Hasselmann [1991]
adding an explicit cut-off term in the cost function. In this
study we try to avoid the problem right away by extending
the quasi-linear approximation, such that the change of the
azimuthal cutoff is explicitly contained. The following
nondiagonal approximation of the Jacobian matrix is used to
achieve this:

@Fk

@Fk0
� 0:5 exp �k2x b

2 ruu 0; 0ð Þ
� �

jTS
k0 j2ðdk�k0 exp iwkDt½ �

þ dkþk0 exp �iwkDt½ �Þ � b2 k2x jTu
k0 j2 Fk dk: ð25Þ

Here, TS and Tu are the SAR and orbital velocity transfer
functions as defined in Appendix C. The approximation
follows by applying the product rule to equation (C1) and
approximating the derivative of the integral expression by
the respective derivative at Fk = 0.
[27] Denoting the correction of the vector X at the nth

iteration step with DX the resulting change DFn of the wave
spectrum Fk is given by

DFn
k ¼

X4 np
i¼1

DXi

@Fk

@Xi

: ð26Þ

The partial derivatives of the wave spectrum with respect to
the parameter vector X are estimated based on equation (12)
using a bilinear interpolation method. For each wave
spectrum Fk

n a simulated SLCS Fk
n is calculated according

to equation (C1). As the transform is defined on a Cartesian
grid, the spectrum Fk is transformed accordingly using a
bilinear interpolation method. The simulated SLCS Fk

n+1 of
the next iteration step can then be written as

Fnþ1
k � e�k2x b2 an

2

�
an
1 F

n
k þ an

1

X
k0

@Fk

@Fk0
DFn

k0

þ Fn
k Da1 � an

1 k
2
x Fn

k Da2

�
: ð27Þ

On the basis of the above approximations, the following
cost function has to be minimized with respect to the
unknown vector DX in each iteration step:

J #Xð Þ ¼ %obs �%n � Dn #X
� �T

S�1
� %obs �%n � Dn #X
� �

þ #Xþ Xn � Xað ÞTS�1
a #Xþ Xn � Xað Þ: ð28Þ

Here we have switched to matrix notation for convenience.
The Jacobian matrix Dn of dimension 2N � NX given by

Dn ¼

Re Z1
k1

� � � Re Z
4 np
k1

ReAk1 ReBk1

..

. ..
. ..

. ..
. ..

.

ReZ1
kN

� � � Re Z
4 np
kN

ReAkN
ReBkN

Im Z1
k1

� � � Im Z
4 np
k1

ImAk1 ImBk1

..

. ..
. ..

. ..
. ..

.

Im Z1
kN

� � � Im Z
4 np
kN

ImAkN
ImBkN

0
BBBBBBBBB@

1
CCCCCCCCCA
; ð29Þ

with the wave number vectors k1,. . ., kN defined in
equations (9) and (10). The complex valued functions Zk

i ,
Ak, Bk are defined as

Zi
k ¼ e�k2x b2 an

2 an
1

X
k0

@Fk

@Fk0

@Fk0

@X i

i ¼ 1; ::; 4 np; ð30Þ

Ak ¼ e�k2x b2 a2Fn
k; ð31Þ

Bk ¼ �an
1 k

2
x e�k2x b2 a2Fn

k; ð32Þ

and the error covariance matrix S� of dimension 2N � 2N is
given by

S� ¼

sReFk1

� �2
0 0 0 0 0

0 . .
.

0 0 0 0

0 0 sReFkN

� �2
0 0 0

0 0 0 sImF
k1

� �2
0 0

0 0 0 0 . .
.

0

0 0 0 0 0 sImF
kN

� �2

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

ð33Þ

Finally, the prior covariance matrix Sa of dimension NX �
NX is defined as

Sa ¼
S1ð Þ2 0 0

0 . .
.

0

0 0 S4npþ2

� �2
0
B@

1
CA: ð34Þ
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Using the matrix notation equation (28) of the quadratic
minimization problem, it can be shown [Rodgers, 2000]
(compare Appendix B) that the next iterate Xn+1 following
from equation (24) can be written as

Xnþ1 ¼ Xn þ CX DT
n S

�1
� %obs �%sim
� �

� S�1
a Xn � Xað Þ

� �
¼ Xa þ CXD

T
n S

�1
� %obs �%sim þ Dn Xn � Xað Þ
� �

; ð35Þ

where CX is the covariance matrix of X given by

CX ¼ DT
n S

�1
� Dn þ S�1

a

� ��1
: ð36Þ

To improve the convergence of the iteration scheme given
by equation (35) in case of strong nonlinearities, a
Levenberg- Marquardt approach is used. The idea is to
blend the search direction given by the solution of the
quadratic minimization problem, which might not reduce
the cost function of the nonlinear problem in some cases,
with the steepest gradient direction [Rodgers, 2000]. The
resulting scheme is given by

Xnþ1 ¼ Xa þ C�1
X þ lnINX

� ��1
DT

n S
�1
� ð%obs �%sim

þ Dn Xn � Xað Þ þ ln Xn � Xað ÞÞ; ð37Þ

where INX
is the identity matrix of dimension NX and the

parameter ln is adjusted during the iteration depending on
the cost function values. In the PARSA scheme the
following strategy was used:

lnþ1 ¼ 0:25 ln : J Xnð Þ < J Xn�1
� �

4 ln : J Xnð Þ � J Xn�1
� � ;�

ð38Þ

which results in an efficient iteration process.

5.2. Termination Criteria

[28] One important component of the numerical inver-
sion scheme is the criterion used to terminate the itera-
tion. For the PARSA scheme an approach proposed by
Rodgers [2000] is used. A straightforward termination
criterion follows from the natural requirement that the
error should be an order of magnitude smaller than the
variance of the wave spectra as given by the prior
distribution. Because of the quadratic convergence of
the inverse Hessian method this condition can be written
as [Rodgers, 2000]

Xn � Xn�1
� �T

C�1
X Xn � Xn�1
� �

< T � NX ; ð39Þ

where CX is the covariance matrix defined in equation (36)
and Xn, Xn�1 are the parameter vectors in the current and
previous iteration step respectively. The exact value for the
termination threshold T is necessarily a compromise
between accuracy and computational effort. For the
retrievals shown in this study the value T = NX/15 turned
out to be a reasonable choice.

6. Test of Retrieval Using Simulated Data

[29] In a first step the PARSA scheme was tested using
synthetic data, i.e., the observation was simulated from a
known ocean wave spectrum. The same ocean wave spec-
trum was then transformed in different ways and used as a
prior information for the retrieval. The ERS-2 SAR imaging
parameters for wave mode as summarized in Table 3 are
used for the tests. An important aspect of the retrieval
performance is the ability of the scheme to reproduce the
original wave spectrum. At the same time the scheme
should avoid very strong corrections of the prior wave
spectrum, which would lead to dynamical inconsistencies
in a later assimilation of the retrieved spectra.
[30] Figure 4 shows a retrieval example with a single

wind sea system. A parametric JONSWAP spectrum
[Hasselmann et al., 1980] was taken as a prior spectrum
(lower right) assuming a fully developed sea state. The
respective simulation of the real and imaginary part of the
SLCS is shown on the bottom left. The observation to be
used for the retrieval was simulated by transforming the
prior spectrum with the parameters

XE;Xk ;Xj;XDj
� �

¼ 1:3; 1:1; 25�; 1:2ð Þ ð40Þ

yielding the test spectrum Ftest shown on the center right,
and subsequent application of the full nonlinear SLCS
transform (equation (C1)). The resulting real and imaginary
parts of the observation are shown on the center left of
Figure 4. Applying the PARSA scheme to the synthetic
input data gave a retrieved wave spectrum Fretr (upper right)
and imaging parameters a1, a2 after Niterate = 9 iteration
steps using the termination criteria described above. The
respective simulated SLCS Fretr (upper left) was calculated
using the retrieved wave spectrum as input to the transform
equation (C1) and subsequent correction of the energy level
and cut-off wavelength according to

Fretr ¼ a1 exp �k2x b2 a2

� �
Fsim
k : ð41Þ

As one can see, the simulated SLCS Fretr shows almost
perfect agreement with the observation Fobs. This is the
case, although the parameters used to simulate the
observation are not exactly reproduced as can be seen from
the table given at the bottom of Figure 4. The small
deviations become also visible comparing the retrieved
wave spectrum Fretr with the test spectrum Ftest. This
behavior makes sense, because the PARSA scheme is
designed such that it tries to explain deviations between the
observed and simulated SLCS by both errors in the wave
model and in the SAR imaging model. In the present case
the scheme attributes the higher energy level of the
observation to an underestimation of the integral transform

Table 3. General Parameters of the ERS-2 SAR Wave Mode

Parameter Value

Radar frequency, GHz 5.300
Polarization VV
Flight altitude, km 800
Velocity, km s�1 7
Azimuth resolution, m �5
Slant range resolution, m �10
Look direction right looking
Integration time Dt, s 0.66
Incidence angle q, deg 23.5
b, s 111
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(equation (C1)), represented by the parameter a1 = 1.04 and
at the same time to an energy underestimation of the wave
model represented by the parameter XE = 1.19. Both the
rotation parameter Xj and the wave number rescaling
parameter Xk are reproduced with good accuracy. Further-
more, the correction of the cut-off wavelength in the
forward model is about 9 m and thus very small. The
directional spreading parameter XDj is slightly lower than
the prescribed value. Again this behavior makes sense,
because the retrieval avoids any departure from the prior
wave spectrum, which does not lead to an improved
agreement between observed and simulated SLCS. As the
agreement is already perfect with the lower value for XDj,
there is no reason for stronger corrections of the prior
spectrum.

[31] The error statistics of the retrieval can be derived
from the covariance matrix defined in equation (36). The
following values were obtained for the standard deviations
and correlations of the retrieved parameters for the present
example:

stdvXE cor XE;Xkð Þ cor XE;Xj
� �

cor XE;XDj
� �

� stdvXk cor Xk ;Xj
� �

cor Xk ;XDj

� �
� � stdvXj cor Xj;XDj

� �
� � � stdvXDj

0
BB@

1
CCA

¼

0:05 0:3 0:7 0:3
� 0:004 0:3 �0:1
� � 1:8� �0:1
� � � 0:04

0
BB@

1
CCA:

Figure 4. Retrieval example using simulated data with prior spectrum F prior (bottom right), observed
test synthetic aperture radar (SAR) look cross spectrum (SLCS) Fobs (center left), and retrieved wave
spectrum Fretr. The SLCS Fprior and Fretr simulated from the prior wave spectrum and the retrieved
spectrum are shown in the lower left and upper left, respectively. The spectrum Ftest on the center right
was used to simulate the observed SLCS (for details, see text).
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In particular, one can see that the standard deviations of the
retrieved parameters are smaller than the respective values
of the prior distribution (compare Table 2). This means that
despite the significant errors assumed in the SLCS
estimation and the imaging model, the SAR measurement
does add information to the knowledge already provided by
the ocean wave model.
[32] Another retrieval example based on synthetic data,

which is supposed to demonstrate the benefit of the addi-
tional complex information represented by the imaginary
part of the SLCS is shown in Figure 5. As one can see, the
prior spectrum contains two wave systems with almost
opposite propagation directions in this case. As in the first
example an observation was generated by simulation. In this

case the following parameters were used to transform the
spectrum:

X 1
E ;X

1
k ;X

1
j ;X

1
Dj;X

2
E ;X

2
k ;X

2
j ;X

2
Dj

� �
¼ 1:1; 1:03;�40�; 1; 0:9; 0:97; 40�; 1ð Þ: ð42Þ

Here, the first index refers to the wave system at the top and
the second index to the wave system at the bottom. The
SLCS Fprior simulated from the prior wave spectrum shows
good agreement with the observation in the real part,
however strong deviations are found in the imaginary part.
It is clear, that if there was no complex information
available as in the case of conventional variance spectra,

Figure 5. Retrieval example using simulated data with prior spectrum F prior (bottom right), observed
test SLCS Fobs (center left), and retrieved wave spectrum Fretr. The SLCS Fprior and Fretr simulated from
the prior wave spectrum and the retrieved spectrum are shown in the lower left and upper left,
respectively. The spectrum Ftest on the center right was used to simulate the observed SLCS (for details,
see text).
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there would be no reason to modify the prior wave spectrum
apart from small changes of energy and wavelength.
However, the retrieved spectrum calculated with the
PARSA scheme within Niterate = 14 iteration steps shows
that the information in the imaginary part helps to apply
more significant corrections, rotating both wave systems
correctly by almost 40. The inversion example demon-
strates that, although the overall shape of the wave spectrum
is taken from the wave model and thus most ambiguities in
wave propagation direction are resolved by prior knowl-
edge, the imaginary part adds valuable information in
multisystem cases.

7. Application to Reprocessed ERS-2 Data

[33] In a second step, the retrieval scheme was applied to
a global data set of 11000 reprocessed ERS-2 wave mode
imagettes introduced by Lehner et al. [2000]. SLCS given
on the same polar grid as used for the ENVISATwave mode
product were processed from the ERS-2 data and used as
input for the PARSA scheme. Two-dimensional wave model
spectra provided by the ECMWF were used a prior infor-
mation. The data are standard output from the operational

WAM model runs performed at ECMWF at the four
synoptical hours 0000, 0600, 1200, and 1800 UTC. The
temporal gap between WAM and SAR measurement is thus
less than 3 hours. The model is driven by U10 wind fields
computed with the atmospheric general circulation model
(AGCM). The operational WAM model was run on a 1.5 �
1.5 latitude-longitude grid. The collocation distance to the
ERS-2 imagettes is thus less than 0.75.

7.1. Case Studies

[34] Figures 6–7 show two inversion examples calculated
with the PARSA scheme. The first case presented in Figure 6
is a swell dominated situation in the Indian Ocean with a
wave system of about 300 m wavelength propagating in the
negative azimuth direction (to the left) and an old wind sea
system of about 150 m wavelength in the negative range
direction (downward). The wind speed according to the
ECMWF model was 3.2 ms�1 explaining the relatively
short cut-off wavelength of about 135 m in the observed
SLCS. The PARSA scheme retrieved the wave spectrum
shown on the upper right within 12 iteration steps reducing
the cost function value by about 40%. It can be clearly seen
that the retrieval scheme improves the agreement between

Figure 6. PARSA retrieval for an ERS-2 SLCS acquired in the Indian Ocean at 23.46S 64.36E on
5 September 1996, 0546 UTC. The satellite heading is 192.94. The dashed vertical lines indicate the
azimuthal cut-off wavelength.
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the simulated and the observed SLCS including the azi-
muthal cut-off wavelength. This is mainly achieved by
rotating the swell system by about 21 in the anticlockwise
direction. At the same time, the directional spreading is
reduced and the wavelength increased to about 330 m. The
energy of the swell system is increased by 38%. One can see
that the second system is turned in the azimuth direction,
scaled down in energy and reduced in wavelength. The
rescaling of the two wave system results in a slight increase
of the significant wave height from 2.3 m to 2.6 m.
[35] The second retrieval shown in Figure 7 is an example

for a more complicated situation in the Pacific with two
swell systems of about 300 m wavelength coming from the
south (left system) and the north east (lower right system)
and an additional wind sea system with about 150 m
wavelength. The PARSA retrieves a wave spectrum after
28 iterations reducing the cost function by about 20%.
Again the agreement between simulated and observed
SLCS is significantly improved by the retrieval. It is
interesting to note in this case that the swell system
propagating to the left is not visible in the observed real
part of the SLCS, but shows up in the respective imaginary
part. As can be seen this information is taken from the
PARSA scheme and used to rotate the prior system in

anticlockwise direction. The example is thus another dem-
onstration, that the complex information provided by the
SLCS is actually used in the retrieval.

7.2. Statistical Analysis

[36] Figure 8 shows some general statistics about the data
set with the distribution of the number of partitions given in
Figure 8a. One can see that about half of the WAM spectra
contain two partitions and for the remaining cases the
spectra with one partition and three partitions have about
equal share. Figure 8b gives the respective distribution of
the maximum energies observed in the SLCS. The vertical
line gives a rough estimate of the expected noise level in the
SLCS as a reference. For details on SLCS noise see Schulz-
Stellenfleth and Lehner [2005]. One can see that the
histogram has a maximum at a signal to noise ratio (SNR)
of roughly 5 dB. About 20% of the cases have a SNR of
10 dB or more.
[37] Figure 9 gives some general statistics about the

performance of the inversion scheme. The distribution of
the number of iterations is depicted in Figure 9a. One can
see that the majority of cases requires less than 10 iterations.
The achieved reduction of the cost function is illustrated in
Figure 9b, where the distribution of the ratio of the first and

Figure 7. PARSA retrieval for an ERS-2 SLCS acquired in the Pacific at 12.46S 139.45W on
5 September 1996, 0806 UTC. The heading of the satellite is 347.
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final cost function value is shown. One can see that in about
half of the cases the inversion scheme reduces the cost
function by more than 20%.
[38] A statistical comparison of prior wave spectra and

retrieved spectra was carried out in terms of the significant
wave height Hs. Furthermore, the mean frequency f , defined
as

f ¼ 1

16 H2
s

Z
df dj f Ff ;j; ð43Þ

and the mean direction j, given by

j ¼ arctan

Z
dfdj sinj Ff ;jZ
dfdj cosj Ff ;j

0
BB@

1
CCA; ð44Þ

were analyzed. Here Ff,j is the directional frequency
spectrum, which is related to the wave number spectrum
Fk via equation (11).
[39] Figure 10 shows a global map with mean directions

and wave heights derived from ECMWF spectra (black
arrows) and corresponding PARSA retrievals (red arrows)
for ERS-2 wave mode data acquired on 5 September 1996.
One can see that although the general agreement is good,
differences in wave height and direction occur in particular
in the areas of high sea states on the Southern hemisphere.

For instance, there is a tendency of the retrieval to slightly
increase the wave height at high sea states. This observation
is consistent with earlier studies [Bentamy et al., 1996],
which suggest that the model wind speeds on the southern
hemisphere are too weak in many cases. It is also interesting
to note that the observed corrections of the mean direction
look reasonable in the way that the rotations are changing
smoothly going from one imagette to the next one along the
track. This observation gives some confidence that the
corrections are in fact due to large-scale errors in the driving
wind field. A good example is the North Atlantic where
waves of up to 5 m height are seen propagating in easterly
direction. These waves were generated by a cyclone, which
propagated along the North American east coast (Edward).
It can be seen that the retrieval scheme rotates the mean
direction in the clockwise direction over a distance of about
1500 km. It can also be seen that the rotation is not always
toward the range axis of the sensor as one might suspect due
to the velocity bunching effect.
[40] The general findings visible on the global map can

be confirmed looking at the respective scatter plots shown
in Figure 11. The plots are based on 11000 retrievals, with
SAR data acquired in August/September 1996, i.e., in late
Australian winter, with strong storms in the southern At-
lantic, Pacific and Indian Oceans and a couple of hurricanes
in the North Atlantic.
[41] First of all, one can see that the agreement of model

wave height and retrieved wave height shown in Figure 11a
is very good with a correlation of 0.93 and a rms of 0.51 m.

Figure 8. (a) Distribution of the number of partitions in a global data set of 11,000 WAM wave spectra.
(b) Distribution of the maximum magnitude of the respective ERS-2 SLCS.

Figure 9. (a) Histogram of the number of iteration steps required in the PARSA retrieval estimated from
11,000 inversions. (b) Histogram of the relative cost function reduction achieved by the PARSA scheme.
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This high correlation has two main reasons: (1) due to the
fact that strong errors in the energy level of the simulated
SLCS are assumed (compare equation (6)) the retrieval
takes a lot of wave height information from the model
and (2) only cases which failed the inhomogeneity test
described by Schulz-Stellenfleth and Lehner [2005] were
disregarded as input for the retrieval, i.e., the data set
contains a significant number of spectra with very low
SNRs, in which case the inversion scheme tends to stay
close to the prior spectrum. However, one can see that
despite the lack of trust in the simulated energy levels the
PARSA scheme still indicates an underprediction of wave
heights at high sea states in the order of 30 cm for wave
heights above 8 m. As pointed out above, this observation is
consistent with earlier studies suggesting that the driving
model wind fields in the ‘‘rolling fourties’’ and ‘‘fighting
fifties’’ are a bit too low.
[42] The comparison of the mean frequencies in the

model and the retrieval shown in Figure 11c indicates an

underprediction of wavelength in the wave model. This
observation again makes sense taking into account that
the wave height underprediction for the high wind
seas discussed above is consistent with a wavelength
underprediction.
[43] The comparison of mean directions shown in

Figure 12a exhibits a homogeneous behavior, i.e., there
are no pronounced imaging artefacts or asymmetries visible.
Figure 12b shows the directional spread parameter XDj
depending on wave frequency. The plot shows a symmetric
scatter of the parameter around its mean with stronger
deviations for longer waves.
[44] One has to point out that the scatterplots discussed

above do not represent validations of any kind. They just
show in which direction the SAR observations are ‘‘pull-
ing’’ the numerical model.
[45] Figure 13 shows a scatterplot of the parameters a1,

a2 describing errors in the SAR imaging model, which are
estimated as part of the PARSA retrieval process. One can

Figure 10. Comparison of significant wave height and mean direction of two-dimensional wave spectra
computed with the WAM model (black) and respective PARSA retrievals (red) using ERS-2 SLCS
acquired on 5 September 1996.

Figure 11. Comparison of (a) significant wave height and (b) mean frequency of WAM model spectra
and respective PARSA retrievals.
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see that both parameters are slightly shifted above the mean
of their prior distribution. For a1 the retrievals indicate that
the energy level of the theoretical forward model is about
10% too low. The respective finding for a2 shows that the
azimuthal cut-off wavelengths in the imaging model are
slightly too short.

8. Conclusions

[46] A new retrieval scheme for the estimation of 2-D
ocean wave spectra from SLCS and prior wave model
spectra was presented. The study represents the first rigor-
ous theoretical and statistical analysis of the subject and is
believed to be an important step toward an efficient use of
SLCS in operational forecast systems.
[47] The PARSA scheme is based on explicit models

for uncertainties in the SAR imaging model as well as
errors in the SAR observation and the wave model
spectra used as prior information. The approach in
particular enables the estimation of the error covariance
matrix of the retrieved parameters. The scheme provides
estimates of uncertain parameters in the SAR imaging
model as additional retrieval results. Furthermore a new
wave spectra partitioning technique was introduced,
which allows overlapping wave systems to avoid discon-
tinuities in the retrieved spectra.
[48] It was shown that the retrieval scheme is able to

improve the agreement of simulated and observed SLCS
efficiently. Furthermore it was demonstrated that the
scheme makes explicit use of the complex information
in the SLCS. This in particular shows that SLCS are
preferable to the symmetric SAR image variance spectra
used so far.
[49] The performance of the scheme was analyzed using

both simulated and measured SAR data. The global analysis
was based on a data set of 11000 ERS-2 SLCS and
colocated WAM spectra provided by the ECMWF. It was
shown that the inversion scheme requires less than
10 iterations in most of the cases. In about half of the cases
the inversion reduces the cost function by more than 20%. A

comparison of retrieved spectra and prior spectra was
performed in terms of significant wave height, mean fre-
quency and mean direction based on scatterplots and global
maps. It is important to note that this comparison is not a
validation of the scheme, which has to be done using
additional in situ data. The statistics indicated a slight
overestimation of the mean wave frequency in the numer-
ical wave model. A slight underestimation of the model
wave height was found for high sea states. At the same time
the inversions suggest that the modulus of the SLCS
simulated with the theoretical SAR imaging model is
slightly too low and the respective azimuthal cut-off wave-
length too short.
[50] The scheme is currently tested using a collocated

data set of buoys and ENVISAT SLCS, which were
collected in the framework of the ENVISAT calibration
and validation activities. The respective comparisons will

Figure 12. (a) Comparison of mean wave direction (compare equation (44)) in WAM model spectra and
the respective PARSA retrievals. (b) Distribution of the directional spread parameter XDj (compare
equation (12)) depending on frequency.

Figure 13. Scatterplot of the parameters a1, a2 in the error
model of the SAR imaging model (compare equation (6)).
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in particular be used to fine tune the SAR imaging
model.

Appendix A: Wave Spectra Partitioning

[51] The partitioning method used in the PARSA scheme
avoids discontinuities, which can occur in the scheme
proposed by Gerling [1992] in cases where partitions are
close together. The main difference is that spectral regimes
of different partitions can overlap in the new scheme,
whereas the partitions by Gerling [1992] are completely
distinct.
[52] The method starts with the determination of the local

maxima in the wave spectrum. Lets denote the location of
the local maxima on the polar grid with (kmax

1 , jmax
1 ),. . .,

(kmax
np , jmax

np ) and the respective spectral energies with Fmax
(1) ,

. . ., Fmax
(np) . For all local maxima respective partitions Bk

(1),. . .,
Bk
(np) are defined, which have to fulfil

Xnp
i¼1

B
ið Þ
k ¼ Fk: ðA1Þ

The partitions Bk
(i) are chosen such that the energy ratio in

each grid point reflects the distance dk
(i) to the respective

local maxima, i.e., the energy contribution of a partition far
away from a certain grid point should be smaller than the
respective contribution of a closer partition. At the same
time the ratio also has to reflect the energy levels of the
different partitions as indicated by the respective maxima. A
simple approach to achieve this is to impose the following
conditions:

B
1ð Þ
k

d
1ð Þ
k

F
1ð Þ
max

¼ B
2ð Þ
k

d
2ð Þ
k

F
2ð Þ
max

¼ . . . ¼ B
npð Þ

k

d
npð Þ

k

F
npð Þ

max

; ðA2Þ

where dk is some distance measure, which was chosen a

d
ið Þ
k ¼

kimax � k
� �4

Dkið Þ4
þ

j� ji
max

� �4
Djið Þ4

ðA3Þ

with 3dB width of the partition given by Dki and Dji. The
distance measure equation (A3) is an ad hoc formulation,
which turned out to give a good separation and smooth
boundaries of the partitions for the investigated cases.
Nevertheless an approach with a stronger physical founda-
tion is desirable and will be developed in future versions.
Equations (A1) and (A2) represent a linear system of np
equations, which can be solved for each grid point yielding
the partitions Bk

(i), i = 1,. . ., np. If k does not happen to be one
the local maxima the partitions can be written as follows:

B
jð Þ

k ¼ Fk

F
jð Þ

max

d
jð Þ

k

Xnp
i¼1

F
ið Þ
max

d
ið Þ
k

 !�1

: ðA4Þ

If k coincides with one of the local maxima all partitions are
zero except for the one associated with that maximum.

Appendix B: Posterior Distribution in the
Linear Case

[53] Let X be a Gaussian distributed state vector with
mean Xa and covariance matrix Sa. Furthermore, a Gaussian

distributed measurement vector Y is given, which has zero
mean and covariance matrix S�. If furthermore the forward
model, describing the mapping of a state vector into the
respective measurement space, is linear with Jacobian
matrix D, the conditional probability of the state vector X
given the measurement Y can be written as [Rodgers, 2000]

pdf XjYð Þ 	 exp � 1

2
ðX� X̂ÞT C�1

X ðX� X̂Þ
�
;

�
ðB1Þ

with covariance matrix CX given by

CX ¼ DT S�1
� Dþ S�1

a

� ��1 ðB2Þ

and mean state vector calculated as

X̂ ¼ CX DT S�1
� Yþ S�1

a Xa
� �

: ðB3Þ

The expression in equation (B1) is referred to as posterior
pdf.

Appendix C: Integral SAR Transform for SLCS

[54] The following integral transform relates the 2-D
wave spectrum Fk to the SLCS of the normalized looks
Ii = hIsi�1 (Is

i � hIsi), i = 1, 2 separated by the time Dt
[Engen and Johnsen, 1995]:

FI1I2

k ¼ 1

4 p2
exp �k2x b

2 ruu 0; 0ð Þ
� � Z

d 2x exp �i k x½ �

� exp k2x b2 ruu x;Dtð Þ
� �

1þ rRR x;Dtð Þ þ i kx
�

b rRux;Dt
� �

� rRu �x;�Dtð ÞÞ þ kx bð Þ2 rRuðx;Dt
� �

� rRu 0; 0ð ÞÞ
� ðrRu �x;�Dtð Þ � rRu 0; 0ð ÞÞ�; ðC1Þ

with cross- and auto-covariance functions rRR, ruu and rRu

defined according to

rXY x;Dtð Þ ¼ 0:5

Z
d2k Fk TX

k TY
k

� �
*

�
exp iwk Dt½ �

þ F�k TX
�k

� �
*TY

�k exp �iwk Dt½ �
�
exp i k x½ �: ðC2Þ

Here, b is the ratio of slant range and platform velocity
(compare Table 3). The transfer function TR is given by

TR
k ¼ T tilt

k þ T
hydr
k þ Trb

k ; ðC3Þ

where T tilt represents tilt modulation, T hydr hydrodynamic
modulation, and T rb range bunching [Hasselmann and
Hasselmann, 1991]. For vertical polarization in transmit and
receive (VV) and a right looking SAR, analytical expres-
sions for the transfer functions are given by

T tilt
k ¼ � 4 i ky cot q

1þ sin2 q
; ðC4Þ

Trb
k ¼ �i ky

cos q
sin q

; ðC5Þ
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T
hydr
k ¼ 4:5wk

k2y

jkj
wk � im
w2
k þ m2

: ðC6Þ

Here, q is the incidence angle (compare Table 3) and m is the
hydrodynamic relaxation rate which was set to 0.5 s�1 in
the open water [Hasselmann and Hasselmann, 1991]. The
kx and ky components refer to a right handed coordinate
system with kx pointing in flight direction. The orbital
velocity transfer function is given by

Tu
k ¼ �wk

ky

jkj sin qþ i cos q
� �

: ðC7Þ

A linear and quasi-linear approximation of the SAR
imaging mechanism can, e.g., be found by Hasselmann
and Hasselmann [1991].
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Hasselmann, S., C. Brüning, K. Hasselmann, and P. Heimbach (1996), An
improved algorithm for the retrieval of ocean wave spectra from synthetic
aperture radar image spectra, J. Geophys. Res., 101, 16,615–16,629.

Heimbach, P., S. Hasselmann, and K. Hasselmann (1998), Statistical ana-
lysis and intercomparison of WAM model data with global ERS-1 SAR
wave mode spectral retrievals over 3 years, J. Geophys. Res., 103, 7931–
7977.

Honerkamp, J. (1993), Stochastic Dynamical Systems, VCH Verlagsge-
sellschaft mbH, New York.

Johnsen, H., G. Engen, B. Chapron, N. Walker, and Y.-L. Desnos (2002),
The ASAR wave mode: Level 1 and 2 algorithms and products, in
Proceedings of the ENVISAT Calibration Review [CD-ROM], paper
asar_21, Eur. Space Agency, Noordwijk, Netherlands.

Krogstad, H., O. Samset, and P. W. Vachon (1994), Generalizations of the
nonlinear ocean-SAR transformation and a simplified SAR inversion
algorithm, Atmos. Ocean, 32, 61–82.

Lehner, S., J. Schulz-Stellenfleth, B. Schättler, H. Breit, and J. Horstmann
(2000), Wind and wave measurements using complex ERS-2 SAR wave
mode data, IEEE TGARS, 38, 2246–2257.

Lyzenga, D. R. (1986), Numerical simulation of synthetic aperture radar
image spectra for ocean waves, IEEE Trans. Geosci. Remote Sens., 24,
863–872.

Lyzenga, D. R. (2002), Unconstrained inversion of waveheight spectra from
SAR images, IEEE TGARS, 40, 261–270.

Mastenbroek, C., and C. F. de Valk (2000), A semiparametric algorithm to
retrieve ocean wave spectra from synthetic aperture radar, J. Geophys.
Res., 105, 3497–3516.

Phillips, O. M. (1985), Spectral and statistical properties of the equilibrium
range in wind-generated gravity waves, J. Fluid Mech., 156, 505–531.

Rodgers, C. D. (2000), Inverse Methods for Atmospheric Sounding: Theory
and Practice, Ser. Atmos. Oceanic Planet. Phys., vol. 2, World Sci.,
Hackensack, N. J.

Schmidt, R. (1995), Bestimmung der Ozeanwellen-Radar-Modulations-
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