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Irrotational, Progressive Surface Gravity Waves near
the Limiting Height”

Ken SAsaAkKr** and Takashi MURAKAMI**

Abstract: Numerical solutions of irrotational, progressive surface gravity waves in water
of a constant depth are obtained by means of an iterative method. Our results suggest that
waves with the surface slope angle greater than #/6 may exist. The calculated phase velocity
of deep water waves near the wave steepness 0.14 is significantly smaller than the value

given by the Stokes’ fourth approximation.

In order to check our method, we apply it to the problem proposed by DAVIES (1951),
which is hypothetical but similar to the present problem, and for which the exact solution
is known. In this case our results show good agreement with the exact solution.

1. Introduction

The properties of the highest waves in water
of a constant depth (including an infinite depth)
have been studied by MICHELL (1893), Mc-
CowAN (1894), YAMADA (1957), CHAPPELEAR
{1959), and LENAU (1966). They determined
the height and the phase velocity assuming
that the limiting waves have pointed crests.
Their results show that the solitary wave has
the maximum height about 0.83 to 0.85 times
the depth and that the maximum wave steep-
ness of deep water waves is about 0.141.

In recent years several numerical works on
large amplitude waves have been published.
In a pioneering work by CHAPPELEAR (1961)
the expansion coefficients of the velocity and
and those of the wave form are determined by
the method of least squares. VON SCHWIND
and REID (1972) improved this method. The
numerical method used by ByaTT-SMiTH (1970)
is simpler and more attractive than the method
of least squares. But he met a serious difficulty
when the Froude number is greater than 1,293,
FeENTON (1972) used a method which is partly
analytical and partly numerical, and which is
promising if an extension to an order higher
than nine is practicable.

Compared with the three numerical methods
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cited above, our method is simple and can
provide a very densc distribution of points in
order to represent the solutions near the limit-
ing condition. Furthermore, the reliability of
our method can be tested by applying it to a
problem whose exact solution is known.

The purpose of the present paper is to de-
scribe our method of iteration which is applied
to the equation derived by YAmapa (1958),
and to study the properties of the steepest
waves for which this methed is valid. Our
attention is concentrated not on the wave form
but on the surface slope angle, because the
latter plays an important role in analytical
theories of the steepest physically stable waves.

2. Formulation

We use a co-ordinate system in which a
progressive wave is reduced to a steady flow.
A steady, incompressible, irrotational velocity
field is represented by

or
utiv _dx+iy) 1 .,
Wt dgrig) U (2)

where all symbols denote real quantities, and
complex variables are analytic functions of an
independent variable { to be introduced later.
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u, v, z, Yy, ¢, ¢ and # denote a horizontal
velocity, a vertical velocity, a horizontal co-
ordinate, a vertical co-ordinate, a velocity
potential, a stream function, and the slope
angle of streamlines, respectively. ¢ is a quan-
tity proportional to log(u?++2), and U is a
constant with the dimension of velocity. These
symbols are the same as used in page 523 of
‘Water Waves’ (STOKER, 1957).

On the free surface ¢ is a constant, and the
Bernouilli’s equation gives

%(zﬂ—i—vz) +gy=const. (3>
where ¢ is the acceleration of gravity. We
differentiate (3) with respect to ¢, and use (2)

to obtain

%:—(%e‘“ sind (4>

YAMADA (1958) introduced an independent
variable { defined by

d($+id)

7 =ULo- M)
M) =i/NTT—a)l—al) (50
(—1gae=0)

where a is a real parameter related to the
relative depth, and Ly is a constant with the
dimension of length. We have on the real
axis (Im({)=+0)

Arg(M)=z/2 for 0<(C
Arg(M)=0 f <€<0

rg(M) or a<{ 6)
and

Arg(M)=—z/2 for —1<{<da

On the unit circle we have

MQdl=—ds/V1+a*—2acosa (7)

where o is the argument of £. It is obvious
from (6) and (7) that the upper half of the unit
circle in the { plane is mapped by (5) into a
rectangle in the ¢+i¢ plane, as shown in

C-plane

R P O P.

P P

Ll/s__
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fl i
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Fig. 1. Conformal mapping proposed by YAMA-
DA. The upper half of a unit circle in the {
plane passing through the points O, I, P
and P; is mapped into a rectangle in the ¢-+
i plane going through the corresponding
points O’, P’1, P2’ and Py'. Subscripts C, T,
S and B denote crest, trough, surface, and
bottom, respectively.

Figure 1, where subscripts C, T, S and B
denote the crest, trough, surface, and bottom,
respectively. Since |{|=1 corresponds by as-
sumption to a free surface in the z+zy plane,
@), (5), (6) and (7) give

dv _ (gle\ ¢ *sing
ar (F)\/l +af—2acosc

(8

The ratio (¢s—¢8)/2(pec—Pr} is equal to the
ratio of the water depth to the wave length of
infinitesimal waves. The dependence of this
ratio on a is found from numerical integrations

of

go—pr=U-Le| — - (9)

and

i(¢s‘¢'3):U'L0g;M(QdC (10
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In the case =0 (deep water) we have @¢—pr
=U-L¢-r and in the case a=—1 (solitary
waves) we have ¢s—¢dp=U+Loz/2

YAMADA assumed that

t&)—i0C)=2)0) +i6(0) (11)

Since the real axis in the { plane corresponds
to one streamline and two equipotential lines
in the ¢+i¢ plane, this assumption leads both
to the symmetry of the wave form and to the
fact that the bottom is a flat herizontal plane.

Thus our problem is to find analytic functions
v—i8 whose boundary condition on |{|=1 is
given by Equation (8). Furthermore, they are
regular in |€|=1 and satisfy (11).

3. Transformation from dr/dv to 6
An analytic function 7—£0 is represented by
an infinite power series

oo
t—if= 3 a.l"
r=

where a, are real coefficients according to (11).
We have on I¢l=

T=

ay COS 71T
0 } 12

oo
—f= 3 aysin ne
n=1

yM8

T

In order to eliminate a, from (12), we intro-
duce a plausible assumption that if we know
the values of dr/de at sufficiently many points
g=0;

O=gola <o <oy= )
we can use the following approximation

d*t _ pi—hi
dat T gy Tj-1

(13)

in the nterval

.1 <Lo<0,

where 7; denote the values of dr/do at e=0,.
Applying Fourier’s theorem to

B - 9
v = — 2 n?a, cos no
(170' n=1

and substituting (13) into the left hand side,
we have

N . , T -
ni—nid . T 4
_— COS g = — ——N"Axn

J=10;705-1 Jos, 2

and
o
—Gx=Y ansin noy
n=1
2y 777;1 >
= — Tt 2. sin nog
T =1 0‘, Gi_1n=1
(sin no;—sin naz_y),/ n®
Ym0, g, .
= Z 4——*f*{[’({)‘kﬁ*t}']‘)ﬁf(()‘k—d])
J=10,—0j1
_F(U/;+UJ'—1>‘f“f"(”k*"j—l)} (14
where

cos np

; (15)

Flo)=*

Z

n

It is straightforward to reduce (14) to the
simpler form

N—1
0= 7R (16)
J=

since po=7x=0. As we have to carry out a
few subtractions before each Rj; is obtained,
it is better to calculate F{g) with ‘double pre-
cision’.

The infinite Fourier series (153) is summed
by twice integrating
oo cos np

-X-

a=1 n

—log(Z sin %) 7

With the help of

oo D2 *‘113 2m
logp—2% 51— U8

m=1 (21”) m

log sin p=
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Table 1. Distributions of interval length used
in numerical calculations of (1) deep water
waves, (2) waves in intermediate depth, and
(3) solitary waves. The unit of interval length
is /7280, w/2400, and /6890, respectively.

(D 2 (3)
Interval Interval Interval
length length length
1 1-20 1 1-15 1 1-17
3 21-40 3 16-30 3 18-34
9  41-60 9 31-45 9 3551
27  61-80 27 46-60 27  52-68
81  8I-100 81 61-75 81 69-85
243 101-120 27 76-90 243 86-102
9 91-105 81 103-108
3 106-120 27 109-114
9 115-120

we obtain an approximate expression

pz 2 0 3. p27n+2
Frkd F _— —— - P A,
@l 2 (log e 2 ) m§1 2m+2)'2m

(19)

where By are the Bernouilli’s numbers. The
formulas (17) and (18) are quoted from MORI-
GUCHI et al. (1957).

The accuracy of (16) can be estimated by a
test function

t—if=log{l 41 —e') 20
which gives

(Zl' — Z'eio'

Z; = R@(m‘) (21)

We compare 6, computed by (16) and (21) with
the exact 6, given by (20). We give such a
7 that at least a few, say six, points are con-
tained between ¢=0 and the value of ¢ for
which dr/ds is a maximum. When we use
120 points whose distribution is shown in Tahle
1, the relative error is about —0.59% at the
first point, changes sign near the peak of dr/do,
and becomes 0~0.1 9% for j>10.

4. A method of iteration

The numerical solutions of (8) arc labeled
with a parameter & which is indirectly related
to the wave amplitude. At each cycle of our
iterative procedure the eigenvalue ¢gLo/U? is
determined from the condition that 2 should
have a specified value. We have cmpirically
found that the definition

N
[7:_Zl(fj*:ply/(”ﬂ*”w Do (@2)
2

with

i=n;v1+a®—2acos T

A ln—
Py

gives an efficient iterative procedure whose
convergence rate turns out to be insensitive to
the amplitude of the solutions.

It is emphasized that the magnitude of 2,
which may be called a mean square derivative,
depends a little on the resolving power of dis-
crete points, even if we are dealing with an
identical particular solution of (8). So & is
regarded as an auxiliary parameter and we do
not document its values here. In retrospect
we think an alternative expression

b= Zl(fj—fjfﬂz/(gﬁj—gﬁ,u)

should have been preferred to (22), for ¢ has
a clearer geometrical meaning than .

The details of our method are as follows:
4.1) Assign the numerical values of @ and &,
and give a first approximation to 7;.
4.2y Multiply 7, with such a constant that (22)
is satisfied.
4.3y Calculate 6; by (16) and z; by

Tio1=T;— s+ 100~ ad;_1)/2

with zxy=0. (In the present work numerical
integrations are always carried out by the
trapezoidal rule.)

4.4y Using (8), calculate a new 7, by
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7 i
YT U V1+a®—2acoso
where
Xj=e 3 sin 6;
and
olo_

N
=D i o) (29

4.5) Subtract, for each j, the old 7; used in
4.3) from the new p; cbtained in 4.4). The
maximum magnitude of the difference is called
‘the maximum difference’. And if it is not
permitted to stop the calculation according to a
certain criterion, take the average of the old
and new 7;, and return to the step 4.2).

The maximum difference usually becomes
about 0.6 times its former value after one cycle
of iteration, but sooner or later it begins to
oscillate with a non-increasing amplitude. The
peak value of this oscillation is called ‘the final
maximum difference ¢’. And at this final stage
the relative fluctuation of the eigenvalue gLo/U?
is less than 1x107% It is regrettable that we
do not yet know whether the final maximum
difference ¢ can be made smaller by increasing
the significant digits of the numerical calculation.

5. Definition of various physical quantities
The following symbols are used in tabulating

the results:

;5 wave length

H ; wave height, or vertical distance from a
wave crest to a wave trough

C ; wave velocity

D ; wvertical distance from the bottom to a
wave trough

Djyr; mean depth

L; ; interpolated horizontal distance from the
wave crest to the inflection point of a
wave profile

H;; interpolated vertical distance from the
wave crest to the inflection point of a
wave profile

gy ; interpolated maximum value of &, the
surface slope angle

71 location of the point where 05 1s maximum

B ; maximum value of dr/ds

J2 : location of the point where dr/do is maxi-
mum

Ve ; orbital velocity (due to wave) at the crest

(2 ; mass transport of wave

dg ; drift of a surface particle per cycle of
its orbit

A¢; normal acceleration of a particle at the
wave crest
¢ ; final maximum difference

As usually done, the relevant physical quan-
tities are non-dimensionalized by suitable combi-
nations of I, D and ¢g. For this purpose we
eliminate U and Lo by (23) and

L (= ei’gos@dar ) (2a)
2Ly Jov1+a*—2acosc
respectively.

The normal acceleration of a fluid particle
on the free surface is (square of velocity)x
(curvature of surface)}

U2

sy al
3z 2 e 5
- e¥ V1+a®—2acoso 7 (25)

where we approximate d6/de by (0;—-0;.1)/
(¢j—05_1).

Fhe wave velocity C is defined as the relative
velocity of the wave crest to an observer to
whom the time average fluid velocity vanishes
on the bottom, that is,

_2({% e
cngMU d=2(ge =g/ (26)

In deriving this expression we have utilized
the relation of a time average (for a uniformly
moving observer) to a space average.
Concerning the mean motion of fluid particles,
we use well known expressions for the drift

oP)=C-Ti¢)—L 27)
and the mass transport velocity

wuy=C—L/T{{)=C-3/(L+0)

where
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o] (22

u?4-v?

172 2
) =

And the mass transport is given by

s
S €-2:d¢
ar

_E ds L o, i)
Q= LLE(C T<¢>)a<¢¢ s
:C'Dy—qbs“}‘gbz;

—or | D ds—ds

_CL{ 2 2<¢a—¢T>} @

which was derived by YaMADA (1958).

6. Caleulation of depth

The evaluation of mass transport by 28)
requires an accurate value of Dy/L for each
wave. Therefore it is necessary to know the
vertical distance from the bottom to some point
on the free surface. After d(¢+i¢) is eliminated
from (2) and (5), the resulting expression is
numerically integrated from £=-—-0.2 to the
83rd point (located approximately at o=5z/6).
The path of integration is a straight line drawn
between the end points. Actually (10) is also
evaluated on this path.

The value of z—i0 at twenty points uniformly
distributed on the path are caleulated by

i V-1
() —i0(0)= —2—ﬂj§]_ 1i(0i01—0,_1)
xlog S DeT ) oo

(e +1)(Leti—1)
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constructing this expression are that it is an
analytic function in 1£]<C1, that it satisfies (11),
that its real part has a jump at {=¢91, the
magnitude of which is 9;(6;41—0a;_1)/2, and that
=0 at {=—1. Though the third of these
conditions is a worse approximation than (13),
it has been adepted for simplicity.

7. Presentation of results

Table 1 shows the distributions of interval
length used in the calculation. Table 2 shows
the characteristics of very steep deep water
Table

solitary waves.

3 shows those of very steep
And Table 4 to Table 7 show
the characteristics of fairly steep waves.
Figure 2 shows the location of the inflection
point of wave profiles versus the maximum
surface slope angle. Figure 3 shows the orbital
velocity due to wave motion at the wave crest.
Figure 4 shows the distribution of surface slope

waves,

angle near the inflection points of solitary waves.
In Figure 5, the calculated phase velocity of
deep water waves is compared with the Stokes’
second and fourth approximation.

The Stokes’

metrically represented by

fourth approximation is para-

H « 3
—— = —[1-
L rc( E8 )
and
2zC% s, D
ol =1+4+a +4a

The essential properties of tv—é4 utilized in (See KiNsMAN, 1965). It is not necessary to
Table 2. Characteristics of very steep waves in deep water. (2=0.0)

Bu 0. 5091 0.5116 0.5133 0.5146 0.5157 0.5165 0.5173 0.5179
J1 43 41 40 38 38 34 33 32
B 41.8 50.6 58.8 66.5 73.6 80.6 87.1 93.7
e 11 9 8 7 7 6 5 5
H/L 0.1390 0.1392 0.1394 0.1395 0.1396 0.1397 0.1398 0. 1398
CVer/gLl  1.0933 1.0932 1.0932 1.0931 1.0931 1.0931 1.0930 1. 0930
Li/H 0.1757 0.1602 0. 1490 0.1393 0.1318 0. 1256 0,1202 0. 1156
Hi/H 0.0781 0.0721 0.0677 0.0636 0.0605 0.0578 0, 0556 0.0536
Veo/C 0.8421 0.8514 0. 8586 0.8642 0. 8688 0. 8727 0. 8759 0.8788
os/H 2.209 2.236 2.255 2.271 2.284 2.294 2.304 2.312
Ar/g 0.382 0.382 0.382 0.382 0. 381 0. 380 0.380 0,379
ex 103 5 5 6 8 8 9 11 11
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Table 3. Characteristics of very steep solitary waves. {(@=—1.0)
Oy 0.5156 0.5174 0.5186 0.5196 0.5203 0.5209 0.5214 0.5218
n 39 37 36 35 34 34 32 31
B 41.8 50.7 58.7 66.4 73.8 80. 4 87.4 93.7
i 11 9 8 7 6 6 5 5
H/D 0.8187 0.8195 0.8201 0. 8205 0. 8209 0.8211 0.8214 0.8216
C/NoD 1.2859 1.2858 1.2858 1.2857 1.2857 1.2857 1.2857 1. 2856
Li/H 0. 1062 0.0959 0.0888 0.0835 0.0793 0.0757 0. 0722 0.0694
Hi/H 0. 0486 0.0443 0.0413 0.0391 0.0373 0.0357 0.0341 0.0329
Ve/C 0.9029 0. 9089 0.9133 0.9168 (.9195 0.9219 0.9239 0. 9257
ax/H 4. 655 4.678 4.695 4. 708 4.719 4.729 4.737 4,744
Ac/g 0.384 0. 383 0.383 0.382 0.382 0.381 0.380 0.379
e X 10° 8 3 5 9 14 10 15 15
Table 4. Characteristics of steep waves in deep water. (a2=0.0)
O 0.5025 0.4933 0.4812 0. 4658 0.4459 0. 4208 0. 3891
H/L 0.1383 0.1373 0.1357 0.1334 0.1299 0.1248 0.1174
CYor/gl 1.0932 1.0928 1.0918 1. 0896 1.0857 1.0894 1.0704
as/1H 2,143 2.062 1.964 1.885 1.727 1.583 1.416
Table 5. Characteristics of steep, solitary waves. (a=—1.0)
O 0.5103 0.5034 0. 4879 0.4619 0.4265 0. 3705 0. 3004
H/D 0.8164 0.8133 0. 8058 0.7909 0.7650 0.7113 0.6254
/gD 1.2863 1.2868 1.2880 1.2890 1.2874 1.2774 1.2534
as/H 4.595 4.528 4.409 4,266 4.134 4.010 3.955

Table 6. Characteristics of steep waves in medium depth. (a=—0.9) (953—9’13)/2(9507%):0.1813

O 0.5106 0.5038 0.4883 0.4627 0.4511 0.4274 0.3978 0. 3480
H/D 0.6678 0.6651 0.6584 0.6445 0.6371 0.6197 0.5941 0.5427
H/L 0.1097 0.1093 0.1081 0.1058 0.1045 0.1016 0.0974 0.0891
C/vgD  0.9806 0. 9808 0.9809 0.9795 0.9782 0.9748 0. 9689 0.9563
Q/CL 0.0144 0.0145 0.0146 0.0146 0.0146 0.0146 0.0143 0.0134
ds/H 2.307 2.245 2.114 1.943 1.867 1.734 1.583 1.358

Table 7. Characteristics of steep waves in medium depth. (a=—0.98) (@s=¢r)/2(¢c—P)=0.1312

0 0.5104 0.5036 0.4880 0. 4622 0. 4506 0.4268 0.3971 0.3473
H/D 0.7417 0.7388 0.7317 0.7173 0.7098 0.6923 0. 6665 0.6150
H/L 0.0893 0 0889 0, 0880 0. 0862 0.0853 0.0831 0.0800 0.0738
C/V9D 1.0598 1. 0600 1. 0602 1. 0593 1.0583 1.0553 1.0498 1.0377
Q/CL 0.0110 0.0110 0.0111 0.0111 0.0112 0.0113 0.0110 0.0105
ds/H 2.398 2.330 2.203 2.027 1.959 1.826 1.690 1.444
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Fig. 2. Location of inflection points of wave
profiles. Lr, H and f#m are the horizontal
distance from a wave crest to the nearest in-
flection point of the wave profile, wave height,
and the maximum value of the surface slope
angle, respectively. A dotted vertical line
corresponds to Ox=r/6. The symbols SOL.
and INF. denote solitary waves and deep water
waves, respectively.
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Fig. 3. Particle velocity at the crest of waves.
Ve, C and @y are the particle velocity due to
wave motion at wave crest, wave velocity, and
the maximum value of the surface slope angle,
respectively. A dotted vertical line corresponds
to Ox=n/6. The symbols DAV., SOL. and
INF. denote the relation (32) derived from
Davies’ exact solution, solitary waves, and
deep water waves, respectively.

eliminate o from these expressions, since the
comparison with numerical results is made
graphically.

052 1

i
051 L— —_—
o]
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005 alo

Fig. 4. Distributions of the surface slope angle
# of solitary waves, whose heights are 0.8216D,
0.821TD, 0.8205D, and 0.8195D. A dotted
horizontal line corresponds to #=x/6.

109 +

106 . H
L

T T
cl2 Q.13 Ci4

Fig. 5. Comparison of the wave velocity of deep
water waves. C/(Cy denotes wave velocity
divided by NoL/2% and H/I, denotes wave
steepness. Crossed points are calculated values,
the solid curve is Stokes’ fourth approximation,
and the dotted curve is his second approxi-
mation.

8. Application of our method to Davies’
equation
DAVIES (1951) pointed out that an analytic
function

'zgzﬁ:%-log(l—Ae““") 30)

of a complex variable w is the solution of a
differential equation

A=) I emin
dw 3¢ 1
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Table 8. Characteristics of numerical solutions of Davies’ equation.

0 0.490 0.494 0. 498 0.502 0.506
A 0.99493 0. 99606 0.99705 0.99790 0.99860
1/3(1+ A) 0. 16709 0. 16700 0.16691 0. 16684 0.16678
(1+.4)1? 1.25886 1.25909 1.25930 1.25948 1.25963
eigenvalue 0. 16696 0. 16686 0.16678 0.16671 0. 16665
L/2xLe 1.25902 1.25926 1.25947 1. 25964 1.25979
Jt 57 54 51 48 44

B 32.8 41.6 56.5 79.6 119.9

o 12 11 7 5 3

10°% e 6 6 8 8 14

whose real part gives

e _1 e
PPt sin 36 @an
where

g = - Re(w)

Equation (31), which we call Davies’ eguation,
is obviously very much similar to (8) in the
case a=0. Starting from this fact, DAVIES
carried out a unique perturbation calculation
on the waves near the limiting condition. But
we do not think his result to be conclusive,
and only make use of the similarity between
(31) and (8), in order to estimate the accuracy
of our numerical solutions of Equation (8).

We consider the behavior of ¢ and 8 an the
line Im{w)=0. Then we have

(32)

A=sin3 0y
or

1—A=2sin*{{z/2—385)/2}

where 8y is the maximum of 8. (This relation
is immediately found, if one draws a vector
1—Aei" in a complex plane.) In this case the
quantity 1—V¢/C=Ue/C can be exactly calcu-
lated. From (30) we have ¢*=1—A at ¢=0,
and from (9), (24), and (26) we have U/C=1.
The resulting expression is

(1—Ve/C)32= vZsin((z/2—-30x)/2} (33)
which is shown in Figure 3 with a symbol

DAV.

In our caleulation we have assumed that

Table 9. Relative errors of ¢/ at selected points.
The @ calculated by our method is compared
with the exact value given by (30).

G =0.502 0xn=0.498
J
1 —0.0056 —0.0031
3 —0.0024 —0.0020
5 —0. 0001 —0.0007
7 0.0012 0. 0002
9 0.0015 0.0006
11 0.0016 0.0008
21 0.0014 0.0010
31 0.0005 0. 0004
41 0.0004 0. 0004
51 0.0001 0. 0001

r=0 at 6=n. Therefore we change (30) and
(31) into

771'6:}1 log{(1—Ae ) /(1+A)) (B0

and

dr 1
e 2T3T I BV,
75 - 304 A) €737 3in 30 (31)

respectively. We give 0y and the exact solu-
tion of (31Y is determined by (30)" and (32),
while the numerical solution of (31} is calecu-
lated by the procedure described in Section 4
with the condition that its mean square deriva-
tive defined in (22) is identical with that of the
exact solution. (It is necessary to put a=0 and
to use X;=¢ %7 sin 36, instead of X;=¢7isin 6;.)

A few features of the solutions are shown
in Table 8, and the relative errors of ¢ at the
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selected points are listed in Table 9. In all
the case shown in Table 8 we have found that
the numerical solutions of (31} converge to
the exact solution (30)" with small errors as
shown typically in Table 9, that the eigenvalues
calculated by (23) are about 0.089% smaller
than the exact value 1/3(1+.4), and that the
ratio L/2rLo calculated by (24) is about 0.013 %
greater than the exact value (1+.A4)/3.

9. Discussion and summary

The primary source of errors in our resulis
is that calculations are carried out with a finite
number of points distributed on [{|=1. To
obtain as much resolving power as possible,
non-uniform distributions of points are provided
as shown in Table 1. With the same number
of points or the same amount of computation,
the density of points near the wave crest ({=1)
can be made nearly one hundred times larger
than the density that is attained by means of
a uniform distribution of points, We have
described in Section 3 a convenient way of
deriving the explicit relation (16) between dr/do
and 6 for a given distribution. By applying
(16) to the test function (20) we can readily
estimate the dependence of errors on the be-
havior of analytic functions and the distribution
of points.

The knowledge of the exact solution of
Davies’ Equation (31)" is very important to
demonstrating the reliability of our method as
a whole. From Table 8 and Table 9 we can
draw two conclusions. First, the existence of
a few, say five or more, points between =0
and the peak of dr/do is necessary for the
results of our iterative calculations to be very
close to the exact solution. Second, the magni-
tude of error in gLe/U? and L/Lo is very small
(less than 0.1 %).

The phase velocity C in Table 2 is calculated

by
2,3 ( )1/2 orLo \3/2
gLo )

which is derived from (9) and {(26). Relying on
the similarity of (8) to (31)°, we assume that
the systematic errors in gLo/U? and L/Ly are
—0.08 9% and 0.013 %, respectively also in the

case of numerical solutions of Equation (8).
Then the systematic error in Cis about 0.02 %.
Therefore, the departure of the calculated phase
velocity from the Stokes’ fourth approximation,
as shown in Figure 5, is concluded to be a
genuine feature.

Suppose that there are two distributions of
dr/do calculated by our method, of which one
is a numerical solution of Equation (31)" and
the other is that of Equation (8). Suppose that
the peak of the former is nearer to ¢=0 than
the peak of the latter, so that insufficient re-
solving power or a possible defect in our method
produces larger errors in the former than in
the latter. And suppose that the former is
very close to an exact solution of (31)". Then
there is no reason to suspect that the latter is
not an accurate solution of (8). We emphasize
that the similarity of Equation (8) to Eguation
(31Y is remarkable even when a=0, and that
based on the arguments given above the relative
errors of our solutions of (8) are approximately
the same as shown in Table 8 and Table 9.
But we should also note that our results for
solitary waves are a little sensitive to the
density of points near the tail of waves.

In Figure 3 we use such a scaling of 1—~V¢/C
that Equation (33) is represented by a straight
line. The plotted points in Figure 3 showing
the relation between @y and V¢/C of solitary
waves and deep water waves seem also to lie
on straight lines. By extrapolation we anticipate
that we shall be able to calculate the solutions
of (8 with @y>7/6 and Ve<<C. (The condition
Vo< C, which means that the wave is physically
possible, corresponds to the finiteness of ¢ in
the present problem.) And the maximum
points of # in Figure 4 seem also to lie on a
straight line which crosses the dotted line
(8=r/6). Therefore, at present we do not
accept the proposition that steady state waves
with @>7/6 do not exist at all, which was put
forward by KRAsoOVsKIL (1961) without proof.
But it should be noted that as the breaking
condition is approached, 6y may begin to de-
crease and the condition y=17/6 at Vo=C may
be realized.

The replacement of d0/de with 46/4e in the
expression (25) brings forth a systematic error.
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Consider for example a test function (30),
which can be made close to any of our numerical

solutions. At ¢=0 we have

di/do=A/3(1—A)
while our numerical approximation gives
(61—0)/(a1—0)=A/3H1— A cosa1)
The relative crror is given by

(01/061)/(d01/da))— 1= A(cosa,—1)/(1— A cosar)
=—02/{(x/2-30m)+ 0}

where we have used (32) and have assumed
that 011 and ©/2—-30x<1. I we put o=
7/7280 and 6,x=0.52, the error i3 —0.2 9.
Therelore, the error in the mnormal particle
acceleration at the wave crest is concluded to
be less than 1 %.
LONGUETT-IIIGGINS  (1963)
normal acceleration at the crest of the limiting
wave. Instead of C2=1.5¢L/2% (his Equation
4.7) we use C=1.093 vgL/2r given in Table 2,
and usc his Equation 4.13 to obtain Ay=—0.40¢,
while Table 2 and Table 3 give As=-0.38¢.
This fair agreement shows that our numerical
solutions can be approximated by (30), which

estimated the

correspods to his Equation 4.2, in so far as the
acccleration is concerned.

YAMADA (1958) has calculated the mass
transport of only one wave with @y=7r/6 and
Dy/L=0.260. The magnitude of the mass
transport given in Table 6 and Table 7 is a
little too large compared with the value of
Q/CL=0.0087 obtained by Yamapa. Our
results for mass transport are considered to be
of a preliminary nature, since a careful exami-
nation of the error due to (29) has not yet
been carried out.
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