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ABSTRACT: In the present work the problem of deteing the probabilistic
structure of the dynamical response of nonlineastesys subjected to general,
external, stochastic excitation is considered. Stagting point of our approach is a
Hopf-type equation, governing the evolution of tfw@nt, response-excitation,
characteristic functional. Exploiting this equatiome derive new linear partial
differential equations governing the joint, respmegcitation, characteristic (or
probability density) function, which can be consateas an extension of the well-
known Fokker-Planck-Kolmogorov equation to the casea general, correlated
excitation and, thus, non-Markovian response charadhese new equations are
supplemented by initial conditions and a marginanpatibility condition (with
respect to the known probability distribution oktforcing), which is of non-local
character and, thus, difficult to implement. Théidity of this new equation is also
checked by showing its equivalence with the inéirslystem of moment equations.
The method is applicable to any, state-space, rdifteal system exhibiting
polynomial nonlinearities, but in this paper itliastrated through a detailed analysis
of a simple, first-order, scalar equation, withubic nonlinearity. It is also shown
that the same approach is also able to derive thkkef-Planck-Kolmogorov

equation for the case of independent-incrementatian.
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A numerical method for the solution of these newatmpns is introduced and
illustrated through its application to the simpl®del problem. It is based on the
representation of the joint probability density ¢aracteristic) function by means of
a convex superposition of kernel functions, whiehnnpits to satisfya priori the non-
local marginal compatibility condition. On the basif this representation, the partial
differential equation is eventually transformedatsystem of ordinary differential
equations for the kernel parameters. Extension eéoepl, multidimensional,
dynamical systems exhibiting any polynomial nordingy will be presented in a

forthcoming paper (Athanassoulis & Sapsis 2007).
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1 INTRODUCTION

Many problems occurring in applied sciences andinemging are successfully
modelled as stochastic differential equations. Ayweaportant class of such problems
are those modelled as stochastically excited, neati dynamical systems. Well-
known examples include the dynamic responses gbsshind other man-made
structures and systems under the influence of gemkrated waves in the sea
(Schlesinger & Swean 1998, Wilson 2002, Belenkye&&stianov 2003, Arnolet al.
2004), the dynamic responses of buildings and badgnder the influence of
earthquakes (Lin & Cai 1995, Deodatis 1996, Kafalerigoriu 2003), as well as the
dynamic responses of structures and vehicles utigerinfluence of wind forces
(Simiu & Scanlan 1986, Kree & Soize 1986, Soong &gGriu 1993, Hemon & Santi
2006). In all these cases the excitation loadsassemed to be known stochastic
processes, either Gaussian or non-Gaussian, aseircdse of wind loads. Their
probabilistic and correlation structure can be (amslally, have been) inferred by
means of statistical data analysis and, in moses;abkave been conveniently
parameterized for easy reference and use in célmsa Most of the foundational
facts and aspects concerning the stochastic mogghilosophy in engineering and
applied science, and the corresponding mathemabiaakground can be found



nowadays in book form; see, e.g., Kree & Soize 19B6bczyk 1991, Soong &
Grigoriu 1993, Roberts & Spanos 2003.

The ultimate objective in the analysis of such proits is to obtain a complete
probabilistic description of the response processmitting to answer any important
guestions about the response dynamics. Examplesiaf questions concerns the
distributions of local extrema, of upcrossing radésertain levels, of the first passage
time associated with a critical level value, eto. Mmake this possible we need, in
principle, to know the whole Kolmogorov hierarchiytbe n-fold, joint, probability

distributions Fx<t1>x(t2).__m(q,%,...,%) of the n-variate response random variables

(X(t),X(t,),....X(t,)) at any collection of time instancés.t,,....t,) or, equivalently

and more concisely, the Characteristic Functiol.fEl) of the response process.
Because of the obvious difficulties of this genecaincept of solution of the

probabilistic dynamics problems, there is a cortstamdency —at least in the applied
and engineering literature— to avoid such an amproeesorting to simpler (partial)

solution concepts.

An important, and extensively studied, context,nugmg a relatively easy,
complete characterization of the probabilistic mses of a dynamical system, occurs
if we assume that the excitation is a process mdlependent increments (see, e.g.,
Pugachev & Shinitsyn 1987, Soize 1994, Grigoriu400dhe key feature in this
context is that the response vector, in the stadee formalism, is a Markovian
process and, thus, its probability density funci®igoverned by the Fokker-Planck-
Kolmogorov (FPK) equation (in the Gaussian casdjyoreasonable extensions of the
FPK equation (in the non Gaussian case). Integdgtianough, there have been
identified broad classes of problems in which amalgolutions of the classical FPK
equation are available (see, e.g., Soize 1994),ingathis approach even more
attractive.

An approximate method dealing with nonlinear systamder general stochastic
excitation is the Statistical Linearization Meth@ee, e.g., Roberts & Spanos 2003),
which is based on the approximation of the fulltegs by a ‘statistically equivalent’
linear one. Some variations of the method, conoeriocal linearization in the phase
space, have been recently presented (Pradlwar®dr) 2§iving promising results. It is
also possible to develop approximate solution s@sernoy replacing the given

dynamical system by a “statistically equivalent’niinear system provided that the



latter belongs to the class of problems which cansblved exactly. This method
introduced by Caughey has been applied to vari@uscplar problems in the last
three decades; see e.g . Lutes (1970), Caugheg)d®&Roberts & Spanos (2003).

Another well-known method that can be applied tp e of stochastic excitation
and to any type of nonlinearity, is the method amments, which reduces the initial
stochastic dynamics problem to an infinite systefdeterministic differential
equations for the moment functions (Beran 1968,aPngv & Shinitsyn 1987). This
infinite system should be truncated and becomesedidin the case of nonlinear
problems) by means of appropriate closure schefifemn, it is solved numerically,
providing us with restricted information about fhrbabilistic characterization of the
response process.

Another method, in principle well-known but in vditfle use for solving practical
problems in stochastic dynamics, is the one baseith® Ch.FI of the full probability
measure associated with the dynamic response grotls first step in this direction
was made by Hopf (1952) who derived a Functionéfieential Equation (FDE) for
the Ch.Fl associated with the probabilistic solutaf the Navier-Stokes equations.
This approach, known ake statistical approach to turbulenceas been developed
further by many authors (see, e.g., Lewis & Kraamrl962, Monin and Yaglom
1971, 1975, Foias 1974, Feller 1986), and, evelgtubdd to the derivation and
exploitation of various transport-diffusion equasofor pdfs of the velocities and
composition in Turbulent reactive flows (Kollman QD). In parallel, a simpler
version of the same approach has been developedppigd to finite-dimensional
dynamical systems, governed by Stochastic Ordibaifgrential Equations§ODESY.
See, e.g., Beran (1968). Such Hopf-type FDEs avayal linear, and govern the Ch.Fl
of the sought-for probability measure or —dependinghe specific formulation— the
Ch.FI of the joint, response-excitation, probapititeasure. In recent years successful
attempts have been reported towards the analyterrdanation of the response Ch.Fl
for some classes of linear problems, even avoitlegexplicit use of Hopf's FDE
(Caseres & Budini 1997, Budini & Caseres 1999, 200#br some non-linear
problems, the Ch.FlI can be expressed as a forialtéadimensional (functional)
integral (Monin & Yaglom 1975), which is of litti@r no) practical use.

In this paper, Hopf's FDE is taken as the starpogt of the probabilistic analysis
of the considered stochastic dynamics problem. Bezaf the generality of Hopf's

approach, the method is applicable to any (at Jgadinomially non-linear system



and any kind of stochastic excitation. Nevertheldes reasons of simplicity and

clarity, our study will be carried out on a spegifiirst-order, dynamical system, with
cubic nonlinearity. The excitation process will &&sumed, in principle, completely
known, with a given correlation structure and comtius (or smoother) sample
functions. This implies a non-Markovian charactdrtloe response, making the
approach based on the FPK equation inapplicableloixg the Hopf FDE, new

Partial Differential Equations (PDEs) governing th@nt, response-excitation,

characteristic functions (ch.f.), are derived. Toeresponding equations for the joint
pdfs are also obtained, by applying a Fourier ftansation. These new PDEs, which
are always linear, can be considered as a systearadirigorous generalization of the
FPK-type equations to the case of correlated ebmitaand non-Markovian responses.
As an additional test of validity of these new PD#&ge show that they produce the
correct infinite system of the moment equationse $ame approach, i.e. starting from
the Hopf FDE, is also applied to derive extended Fguations, for the case of
independent-increment excitation. In this connegtibe results recently obtained by
Grigoriu (Grigoriu 2004), concerning various casdsnon-Gaussian, independent-
increment forcing, are derived as special casesuoinew extended FPK equations.
We also show the consistency of our new PDE (fer jtint, response-excitation,

pdfs) with the usual (or extended) FPK equationdbsiving the latter as a limiting

case of the former. A lack of rigor occurs hereewhhe sample functions of the
response process are not continuous. It is comgttthat this derivation may be
reformulated in a rigorous manner by invoking theldof the space of cadlag (or

regulated) functions, recently studied by Tvrdyr@w2002).

Abbreviations
The following abbreviations —some of which haveesatty been introduced above—
will be consistently used in the sequel:

B-space Banach space

ch.f(s) characteristic function(s)

Ch.FI(s) characteristic functional(s)

F-derivative Frechet derivative

FDE(s) functional differential equation(s
FPK Fokker — Planck — Kolmogorov
ODE(s) ordinary differential equation(s)



PDE(s) partial differential equation(s)
pdf(s) probability density function(s)
SODE(s) stochastic ODE(S)

2 PRELIMINARIES AND NOTATION

In this work we consider ODEs (systems) of the f@immstate space formulation):

() =G(X(9)+ Y, x(t)=>, (2.1)

where x and y are scalar-valued oN-vector-valued, continuous (or smoother)
functions, defined at least on an intervakt,, T| (that is, x, y:[t, T|= | = R"),
and G :R" — R", N=1 or N>1, is also a continuous (or smoother) function.
Both the excitationy(s) and the initial conditionsx, will be assumed known

stochastic elements (function and variable, respag). In contrast with the standard

approach, followed in the case of an Ito SODE, ftreing y() is allowed to be

smooth (e.g.k-times continuously differentiable), exhibiting atype of correlation

structure in time. Thus, the sample functior§t) and y(t) are considered as
elements of smooth-functioB-spaces, denoted by and ¢/, respectively. Our
main results will refer to the cas¢ =1, @/ =C*(1), ICR, k=0 or k>0, and

20 a similar space with smoother elements. The whukthodology can be
extended to the vector cadé>1 with the usual trouble (see Athanassoulis & Sapsis

2007 for a detail analysis of a second-order system
The topological dual spaces 610 and “// are alsdB-spaces and will be denoted
by 20" =/ and @/’ =) . The symbols(u,x) and(v,y) denote the standard

duality pairings betweerf> and(//, and f// and()” , respectively.

The underlying probability space is denoted (8,73 (22),7,), where Q is an
abstract version of the sample (trial) spacé,(f2) is the family of Borel sets of?,
and 7 is the corresponding probability measure ofkr The stochastic processes

x and y are measurable maps, y:Q— .20 @/, which define the induced



probability space§ U, B(X), P, ) and((’/ LB(Y), f ) respectively. We shall
also need and consider the joint processy Q— .20 x@/ with induced
probability space( <, 28 (U x%),2’,,,). In the sequel we shall use the
notation x or x(s) or X(s;w), and similarly fory, for the random element, and
X(t;w), te[t, T|=1C R, weQ, and similarly fory, for the sample functions, in

accordance with the needs of the discussion.

The finite-dimensional distributions, densities aclthracteristic functions of the

random element X(+;w) will be denoted by F. . (a...ay),
Faw o) (Qaan ) and 0 (v ), respectively. This implies a
convenient notation for the joint random elem({lx(-;w),y(-;w)); for example
Feomuuynye(@a2BubsBy)  for  the 2x, 3-y  density, and
gbx(tl)x(tzm)wm(vl,vz,yl,yz,yg) for the corresponding characteristic function. The

usual (finite-dimensional) mean value operator §emse average) will be denoted by

E“[e (+;w) will be

written as M = E‘“‘[x( t; w)] Slight variations (simplifications) of this nota will
be introduced later, in accordance with the neédseopresentation.
Infinite-dimensional (global) moments, are defineg integrating over the whole
sample space’; with respect to the probability measufe, (See, e.g., Kree &

Soize 1986, Vakhaniat al. 1987, Egorowet al. 1993). For example, the mean (first

moment) M, is defined to be this element ¢f , for which the following scalar

equation holds true:

<u,m,,>:f<u,x>@‘(dx), Yue (2.2a)

where 7/ = .2 . Furthermore, the correlation operator (second emdjris defined
to be this linear operatdr,,, /7 — 2, for which the following scalar equation is

valid Yu,we @/ :



(w,R,, u>:f<w,x><u, X (dX. (2.2b)

k2

The integrals appearing in the right-hand side qf. €2.2) are infinite-dimensional
(functional) integrals oveB-spaces. (For detailed definitions and conditiomsueing
existence of these integrals see references saataee or Dalecky & Fomin 1991). In

general, the functional integral of any boundedasueable, continuous functional

G .95 — C, with respect to a probability measure’ ', is well defined, and will
be denoted b)J & (x) ' (dx).

Measures and integrals over infinite-dimensionaitee spaces are related with the
corresponding finite-dimensional ones through thecepts of cylinder sets, cylinder

measures and cylinder functionals. L& be a separablB-space,7/ be the dual

of 20, and u,,...,U,, be Q linearly independent elements 6f/. Then, to any
element xe .2 we associate th& —dimensional projectionH%___YUQ U — R°,

defined by
Hul,.--,tb [x] = ((u1 x>< W, ><>) (2.3)

The inverse O'Hul,...,uo +], applied to the Borel se@é"(i/@‘?), defines the cylinder sets
of .2 . The existence of a probability meas@e, on .20 implies the existence of

Q-dimensional (marginal) measurdi’ﬁ]__qLb on R°, associated with the random

vectors(<ul, x(w)> ,<Lb, X(e ;w)>> by means of the relation
P .(e)== (11, ,[E]). (2.4)

for any E, € Q%’N‘(RQ) .

Consider now an arbitrary cylinder functiondl : 2> — C, that is a functional of

the form

G (%) =g((u,%...( 3), xe A, (2.5)



where g :R° — C is an arbitrary, measurable, integrable functionthis case, the
infinite-dimensional integral of4 (x) with respect to the probability measufe

over the space?l’ , can be expressed aQadimensional integral by means of the

formula:

Jo0@ (@) = [d@)P_, (@), 2:6)

@

Egs. (2.5) and (2.6) provide us with a powerful moet for evaluating integrals over
infinite-dimensional (function) spaces. They wille breferred to as the (Q-

dimensionalProjection Theorem

3 ABRIEF REVIEW ON THE CHARACTERISTIC FUNCTIONAL ANDTS
BASIC PROPERTIES

In this section we recall the definition and sonasib properties of the Ch.Fl for

probability measures defined on separdskgpaces.

3.1 Definition of the Characteristic Functional
Definition 3.1 Let .2 be a separabl8-space and?” =%”, be a probability
measure defined on it. The Ch.BI™ of & is a cylinder functional defined on the

dual space?t ' = (// by the formula

T(u) = ["r(d),  wed. (3.1)

@

This integral always exists provided that the cgpmnding probability measure is

well defined.

3.2 Infinite-Dimensional (Global) Moments

Let the Ch.Fl be differentiable in the sense ofchet. In order to calculate tHe

derivative D.7~ (u) we make use of the Gateaux derivative (which génexists for

a F-differentiable map). Thus, we have

_ d;‘f'f’(ujts z)

D.7 (u)[4 o

- i.f<z, &N (dy, uE (3.2)

e=0 74




Settingu =0, we obtain

D.7(0)[2=i- [(z. %7 (), = . (3.3)

27

Since D.77(0)[z] is a continuous, linear functional with respectztpthere should
exists an elemenec .20, such that
(z.m)=—i- D7 (0)[4 = [(z 37 ( d¥. (3.3)

Comparing the above equation with the eq. (2.2agasily seen that the element
me .20 of eq. (3.3) coincides with the mean valog, of the probability measure

27" . The correlation operath_/,/) can be associated in a similar way with the second

F-derivative of the Ch.Fl. In this case we have

(w.R,2) = -D Oz = [(wi{ 297 (2w

3.3 Finite-Dimensional (Point) Moments

In the case where the spa¢é& is a function space, apart from infinite-dimensibn
(global) moments, we are also interesting in fhdt@ensional moments associated
with finite-dimensional projectionéx(ti; w), X(t;w), ... ,x(tn;w)), for any set of time
instances(t,,t,,... t,). This kind of moments can be obtained also byedftiating

the Ch.Fl, this time using Volterra functional detives. (See, e.g., Volterra
1927/1959/2002 or Beran 1968). Volterra derivativesy. the first-order one

&7(u)/6u(t), can be calculated either by applying the origidefinition to the
functional, or by applying the Frechet derivatil. 7 (u)[Z] at z(s)=6( — t).

Following the second approach, and using egs. éh8)2.6), we obtain

5;/;(5;» = DA (O)s(-— 1) =i [xt)2 (dx)=i £ adF, (8)= i E*[x(t;w)|

@

and thus

1C



E“[x(t;w)] = %%(E)O) (3.4a)
Similarly we obtain
= i)t = DOyl S S @

as well as analogous expressions for higher-ordenemts. Working similarly, and
using appropriate generalized functions, we carnveeequations for higher-order
moments involving both the values of the randonmelet at some time instances, as
well as the values of its derivatives either atgame or at different time instances. As

an example we give the formula:

4 HOPF-TYPE EQUATION FOR THE CHARACTERISTIC FUNCTIONA

In order to illustrate the derivation of Hopf-tyge€DEs for nonlinear dynamical
systems, and pave the way to the next section,enthese equations will be exploited
to produce new PDEs for finite-dimensional ch.fge, stall restrict ourselves here to a
specific case of a simple (scalar, first-order) alywcal system having a cubic
nonlinearity, which is described by the followin@BE:

X(t;w)+px(tw)+ kX (tw)= Y tw), (4.1a)
X(t; w) = % (w), (4.1b)

where y,k are deterministic constants, (w) is a random variable with known ch.f
¢o(v), ve R, and the forcingy(s,w) is a real-valued random function, with sample
space?// , probability measur€”’, , and Ch.FL.7(v), ve @/' =€) . The sample
space?// can be taken to be a quite general, separBipace. In the present work,

it will be taken as a space/ =C*(1), | C R, for somek € NV U{0}.

11



Standard existence and unigness theory (see,Baigke 1972, or Sobczyk 1991)
assure that there is a stochastic procgssw), with sample spacel; = C**(1)

and  probability measure ©°, and a joint probability space
(U <y B (U xUY). P, ) such that the joint proce$(«;w), y(+;w)) verifies
the SODE (4.1).

The joint, response-excitation, probability meastrg, is equivalently described by

the joint Ch.Fl

T (U,V) = ffe”x 7 (dx dy. (4.2)

(// ([

We shall now use the SODE (4.1) in order to obtinFDE for.7 (u,v). Let us

consider the Volterra-partial derivative of 7 at timet:

6.7 4 (u,v) _

N |x<t)e @ <dX d)a (4.3)
Il

Since the sample spac@’ consists of smooth functions, we can different{@t8)

with respect ta, obtaining:

% ff.x xtvigp. (dx dy. (4.4)

Further, we compute the three-falepartial Volterra derivative of 7, (u v) at time

instantst;,t,,t,; €1 :

o° F N
(X)) _ 4.
Su(L)5u fflx )ix(t,)ix(t,)e 7 (dx dy (4.5)

Settingt, =t, =t,;=t in the latter, and combining with equs. (4.3)5f4and (4.1a),

we get

12



L) ey | 8 w

(4.1a)

_|ff t)+ px(t +k>€()] U ey (dy dy =

=i [ [y()ye“ ™ (dx dy. (4.6)

@ @

Clearly, the last double functional integral canebg@ressed as wapartial Volterra

derivative:

ff|y @Xy(dx dy = 6%((;;\/) 4.7)

b L

Combining (4.6) and (4.7) we derive the soughtftopf-type, FDE that governs the
joint Ch.FI.7(u,V):

S0V | 6T (Y | BTy 65 (uY
dt T su(t) su(t) G o

Equ. (4.8a) is a linear FDkvolving Volterra functional derivatives, as welk

ordinary time derivatives. The cubic nonlinearitytbé initial SODE corresponds to
the 3-fold Volterra derivativé3;97;y/6u(t)3. From the above derivation it is clear that

anyn™-order polynomial nonlinearity of the initial diffential equation is transformed
to an n-fold Volterra derivative in the corresponding Hdppe FDE. Another
important feature of equation (4.8a) is that itdsalrue for any continuous functionals

ue@/, vel) .

Equ. (4.8a) has to be supplemented by an appropmititéd condition, expressing that
the probability measure associated with the inistdte x(to,w) is given. This
condition can be implemented by means of the j@htFl .77 (u,v) as follows.

Settingv =0 (to restrict ourselves to the response procesy and u = v-é(-— to),

v € R, (to concentrate only at the initial time instami)ll result in

13



7 ff SR (dx dy) = fé Mo (dx = o, (v),

where ¢,(v) is the ch.f of x(t,,w)= X% (w). Hence, the initial condition can be

expressed as

Ty (V8(s—1)),0)= ¢ (v), veER. (4.8b)

5 DERIVATION OF NEW PDEs FOR JOINT RESPONSE-EXCITATION
CHARACTERISTIC FUNCTIONS

In this section we shall exploit the Hopf-type FDES|), obtained above, to derive
new PDEs for the joint, response-excitation, ch.fewlthe excitation is a known
stochastic process either with a.e. continuous Earfymctions or smoother. In
contrast with the case of an independent-increneswitation process, where the
randomness of the excitation “regenerates” eveng tinstant and allows us to write
explicitly an equation involving only the respondensity (the well-known FPK
equation), in the case of a stochastic excitatioth wmooth sample functions, the
randomness evolves, in general, in a smoother asg, result of the finite correlation

time, making necessary to consider response anthgso jointly.

The causality principle dictates that the currenueax(t;w) of the response,
depends only on the history of the excitatip(‘to <s< tw). However, this does not

prevent the stochastic dependence betweéno) and y(t+¢;w), e >0, which is a
natural result of the smoothness and the finitaetation time of the excitation,

C, (t+e,t)=0.

We shall proceed to derive a PDE for the joint c;m‘ (v y) corresponding to

the pair of random variable(y(t;w), y(t;w)), t = fixed. To this end we apply eq.

(4.8a), above, to the pair
u:v-é(-—t), V:V-(S(-— ) (5.1)

(v,v € R) and take the limits— t, after some manipulations. For the first term of

eq. (4.8a) (see also eq. (4.4)), we obtain

14



" 5u(t) [ Projection Theorem

d 5(;9;;(1).5(.4), 1/.(5(-—8))] _

— ff| exp{wx )+ivy (s )}ffxy(dxdg =

U Xy

=== JJ exelivx(t) +ivy(s)} 7, (dx dy =

LU XYy

- o) (v,v)
" fox +1 _ 1%\
v ot ff exp{ivx+ivy} o (xY) dXd% W ot :

RxR

Taking now the limits— t, we get

lim
s—t dt su(t)

d 5(59];}’/(0.5(.—'[), y.(S(o—S))] 1 a(ﬁx(t)y@(U’V)‘ (5.2)

o ot

s=t

Working similarly, we readily obtain the followingsults concerning the remaining

terms appearing in eq. (4.8a):

5T (v-6(s—1),v-6(s—t))  ODyyyy (v.)

su(t) N o &)
T (v-8(+=1),v-6(+—1)) _ gy (v¥) (5.4)

su(t)’ ot |
6T (v-8(+=1) v-8(+=)) _ Iy () 5.5)

6V(t) ov

Combining equs. (5.2)-(5.5) with the FDE (4.8a),atstain the following PDE for the

joint ch.f ¢, (v v), of the pair of random varlable(s< (t;w y(t;w)), for every

t>1,:
iad)x(t)y(s)<v’y) N Maf/)MM(U’V) B ka%ﬁ Y)(U’V) _ 0% ¢, W<U’V> _ (5.6a)
v ot - ov o’ v

1t



Now, since the stochastic proce;s@,w) is given, its Ch.fgzﬁy(t)(y) is known. Hence,
they-marginal of the joint ch.fzﬁx(t)y(t)(v,u) has to coincide Withby(t)(u), resulting in

the followingmarginal compatibility condition:
Doy (00) = by (v),  veR, txt,. (5.6b)

In addition, the initial condition (4.8b) implie®d following initial condition to

Pryo (v,v):

¢x(to)y(to)(v’0):¢){to)(v) =dp(v), VER. (5.6¢)

Finally, two obvious, yet essential, conditionstttie sought-for functiorqu(tw(v,u)

should obey are the following:
Pns (0.0=1, t,s>1, (5.6d)
Dyovy (v,v) is non-negative definite w.r.t;, v, forany t,s > t,. (5.6e)

which come directly from the fact that it is a chteristic function. The last two
conditions will be referred to a®nstitutive conditions.
The above problem (5.6a-e) can be equivalentlyrmaditated in terms of the

corresponding joint, response-excitation, pdfx(t>y(s)(a,ﬁ). Recalling that
Fays (@8) ande,,  (v,v) constitute a Fourier transform pair, i.e.

Buns (00) = Fp o { Fyy5 (28}

and applying the inverse Fourier transformation(3@®a-e), we readily obtain the

partial differential equation

) \ P
+ al(u% ka )fx(t)y(t)<a’ﬁ)} + 5[6 L(Oy(t)(aﬁ)] = 0, (5.7a)

afx(l)y(s) (a’ 6)
ot

s=t
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the following alternative forms of thearginal compatibility condition and thenitial

condition
éfx(t)y(t)(a,ﬁ)da: fo(8), BeR, t>t, (5.7b)
ff oy (@) 3= T (= §(d, ack, (5.7¢)

as well as and the corresponding new forms ottinetitutive conditions

f f B)dads = 1, t,s> 1, (5.7d)

RxR

fx(t)y(s)<a’6>2 0, foranya,sc R anyt,s > t. (5.7¢)

To the best of our knowledge, equs. (5.6a-e) anth{), governing the evolution

of the joint, response-excitation, chif, ., (v,v) and pdf f ()y(t)(a,ﬁ), appear here

for the first time. They can be considered as a kiawl of mathematical models,

providing us with the probabilistic characterizatiof the response(t,w), w € Q, for

eacht € |, obtained by taking thg —marginal of the joint ch.f or the joint pdf. This

mathematical model is valid for any kind of stodi@aexcitation with a.e. continuous

(or smoother) sample functions, having any (knopnoepabilistic structure.

Although the mathematical analysis (solvability dhg of problem (5.6a-e) or
(5.7a-e) is an open problem, existing numericatlevce, presented in Section 8 (see
also Sapsis & Athanassoulis 2006), suggests thamight be well-posed under

reasonable assumptions.

In concluding this section we should emphasize thatabove approach can be

generalized in order to obtain similar, linear, RO&r the jointN-xandM-y, ch.f
¢X<t1)...x(tN)y(Sl)m><SM)<U1,--.UN V) ,...VM)

(or the corresponding joint pdf), along with appiage (marginal compatibility and
initial) conditions. This point will be further disssed in another work (Athanassoulis
& Sapsis 2007). It seems that in this way it issilnle to construct a closed (finitely-

solvable) hierarchy of linear problems providing wigh the full hierarchy of the

finite-dimensional probabilities of the stochastsponsex(«;w).
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6 DERIVATION OF THE FPK EQUATION FOR THE CASE OF
INDEPENDENT INCREMENT EXCITATION

Egs. (5.6) and (5.7) hold true for any kind of i@stic excitation process, provided
that the latter has at least a.e. continuous safaptgions. We shall now turn to the

most commonly studied case, those of an Ito SOD{Erwy(t;w) represents the

generalized derivative of an independent-increnpentess. In this case the response

X(t;w) is continuous but not differentiable. Thus, theatment based on the Hopf

equation, as developed in Section 5, is not valigge the duality pairings (5.1) are
not applicable. The question arises if it is pdsstb treat this case also by a similar
method, starting from the Hopf equation and obtaynihe usual FPK equation —
which involves only the response ch.f (or pdf).tte present section we shall show
how this is possible, by resorting back to the FDiEa finite-difference version of the
SODE (4.1). The crucial property, to be exploitedhis case, is the independence of

the current value x(t;w) of the response from the future increment
A z(tw)=z(t+7;w)— Z tw), 7> 0, of the excitation. Everything presented in this

Section can be generalized to multidimensionalineal dynamical systems.
Let us rewrite the SODE (4.1a,b) in a finite-diface form:

A X(t;w) (@) + K (6 w) = A Z(tw) , (6.1a)
X(t;w) = % (w), (6.10)

where z(+;w) is a known, real-valued process with independenteiments, and
X, (w) is a known random variable. The time incremenis assumed to be positive,

7> 0, and this is essential in what follows.

The sample functions of the stochastic processw) may be either continuous

functions (as in the case of normally-distributediependent-increment processes) or
non-decreasing, piecewise-constant functions (athencase of Poisson distributed
independent-increment processes). In the first @@sdinuous sample functions), it is
clear that the previously developed approach campgmied to equ. (6.1). In the
second casec@dlagsample functions) the applicability of the samguanents is not

directly justifiable. Nevertheless, we shall takee tliberty not to be completely
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rigorous, and apply the same approach to the gecesa as well. It seems to us quite

remarkable and fascinating that the obtained PDEh® ch.f of the response(; w)

coincides with the known one in all examined ca3ésls, the results of the present
section can be considered as a rigorous redenvatiadhe classical FPK equation
from the Hopf FDE, in the case of Gaussian forciagd as a heuristic method to
derive analogous equations in the case of a Po@san an« — stable or a general
Levy process forcing.

Working similarly as in Section 4, we obtain thdldaing Hopf-type FDE that

governs the evolution of the Ch.IZ-‘JVV’X(T,lA'Z)(u,V), parametrically dependent on

T>0:
6,5)7'( . )(u,v) 671( 0 %(u V) 87 (s %(U,\)
7-71A X(7 Az ¥ o A, _k To
. su(t) su(t) ou(t)’
6"%;(7’14 7 (U, V>
— (0 , (6.2a)
Ty (10(=4).0) = 6(v) . vER. (6:20)

Note that ,;?;(T,lu)(u,v) is the finite-difference version of. 7 (u,v)=

lim fo(m) (u,v).

7—0

Using again the arguments(s), v(s), given by (5.1), and applying the same

treatment as in Section 5, we obtain the followiIQE that governs the joint ch.f

Dofin g
x(r ATZ)
oo . . (U l/) %0, . (U,l/)
1 X(1)(r 8, (1) (A, 49) .
;T A (QSX(t)(TlAJ(S)) (U’ V)) ot MG ov K o’ B
Py ) 6.3)
ov ' '

Setting v =0 in the equ. (6.3) and taking the limit as— 0", we obtain:
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1 99, (v) + oy 9, (v) K aaﬁby(t)a(v) _ im 8¢X(t)(r’1ATz(t))(U’ V)‘

(6.4)
v ot ov ov 70" ov

In the left-hand side of eq. (6.4) we can alreagbognize the sought-for result. In the
right-hand side, because of thve- derivative, the situation is more complicated and

should be studied further. In analogy with eqs g%.8nd (4.7), the “source” term

agbx(l)(T,lA Z(l))(v,u)/ﬁz/, appearing in the right-hand side of egs. (6.3) @4), comes

from the following functional integral
09 qofs,49) (V)

5 =) =i [l o)t e (e dra

where 4" is an appropriate space of continuous functiomsy Nising the identity

Dagld(r A 2) = 22, (dxdA, 3,

x(r1A.2)
we obtain
=i [ [(ady)e ™ (axd(a, 2).

Let us now evaluate the above functional integfai (-= fixed>0), under the

specific choice of argumentgs) = v-6(s —t) andv(s) = v-§(s —t):

| (v6(e —t), v-8(- —t))= i”ff’[A’Z(t)]ei [z‘vx(wi'/Afm}f/j;ATZ(dx,d(AT 2). (6.5)

T

Because of the specific form of the excitation @pendent-increment process), the
responsex(t;w) is stochastically independent from the future encent of the
forcing A z(tjw) = Z(t+7,w)— 4 tw). (at this point we make use of the
assumption 7>0). As a consequence, the joint probability measure

P ,(dx d(A, 2) can be written in multiplicative form

@'\

X, Az

(dx (A, 2)=27,(dy-27, (dA, 3. (6.6)
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Taking this into account, and making the subsbtutv =vr (note that we are

interested in the double limit — 0 and 7 — 0"), the double functional integral in
the right-hand side of (6.5) can be factored oudbhsws:

Is(vé(- —t), vr-6(e —t)) = fexp{lvx )} (dx) x
xfi[i(t)]exp{iuATz(t)} 2, ,(d(A,z). (6.7)

On the basis of the Projection Theorem (eq. (2t6¥,first functional integral of the

right-hand side of the above equation is simplydié of x(t;w):

fexp{wx N(dx) = ¢y (v). (6.8)

@&

To calculate the second functional integral inrilgdt-hand side of eq. (6.7), we start

by considering the functional integral:

3. (v) = [exfiv(az()} 7, ,(d(A,2).

By the same token as abov@, (v) is the ch.f of the incremen\ z(tw):
J.(v) = ¢, 4 (v). Assuming the latter is —differentiable in the vicinity ofr = 0",
we get

095 4y (v) _iim [i02820) geea0 g 1P, (d(a 2) =

or 70" or

@
7=0" J

T

— v lim [ATZ“)]@ AP (d(a 7). (6.9)

The last term in (6.9) coincides —apart from thetdav— with the second integral in
the right-hand side of equ. (6.7). Thus, on thasbak(6.8) and (6.9), we can rewrite

eg. (6.7) as follows:



0
lim |T<v5(- —t), vr-5(s —t)) = %(rbx(t) <U> lim M . (6.10)

T—0" T —0" 87’

Combining now (6.4) and (6.10), we obtain

a¢x(l) (U) 8¢x(t) (U) ‘93¢x(1) (U) . 8%,2(0 (U)
ot + pv 90 - kUT = ¢X(‘) (U) TlT}T , VER . (611)

This is in fact the generalized FPK equation fonagal, independent-increment,
excitation, written in terms of the ch.f of the pesse process. The corresponding
FPK equation, in terms of the pdf, is easily dedivey applying a Fourier

transformation

X<t>(a)+§[(ua+ka3 (a =2 [ [ &7 g (ym Pt () dye (6.12)

70"
—00 —00

It can be shown (Athanassoulis & Sapsis 2007) tthatabove equation includes as
special cases various generalized FPK equatiortgntly obtained by Grigoriu
(2004).

7 MOMENT EQUATIONS FROM THE NEW PDE (5.6)

It is worth noticing that the PDE (5.6a), derived Section 5, can reproduce the
infinite set of moment equations corresponding hite tlynamical system equation
(4.1a). This is a very important consistency resdit can be interpreted twofold.
From the point of view of the new PDE (5.6a), ibyides an independent check of
validity. From the point of view of the infinite siem of moment equations, it
provides an “integrating scheme” permitting thelsepment of the infinite system of
ODEs by a single linear PDE. The remaining of #@stion is devoted to the proof of

the above mentioned consistency result.
Let us denote byM,,(t,s) = E*[X (t;w) Y'(sw)|, n,m=0,1,.., the joint
(n,m)"—order moment ofx(t;w) and y(s;w). Then, by direct integration of eq.

(4.1a), it is easily seen that infinite system afment equations has the form

1 dMn+1m( )|
n+1 dt

+ MMnHm( ) :_anJr&m(t’S)_'_ Mnml(t S) (71)

s=t
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We shall now derive the same equations (7.1) usiad®’DE (5.6a). Recall first that

0,1 1o (00)
ov"ov™

= "B X (Gw)- Y (sw)) = 1M, (19, nm=0.1,...
v=0
v=0

(7.2)

By direct differentiation of eq. (5.6a) we obtain

8n+m+2¢x(t)y(s) (U’V)| y ™™ | 00,y (v.v) ormt 83¢x(t)y(t) (v.v) _
ov"ov "ot ov™ov "™ ov ov" o™ 0%
s=t
n+m4-1 8¢ v,V
__9 - X(t)y(t)( ) . vVER. (7.3)
ov"ov™ ov

In accordance with (7.2), the first term in thd-lednd side of eq (7.3) can be written

as
28n+m+1¢x(t)y(s) (U,V>| :ianHM' (743)
81: avn+1aym ‘ 8t

0
0

To proceed with the remaining three terms in eq3)(7use will be made of the
following Lemma:

Lemma 7.1 For everyC"-differentiable functionf ® — R, we have

n n-1
ool - .
X x=0 x=0
Hence,
orm aqﬁx(t)y(t) (U,I/) 8n+m+l¢x(t)y(t) (U,V)|
_ 1 7.4b
aUn+laV m ’ dv v=0 (n ! ) avn+lay " v=0 ( )
v=0 v=0
8n+m+l 83¢x (U,V) an+m+3¢x (U,V>
PR v (t)aygi)J - (I’H—l) av“ﬁ%(zm | (7.4
) )
and
grmi 8gbx(t)y(t) (U,V) 8n+m+1¢><(t)¥(1) (U,V)|
o = (n+ ). - 749
87} +18V 8V Li% 87} (91/m+1 Uio

Substituting eq. (7.4b,c,d) in eq. (7.3) we obtain
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100" s () | 0"y () | 0"y (00)
(n+1 0t oo™ ov™ oy ™ ov"™ou "

B 8n+m+1¢x(t)y(t) (U, V)|

B ov"ov™*

(7.5)

0

v=
v=0

By applying eq. (7.2) and (7.4a), the above equatgmluces to the infinite system of
moment equations (7.1). This completes the prod@fconsistency result announced

at the beginning of this section.

8 KERNEL DENSITY REPRESENTATION OF JOINT pdfs

Clearly, problem (5.6) —either in the form (5.6aee)in the form (5.7a-e)— exhibits
some peculiarities making it distinctly differemobiin the usual initial-boundary value
problems for PDEs, coming from problems of Matheoasht Physics. These
peculiarities reflect the probabilistic origin &fet present problem.

In the remaining part of this paper, an originahr{le-type) method for the
numerical solution of problem (5.6) (or (5.7)) isveéloped, and some first,
illustrative, numerical results are presented. iirfaén tool, on which the formulation
of the numerical scheme relies, is the represemtatf the sought-for pdf and ch.f by
means of convex superpositions_arikel aensity unctions(kdfs) and their Fourier
transformation, the drnel claracteristic_@inctions (kch.fs), respectively. A short
presentation of the basic facts about kdfs is glweow.

Kernel density functions constitute a key notioaltevithin the framework of

nonparametric statistical estimation. See, e.gottSt992. In our approach, a kdf
K(x x,h) is mainly thought of as a generalized (non-symitjetsummability

kernel, appropriate to represent pdfs (Gavrili&fl85). The defining properties of an

M- variate kdf are the following:

Pr.1) K(x;x,h) is a continuous, real-valued function defined odoanain of the
form & = Ax Ax. A6, """, where Ac R™ is taken to be contained in (or

to be equal to) the support of the target pdf, dayx) which is to be

represented (see Lemma 8.1 and Theorem 8.2, bedod),Z4 """ is the set
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of non-negative definite,M x M—matrices, which can serve as covariance

matrices.

Pr2) K(xx,h)>0, for(xx,h)e%.
Pr.3) [K(xx.h) dx=1,for (x.h)e Ax s ™"

Pr.4) Hh"Hmo I K(x x,h)dx =0, foranyx e Aand¢ >0.
ek |6

A kernel characteristic function is defined as faurier transformation of a kdf.
Clearly, properties Pr.2), Pr.3) ensure that ealfiska pdf on its own. Thshape of

the kernel functionK (x; x, h) is controlled by its covariance matrtx, also called
bandwidth(or shap@ parameter h quantifies the spreading of the kernel probability
mass around itscénter” x . Another —simpler and in many cases adequate-€eludi
the shape parameter is thMevariate vector of the eigenvalues of the covariance

matrix. In this sense, the domaifr, = Ax Ax. 2" can be (and will be)
simplified asAx Ax [O,oo)M :

Using the defining properties Pr.1) — Pr.4), andly dhese, it is not difficult to

prove the following

Lemma 8.11If f (x) is a continuous pdf anl (-;-;) is any kernel function satisfying

Pr.1) — Pr.4), then, for any,

lim [K6x, B f(x) dx=f( 3. . (8.1)

Ihif-

That is, as the bandwidth decreases, the kernetiumshrinks around its “centetX, ,

having the weak asymptotic limit
K(xx,h) —22 s 5(x- x). (8.2)

On the other hand, as the bandwidth increasesettmekfunction spreads out.
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Theorem 8.2 The set of all convex finite superpositions ofe thform

N
> p, K(% %, ), where p + p,+...+ g, =1, p,>0 for all n, andK(-;-,-) is any

n=1
kernel function satisfying Pr.1) — Pr.4), is demsthin the set of all continuous pdfs

supported inA. That is, given any continuous pdf(x), a specific kernel function

K(x; X, h), and an arbitrary (small) number> 0, there exist a bandwidth parameter
h, a finite set of center$xn}nN:1 in A, and a vectop=(p,,p,.....R ) lying in the

positive cone ofR", such that

max f(x)- (x| <e, (8.3a)
where " (x)= i pK(X %, h). = (8)3b

The clue of the proof of this theorem is Lemma 8ri,conjunction with the

properties of the Riemann sum approximation ofitttegral IK(x; x, h) f(x) dx
A

(Athanassoulis and Gavriliadis 2002). The technaethils are omitted. The above
theorem makes clear that any (continuous) pdf eaapgproximated, as closely as it is

required, by a representation of the form (8.3b).

9 REFORMULATION OF THE PROBLEM BY USING KERNEL DENSM
REPRESENTATIONS

We shall now apply the pdf representation (8.3b) {lwe corresponding ch.f
representation, obtained by means of a Fouriesfoamation) in order to reformulate

problem (5.7) (or (5.6a)) in a way facilitating itsimerical solution. Again here and

subsequently, as in the Introductiofy, = f, (a,8), ¢y = Priys (v,v) are four-

argument, two-variate, joint, response-excitatiaf pnd ch.f, respectively. For
clarity, in the present and the subsequent secti@tdor or matrix quantities will be
explicitly denoted by using bold letters.

Applying the representation (8.3b) for the pdf, ahd corresponding one for the
ch.f we define the approximants
(@)= B (b9 K agimt (19 h*(13). ©1)

k=1
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p(t9 Klvwm (tgh(t3). (9.2

N
k=1

Qs:(lt)y(s) (v.v)= Fo {f>(Nl>>($(a’ﬁ)}:

B—v

Here m":<mf,nt) is the location parameter, namely the positiontted most

probable (highest) value of the kdf, ahll is the shape parameter, represented either
by the 2x 2- covariance matrix of the kdf or by the two eigemnal of the latter (both
pictures will be applied to the numerical treatmeRbr the numerical computations,

K (a,8;m*,h*) is taken to be a Gaussian pdf. (See, e.g., H1@98, Sec. 2.9).

Our main goal now, is to exploit the representai(®l), (9.2) in order to solve the
system (5.6) or the equivalent (5.7). Condition®&dte), or the equivalent (5.7d,e),
are automatically satisfied since the approxim@htk), (9.2) are by construction pdfs

and ch.fs, respectively.

To facilitate the discussion, we define the lingdfierential operators

. . a 3' .

fo=2] 4 0kd 28 ols] (9.32)
otl._, oa oa oa

Lo = 0 —|—;wa. —kva.3 _Ua., (9.4a)

otl,_, Jv Ov ov

And rewrite equs. (5.6a), (5.7a) in the followingncise form:

L{f,)(ast)=0, (ap)eR’ t=t, (9.3b)

Ligy|(vwt)=0,  (vr)eR? t>t, (9.4b)

It is interesting to note here that the two equemalformulations —(5.7a) or (9.3) in
terms of the pdf, and (5.6a) or (9.4) in termshaf th.f— are both useful and they will
be considered in parallel, since the conceptualraemts are better stated using the
pdf formulation, while the numerical analysis isttbe developed using the ch.f

formulation.

Substituting the approximation (9.1) into eq. (9\8¢ obtain
Zﬁ[pkK(a,ﬁ;mk,hk)}:o, (a,8) e R? (9.5)

N
k=1
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Let us denote bys(hj) the radius of the effective support kf(a, 3;m’,h’). a(hi>
will be taken and always kept to be small. Sincghdeernel functionK (a,ﬁ;mj ,hi>
is taken to be concentrated around its centéee= (mi, rd/) and it is positive there, eq.
(3.5), restricted in a neighborhoo&lf(mi,s(hj)>, is locally equivalent with the

equation
ZN:L[pkK(a,ﬁ;m",hk)}-K(a,ﬁ;mj,hj)zo, (a,ﬁ)ef%ﬁ(m",dh")) (9.6)

Assuming that the system of neighborhO(J[défff(mj,g(hi)), j=1... ,N} covers

the essential support of the sought-for densityction f _, we can assert that the

xy !
global equation (3.5) is equivalent with the syst&rtocal equations
N
K=

ZL[pKK<a,ﬁ;m",h")}~ K(agm'h')=0¥ je{1,.. N}, and

[N

v(apg)e U I (mle(n')). 9.7)

j=1...N

By taking a Fourier transformation, eq. (9.7) isieglently rewritten as

EN:E[pkK(v,y;n'F, hk)}* Klow;m, H)=0, vV je{L...N, anc

1

i (U,V)E R?, (9.8)

where x denotes the convolution operator. Although theéetaequation could be
considered as being more complicated than eq., (Qu7gfficient numerical solution

scheme will be based on it.

10 A TWO-LEVEL NUMERICAL SOLUTION SCHEME FOR THE SET BEQs
(9.8)

To proceed to the numerical solution, use will bedeof a specific choice of the kdf.

Assuming a Gaussian density as the kdf, we have
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.
1 1(a—n 1 a- nf
K(a,gB;m",C")=————“exp—= (o , (10.1a)

( ) 2rf|defC] 2 f)’—mtl < g—ny
with corresponding kernel characteristic function
ntT v 1 UT v
K(v,u;mk,Ck)exp{i == -[Ck]- (10.1b)
m; v| 2|v v
where
m* =m*(t,s)=(nf (9, mf( 9 (10.2a)
is the mean vector, and
(L) Cy(ts
Ck=CK(t,s)= ol Xy (10.2b)
©97leist cyls s

is the covariance matrix of our Gaussian kdf. Ashage already mentioned above, a

dual realization of the shape parameter will besaered herewith. Apart from the

covariance matrix C*, the vector hk:(hf,h'y‘) having as elements the two

eigenvalues of the matrig* , will also be used in this case.

Our numerical solution scheme will be implementgdréstricting the kdf to be
highly concentrated, so that the effective suppofigny pair of two different kernels
to be practicallynon overlapping. This permits us to neglect the interaction betwee
any pair of Gaussian kernels, i.e. to disregardstiemation in the left-hand side of

eg. (9.7) and its equivalent eqg. (9.8). Thus, urtter above assumption, which is

equivalent with the condition|h*|<e,, for all ke {L...,N}, where ¢ is an

appropriate (small) constant, eq. (9.8) simplif@s

L[ij(v,u;mj,CJ)} =0, t>s>t, andVjc{l..,N}, and

vV (v,v) € R?. (10.3a)

Furthermore, assuming the amplitudps are positive and piecewise constant, the

above equation is further simplified to

29



z 0+

ﬁ[ (U,U; mi,cj)}:o, within each time interval 7 < s< t< 7Y,

vV je{l....N}, and V (v,v)eR?. (10.3b)

On the basis of the above discussion, a two-leved-{ime scale) approach comes
into the scene:

a.Solve the set of independent equations (10.3b) inviteach interval

1

7 <s<t< 7Y (this is theshort-time phase or inner-cycle phase), and then

b.Come back to the complete representation and uptegevalues of the

(¢+Y)

amplitudes p,, passing from the intervaI[T(”),r to the interval

7 72| (this is thecoarse-time phase or the outer-cycle phase).

Thecriterion for defining the sequence of coarse updating timés ¢ =1,2,3,.., is

formulated as a sufficient condition for the valydof the assumptions underlying the
derivation of the set of independent equations3{)0. It turns out that the most
critical assumption is the restriction of each kalfbe highly concentrated around its
center. As expected, because of the diffusive cieraf the problem, it has been

found that, during the short-time phase soluticgrnkl parameters evolve in a way

leading to a continuous increase of the variana:arpater” th. (See, for example,

Figures 2c, 3c, in Section 11, below, and the disicuin therein). The growth of the
quantity Hth leads to the spreading of the mass of the corretipg kdf, which

results in the violation of the assumption of ngiblie interaction between the kernels.

Thus, the set of kernel parameten§(t,s) and C*(t,s) evolve in accordance with

the simplified dynamical equations (10.3b) from gim’ , until the spreading index

H h* (t)” , of some kernel, exceeds a certain critical vadag,c, > 0. This value ot is

taken to be the next updating timé& . At that time instant, the inner-cycle (short-

time) solution phase is interrupted, and an appnation of the total joint pdf

fN () (a,0) is calculated by means of eq. (9.1), in the spefafm:

X(T(m))y

N

fxl(\iu—n)y(T(ul)) (&ﬁ) = Z P (T(O) K( a3 ;m* (7'@“),7(“1)) h* (TWD ,7'<HD>) . (10.4)

k=1
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Then, the calculated pdf (10.4) is re-approximatey,using a new set of kdfs,

satisfying the concentration conditioph*|=¢, <¢,, with different amplitudes

P, (7“”)). The latter are calculated by means of an optitiwmaalgorithm (used also

for the set up of the initial conditions), whichdsscribed in the Appendix. After the
updating of the amplitudes, the next inner-cyclgih® and the procedure continues
as described above.

During each time interva[lr“>, 7“1 the amplitudes are considered constant and,

thus, globally, p, are piecewise constant functions of time. In féot, evolution of
the amplitudesp, is much slower than the evolution of the kernebpgetersm* and

h*, and this is what justifies the piece-wise constassumption forp, in our

numerical scheme. An improved numerical solutiakirtg also into account the

evolution of p; in a continuous fashion, can be constructed aridbei published
elsewhere.

It should be stressed that the accuracy of the edeffroposed and developed

herewith is critically dependant on the threshaddue <, for the variance parameter

(spreading indexu h* (t)” .

10.1 A local-moment method for the numerical solutiog$ (10.3b)

We are now focusing on the numerical treatmentgoiaéons (10.3b). For each value

of je{1....N}, eq. (10.3b) contains three unknown functions, elgrthe response
mean value m/(t), and covariancesC,(tt) and ijy(t, s), which should be
determined, and two known functions, namely thetation mean value”nj(s) and

the autocovariancé:f,y(s, s) introducing the appropriate, inner-cycle, forcifgus,

any solution scheme of eq. (10.3b) should providemith a number of equations

(hopefully three) governing the evolution of theeth unknown functions, along with

the evidence that introducing the obtained soluitotine operatorZ[K (v,u; m!,C! )}

will result in O (at least approximately) for akiues of(v,y) € R?.
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Since the (Gaussian) kernl(v,v; mj,Ci) is C™(R?) in (v,v) and dies out as
| (v,v)| = o0, eq. (10.3b) is equivalent to the following systefrocalized moment

equations:

8P+q

o vot

Z[K(U,y;mi,ci)] — 0, V(p,a)e Nyx Ny, Ny={0,1,2,3,.}. (10.5)
v=0
v=0

Exploiting the specific (Gaussian) form of the kafnand considering the cases
(p,9) = (1,0), (2,0) and (1,1), the following three (nonlinear) ODEs are obtained

from (10.5):

M’ (9+pm (9+3km (3 G(t)+ km(f = f( ) (10.62)
C (69 +uC,(t9+3km(} &( £} h()w3 K HUQ 9s '¢ ),  (10.6b)
Cou(t9)+nCy(t 9+3kG (1} G 1+ 3k Jt'g t)s'mh)+ "¢ .4, (10.6c)

These equations involve the three unknown functionét), C.(tt) and Cxiy(t, s),

and they are differential equations with respect,tparametrically dependent a
(No derivatives with respect te appear.) They should be satisfied for all values o

1)

(t,s) such thatr'’ <s< t< 7Y We are especially interesting in the solution of

system (10.6) on the diagonsi=t.
It has been found that if the three moment equatid®.6a,b,c) holds true, then

various other —but not all- moments, corresponttingther values of p,q), are also
zero. Besides, there are also valuegmfg), corresponding to higher-order moments,

for which eqgs. (10.5) are not satisfied. In anyegabe system (10.6a,b,c) is closed
and can be efficiently solved, providing us witlremsonable approximation of the

evolution of the kernel parameters] (1), C,(t, s= 1) and C,(t, s- ). When the
value of th (t)” exceeds the threshold valug, the current inner-cycle phase is

finished and the procedure switches to outer-cghkse.
The numerical solution of the set of nonlinear OOES.6) is implemented by
using the method of thquasilinearization (Bellman 1973, Lakshmikantham and

Malek 1994). Taking advantage of the symmetry prioge of the correlation matrix,
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the equations can be solved on the ‘diagonal’, iharounds=t. The sequence of
time instants for the numerical scheme has the form

(t,S): (ti’ti) — (ti+1"%> — (ti+1"§+1)-

An important aspect of the present method is iBility for parallel computation.
Parallelization techniques can be applied bothhe dynamical evolution of the
kernels and to the optimization algorithm. In thestfcase the algorithm can take
advantage of the independent evolution of eachéteFor the parallelization of the
optimization algorithm we can split the group offkdnto subgroups and then
independently approximate each subgroup by new ekerwith small variance.
Hence, we can probably succeed fast computatiansyiiems of higher dimensions,

subjected to general (smooth) excitation.

11 NUMERICAL EXAMPLES

We shall now apply the above described numericdles® to the numerical
determination of the response pdf of a dynamicatesy (4.1), excited by a known

stochastic process (see below), with system pammgt and k having the values

given in Table 1, under Cases | and II.

Table 1 System Parameters

System parameters Case | Case
W 1 1
Kk 1 -1

By performing a stability analysis to problem (4wl§ found that for/k >0 (Case |

in Table 1), the nonlinear system has one staldedfipoint located at zero. A

pitchfork bifurcation occurs gt/ k =0, and the fixed point at zero becomes unstable

in the semi-axisu/k <0(Case Il). In the same region:(k <0) two symmetric

stable points appear ai,/|,u/k| . Hence, we have the bifurcation diagram shown in

Figure 1.
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Bifurcation Diagram

Fixed point x
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Figure 1:Bifurcation diagram for system (4.1) with respexttte bif. parameter. /K .

On the basis of the above described dynamical fesitof the studied problem, it is
natural to expect that, in Case I, the evolvedwillf become eventually a unimodal

distribution centered at zero, while in Case I& girobability will concentrate around
the pair of the two symmetric stable fixed points/u/|k|, hence ultimately a

bimodal distribution will appear. Since the stafiked points are global attractors we
expect to attain these results after some timespgaddently of the initial density. The
numerical results to be presented and discussealvbelearly comply with this
behavior, dictated by the qualitative analysishaf $tudied system.

Consider first Case |, with a bimodal initial pdifined as a convex superposition
of two Gaussians with parameter values=0, m,=0.6, ¢, =0.1, ¢,=0.6, and
amplitudes p, = 0.4 and p, = 0.6, respectively. This initial pdf is shown in Figure
2b, at the sectiom=0. The excitation process is taken to be, in thieca Gaussian
stationary random function with zero mean and dawae function given by

Cr(7) :%cog( 2). (11.1)

Numerical results are presented in Figure 2. Mgectically, in the two upper
plots of this figure (Figures 2a and 2b), the etiolu of the probability density

fao (a) is shown, for the time intervél <t <1.4sey, large enough to get the steady

state response pdf. Also, in the same figure (lE@a&) the orbits oﬁLk (t) are plotted

by using thick black lines. The apparent discorities every 0.2sec are due to the re-

approximation of the calculated density by meanga oew convex superposition of

kdfs with smaller variance every time the concditiraparametersh®exceeds the
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critical value ; (which in this example was taken to be=0.3). In Figure 2c the

evolution of the variance for some kdfs of the mese density is shown. The
diffusive character of the evolution (strictly ieasing variances with respect to time)
is clearly seen in the numerical results. Agaie, dipparent discontinuities are due to

the re-approximation of the response pdf by kdf& wmaller variances.

time (sec)

Figure 2:a) Response pdfx<t) (a) andm/ (t) curves for Case | with stationary excitation. b)
3D plot of the response pdf. ¢) Variance plotssimme kdfs.
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Let us now consider our system (4.1) with parameddues as in Case Il. Two cases
of stochastic excitation will be considered. Fig will study the same stationary
Gaussian excitation as before, having zero mearcavariance function given by eq.

(11.1). The initial distribution is taken to be lbdal (strongly asymmetric for this

case), and is defined as a convex superpositistwamiGaussian pdfs with parameters
m=-0.4, m=0.6, 0,=0.1, 0,=0.6, and amplitudesp, =0.4, p,=0.6,

respectively.

T

e AT e

é%//}//72//7i/‘i/fl/‘;zfzf///i/fi///‘

;3i;{;;e;;f;Zi;%;;%;zf;;igi:;z;zf;fi:
B
B o T e e e o e
¢ o o5 1 15 2 2!

time (sec)
Figure 3:a) Response pdfxm (a) andm/ (t) curves for Case Il with stationary excitation.
b) 3D plot of the response pdf. c) Variance plotssome kdfs.
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Numerical results concerning the evolution of thsponse pdf, for the time interval
O<t< 2.4se( are presented in Figure 3. Although the initidf pas taken to be a
strongly asymmetric bimodal one, the eventuallyultésy response density turns to
be a symmetric bimodal pdf, with modes exactlyhat $table fixed points, located at

+ |,u/k|::|:1, as expected. The interchange of probability betwéhe kernels

(implemented by means of the re-approximation efréssponse pdf in terms of a new
convex superposition of kdfs with smaller varianidekes place approximately every
0.2 seconds. This is shown in the figure as an rappaliscontinuity of the mean-
value and variance curves.

From both Figures 2a and 3a (see also Figure 4awhewve can easily observe a
permanent tendency aff (t)-orbits to be attracted by the stable fixed poiffisis
means that there is a continuous inflow of probigbihass from the outer region of
the phase spacdrnk> 1) to a strip around the locus of the stable fixedhfs, which is
not stopping even after the response pdf has bemrhed its stationary form. This
apparently paradoxical behaviour should be adddess¢the discrepancy between the

tail form of the response pdf, (a), and the tail form of the Gaussian kernels which

are used to represeri;(t) (a). This fact reveals the necessity for an asymptiticy

of the tail behaviour directly from the differertquation (5.7a), which will permit
the construction and use of the kdfs suitably asthgb the specific system, i.e.,
exhibiting the correct tail behaviour. Such a camngion will also facilitate and

accelerate the convergence of the numerical solytiocedure.

Finally, in Figure 4 we present numerical results the Case Il, with a non-
stationary (cyclostationary) Gaussian excitationthwzero mean and covariance

function given by

C(ts) — %[H o.2co%”—2t]] ot 9. (11.2)

Again the initial distribution is constructed asugperposition of two Gaussian pdfs
with parameteram =—-0.4, m, =0.6, 0, =0.3, 0, =0.7, and amplitudesp, = 0.4
and p, = 0.6, respectively. The evolution of the response pbdiby density function

is plotted for the time intervaD<t < 8.0se(, long enough so that the periodic

character of the response to become clear.
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From Figures 4a, 4b we are able to observe thagr e transient state
(O<t<1.5se(), the response density function exhibits a peddaehavior with a
period of approximately 4sec, which is the periédhe excitation, i.e., the period of
the correlation functionC,,(t,s) (eq. (11.2)) with respect to its first argument.
Furthermore, it is easily seen that, in this casegreater amount of kernels is

necessary in order to approximate satisfactorigysbught-for pdf, due to the fact that

the non-stationary excitation produces a more cmaij@d response.

4
a) time (sec)

o o0 /Z ///7 /// /// // / /#//#ﬂﬂ//////?

0 2 3 8
time (sec)

Figure 4:a) Response pdf, a) andm! (t) curves for Case Il with non-stationary
excitation. b) 3D plot (SPt e response pdf. c) ¥ade plots for some kdfs.
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12 DISCUSSION AND CONCLUSIONS

In this paper new PDEs governing the evolutionhef jpint, response-excitation, ch.f
and pdf of nonlinear dynamical systems under geésévrahastic excitation have been
derived. The starting point of our approach is pfgpe equation, that governs the
joint, response-excitation, characteristic funcéipnproviding a probabilistically
complete reformulation, equivalent with the undewy (nonlinear) stochastic
differential equation. This ‘infinite-dimensionaéquation is appropriately reduced
(by projection) tolinear partial differential equations that governs thspanse-
excitation, characteristic (or probability densitignction (see, e.g. eq. (5.6a) or
(5.7a)). The latter equations are supplemented (nith-local) marginal compatibility
conditions (see, e.g. eq. (5.6b) or (5.7b)) antdainconditions (see, e.g. eq. (5.6¢) or
(5.7¢)), and they can provide us with the evolutbthe joint ch.f. (or pdf).

For the numerical solution of these novel PDEs.(eedher in the form (5.6) or
(5.7)) an original, particle-type, method is deysd and illustrated through its
application to a specific, simple, nonlinear systéhe key point of the numerical
method is the representation of the joint, respamsitation, pdfs and ch.fs by means
of appropriate convex superpositions of kernel dgner kernel characteristic
functions, respectively. In this way, the non-looahrginal compatibility conditions
are satisfied priori, and the PDEs governing the evolution of the seéighpdf and
ch.f are eventually transformed to systems of maai ODEs for the kernel

parameters.

From the results presented in this work we conclilnd¢ the proposed method is
able to produce quite satisfactory results for esyst subjected to general stochastic

excitation. Important aspects of the method ajelt(is a two-leve| particle-type

method, separating the fast, inner-cycle (shomjephase, which describes the
particle dynamics separately for each particlemftbe slow, outer-cycle (long-term)
phase, which accounts for the interchange of prtbhaimass between the particles
and the evolution of the particles’ amplitudes. I can be improved, keeping its two-
level, particle-type character, so that to avoid fiiece-wise smoothness assumption

for the amplitudesp, , and to ensure the “exact” satisfaction of the PByEsolving a

linear evolution problem in the outer-cycle phase) It can be generalized to higher
dimensional systems. Andvj It is plainly suitable for parallelized computais,

since the nonlinear ODEs describing the evolutibeaxh particle in the inner-cycle
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phase can be solved independently. In addition, dmmputationally demanding

optimization algorithm (see Appendix) is easilygdbalizable.

APPENDIX

In this Appendix a brief outline is given of thetmpization algorithm used for the
construction of appropriate approximants of thegbddor pdf in terms of kdfs
exhibiting a small variance (either given or undpecific control). This algorithm is
used quite often throughout the numerical solutioa, each time the solution
procedure switches from the inner-cycle to the mayele and the calculated density
is re-approximated by means of kdfs of small var@anlt is also used for
implementing the initialization, by representinge tgiven initial pdf as a convex
superposition of appropriate kdfs. The basic oation problem is formulated as

follows:

Given f (x) anda,, find M and{pk,m(}lil such that

+00 M B 1 X—m 2
[ -3 exp{g[ =

dx = min. (A.1)

under the constraints:

p+p,+...+p,=1 and p >0, forallk.
For the inner-cycle/outer-cycle re-approximation tfe sought-for pdf, the
integrations can be carried out analytically (sirrb@x) is already represented as a

superposition of Gaussian kernels, with differeataneters of course) leading to an
explicit linear optimization problem, iM is given.M is obtained by using a variant
of an iterative, adaptive procedure, developed hayriBadis (2005).

For the initial data representation, the optimmatprocedure is performed quite
similarly. However, in this case, the integrationgA.1) are performed numerically,
since, in general, the initial probability distrimn may not be analytically described.

A detailed description of the solution algorithmilveie presented elsewhere.
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