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Progress toward a new non-linear and fully dispersive irregular-wave model is presented.
The model relies on time stepping the two surface boundary conditions with a closure
between the horizontal and vertical velocity expressed in terms of convolution integrals.
The formulation is fully explicit in space and thus no equations need to be inverted. The
convolution integrals involve impulse response functions exhibiting exponential decay.
In practice, this reduces the infinite limits of the integrals to a horizontal distance of only
several water depths. The model is derived for linear waves over a mildly sloping one-
dimensional bottom, and the shoaling property is verified for a linear regular wave. It is
further discussed how an existing perturbation method can be used for the inclusion of
wave nonlinearity of arbitrary order.

1. Introduction

Advanced deterministic models for the transformation of water waves have
evolved significantly over recent years. This is indeed the case for Boussinesq-
type models, see Kirby (2003) for a recent review. The latest developments
practically eliminate the usual water depth to wavelength restriction and treat
highly nonlinear waves with great accuracy (Madsen et al., 2003, 2002).
However, the increase in accuracy and range of application has been
accompanied by a significant increase in computational effort. The present
paper suggests an alternative approach by which the high accuracy and large
application range is attainable at lesser computational cost. The model requires
no restriction on the water depth. A similar approach has previously been used
for computing the kinematics field from the kinematics at the still water level as
assumed to be provided by a numerical wave model (Schiffer, 2003a).

2. Linear Waves over a Horizontal Bottom

To illustrate the basic idea, we first consider linear waves propagating over a
horizontal bottom in one horizontal dimension. In line with Agnon et al. (1999),
the governing equations may be written as the two surface conditions
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and
Uy, +81, =0 @)
with a closure
Jo(tg, Wo3h) =0 3)

obtained from the continuity equation and the bottom boundary condition. Here
u and w are the horizontal and vertical component of the particle velocity
vector and subscript O denotes variables at the still water level, SWL.
Furthermore, 4 is depth, 7 is surface elevation, g is gravitational acceleration,

and subscripts ¢ and x refer to differentiation with respect to time, ¢, and
horizontal coordinate, x. Finally, f, is an operator. The two surface

conditions can be stepped forward in time by standard-time integration
techniques provided that Eq. (3) is solved for w, at every time step. For the

linear shallow water equations, Eq. (3) becomes w, =—hu,,, which provides
w, explicitly. Boussinesq formulations include at least third order differential

operators and except for formulations with very poor dispersion characteristics,
the closure is an implicit relation that requires the solution of an algebraic
system of equations involving the variables at all computational points. In
traditional Boussinesq formulations for which the vertical velocity has been
eliminated from the mass and momentum equations, an equivalent algebraic
system appears as a consequence of mixed spatial and temporal derivatives.
Now linear Stokes theory provides a simple relation that can be regarded as a
connection between the wave-number-space counterparts (U,,W,) of (u,,w,),

tanh kA
W, =———hU, 4
9 kh 0,x ( )

Using the convolution theorem, the inverse Fourier transform yields an
expression which has the explicit form

W, = fo(up3h) (5)

namely
wy(x) =~h ‘].uo’x (x=xyr(x"ydx’ (6)

where r(x) is the impulse response function corresponding to the transfer
function (tanhkhk)/(kh). This impulse response function may be computed
analytically to get
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rx)= —%log . (tanh (—Z— ‘%DJ N

The full line in Figure 1 shows r versus x/h. The figure shows that in
practice it suffices to take the infinite integration limits in Eq. (6) as plus minus
a horizontal distance of just a few water depths. The exponential far field decay
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The convolution integral in Eq. (6) provides an exact closure valid for
irregular waves over any finite, constant water depth. The method is explicit
and thus, the discretized formulation does not involve the inversion of large
algebraic systems of equations as for Boussinesq formulations.

>>1 (8
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h

3. Linear Waves Over a Variable Depth

The advantage of the above approach to the derivation lies in the striking
simplicity. However, when it comes to generalizing the theory to variable depth,
another line of attack is required. Infinite series operators as applied in recent
Boussinesg-type formulations may be used for an alternative derivation of
Eq. (4). What more is, this approach also provides a way to handle variable
depth. Schiffer (2003b) used this procedure to derive the following expression

tanh kh WU, -
kh : C)
h, (1— kh tanh(kk) ~ tanh® (kk)+ kh tanh® (kh) ) U,

Wy =-

which is the mild-slope generalization of Eq. (4). Proceeding as before by using
the convolution theorem, the inverse Fourier transform yields

W, (x) = —h(x) ?uo,x (x=xYr(x"Ydx" — h (x) ]‘uo(x - x"Y(x"dx’ (10)
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where

2
F(x)=lir 2 coth Z|X
8 \h 2\h

is shown by the dashed line in Figure 1.
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The far field expression for the impulse response function, 7(x) is

_ m(xY zT|x
F=—|=| exp] —=|- |,
) 50

which shows exponential decay as for r(x), but falls off more slowly due to the
quadratic factor. Unfortunately, #(x) is much wider than »(x). However, for a

>>1 (12)
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h

typical horizontal to vertical aspect ratio of near-shore regions subject to wave
propagation studies, the function is still very local.
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Figure 1. Impulse response functions, # (full line) for constant-depth terms and 7 (dashed line) for
mild-slope terms

In summary, the linear model is given by the surface conditions Eq. (1) and
Eq. (2) with a closure on w, given by the explicit convolution-integral

formulation in Eq. (10), that uses the impulse response functions given by
Eq. (7) and Eq. (11). The model is valid for irregular waves travelling over a
mildly sloping bed. Notice that the final model is wavenumber free.

To verify the model, a simple shoaling test was made. Copying the test used
by Bingham and Agnon (2004) for convenience, a linear monochromatic wave
of length 10m was generated at 5m depth and propagated over a mild and
smooth slope to a water depth of 0.05m. Figure 2 shows a snapshot of the
surface elevation after the wave has reached the shallow depth. For reference,
the theoretically determined shoaling curve for the envelope is also shown. The
good match verifies the theory.
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Figure 2. Snapshot of the surface elevation as obtained from the convolution wave model compared
to the theoretically determined shoaling envelope. From Schiffer (2003b)

4. Nonlinearity

The fully nonlinear free surface boundary conditions may be expressed as

1, =w(l+1)-Vn, (13)

V,=—gn, (V' -w+m)), (14)

see e.g. Agnon et al. (1999). Here tilde denotes variables at the free surface and
V=i+nw=>0_, where @ is the velocity potential.
To advance these equations in time, a relation between the dependent

variables is needed by which W can be determined at every time step given V
and 77. Like for the linear model, an explicit form is used,

W= f(V,mh) (15)

where f is a nonlinear operator. For the case of linear waves, this reduces to

Eq. (5). To obtain a link with the linear expression, we follow Dommermuth
and Yue (1987), who developed a perturbation method connecting variables at
the SWL with variables at the surface. A similar technique was derived
simultaneously by West et al. (1987), only it appears that they were slightly
more consistent in that they truncated the expressions according to their place in
the free surface boundary conditions. The procedure was derived for the
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velocity potential as follows. Let £ be a small parameter of the order of the
wave steepness, then the surface potential is expressed as the perturbation series

M
ed=>¢c"d" (16)
m=1

With a vertical axis, z, originating at SWL, each term is expressed as a
Taylor series

M-m n R (m)
Fo(m) nl_a (I)o
® _,,2:;:‘8 n! dz" an
by which
. M m Ry (m)
€¢=Zz£m+nz'a¢ (18)
m=1 n=0

Collecting terms of order £ yields

o =% (19)

while a collection of order £” -terms results in

m-1 anq)(m—n)
o =-S5 20
; Z TR (20)

which conveniently expresses ®{™ in terms of lower order expressions already

known from the previous steps of this recursion relation.
To adapt this method to the velocity formulation, Eq. (19) and Eq. (20) are
differentiated with respect to x to get

ud =7 @n
and

" m—1 447t an—lw(m-n)
ug ’=—(Zl——azn°_1 j (22)

n=1 n'
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Given ™ at each order, w{" and its z -derivatives are computed as

w(()”') =f0(ué'");h) (23)
(m)
_av;; =~ ("), @4
anw(m) an—zw(m)
az2 =_( az"'g ) 25)

by virtue of the convolution integral formulation, local continuity and the
Laplace equation, respectively. The ingredients for the determination of W are
now in place and we can evaluate the vertical surface velocity as

. M M-m nn anw(()m)

¢ ,Z:’ ; n! dz" (26)
analogous to Eq. (18) but omitting the ordering parameter,

Dommermuth and Yue (1987) tested the perturbation procedure for fully
nonlinear regular waves in deep water and concluded that the method was
applicable for waves of up to 80 percent of the maximum wave steepness. Their
target wave was computed from the analytical continuation of the Stokes-type
expansion given by Schwartz (1974). Here, we test the perturbation procedure
using Stream Function waves (Dean, 1965, Fenton, 1988). This allows for a test
of the shallow water wave as well.

With H and L denoting wave height and wavelength, respectively, we
chose H/L=0.11 and A/L=0.5 for the deepwater case and H/h=0.6
and /L =0.05 for the shallow water case. For both cases, the wave height is
about 80 percent of the maximum value.

For the deepwater case, Figures 3, 4 and 5 show the respective profiles of
n/L, V/ \/g—L and W/\/EL_ . Figure 6 shows the relative error on W as
obtained from Eq.(26) for orders M =1 to 6. The visual impression of
convergence is in line with the more thorough analysis of Dommermuth and
Yue.

For the shallow water case, Figures 7, 8 and 9 show the respective profiles of
nih, Vi \/—g_h— and Ww/\/gh , while Figure 10 shows the error for the estimated
w. Again, we omit a detailed analysis and note that a visual inspection
indicates convergence.
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Figure 3. Profile of surface elevation for the deepwater case
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Figure 4. Profile of the gradient of the surface velocity potential for the deepwater case
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Figure 5. Profile of the vertical surface velocity for the deepwater case
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Figure 6. Profiles of the vertical surface velocity error (W —w*")/Max(#) for the deepwater
case as estimated to order M
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Figure 7. Profile of surface elevation for the shallow water case
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Figure 8. Profile of the gradient of the surface velocity potential for the shallow water case
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Figure 9. Profile of the vertical surface velocity for the shallow water case
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Figure 10. Profiles of the vertical surface velocity error (W —w*)/Max(#) for the shallow water
case as estimated to order M
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5. Conclusions and Future Work

The prospects for a new and very desirable kind of wave transformation model
have been shown to be good. So far, the model has been developed for linear
waves over a one-dimensional mildly sloping bottom. The method involves a
fully explicit closure of the kinematic relation needed to step the free-surface
boundary conditions forward in time. This means that the model does not
involve the solution of a large system of algebraic equations, as is the case for
most wave propagation models for irregular waves.

The next challenges will be to implement nonlinearity in the model and to
generalize it to two horizontal dimensions.
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