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[1] In this study a new empirical approach to retrieve integral ocean wave parameters
from synthetic aperture radar (SAR) data is presented. The idea behind this
computationally efficient technique is to estimate integral ocean wave parameters without
the intermediate step of retrieving the two-dimensional ocean wave spectrum. The method
has the radiometrically calibrated SAR image as the only source of information and is
based on a quadratic model function with 22 input parameters. These parameters include
the radar cross section, the image variance, and 20 parameters computed from the SAR
image variance spectrum using a set of orthonormal functions. The coefficients of the
quadratic function were fitted for the estimation of Hs, the mean periods Tm01, Tm02, T�10,
the wave power, and the wave heights associated with different spectral bands. The fit
procedure is based on a stepwise regression method. A data set of 12,000 globally
distributed ERS-2 wave mode image spectra and colocated WAM ocean wave spectra was
available for the study. Two separate subsets of 6000 collocation pairs each were used to
fit the model and to carry out comparisons of the retrieved wave parameters with
numerical model results. Additional comparisons were performed using NDBC buoy
measurements. Scatterplots and global maps with the derived parameters are presented.
It is shown that the rms of the SAR derived Hs with respect to the WAM Hs is about
0.5 m. For the mean period Tm�10 an rms of 0.72 s with a high-frequency cutoff
period of about 6 s is achieved.
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1. Introduction

[2] It is well known that synthetic aperture radar (SAR)
data contain valuable information on ocean surface waves
[Alpers et al., 1981; Hasselmann and Hasselmann, 1991].
Operating in Wave Mode, the European satellites ERS-1,
ERS-2, and ENVISAT have been acquiring SAR data on a
global and continuous basis for about 15 years by now.
These acquisitions will be continued by the new Sentinel-1
mission, which will have a Wave Mode as well [Attema,
2005].
[3] There is still a lot of debate about efficient techni-

ques to retrieve wave parameters from SAR data. If the
objective is to estimate the two-dimensional (2-D) ocean
wave spectrum, there are basically two approaches. In the
first approach the measurement is restricted to the long
wave regime accepting the fact that some information on
shorter waves is lost [Johnsen et al., 2002]. The second
approach estimates the complete 2-D wave spectrum using
some additional a priori information, e.g., taken from
numerical ocean wave models [Hasselmann et al., 1996;
Schulz-Stellenfleth et al., 2005a] or from other sensors

[Mastenbroek and de Valk, 2000]. The approaches described
by Hasselmann et al. [1996] and Schulz-Stellenfleth et al.
[2005a] are of particular relevance for the assimilation of
numerical ocean wave models and the scheme developed at
the Max-Planck-Institute for Metereology [Hasselmann et
al., 1996] is in fact currently run operationally at the
European Centre for Medium-Range Weather Forecasts
(ECWMF) [Abdalla et al., 2006].
[4] Although the existing methods already provide useful

wave information, it seems there is still potential to exploit
SAR data more efficiently. In this paper a new empirical
approach is presented, which has the objective to estimate
integral wave parameters like the significant wave height Hs

or the mean wave period from SAR data without explicit
retrieval of the 2-D ocean wave spectrum. The main require-
ments for the development of the method were as follows:
(1) The estimation of the wave parameters should be solely
based on the SAR data. (2) The method should provide
estimates of standard integral wave parameters like Hs used
in practical applications. (3) The method should be compu-
tationally efficient. The first point is of particular impor-
tance for users of SAR data without easy access to
numerical model data. It is also important to note that the
new ENVISAT satellite, unlike the earlier ERS-1 and ERS-2
platforms, does not carry a scatterometer, i.e., the approach
presented by Mastenbroek and de Valk [2000] to use a
combination of scatterometer and SAR measurements to
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estimate wave parameters is not possible with ENVISAT
and will neither be applicable with the future Sentinel-1
mission.
[5] The idea of the present approach is to fit a quadratic

model which relates a number of key parameters of SAR
scenes taken over the ocean, like the normalized radar cross
section (NRCS) or the image variance to different integral
ocean wave parameters. The main feature of the technique is
that no explicit estimation of the two-dimensional ocean
wave spectrum is carried out as an intermediate step as done
in all other methods that we are aware of. We will refer to
the general empirical approach as the CWAVE method in
the following. The name was chosen to indicate a similarity
of our approach with the empirical CMOD models used for
scatterometer wind measurements [Stoffelen and Anderson,
1997]. The specific formulation of the empirical model and
the tuning parameters presented in this paper are referred to
as CWAVE2.0 to separate it from the CWAVE1.0 approach
described in [Schulz-Stellenfleth et al., 2005b]. We expect
that with the availability of new tuning data sets, updates of
the scheme will be carried out in the future.
[6] The paper is structured as follows: In section 2 the

data sets used for the study are introduced. Section 3 is
about the general approach of the CWAVE2.0 method. In
section 4 a simple version of the method is presented using
two SAR parameters for the estimation of the significant
wave height to illustrate the basic features of the technique.
This simple approach is then extended to a set of 22 SAR
parameters in section 5 using additional spectral informa-

tion. In section 6 CWAVE2.0 derived wave heights are
compared to in situ data provided by NASA’s National Data
Buoy Center (NDBC).

2. Data Sets

[7] To fit and test the CWAVE2.0 model, a colocated data
set of 12,000 ERS-2 wave mode images and corresponding
2-D ocean wave spectra from the ocean wave model WAM
run at ECMWF is used. Both data sets are described in the
following.

2.1. ERS-2 Wave Mode Data

[8] Operating in Wave Mode, the ERS-2 satellite acquires
SAR images (imagettes) of 10 by 5 km size every 200 km
along the satellite track. The C-band radar operates at 23.5�
incidence angle with vertical polarization in transmit and
receive and provides a spatial resolution of about 10 m in
azimuth and 20 m in ground range. The required SARWave
Mode single look complex (SLC) imagettes, which are not
available as standard products were processed at DLR from
raw data provided by the European Space Agency (ESA).
More details on the reprocessed data set can be found in the
work of Lehner et al. [2000].
[9] For tuning and testing of the algorithm, a data set of

globally distributed images acquired between 23 August
and 8 September 1996 was used. Two examples of SAR
imagettes taken in the South Atlantic are shown in Figures 1a
and 1b. The first case (Figure 1a) shows a strong wind sea of

Figure 1. (a and b) Two ERS-2 Wave Mode imagettes and (c and d) corresponding ECMWF wave
model spectra taken in the South Atlantic ocean with Figures 1a and 1c representing a strong wind sea
and Figures 1b and 1d representing a swell system.
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more than 8 m wave height, whereas the second example
(Figure 1b) represents a swell-dominated situation.
[10] For the estimation of the different SAR parameters,

only imagettes were considered, which were acquired
between 60S and 60N latitude to avoid contamination
by sea ice. The homogeneity test described by Schulz-
Stellenfleth and Lehner [2004] was applied to the remain-
ing data. This test is able to detect images affected by
atmospheric features like rain or biogenic surface films,
which should not be used in the fitting process or the
subsequent application of the fitted CWAVE2.0 model.
About 17% of the imagettes failed to pass this test. After
excluding those cases for which no colocated wave model
spectrum was available, the remaining number of images
was 12,000. A global map with the number of imagettes
per 3 by 3 degree box is shown in Figure 9a.
[11] The data set was split into the four time intervals

23.8–26.8, 26.8–30.8, 30.8–4.9, and 4.9–8.9.1996. The
respective subsets are disjunct and contain 3000 images
each. The first and third subset were used for testing and the
second and fourth subset were used for tuning of the
algorithm.
[12] As the normalized radar cross section is an important

input parameter for the CWAVE2.0 model, a radiometric
calibration was carried out using the calibration constant
estimated by Horstmann et al. [2003]. Denoting the com-
plex image with c and the intensity image with I = jcj2, a
first estimate of the NRCS is given by

spl
0 ¼ 10 log10 hIið Þ � 44:96 dB; ð1Þ

where hIi is the mean imagette intensity. This estimate is
affected by a saturation of the ADC converter on board the
satellite [Laur et al., 1996], which becomes significant for
high wind speeds. An estimate of the power loss corrected
NRCS

s0 ¼ spl
0 þDs0 ð2Þ

was calculated as described by Kerbaol et al. [1998] using
the I/Q channel standard deviation calculated from the SAR
raw data as additional information. For the examples shown
in Figure 1 this procedure results in a power loss corrected
NRCS of �1.68 dB (Figure 1a) and �6.13 dB (Figure 1b),
respectively.

2.2. Numerical Wave Model Data

[13] The 2-D ocean wave spectra used in the study are
standard output from the operational WAM model runs
performed at ECMWF in 1996 at the four synoptical hours
0000, 0600, 1200, and 1800 UTC. The temporal gap
between WAM and SAR measurement is thus less than
3 hours. The model was driven by 6-hourly analyzed U10

wind fields computed with the atmospheric general circu-
lation model (AGCM). The operational WAM model was
run with a 1.5� 	 1.5� latitude-longitude grid. The collo-
cation distance to the ERS-2 imagettes is thus less than
0.75�. The 2-D wave spectra are given on a polar grid with
30� directional resolution and 25 frequencies ranging from
fmin = 0.04177 Hz to fmax = 0.41 Hz. Details on the
performance of the ECMWF model in 1996 can be found
in the work of Janssen et al. [1997] and Bidlot et al. [2002].

[14] The colocated 2-D wave spectra for the examples in
Figures 1a and 1b are shown in Figures 1c and 1d. The
maximum ECMWF wind speeds colocated with the ERS-2
wave mode data set is shown in Figure 9b. One can see
several strong storm areas in particular on the southern
hemisphere. In addition there are some higher wind speeds
observed in the North Atlantic due to Hurricane Fran.
[15] It is important to note that the performance of the

ECMWF model has steadily improved since 1996. Details
on the model development can be found in the work of
Janssen [2004] and Janssen et al. [2005].

3. General Approach

[16] The general approach of the CWAVE method is
illustrated in the diagram shown in Figure 2. Physical models
were proposed in literature [Hasselmann and Hasselmann,
1991], which describe the mapping process g:(F8 , f, U10,
F)! (Pk, s0), where F8,f is the directional frequency ocean
wave spectrum, U10 is the wind speed, F is the wind
direction, Pk is the variance spectrum of the normalized
SAR image, and s0 is the mean radar cross section. It is well
known that the function g is not one-to-one and consider-
ably nonlinear. The derivation of 2-D ocean wave spectra
from SAR data is therefore not a trivial task [Hasselmann et
al., 1996; Schulz-Stellenfleth et al., 2005a] and usually
requires some a priori information.
[17] The approach in this study is therefore to estimate an

integral ocean wave parameter w from a set of SAR
parameters s1,. . ., snS directly. The idea is that although
the SAR parameters are generally not sufficient to estimate
the complete wave spectrum, they may well be sufficient to
provide useful information on certain parameters derived
from this spectrum. We consider wave parameters w, which
are computed from the directional frequency ocean wave
spectrum F8 , f according to

w ¼ 1

m
m
0

Z 2p

0

Z fmax

fmin

F8;f T
w
f d8 df

� �n

; ð3Þ

where Tf is a weighting function and the zero-order moment
m0 is defined as

m0 ¼
Z 2p

0

Z f max

fmin

F8;f d8 df : ð4Þ

Figure 2. Diagram illustrating the relationship between
the ocean wave spectrum F8 , f, the integral wave parameter
w, the wind speed U10, the wind direction F, the SAR image
spectrum Pk, the radar cross section s0, and the SAR
parameter vector (s1,. . ., snS) (see text for details).
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For the wave parameters considered here, n, m are rational
numbers with n 2 {�1,1/2,1} and m 2 {0,1}.
[18] The derivation of the CWAVE2.0 model for ocean

wave parameter estimation is based on a least squares
minimization procedure. The model function has a set of
nS SAR parameters

s ¼ s1; . . . ; snSð Þ ð5Þ

as input. In this study the NRCS, the image variance and a
number of spectral parameters introduced in section 5 are
used for this purpose. To take into account nonlinearities as
well as a possible coupling between these parameters, the
following quadratic formulation is used:

w ¼ a0 þ
X

1�i�nS

aisi þ
X

1�i�j�nS

aij si sj ð6Þ

This formulation can be regarded as the Taylor expansion
up to second order of the function h:(s1, . . ., snS)! w. Even
if it is not clear in all detail yet what the physical basis for
this function is, the empirical approach still provides
analytical information on the structure of the mapping
process.
[19] The tuning parameters are collected into a vector

A :¼ A0; . . . ;Anf�1

� �
:¼ a0; . . . ; anS ; a11; . . . ; anSnSð Þ ð7Þ

of dimension

nf ¼ 0:5 n2S þ 3nS þ 2
� �

: ð8Þ

The SAR parameters and their respective products are
summarized in a corresponding vector

S ¼ S0; . . . ; Snf�1

� �
¼ 1; s1: . . . snS ; s1s1; . . . ; snS snSð Þ ð9Þ

of equal length. The tuning parameters are then fitted based
on the minimization of a cost function

Jcost Að Þ ¼
XN
j¼1

w jð Þ �
Xnf�1

i¼0

Ai S
jð Þ
i

 !2

; ð10Þ

where (w(1),S(1)),. . .,(w(N), S(N)) represent the available
colocation pairs of SAR acquisitions and ocean wave
model data described in section 2. The cost function defines
a standard quadratic minimization problem which was
solved using a singular value decomposition technique as
described in Appendix A.
[20] Once the model parameters A are fitted, the wave

parameter w is estimated from a given SAR parameter
vector S according to

w 
Xnf�1

i¼0

Ai Si : ð11Þ

It is important to say that the cost function formulation
equation (10) is based on the simple assumption that the
deviation between the quadratic model and the numerical
wave model is Gaussian distributed with the same variance
for all colocation pairs and all sea states. By introducing
weighting factors in the cost function, it would be possible

to take into account the variability of colocations distances
in space and time as well as a possible sea state dependence.
However, to keep the presentation simple we will work with
the formulation equation (10) in this study.
[21] Another point to be emphasized is the fact that the

tuned model depends on the distribution of the wave model
data used in the tuning exercise. This can be illustrated with
a strongly simplifying example. Let us assume that the wave
spectrum has two bins F = (F1, F2) only. Furthermore, we
consider a single SAR parameter s, which is connected to
the wave spectrum by

s ¼ aF1 þ bF2 ð12Þ

in a linear and deterministic way with two SAR imaging
parameters a, b. If we try to estimate a wave parameter w
defined as

w ¼ F1 þ F2 ð13Þ

from s using a linear model

w ¼ a1sþ a0 ð14Þ

it is straightforward to show that a least squares approach
(with an infinite large tuning data set) results in

a1 ¼
a rF1F1

þ b rF2F2
þ ða þ bÞ rF1F2

a2 rF1F1
þ 2ab rF1F2

þ b2 rF2F2

ð15Þ

a0 ¼ hF1i 1� aa1ð Þ þ hF2i 1� ba1ð Þ; ð16Þ

where the angle brackets denote the mean and rF1F1, rF2F2,
rF1F2 are the variances and covariance of the wave spectrum
F respectively. As one can see, the model depends on the
statistical properties of F in general. Only for special cases,
e.g., a = b (leading to a1 = a�1 and a0 = 0), the model is
solely determined by the SAR imaging parameters. The case
a = b represents the ideal situation where the SAR
parameter s contains the full information about the wave
parameter w. With the additional nonlinear mechanisms
observed in practice this is a very hard to achieve scenario,
however. As a consequence, one has to accept the fact that
the tuning data set is one of the key factors for the empirical
approach. The choice of data is certainly a critical issue that
needs some further consideration, e.g., by using triple
colocations with additional buoy data. Owing to the lack of
suitable data sets, we will not discuss this issue further is
this study.

3.1. Stepwise Regression

[22] To keep the CWAVE2.0 model compact and to avoid
that the expansion equation (6) contains many terms which
do not lead to a significant improvement of the model a
stepwise regression method as, e.g., described by von Storch
and Zwiers [1999] is used. In the forward selection ap-
proach a linear model is fitted for a subset of SAR
parameters S(k) = (Sz(1),. . ., Sz(k)), which is extended by
one element in each step. The quality of the iterated models
is assessed using the sum of squares due to regression (SSR)
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and the sum of squared errors (SSE) calculated in each
iteration step as

SSR kð Þ ¼
XN
j¼1

w�
Xk
i¼0

Az ið Þ S
jð Þ

z ið Þ

 !2

ð17Þ

SSE kð Þ ¼
XN
j¼1

w jð Þ �
Xk
i¼0

Az ið Þ S
jð Þ

z ið Þ

 !2

ð18Þ

where w is the mean of the wave parameter w. The SSR
parameter is a measure for the ability of the linear model to
explain the variability in the data set, i.e., SSR should be
high. Consequently, the new parameter Sz(k+1) added in the
next iteration step is chosen such that SSR(k+1)–SSR(k) is
maximized. To check whether this increase is statistically
significant, the variable

Fðkþ1Þ ¼ SSRðkþ1Þ � SSRðkÞ

SSE kþ1ð Þ N � kð Þ�1
ð19Þ

which is F(1, N�k) distributed [von Storch and Zwiers,
1999] is used. The iteration is terminated at some step
k = NT if the test variable F

(k+1) is below the 99% confidence
limit as given by the F-statistics. In this paper we describe
the above fitting procedure for different wave parameters w
and different SAR parameter vectors S.

4. A Two-Parameter Model for Hs

[23] In this section a simple two SAR parameter model is
fitted for the estimation of the significant wave height Hs to
illustrate the general approach. For this purpose the variance
of the normalized SAR image cvar [Kerbaol et al., 1998]
and the power loss corrected NRCS s0 are taken as input for
the model. The parameter cvar is defined as the variance of
the normalized intensity image

I ¼ I � hIi
hIi ð20Þ

i.e., cvar is scaling invariant with respect to the NRCS. In
this case the vector S defined in equation (9) has the form

S ¼ 1;s0; cvar;s2
0;s0 cvar; cvar

2
� �

: ð21Þ

The idea behind this particular choice of SAR parameters is
that both s0 and cvar contain information on the ocean
wave energy. The parameter cvar is the integral of the SAR
image variance spectrum, which has a complicated
dependence on the 2-D ocean wave spectrum as analyzed
in many studies [Hasselmann and Hasselmann, 1991;
Alpers et al., 1981]. The SAR spectrum mainly contains
information on the longer waves. The normalized radar
cross section on the other hand is directly related to the local
wind field [Stoffelen and Anderson, 1997; Lehner et al.,
1998], which in turn has an impact on the shorter wind sea
waves. Furthermore, there is some indication that the local
wind speed also has some influence on the variance of the
normalized intensity image [Mastenbroek and de Valk,
2000]. The coupling term in the second order model to
some extend allows to take such mechanisms into account.
[24] The model was tuned with the fit data set described

in section 2 comprising 6000 colocation pairs. In this case
the model was fitted for the estimation of the significant
wave height, i.e., w = Hs in equation (6). Here, Hs is
computed from the WAM spectrum according to

Hs ¼ 4

Z 2p

0

Z fmax

fmin

F8;f df d8

� �1=2

ð22Þ

with the directional frequency spectrum F8,f and fmin and
fmax defined in section 2, i.e., the wave height refers to all
wave components contained in the model spectrum.
[25] The fit procedure resulted in the following compo-

nents of the vector A defined in equation (7)

A ¼
	
� 18:26 m;�0:259

m

dB
; 28:21 m; 0:0189

m

dB2
;

0:672
m

dB
;�7:37 m



: ð23Þ

In this case the stepwise regression described in section 3.1
indicates that all six terms in the quadratic model are
statistically significant.
[26] The resulting functional dependence of thewave height

Hs on the two SAR parameters is shown in Figure 3a. One can
see that the wave height is increasing with growing radar cross

Figure 3. (a) Significant wave height Hs as a function of normalized radar cross section s0 and image
variance cvar. The functional dependence is the result of a fit procedure using 6000 ERS-2 wave mode
images and colocated ECMWF wave model data. (b) Scatterplot of significant wave height derived from
equation (11) versus ECMWF wave heights derived from a separate data set of 6000 colocation pairs.
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section and image variance. Small nonlinear effects and
coupling of the parameters are visible as well.
[27] A comparison of ECMWF and CWAVE derived

significant wave heights using the test data set of 6000
colocation pairs described in section 2 is shown in Figure 3b.
As one can see, even this simple approach already gives a
reasonable correlation of 0.86 and an rms of 0.58 m with
negligible bias. For the two examples in Figure 1, cvar is
estimated as 1.46 (Figure 1a) and 1.31 (Figure 1b), respec-
tively. With the s0 values given in section 2 the two
parameter model gives significant wave heights of 6.1 m
(A) and 2.9 m (B). In both cases, the two-parameter CWAVE
wave heights are underestimated with respect to the
ECMWF analysis, in particular for case A.
[28] A similar approach was also carried out using the

azimuthal cutoff wavelength estimated from the SAR image
spectrum, e.g., described by Kerbaol [1997] as an additional
parameter. The idea is that according to the standard theory
the cutoff wavelength is supposed to be strongly related to
the energy in the high-frequency part of the wave spectrum.
However, it turned out that this extension does not improve
the results. This could be due to problems in the estimation
of the cutoff wavelength and the fact that a lot of informa-
tion this parameter contains about shorter waves is already
provided by s0. In the next section we present an approach
where more detailed information about the shape of the 2-D
SAR image spectrum is used.

5. Extended Model With Additional Spectral
Information

[29] In this section we extend the two-parameter approach
described in the previous section using more detailed
information taken from the 2-D SAR image variance
spectrum. This model is then applied for the estimation of
Hs, the wave heights contained in different spectral bands,
different mean wave periods, and the wave power J.
[30] The extraction of the spectral parameters is based on a

set of orthonormal functions, which are defined in the
spectral regime A indicated in Figure 4. The area A was

chosen such that it covers the regime where most of the
spectral energy of the ERS-2 wave mode data can be found
[Lehner et al., 2000]. In particular the elliptic shape takes into
account the velocity bunching effect, which leads to a low
pass filtering and bunching of the spectrum in the azimuth
direction. The orthonormal functions are constructed as
tensor products of special polynomials and harmonics de-
fined in the direction-wave number space. The respective
dimensions are denoted by n8 and nk. The exact definition of

the orthonormal functions hi, i = 1, . . ., n8nk is given in
Appendix B. By definition, the functions satisfyZ

A

hi kx; ky
� �

hi0 kx; ky
� �

dkxdky ¼ di�i0 1 � i; i0 � n8 nk : ð24Þ

The functions h1, . . ., h9 are visualized in Figure 5 for n8 = 3
and nk = 3. The grey values have a linear scaling between
�80 m (black) and +80 m (white).
[31] The SAR parameters to be used for the CWAVE2.0

model are then computed from the SAR image spectrum P
by projection onto the subspace spanned by the orthonormal
functions, i.e., by computing the respective scalar products

Si ¼
Z
A

P kx; ky
� �

hi kx; ky
� �

dkxdky 1 � i � n8nk ; ð25Þ

where P is the normalized image spectrum

P ¼ P �
Z
A

P kx; ky
� �

dkxdky

� ��1

: ð26Þ

By this normalization, the parameters S1, . . ., S n8 nk provide
information on the shape of the SAR spectrum. This is
particularly important for the estimation of the mean wave
period, which is a normalized quantity by definition as well.
It turned out that the normalization is also beneficial for the
estimation of wave heights, which indicates that the shape
of the SAR image spectrum contains information about
integral ocean wave parameters as also suggested by the
standard theory [Alpers et al., 1981; Hasselmann and
Hasselmann, 1991].
[32] The periodogram of the wave mode imagette com-

puted using an FFT algorithm is used as an estimate of P.
No filtering as usually done in spectral estimation proce-
dures is performed to keep the algorithm as simple as
possible. The estimation errors are not regarded as critical

Figure 4. Integration area A in the SAR image wave
number domain used by the empirical CWAVE2.0 algo-
rithm to extract spectral ocean wave information by means
of the orthogonal functions defined in equation (B13).

Figure 5. Orthonormal functions h1,. . ., h9 defined in the
spectral regime A (compare Figure 4) used to extract ocean
wave information from the SAR image spectrum for n8 = 3
and nk = 3. The grey values have a linear scaling between
�80 m (black) and +80 m (white). Values below �80 m or
above +80 m appear in black or white, respectively.
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for the algorithm because the SAR parameters are based on
averages of larger spectral regimes (compare equation (25)).
[33] Using the two SAR parameters introduced in

section 4 together with the new spectral parameters the
vector s defined in equation (5) is given by

s ¼ s0; cvar; S1; . . . ; Sn8nk
� �

: ð27Þ

For the following calculations we have used n8 = 5 and
nk = 4, i.e., the vector s has 22 elements and the respective
vector S defined in equation (9) has the dimension nf = 276.
[34] An important property of the CWAVE2.0 model is

that the used SAR parameters have a hierarchical structure.
The normalized variance cvar is scaling invariant with
respect to the NRCS and the spectral parameters are scaling
invariant with respect to both the NRCS and cvar. The
parameters thus represent complementary information.

5.1. Significant Height

[35] The quadratic model with 22 parameters was tuned
for the estimation of the significant wave height Hs by
minimization of the cost function equation (10) using the
data set described in section 2. The forward selection
procedure described in section 3 terminated after NT = 61
iteration steps. The four dominating terms (neglecting the
constant term) as selected by the method are as follows:

S
2

3; s0; cvar S1;s2
0; . . . ð28Þ

[36] It is interesting to note that the dominating term
contains pure spectral shape information. The subsequent
terms contain information on both radar backscatter and
image variance. The orthonormal function h3 associated
with the leading term can be found in Figure 5. As can be
seen, the function extracts information on the energy differ-
ences between azimuthal and range travelling waves. This

observation could have to do with the azimuthal cutoff
effect, but some further investigations are necessary to
confirm this.
[37] The respective scatter plot generated from the test

data set is shown in Figure 6. One can see a good correlation
of above 0.9 with an rms of less than 0.5 m and a negligible
bias. For the two examples in Figure 1 the CWAVE approach
gave 8.1 m (Figure 1a) and 2.9 m (Figure 1b). The respective
ECMWF analysis forecast was 8.1 m (Figure 1a) and 3.8 m
(Figure 1b). It is interesting to note that the extended model
leads to a significantly better agreement with the ECMWF
data for the strong wind sea case compared to the two-
parameter model described in section 4.
[38] A global map with the maximum CWAVE2.0 de-

rived significant wave heights is shown in Figure 9c. The
maximum was computed on 3 by 3 degree boxes using both
the test and the training data set described in section 2. One
can see several storm areas in particular on the Southern
Hemisphere. Furthermore some higher waves can be found
in the northern Atlantic, which are associated with Hurri-
cane Fran, which hit the coast of Florida in early September
1996. The relative difference between the CWAVE2.0
derived wave height and the corresponding ECMWF wave
heights is shown in Figure 9d. The colors correspond to the
relative differences averaged over 3 by 3 degree boxes again
for both the test and the tuning data set. It can be seen that
the overall agreement is good. There is no clear correlation
between the relative errors and either wind speed or wave
heights (compare Figures 9b and 9c).

5.2. Spectral Bands

[39] In this section the energy contained in different
spectral bands of the ocean wave spectrum is estimated
with the CWAVE2.0 approach. This exercise has two
objectives. First of all, parameters like H12 are actually
used in practise and new approaches to estimate such
parameters are desirable. Second, the application of the
CWAVE approach on different spectral regimes can give
insight into the performance and limitations of the method.
[40] For this purpose we define the wave height HT1,T2

corresponding to the spectral band defined by the limiting
wave periods T1 and T2 as

HT1 ;T2 ¼ 4

Z 2p

0

Z 1=T1

1=T2

F8;f df d8

 !1=2

: ð29Þ

[41] The tuning procedure was carried out for the wave
heights H7,10, H10,13, H13, 16, H16,19, and H12. The resulting
scatterplots for the first four parameters are shown in
Figures 7a–7d. The corresponding statistical parameters
are summarized in Table 1. The table includes the respective
parameters for the wave height H12 = H12, fmin�1 in addition.
The third column of the table contains the corresponding
range of wavelength assuming deep water. The overall good
correlation shows that the empirical technique in fact
provides useful information for both the longer swell
dominated spectral regime as well as the wind sea part.
The best correlation is observed for wavelength between
225 m and 400 m. It is interesting to note that the correlation
is slightly worse for the longest considered waves between
400 m and 564 m wavelength although these waves should

Figure 6. Scatter plot of significant wave heights estimated
with the quadratic model equation (11) with 22 SAR
parameters versus ECMWF wave heights based on a data
set of 6000 colocation pairs.
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be very well captured by the SAR according to the standard
theory. This observation maybe explained by the perfor-
mance of the WAM model version used in 1996 [Bidlot et
al., 2005], but some further studies making use of additional
in situ data are necessary to clarify this point.
[42] A global map with the maximum wave heights H16,19

found on a 3 by 3 grid is shown in Figure 9e. Several areas
with higher energy in the long wave regime can be observed
in the South Pacific, South Atlantic, and South Indian Ocean.
In most cases these waves are in the vicinity of strong storm
events (compare Figure 9b), which generated long swell.
[43] For the examples in Figure 1 the CWAVE2.0 method

results in 3.06 m (Figure 1a) and 1.54 m (Figure 1b) for
H16,19. The respective ECMWF wave heights are 3.31 m
(Figure 1a) and 2.28 m (Figure 1b). The example shown in
Figure 1b corresponds to the area of higher swell energy
observed near the central west African coast.

5.3. Estimation of Mean Wave Periods

[44] Information on mean ocean wave periods is impor-
tant for many applications. Although some attempts have
been made to estimate mean periods from altimeter data
[Caires et al., 2005] the only spaceborne instrument, which
provides direct spectral information on ocean waves, is still

the SAR sensor. There are various definitions of the mean
wave period. The most elementary definition is

Tm01 ¼
m0

m1
; ð30Þ

where the moments mk are given by

mk ¼
Z

f k Ff ;8 d8 df k ¼ 1; 2; . . . ð31Þ

Figure 7. Scatter plots of CWAVE2.0 derived wave heights associated with different spectral bands
according to the definition equation (29) with (a) H7,10, (b) H10,13, (c) H13,16, and (d) H16,19 versus
respective ECMWF wave heights.

Table 1. Statistical Parameters Describing the Performance of the

CWAVE2.0 Approach in the Estimation of Wave Heights

Corresponding to Different Spectral Bandsa

Parameter
Periods,

s
Wavelengths,

m
Bias,
m

rms,
m Cor

Mean,
m

H7,10 7–10 56–126 �0.004 0.27 0.84 1.31
H10,13 10–13 126–264 0.01 0.37 0.87 1.33
H13,16 13–16 264–400 0.02 0.33 0.90 0.78
H16,19 16–19 400–564 �0.02 0.18 0.86 0.36
H12 12–24 225–900 0.03 0.40 0.91 1.15
Hs 2.4–24 9.8–900 �0.004 0.45 0.92 2.55
aThe values are based on a comparison with 6000 ECMWF model

spectra. The mean refers to the CWAVE2.0 derived wave heights.
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More often used in practise is the zero upcrossing period,
defined as

Tm02 ¼
ffiffiffiffiffiffi
m0

m2

r
: ð32Þ

Finally, there is the ‘‘energy wave period’’ given by

Tm�10 ¼
m�1

m0

; ð33Þ

which is of relevance in the ocean energy sector [World
Meteorological Organization (WMO), 1998] as explained in
the next section.
[45] Using the same approach already used for the wave

heights in section 5.1, the CWAVE2.0 model with
22 parameters was fitted for the estimation of the three
different wave periods. The results obtained by applying the
tuned model on the test data set are summarized in Table 2.
One can see that the lowest correlation of 0.78 is found for
Tm02. This is not surprising because this parameters has
the strongest dependence on the high-frequency tail of the
spectrum, which is particularly hard to access with the SAR
sensor.
[46] A comparison of the CWAVE2.0 derived mean fre-

quency Tm�10 with ECMWF data is shown in Figure 8a.
One can see a reasonable correlation of 0.86 with an rms of
0.72 s. As expected, there is a high-frequency cutoff
period of about 6 s visible, which is due the resolution limit
of the SAR system. In deep water waves with less than 6 s
period have wavelength shorter than 60 m and cannot be
seen by the ERS-2 SAR system.
[47] A global map with the mean Energy wave period

Tm�10 derived with CWAVE2.0 is shown in Figure 9f. We
can see longer wave periods associated with strong storm

events, which generate long wind sea and swell waves, in
particular on the southern hemisphere.
[48] For the examples shown in Figure 1 the approach

gave 10.11 s (Figure 1a) and 9.98 s (Figure 1b) for the zero
upcrossing period. The respective ECMWF periods are
10.02 s (Figure 1a) and 10.53 s (Figure 1b). Note that the
two examples show almost the same mean period although
the sea state characteristics is completely different.

5.4. Estimation of Wave Power

[49] A key parameter for the exploitation of ocean wave
energy is the wave power J defined as [WMO, 1998]

J ¼ aP H2
s Tm�10 ð34Þ

with a constant aP = 0.49 kW m�3 s�1. Information on this
quantity, which corresponds to the wave power per meter
crest length, is for example needed for the optimal siting of
ocean wave energy converters.
[50] Using 22 SAR parameters as input the quadratic

model equation (11) was tuned for the estimation of J.
The resulting scatter plot generated from the test data set
described in section 2 is shown in Figure 8b. One can see a
good correlation of 0.9 and a reasonable rms of 17.76 kW/m.
For the examples in Figure 1 the CWAVE2.0 method results
in 391.3 kW/m (Figure 1a) and 63.3 Kw/m (Figure 1b). The
respective ECMWF wave powers are 406.9 kW/m (Figure 1a)
and 98.9 kW/m (Figure 1b), respectively. Note that in the
present setup the model is tuned with a large variety of sea
states including the extreme wave conditions far offshore.
To use this method for applications like the optimal siting of
wave energy converters, the method should be retuned with
a dedicated data set representing coastal wave conditions.

6. Buoy Comparisons

[51] In this section, CWAVE2.0 derived significant wave
heights are compared to buoy measurements. The entire
ERS-2 wave mode data set (including the tuning period)
described in section 2.1 and 8000 additional imagettes
acquired 4–9 October 1996 and 1 June 1997 were colocated
with buoy data provided by the NDBC. The CWAVE2.0
model tuned as described in section 5.1 was used for this
comparison.

Table 2. Statistical Parameters Describing the Performance of the

CWAVE Algorithm in the Estimation of Different Mean Ocean

Wave Periodsa

Mean Period Cor Bias, s rms, s

Tm01 0.84 0.04 0.77
Tm02 0.78 0.02 0.80
Tm�10 0.84 0.05 0.80
aThe parameters were computed based on a separate test data set of 6000

ERS-2 wave mode data and colocated ECMWF spectra.

Figure 8. (a) Scatter plot of the mean period Tm�10 derived from ERS-2 wave mode data compared to
respective ECMWF model data. (b) The same as Figure 8a for the ocean wave power J.
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Figure 9. Global maps showing different parameters which refer to 3 by 3 degree boxes. The plots are
based on 12,000 imagettes (tuning and test data together) taken between 23 August and 8 September
1996. (a) Number of imagettes. (b) Maximum ECMWF wind speeds. (c) Maximum CWAVE2.0 derived
significant wave heights. (d) Averaged relative deviation between CWAVE2.0 and ECMWF wave
heights. (e) Maximum of wave height H16,19 (compare equation (29)). (f) Average of mean period Tm�10.
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[52] The buoy data are freely available on the internet and
consist of measurements of one-dimensional ocean wave
spectra available every hour. The locations of the 97 buoys
used for the colocation exercise are shown in Figure 10
Triangles represent buoys deployed at less than 100 m water
depth. The remaining buoy locations in deeper water are
indicated by diamonds. Only wave mode images with a
distance less than 100 km from the buoys were taken into
account. The thick black symbols in Figure 10 indicate buoys
for which at least one colocated image was found. There are
no colocations for the large number of buoys close to the U.S.
west coast simply because no images were taken in that area
at all during the analyzed period (compare Figure 9a).
[54] The colocation procedure resulted in 49 pairs of buoy

measurements and SAR data. Applying the homogeneity
test described in section 2.1 left 33 colocations for the
comparison. The filled symbols in Figure 10 indicate buoys
for which at least one homogeneous wave mode image was
found. For example in the great lakes in the US all colocated
images were found to be inhomogeneous.
[55] A scatter plot of buoy wave heights versus

CWAVE2.0 estimations is shown in Figure 11. Diamonds
refer to deep water buoys (>100 m water depth) and
triangles indicate the remaining shallow water measure-
ments. The 12 shallow water cases are shown although a
degradation of the algorithm performance is expected under
such conditions as the tuning data set is dominated by deep
water cases. For example the lower right outlier represents a
shallow water case (88 m water depth) at the west coast of
the Gulf of Mexico with 12.5 s dominant wave period
according to the buoy measurement. The given statistical
parameters refer to the 21 remaining deep water cases. One
can see a good correlation of 0.95 and an rms around 0.4 m
with a small bias of 6 cm. The dashed regression line
indicates a slight underestimation of the SAR algorithm
with respect to the buoy measurements for higher waves. A
similar tendency of ECMWF analysis wave heights with

respect to buoy data is reported by Janssen et al. [1997] for
the year 1995. It could therefore well be that the observed
trend in the CWAVE2.0 derived wave heights is due to an
analogue behavior of the tuning data set.

7. Conclusion

[57] A new empirical approach to estimate integral ocean
wave parameters from SAR data has been presented. The
method is called CWAVE2.0 and has the radiometrically
calibrated SAR image as the only input. The approach is
computationally efficient and of particular interest for users
without easy access to numerical model data.
[58] The technique is based on a least squares approach

with a quadratic model function as the core element. The
model function was fitted using a global data set of 6000
ERS-2 wave mode data and colocated ECMWF wave
model spectra. The performance of the retrieval technique
was demonstrated on a separate data set of 6000 colocation
pairs. Comparisons with ECMWF data were presented as
tables of statistical parameters, scatterplots, and global
maps.
[59] It was shown that a reasonable estimate of the

significant wave height with an rms of about 0.6 m and a
correlation of 0.86 can already be achieved based on a
simple two-parameter model using the normalized radar
cross section and the normalized image variance as the only
input. An extended approach with 22 input parameters was
presented, which makes use of additional spectral informa-
tion leading to an even better rms of below 0.5 m and a
correlation of above 0.9 for significant wave height.
[60] Significant wave heights estimated with the extended

approach were also compared to NDBC buoy measure-
ments. For deep water cases a correlation above 0.9 and an
rms below 0.5 m was found. A slight tendency of the
CWAVE2.0 algorithm to underpredict wave heights com-
pared to the NDBC buoys at higher sea states could be

Figure 10. NDBC buoys used for comparisons with SAR
retrieved wave heights. The diamonds indicate deep water
(water depths >100 m) and the triangles indicate shallow
water. Thick black symbols represent buoys for which at
least one colocation with ERS-2 wave mode data exists for
the periods 23.8. �8.9.1996, 4.10.�9.10.1996, and
1.6.1997. The filled symbols indicate buoy locations where
at least one homogeneous SAR image was found.

Figure 11. Comparison of significant wave height Hs

derived from ERS-2 wave mode data with colocated NDBC
buoy measurements. Triangles indicate deep water (>100 m)
and diamonds represent shallow water buoys. The statistical
parameters and the dashed regression line refer to the deep
water cases only.
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explained by a similar tendency reported for the ECMWF
tuning data set.
[61] The extended approach was then applied for the

estimation of the three mean wave periods Tm01, Tm02,
Tm�10. It was shown that with the CWAVE2.0 method
SAR is able to provide useful information on these param-
eters, which are hardly measurable with other spaceborne
instruments. The resulting rms is about 0.8 s in all three cases
with correlations between 0.78 and 0.84. All three parame-
ters show a high-frequency cutoff period of about 6 s, which
is due to resolution limitations of the SAR system.
[62] Concerning the wave heights associated with differ-

ent spectral bands, correlations of about 0.9 could be found
for H12 and H13,16. The lowest correlation of 0.84 was
observed for the wave height H7,10 related to shorter waves.
This again can be explained by the finite system resolution.
[63] Finally, the CWAVE2.0 approach was applied for the

estimation of the wave power J, which is a function of both
significant wave height and the mean period Tm�10. Com-
parisons with ECMWF data showed a promising correlation
of 0.9 with an rms of 17.8 kW/m. We expect that the
proposed new technique will be a driver for the use of SAR
data, e.g., for the optimal siting of wave energy converters.
[64] The implications of the choice of tuning data were

discussed. For example in the context of wave power it is
obvious that the model should be retuned using a dedicated
data set, which represents typical wave conditions at the
coast, rather than average sea states on a global scale.
[65] It was also emphasized that the cost function formu-

lation used in this study is based on rather simplifying
assumptions. A more sophisticated formulation is possible
using weighting functions, which add information on the
error statistics of the tuning data set. With the help of
weighting functions it is also possible to focus on special
wave conditions, e.g., in order to improve wave height
estimates in extreme sea states.
[66] Further work is also necessary to link the empirical

model to existing theoretical descriptions of the SAR
imaging process. On the one hand, the achieved results
may help to fine tune uncertain parameters in the physical
models; on the other hand, certain elements of the theoret-
ical formulation could be integrated into the empirical
approach to further improve the performance.
[67] The techniques described in this study are currently

applied to a larger data set of two years of ERS-2 wave mode
data, which are reprocessed at DLR from raw data provided
by ESA in the framework of the ERS AO WaveAtlas. In
order to better understand the impact of the tuning data set
additional comparisons with buoy data are on the way.

Appendix A: Least Squares Minimization

[68] The estimation of the fit parameter vector A as given
by equation (10) is a standard linear least squares minimi-
zation problem, which was solved using a singular value
decomposition technique [Press et al., 1992]. Let us define
the design matrix C by

C ¼
1 S

1ð Þ
1 � � � S 1ð Þ

nf�1

..

. ..
. ..

.

1 S
Nð Þ
1 � � � S Nð Þ

nf�1

0
BB@

1
CCA: ðA1Þ

The minimization problem can then be written as

minimise JcostðAÞ ¼ kC A� wk2; ðA2Þ

where w = (w(1),. . ., w(N)) is the vector of measurements.
Applying a singular value decomposition to the matrix C yields

C ¼ U D VT ðA3Þ

with a diagonal matrix D = diag(s1,. . ., snf) containing the
singular values and two orthogonal matrices U and V. The
solution of the least squares problem can then be written as

A ¼
Xnf
i¼1

UðiÞ � w
si

� �
VðiÞ; ðA4Þ

where the columns of V and U are denoted by V(1), . . ., V(nf )

and U(1), . . ., U(nf )
, respectively.

Appendix B: Orthonormal Functions

[69] In the following the construction of the orthonormal
functions used in section 5 is explained. In principle such a
set of functions could also be derived empirically using an
EOF analysis; however, the objective here was to keep the
method in an analytical form as far as possible to allow an
easy reproduction of the results.
[70] The exact definition of the area A (compare Figure 4)

is given by the transformation

akðkx; kyÞ ¼ 2
log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1k4x þ a2k2x þ k2y

q
� log kmin

log kmax � log kmin

� 1

a8ðkx; kyÞ ¼ arctanðky; kxÞ ;

ðB1Þ

which maps A onto the rectangle B = [�1, 1] 	 [�p/2, p/2].
The parameters a1, a2 are defined as

a1 ¼
g2 � g4

g2k2min � k2max

ðB2Þ

a2 ¼
k2max � g4k2min

k2max � g2k2min

: ðB3Þ

[71] The following values for kmax, kmin and the bunching
parameter g were used in this study:

g ¼ 2 ðB4Þ

kmax ¼ 2p 60 mð Þ�1 ðB5Þ

kmin ¼ 2p 624 mð Þ�1 ðB6Þ
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The bunching parameter g gives the ratio of the highest
range and azimuth wave numbers found in the domain A.
Note that g does not affect the longer waves, i.e., the inner
boundary of the area A has a circular shape. The value for
kmin corresponds to waves of 20 s period assuming deep
water [Phillips, 1977]. We excluded the longest waves
above 624 m up to 895 m contained in the WAM model
(compare section 2) to avoid contamination by atmospheric
structures like, e.g., boundary layer rolls [Alpers and
Brümmer, 1994]. The minimum wavelength considered is
in the order of twice the system resolution in the range
direction.
[72] The orthonormal functions are composed of

Gegenbauer polynomial Cn
l with l = 3/2 [Gradshteyn

and Ryzhik, 2000] and harmonic functions. The use of
these polynomials is motivated by the fact that the respec-
tive projections are weighted by a function which is zero at
the lower and upper wave number boundaries of the regime
A. This makes sense because the spectral energy in these
regimes is usually very small [Lehner et al., 2000]. Hence
for the wave number dimension of the spectrum the set of
functions

g1 akð Þ¼ 1

2

ffiffiffi
3

p
n akð Þ

g2 akð Þ¼ 1

2

ffiffiffiffiffi
15

p
ak n akð Þ

ðB7Þ

g3 akð Þ¼ 1

4

ffiffiffi
7

6

r
15 a2

k � 3
� �

n akð Þ

..

.
¼ ..

.
ðB8Þ

gnk akð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nk þ 3=2

nk þ 2ð Þ nk þ 1ð Þ

s
C3=2
nk

n akð Þ ðB9Þ

is used with n defined as

n akð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

k

q
: ðB10Þ

The functions g1, . . ., gnk are orthonormal on the interval
[�1, 1].
[73] The angular dimension is described using the

p-periodic harmonics

f1ða8Þ ¼
ffiffi
1
p

q
f2ða8Þ ¼

ffiffi
2
p

q
sin
�
2 a8

�
f3ða8Þ ¼

ffiffi
2
p

q
cos
�
2 a8

�
..
.

¼ ..
.

fn8�1ða8Þ ¼
ffiffi
2
p

q
sin
�
ðn8 � 1Þ a8

�
fn8ða8Þ ¼

ffiffi
2
p

q
cos
�
ðn8 � 1Þ a8

�
;

ðB11Þ

where n8 is an odd number. The functions

hij ak ;a8

� �
¼ gi akð Þ fj a8

� �
1 � i � nk 1 � j � n8 ðB12Þ

then represent an orthonormal system on the rectangle B.
Hence the functions

hn8 i�1ð Þþj kx; ky
� �

¼ h kx; ky
� �

gi ak kx; ky
� �� �

fj a8 kx; ky
� �� �

1 � i � nk 1 � j � n8 ðB13Þ

are orthonormal on the elliptic area A with a function h
defined as

hðkx; kyÞ ¼
2 a2k

2
x þ 2a1k

4
x þ k2y

	 

k2x þ k2y

	 

a2k2x þ a1k4x þ k2y

	 

log kmax � log kminð Þ

0
@

1
A

1=2

:

ðB14Þ
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