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Abstract

The Dirichlet–Neumann operator for the water-wave problem was introduced and expanded by Craig and Sulem [Craig, W., Sulem, C., 1993.
[CS] Numerical simulation of gravity waves. J. Comput. Phys. 108, 73–83] and in a slightly different form and for 3D waves by Bateman, Swan and
Taylor [Bateman, W.J.D., Swan, C., Taylor, P.H., 2001. [BST] On the efficient numerical simulation of directionally spread surface water waves. J.
Comput. Phys. 174, 277–305]. This approach is supposedly superior to techniques derived earlier byWest et al. [West, B.J., Brueckner, K.A., Janda,
R.S., Milder, D.M., Milton, R.L., 1987. [WW] A new numerical method for surface hydrodynamics. J. Geophys. Res. 92 (C11), 11803–11824] and
Dommermuth and Yue [Dommermuth, D.G., Yue, D.K.P., 1987. [DY] A high-order spectral method for the study of nonlinear gravity waves. J. Fluid
Mech. 184, 267–288] under seemingly more restrictive assumptions. This paper extracts the Dirichlet–Neumann operator expansions fromWest et
al. and Dommermuth and Yue. Concerning the operator expansions alone it is found that Bateman et al. is identical to West et al. and Dommermuth
and Yue while Craig and Sulem is slightly different due to minor differences in the operator definition. For application to the free-surface boundary
conditions West et al. devised a consistent truncation at nonlinear order. This alters the equivalence of the different approaches when it comes to the
evaluation of the temporal derivative of the free surface elevation, which is decisive for wave evolution. In this regard Craig and Sulem is found to be
identical to West et al. while Bateman et al. is identical to Dommermuth and Yue. Pseudo code is provided for alternative computational schemes in
Fourier-space and physical space, respectively, along with a discussion of efficiency and potential flexibility.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The Dirichlet–Neumann (DN) operator for water waves
expresses the normal surface particle velocity in terms of
the velocity potential at the surface. Given a procedure for
estimating the DN operator (subject to lateral boundary
conditions), the water-wave problem is reduced to the
simultaneous time-integration of the kinematic and the dynamic
free surface boundary conditions (KFSBC and DFSBC,
respectively). Thus, the dependent variables are evaluated at
the free surface only, also if the water depth is finite, and even if
it is variable. A series expansion of the DN operator was derived
by Craig and Sulem (CS, 1993) for 2D waves and in a slightly
different form by Bateman, Swan and Taylor (BST, 2001) for
3D waves. Without using the terminology of a DN operator,
West et al. (WW, 1987) and Dommermuth and Yue (DY, 1987)
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had already derived related expressions under seemingly more
restrictive assumptions. Here West et al. (WW, 1987) is referred
to as WW since this makes a nice superscript for symbols used
below and at the same time it acknowledges Watson and West
(1975), who West et al. quote for their methodology. Although
the theoretical framework of the DN operator expansions of CS
and BST appears quite different from the work of WWand DY,
this paper brings all theories in a comparable form and shows
that differences are either minor or non existent. This is in
contradiction to the statements of CS, who claim that their
developments are superior to the methods of WW and DY. In
fact the recursive formulation of WW and DY is preferable for
practical evaluation, since it helps to avoid multiples of identical
sub-calculations. The same advantage was obtained a posteriori
by BST in their “quick form”.

The methods cited above are widely used in applications
related to nonlinear, dispersive wave transformation. The WW/
DY approach is typically referred to as Higher Order Spectral
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(HOS) methods, while the DN-operator (DNO) is usually
quoted for the CS/BST approach.

Especially the HOS method is widely cited and the following
references just provide a small selection of work following WW
and DY. Ölmez and Milgram (1995) compared the HOS method
with a more accurate but far less efficient Boundary Integral
Equation Method and e.g. found a good agreement for short
waves riding on even very steep long waves. Tanaka (2001)
employed the method for direct numerical verification of
Hasselmann's energy transfer across the wave spectrum. Mori
and Yasuda (2002) studied the evolution of 2D irregular waves
e.g. identifying freak wave events in deep water and getting
extreme wave height probabilities in deep/shallow water that
were larger/smaller than those predicted by a Rayleigh
distribution. Bingham and Agnon (2005) used the HOS
procedure for including nonlinearity in their so-called Fourier
Boussinesq model and e.g. looked at Bragg reflection as
previously studied by Liu and Yue (1998), who extended the
HOS method to account for bottom ripples. Simulations of a
physical wave tank while modeling the actual wavemaker
movements is one of several applications of the HOS method by
the group in Ecole Centrale de Nantes, see e.g. the recent
contribution by Ducrozet et al. (2006) and their references.

In addition to the work of DY and BST, examples of the use
of the DNO method are Nicholls (2001), who computed steady
hexagonal gravity waves, Gibbs and Taylor (2005) studying
steep directionally spread focused wave groups in deep water
and Craig et al. (2006) analyzing 2D solitary wave interactions.

Common to all the methods described in this paper is that
they involve perturbation and Taylor series expansions which
fail to converge for extremely steep waves. However, they
perform well for waves of up to 80% of the limiting steep-
ness (DY). Getting even closer to the limit, episodic waves
with very high nonlinearity have also been modeled with
success (BST), presumably due to the lack of time and space
for inaccuracies to ruin the evolution. A detailed account for
the type of wave forms that can be modeled is outside the
scope of this paper, but the above references all include
examples.

The difficulty encountered for very steep waves was
analyzed by Nicholls and Reitich (2001a,b, 2003) who further
resolved the problem by applying a sigma transformation of the
vertical coordinate. However, the transformed system is more
complicated and much more computationally demanding to
solve. Global basis functions are no longer available and
effectively a resolution of the vertical variation is required.

Considering only the traditional DN operator expansions (or
equivalently, HOS methods), the present analysis was carried
out in search of the preferred method for including nonlinearity
in an ongoing development of a new wave model. This model is
based on convolution integrals in physical space and involves
only variables at the surface although the depth may vary by
orders of magnitude provided the bottom slope is mild. Progress
on this work was reported in Schäffer (2005, 2006).

This paper is closed by a short discussion of the DN operator
computation with and without a toggle to Fourier space as
suitable for a spectral and convolutional approach, respectively.
2. Governing equations

In the following (ũ, w̃) is the particle velocity at the free
surface, z=η, in a Cartesian coordinate system (x, z), where z is
a vertical axis pointing upwards from e.g. the still water level.
The velocity potential at the surface is Ũ ¼ U z ¼ gð Þ, subscript
t denotes the time derivative and ∇ is the horizontal gradient
operator. Coordinates or components along the surface are not
considered anywhere except for a secluded mention of the
surface particle velocity normal to the surface (w′ appearing in
Eqs. (2.6) and (2.7)).

Including a small ordering parameter, �, the KFSBC and
DFSBC read

gt ¼ 1þ �jgð Þ2
� �

w̃� �jgdj Ũ ð2:1Þ

and

Ũt ¼ �gg� 1
2
� jŨ

� �2
� w̃2 1þ �jgð Þ2

� �� �
ð2:2Þ

as used by WW, DY and essentially also by BST. To march η
and Ũ forward in time a closure is needed. An attractive explicit
form is

w̃ ¼ GWW Ũ
� �

; ð2:3Þ

whereGWW is the DN operator dependent on η and operating on
Ũ.GWW further depends on the constant or variable water depth,
h, and it may also account for non-periodic lateral boundary
conditions. A slightly different definition of the DN operator was
introduced by CS as

gt ¼ GCS Ũ
� �

: ð2:4Þ

This directly serves as the KFSBC and the CS form of the
DFSBC condition is

Ũt ¼ �gg� �

2 1þ �jgð Þ2
� �

� jŨ
� �2

�g2t � 2�jgdjŨgt � ejgdjŨ
� �2

þ jŨ
� �2

�jgð Þ2
� �

ð2:5Þ

when generalized to two horizontal dimensions. Finally, we
remark that the “genuine” but less practical DN operator, GDN is
defined by

wV¼ GDN Ũ
� �

; ð2:6Þ

where w′ is the particle velocity normal to the surface. This
again is the KFSBC through the geometric relation

gt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �jgð Þ2wV:

q
ð2:7Þ



Table 1
Summary of extracted DN operators and surface elevation derivatives

Reference DN-
operator

ηt

WW: West et al. (1987); Wastson and West (1975) GWW ηt
WW

DY: Dommermuth and Yue (1987) GDY=GWW ηt
DY

CS: Craig and Sulem (1993) GCS ηt
CS=ηt

WW

BST: Bateman, Swan and Taylor (2001) GBST=GWW ηt
BST=ηt

DY
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3. The Dirichlet–Neumann operator

In this section, WW's procedure for accounting for wave
nonlinearity is detailed, and the equivalent expansion of the DN
operator is explicitly extracted. Following DY yields identical
results for the DN operator. However, as discussed subse-
quently, WW and DY differ in how the operator is used in the
surface boundary conditions. The surface potential is expressed
as the perturbation series,

�U ¼
XM
m¼1

�mU mð Þ: ð3:1Þ

With a vertical axis, z, typically originating at still water
level, each term is expressed as a Taylor series about z=0
evaluated at z=η,

Ũ
mð Þ ¼

XM�m

n¼0

�n
gn

n!
∂nU mð Þ

∂zn

� �
z¼0

ð3:2Þ

by which

�Ũ ¼
XM
m¼1

XM�m

n¼0

�mþn g
n

n!
∂nU mð Þ

∂zn

� �
z¼0

: ð3:3Þ

Collecting terms of order ϵ, this may be rewritten as

�Ũ ¼
XM
m¼1

Xm�1

n¼0

�m
gn

n!
∂nU m�nð Þ

∂zn

� �
z¼0

: ð3:4Þ

Requiring this to be valid for all values of ϵ gives

U 1ð Þ
0 ¼Ũ ð3:5Þ

at order ϵ, while the ϵm-terms result in

U mð Þ
0 ¼ �

Xm�1

n¼1

gn

n!
∂nU m�nð Þ

∂zn

� �
z¼0

: ð3:6Þ

This conveniently expresses Φ0
(m)≡ [Φ(m)]z=0 in terms of

lower order expressions already known from the previous steps
of this recursion. At each order the z-derivatives are computed
from the recursion relation

∂nU mð Þ

∂zn

� �
z¼0

¼ D2 ∂n�2U mð Þ

∂zn�2

� �
z¼0

; ð3:7Þ

where D2 =−∇2, which holds due to Φ(m) satisfying the
Laplace equation. The two starting values (indices n=0 and
n=1) needed for this recursion are Φ0

(m) and

∂U mð Þ

∂z

� �
z¼0

¼ G0 U mð Þ
0

� �
: ð3:8Þ
Taking iD as the gradient or the divergence for scalar and
vector operands, respectively,

G0 ¼ D tanh hD ð3:9Þ
represents the linearized DN operator that for constant depth
follows directly from small-amplitude wave theory for periodic
waves. Variable depth and/or non-periodic lateral boundary
conditions require thatG0 be adjusted accordingly.WWrestricted
their approach to the deep water case for which G0=D. Usually
G0 is considered as a Fourier multiplier, but it may also be
expressed essentially as a convolution integral operator in
physical space. This framework is suitable for generalization to
variable depth, see Schäffer (2005, 2006).

The derivations (3.1)–(3.6) remain valid if the potential is
replaced by the vertical velocity, w, and with

�w̃ ¼
XM
m¼1

�mw̃ mð Þ ð3:10Þ

we get

w̃ mð Þ ¼
Xm�1

n¼0

gn

n!
∂nþ1U m�nð Þ

∂znþ1

� �
z¼0

: ð3:11Þ

The DN-operator formulation (2.3) is expanded as

�w̃ ¼
XM
m¼1

�mGWW
m�1 Ũ

� �
: ð3:12Þ

and the recipe for evaluating w̃ mð Þ at any order and extracting
the associated terms of the DN operator, Gm

WW, is now as
follows: Evaluate Eq. (3.11) obtaining the z-derivatives from
the recursion relation (3.7) with starting values (3.6) and (3.8),
where Eq. (3.6) is a recursion relation initialized with Eq. (3.5).
The first three terms are given by

GWW
0 ¼ G0; ð3:13Þ

GWW
1 ¼ gD2 � G0gG0; ð3:14Þ

and

GWW
2 ¼ G0gG0gG0 � 1

2
G2

0gD
2 � gD2gG0

þ 1
2
g2D2G0: ð3:15Þ

This exactly matches the DN operator derived by BST (their
eq. 22a–c) as a slight variation of CS. For the special case of
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deep water, where G0=D, (3.13)–(3.15) in Eq. (3.12) reduces
to the expression given already by Watson and West (1975)
(eq. A5 in their Appendix).

To determine the slightly different DN operator of CS,
Eqs. (2.4) and (2.3) are substituted into the KFSBC (2.1), to get

GCS Ũ
� �

¼ 1þ �jgð Þ2
� �

GWW Ũ
� �

� �jgdjŨ: ð3:16Þ

Expanding the DN operators and collecting the orders gives

GCS
0 ¼ G0; ð3:17Þ

GCS
1 ¼ DgD� G0gG0; ð3:18Þ

and

GCS
2 ¼ G0gG0gG0 � 1

2
G2

0gD
2 � 1

2
D2g2G0; ð3:19Þ

where the explicit appearance of the surface elevation gradient
has been eliminated by incorporating these in the operators (The
last term in G2

CS accommodates the two last terms in G2
WW as

well as the term arising from G0
WW). These results are identical

to those of CS (their eq. 2.14). This contradicts the beliefs of
CS, who describe their DN operator expansion as “uniformly
valid in wavenumber”, while stating that it “differs from the
spectral methods of both West et al. and Dommermuth and Yue,
where both Φ and η are assumed to be O(ϵ) quantities, and the
expansion is not uniform in wavenumber”.
Fig. 1. Pseudo code for the Fourier-multiplier computation of wmuw̃
mð Þ
;m ¼ 1; N M

the subscript everywhere (except on E) indicates the order of a quantity in ϵ.
4. Application in the surface boundary conditions

WW devised a consistent truncation with regard to nonlinear
order in connection with the evaluation of ηt and Ũt by which

w̃ jgð Þ2¼ jgð Þ2
XM�2

m¼1

w mð Þ; ð4:1Þ

w̃2 ¼
XM
m¼1

XM�m

n¼1

w nð Þw mð Þ ð4:2Þ

and

w̃2 jgð Þ2¼ jgð Þ2
XM�2

m¼1

XM�2�m

n¼1

w nð Þw mð Þ: ð4:3Þ

Without this truncation, all upper limits of the summations
would be M. According to the KFSBC Eq. (2.1) or Eq. (2.4),
errors in the DN operator affect the determination of ηt already
at a linear level. On the other hand Ũt is less sensitive to errors,
since the DN operator only appears in the nonlinear terms of the
DFSBC, Eq. (2.2) or Eq. (2.5). Consequently, we skip the
analysis of Ũt and concentrate on ηt. It turns out that the WW
method corresponds exactly to the procedure outlined above for
evaluating Gm

CS from Gm
WW, see Eq. (3.16). This implies that

ηt
CS =ηt

WW≠ηt
BST =ηt

DY, although Gm
CS≠Gm

WW=Gm
BST=Gm

DY

as summarized in Table 1. These results were backed up by
numerical examples, some of which are given in Qureshi
(2005). As a final remark, a DN operator is strictly one that
from Ũ and η using the WW-DY-BST-method. The indices are adjusted so that
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maps Ũ to the normal surface particle velocityw′, see Eqs. (2.6)–
(2.7). However, with a consistent truncation involving an
expansion of 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �jgð Þ2

q
in ϵ, this choice turns out to produce

the same ηt=ηt
CS=ηt

WW.
In retrospect one might say that to a specified order the

methods investigated must all be identical provided no errors
were made. For input Ũ and fixed output Ũt or w̃ the only
allowable differences would be due to explicit or implicit
inclusion of terms of higher order than those consistently retained.
However, for all comparisons the expressions are polynomial in �
making the orders “pure” and the equivalence exact.

5. Evaluation procedures, FFT-count and G0-count

While the explicit evaluation of Gm is interesting from a
theoretical point of view, it is favourable to retain the iterative
procedure for practical applications. This helps to avoid redun-
Fig. 2. As the pseudo code of Fig. 1, but tailore
dant computations. The WW-DY-BST-method for evaluating
w̃ 1ð Þ; w̃ 2ð Þ; N w̃ Mð Þ from Ũ and η may be accomplished as
illustrated by the pseudo code in Fig. 1, where

Am ¼ U mð Þ
0 ; ð5:1Þ

q ¼ ∂nU mþ1�nð Þ

∂zn

� �z¼0

ð5:2Þ

and

En ¼ Dn�1G0 for n odd
Dn for n even

	
ð5:3Þ

Note that ρ needs no indexing and that En, n=1,…,M as time-
independent Fourier multipliers can be computed prior to the
time-stepping procedure. The pseudo code assumes a toggle to
and from Fourier space by the Fast Fourier Transform (FFT). This
d for equivalent physical-space evaluation.



Table 2
Summary of operation counts for different computational spaces

Comput. Space #FFT's #(G0-convolutions) #(Physical-space ▿2 s)

Fourier space 1
2
M M þ 3ð Þ – –

Physical space – M
1
2
M M � 1ð Þ

Mixed space 2M –
1
2
M M � 1ð Þ
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explicitly shows the FFT-count as M forward transforms applied
to the μ's and 1

2M M þ 1ð Þ back-ward transforms to get the ρ's.
The total FFT-count is 1

2M M þ 3ð Þmatching the “quick form” of
BST (which they attribute to Vijfvinkel (1996)) and the findings
of Le Touzé (2003) (ourM equals theirM+1). This is in contrast
to the claim of DY that their computational effort is directly
proportional to M. It seems DY might only be counting the M
boundary-value problems for Φ(m) neglecting the quadratic M-
dependence arising from each boundary condition itself requiring
O(m) products with powers of η. Additional FFT's are needed if a
procedure with purely alias-free products is pursued. This
approach leads to a significant increase in the computational
cost and the effort may be better spent by limiting aliasing through
improved spatial resolution.

For complex physical situations like non-rectangular do-
mains, appreciable depth variations or non-periodic lateral
boundary conditions, the use of Fourier space is not feasible. All
operations can then be made in physical space and the coupling
of D2 and G0 in Eq. (5.3) is no longer beneficial. Fig. 2 shows
pseudo code for the all-physical-space computation with M G0-
convolutions and 1

2M M � 1ð Þ Laplacian operations. Typically,
the Laplacians would be evaluated using finite differences thus
compromising spectral accuracy. Table 2 summarizes the
operations count for various situations including a mixed
procedure where G0 is computed in Fourier space, while all
Laplacians are evaluated in physical space. Although the effect
of G0 is in principle global, the associated impulse response
function shows exponential decay and a practical width limited
to the horizontal scale of a few water depths. This means that the
computational effort of each physical-space convolution scales
linearly (and not quadratically) with the number of computa-
tional points. The convolution approach allows for order-of-
magnitude depth variations provided the bottom slope is mild,
see Schäffer (2005, 2006). Generalization to complex-shaped
domains is a major challenge currently pursued by the author.

Using the symbolic calculation software package Mathema-
tica, both versions of pseudo code (see Figs. 1 and 2) were
checked analytically to produce the desired terms of the DN-
operator expansion.

6. Concluding remarks

Various formulations essentially coupling the nonlinear
wave evolution problem to the linear one have been compared.
Despite the different approaches taken and the diversity of the
mathematical derivations, the approach of Craig and Sulem
(CS, 1993) and the related one of Bateman, Swan and Taylor
(BST, 2001) are found to match the earlier work of West et al.
(WW, 1987) and Dommermuth and Yue (DY, 1987). One
variation is due to the choice of definition for the Dirichlet–
Neumann (DN) operator, where CS differs slightly.

The other variation is due to WW's consistent truncation at
nonlinear order during application in the nonlinear free surface
boundary conditions. With these variations, we find that given
the surface potential, the vertical surface velocity is identically
determined for WW, DYand BSTwith a slight variation for CS.
With regard to the temporal derivative of the surface elevation,
the result from CS matches that of WW exactly, while BST
matches that of DY.

Using Fourier-space operations, practical applications take
1
2M M þ 3ð Þ FFT's to retain O(ϵM) accuracy. Potentially more
flexible applications operating in physical space take M
convolution integrals with nearly compact support and
1
2M M � 1ð Þ Laplacian operations.
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