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ABSTRACT: In the present work the problem of determining the probabilistic 

structure of the dynamical response of nonlinear systems subjected to general, 

external, stochastic excitation is considered. The starting point of our approach is a 

Hopf-type equation, governing the evolution of the joint, response-excitation, 

characteristic functional. Exploiting this equation, we derive new linear partial 

differential equations governing the joint, response-excitation, characteristic (or 

probability density) function, which can be considered as an extension of the well-

known Fokker-Planck-Kolmogorov equation to the case of a general, correlated 

excitation and, thus, non-Markovian response character. These new equations are 

supplemented by initial conditions and a marginal compatibility condition (with 

respect to the known probability distribution of the forcing), which is of non-local 

character and, thus, difficult to implement. The validity of this new equation is also 

checked by showing its equivalence with the infinite system of moment equations. 

The method is applicable to any, state-space, differential system exhibiting 

polynomial nonlinearities, but in this paper it is illustrated through a detailed analysis 

of a simple, first-order, scalar equation, with a cubic nonlinearity. It is also shown 

that the same approach is also able to derive the Fokker-Planck-Kolmogorov 

equation for the case of independent-increment excitation.  
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supervision of G.A.A. at the National Technical University of Athens, Dept. of Naval Architecture and 
Marine Engineering.  

* Corresponding Author.: Tel +30 210 7721136; fax: +30 210 7721397 
E-mail addresses: mathan@central.ntua.gr (G.A.A), sapsis@mit.edu (Th.P.S). 



 2 

A numerical method for the solution of these new equations is introduced and 

illustrated through its application to the simple model problem. It is based on the 

representation of the joint probability density (or characteristic) function by means of 

a convex superposition of kernel functions, which permits to satisfy a priori the non-

local marginal compatibility condition. On the basis of this representation, the partial 

differential equation is eventually transformed to a system of ordinary differential 

equations for the kernel parameters. Extension to general, multidimensional, 

dynamical systems exhibiting any polynomial nonlinearity will be presented in a 

forthcoming paper (Athanassoulis & Sapsis 2007). 

 
KEYWORDS: Stochastic Dynamics, Numerical solution of Stochastic Differential 

Equations, Functional Differential Equations, Correlated Stochastic Excitation, 

Generalized Fokker-Planck-Kolmogorov Equation, Non-Markovian Responses, 

Characteristic Functional, Kernel Density Functions.  

 
1 INTRODUCTION 

Many problems occurring in applied sciences and engineering are successfully 

modelled as stochastic differential equations. A very important class of such problems 

are those modelled as stochastically excited, nonlinear, dynamical systems. Well-

known examples include the dynamic responses of ships and other man-made 

structures and systems under the influence of wind-generated waves in the sea 

(Schlesinger & Swean 1998, Wilson 2002, Belenky & Sevastianov 2003, Arnold et al. 

2004), the dynamic responses of buildings and bridges under the influence of 

earthquakes (Lin & Cai 1995, Deodatis 1996, Kafali & Grigoriu 2003), as well as the 

dynamic responses of structures and vehicles under the influence of wind forces 

(Simiu & Scanlan 1986, Kree & Soize 1986, Soong & Grigoriu 1993, Hemon & Santi 

2006). In all these cases the excitation loads are assumed to be known stochastic 

processes, either Gaussian or non-Gaussian, as in the case of wind loads. Their 

probabilistic and correlation structure can be (and, usually, have been) inferred by 

means of statistical data analysis and, in most cases, have been conveniently 

parameterized for easy reference and use in calculations. Most of the foundational 

facts and aspects concerning the stochastic modelling philosophy in engineering and 

applied science, and the corresponding mathematical background can be found 
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nowadays in book form; see, e.g., Kree & Soize 1986, Sobczyk 1991, Soong & 

Grigoriu 1993, Roberts & Spanos 2003.  

The ultimate objective in the analysis of such problems is to obtain a complete 

probabilistic description of the response process, permitting to answer any important 

questions about the response dynamics. Examples of such questions concerns the 

distributions of local extrema, of upcrossing rates at certain levels, of the first passage 

time associated with a critical level value, etc. To make this possible we need, in 

principle, to know the whole Kolmogorov hierarchy of the n-fold, joint, probability 

distributions ( ) ( ) ( )( )
1 2 1 2... , ,...,

n nx t x t x tF a a a  of the n-variate response random variables 

( ) ( ) ( )( )1 2, ,..., nx t x t x t  at any collection of time instances ( )1 2, , ..., nt t t  or, equivalently 

and more concisely, the Characteristic Functional (Ch.Fl) of the response process. 

Because of the obvious difficulties of this general concept of solution of the 

probabilistic dynamics problems, there is a constant tendency –at least in the applied 

and engineering literature– to avoid such an approach, resorting to simpler (partial) 

solution concepts.  

An important, and extensively studied, context, permitting a relatively easy, 

complete characterization of the probabilistic responses of a dynamical system, occurs 

if we assume that the excitation is a process with independent increments (see, e.g., 

Pugachev & Shinitsyn 1987, Soize 1994, Grigoriu 2004). The key feature in this 

context is that the response vector, in the state-space formalism, is a Markovian 

process and, thus, its probability density function is governed by the Fokker-Planck-

Kolmogorov (FPK) equation (in the Gaussian case) or by reasonable extensions of the 

FPK equation (in the non Gaussian case). Interestingly enough, there have been 

identified broad classes of problems in which analytic solutions of the classical FPK 

equation are available (see, e.g., Soize 1994), making this approach even more 

attractive. 

An approximate method dealing with nonlinear systems under general stochastic 

excitation is the Statistical Linearization Method (see, e.g., Roberts & Spanos 2003), 

which is based on the approximation of the full system by a ‘statistically equivalent’ 

linear one. Some variations of the method, concerning local linearization in the phase 

space, have been recently presented (Pradlwarter 2001), giving promising results. It is 

also possible to develop approximate solution schemes by replacing the given 

dynamical system by a “statistically equivalent” nonlinear system provided that the 
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latter belongs to the class of problems which can be solved exactly. This method 

introduced by Caughey has been applied to various particular problems in the last 

three decades; see e.g . Lutes (1970), Caughey (1986) or Roberts & Spanos (2003). 

Another well-known method that can be applied to any type of stochastic excitation 

and to any type of nonlinearity, is the method of moments, which reduces the initial 

stochastic dynamics problem to an infinite system of deterministic differential 

equations for the moment functions (Beran 1968, Pugachev & Shinitsyn 1987). This 

infinite system should be truncated and becomes closed (in the case of nonlinear 

problems) by means of appropriate closure schemes. Then, it is solved numerically, 

providing us with restricted information about the probabilistic characterization of the 

response process. 

Another method, in principle well-known but in very little use for solving practical 

problems in stochastic dynamics, is the one based on the Ch.Fl of the full probability 

measure associated with the dynamic response process. The first step in this direction 

was made by Hopf (1952) who derived a Functional Differential Equation (FDE) for 

the Ch.Fl associated with the probabilistic solution of the Navier-Stokes equations. 

This approach, known as the statistical approach to turbulence, has been developed 

further by many authors (see, e.g., Lewis & Kraichnan 1962, Monin and Yaglom 

1971, 1975, Foias 1974, Feller 1986), and, eventually, led to the derivation and 

exploitation of various transport-diffusion equations for pdfs of the velocities and 

composition in Turbulent reactive flows (Kollman 1990). In parallel, a simpler 

version of the same approach has been developed and applied to finite-dimensional 

dynamical systems, governed by Stochastic Ordinary Differential Equations (SODEs). 

See, e.g., Beran (1968). Such Hopf-type FDEs are always linear, and govern the Ch.Fl 

of the sought-for probability measure or –depending on the specific formulation– the 

Ch.Fl of the joint, response-excitation, probability measure. In recent years successful 

attempts have been reported towards the analytic determination of the response Ch.Fl 

for some classes of linear problems, even avoiding the explicit use of Hopf’s FDE 

(Caseres & Budini 1997, Budini & Caseres 1999, 2004). For some non-linear 

problems, the Ch.Fl can be expressed as a formal infinite-dimensional (functional) 

integral (Monin & Yaglom 1975), which is of little (or no) practical use.  

In this paper, Hopf’s FDE is taken as the starting point of the probabilistic analysis 

of the considered stochastic dynamics problem. Because of the generality of Hopf’s 

approach, the method is applicable to any (at least) polynomially non-linear system 
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and any kind of stochastic excitation. Nevertheless, for reasons of simplicity and 

clarity, our study will be carried out on a specific, first-order, dynamical system, with 

cubic nonlinearity. The excitation process will be assumed, in principle, completely 

known, with a given correlation structure and continuous (or smoother) sample 

functions. This implies a non-Markovian character of the response, making the 

approach based on the FPK equation inapplicable. Exploiting the Hopf FDE, new 

Partial Differential Equations (PDEs) governing the joint, response-excitation, 

characteristic functions (ch.f.), are derived. The corresponding equations for the joint 

pdfs are also obtained, by applying a Fourier transformation. These new PDEs, which 

are always linear, can be considered as a systematic and rigorous generalization of the 

FPK-type equations to the case of correlated excitation and non-Markovian responses. 

As an additional test of validity of these new PDEs, we show that they produce the 

correct infinite system of the moment equations. The same approach, i.e. starting from 

the Hopf FDE, is also applied to derive extended FPK equations, for the case of 

independent-increment excitation. In this connection, the results recently obtained by 

Grigoriu (Grigoriu 2004), concerning various cases of non-Gaussian, independent-

increment forcing, are derived as special cases of our new extended FPK equations. 

We also show the consistency of our new PDE (for the joint, response-excitation, 

pdfs) with the usual (or extended) FPK equation, by deriving the latter as a limiting 

case of the former. A lack of rigor occurs here, when the sample functions of the 

response process are not continuous. It is conjectured that this derivation may be 

reformulated in a rigorous manner by invoking the dual of the space of cadlag (or 

regulated) functions, recently studied by Tvrdy (Tvrdy 2002).  

 
Abbreviations  
 

The following abbreviations –some of which have already been introduced above– 

will be consistently used in the sequel:  

 B-space         Banach space  

 ch.f(s)           characteristic function(s)  

 Ch.Fl(s)        characteristic functional(s)  

 F-derivative  Frechet derivative  

 FDE(s)          functional differential equation(s)  

 FPK               Fokker – Planck – Kolmogorov  

 ODE(s)         ordinary differential equation(s)  
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 PDE(s)          partial differential equation(s)  

 pdf(s)            probability density function(s)  

 SODE(s)       stochastic ODE(s)  

2  PRELIMINARIES AND NOTATION  

In this work we consider ODEs (systems) of the form (in state space formulation):  

 

( ) ( )( ) ( )x t G x t y t= +ɺ ,    ( )0 0x t x= ,                 (2.1) 

 

where x  and y  are scalar-valued or N-vector-valued, continuous (or smoother) 

functions, defined at least on an interval [ ]0,I t T≡  (that is, [ ]0, : , Nx y t T I≡ → ℝ ), 

and : N NG →ℝ ℝ , 1N =  or 1N > , is also a continuous (or smoother) function. 

Both the excitation ( )y i  and the initial conditions 0x  will be assumed known 

stochastic elements (function and variable, respectively). In contrast with the standard 

approach, followed in the case of an Ito SODE, the forcing ( )y i  is allowed to be 

smooth (e.g., k-times continuously differentiable), exhibiting any type of correlation 

structure in time. Thus, the sample functions ( )x t  and ( )y t  are considered as 

elements of smooth-function B-spaces, denoted by k  and l , respectively. Our 

main results will refer to the case 1N = , ( )k IC=l , I ⊆ℝ , 0k =  or 0k > , and 

k  a similar space with smoother elements. The whole methodology can be 

extended to the vector case 1N >  with the usual trouble (see Athanassoulis & Sapsis 

2007 for a detail analysis of a second-order system).  
 

The topological dual spaces of k  and  l  are also B-spaces and will be denoted 

by =′k h  and =′l i . The symbols ,u x  and ,v y  denote the standard 

duality pairings between k  and h , and  l  and i , respectively.  
 

The underlying probability space is denoted by ( )( ),, ΩΩ ΩU c , where Ω  is an 

abstract version of the sample (trial) space, ( )ΩU  is the family of Borel sets of Ω , 

and Ωc  is the corresponding probability measure over Ω . The stochastic processes 

x  and y  are measurable maps , :x y →Ω k?l , which define the induced 
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probability spaces ( )( ),, kk U k c  and ( )( ),, ll U l c , respectively. We shall 

also need and consider the joint process :x y → ×× Ω k l  with induced 

probability space ( )( ),, ×× × k lk l U k l c . In the sequel we shall use the 

notation x  or ( )x i  or ( );x ωi , and similarly for y , for the random element, and 

( );x t ω , [ ]0,t t T I∈ ≡ ⊆ℝ , ω∈Ω , and similarly for y , for the sample functions, in 

accordance with the needs of the discussion.  

The finite-dimensional distributions, densities and characteristic functions of the 

random element ( );x ωi  will be denoted by ( ) ( ) ( )
1 1, ,

M Mx t x tF α α
…

… , 

( ) ( )( )
1 1, ,

M Mx t x tf α α
…

…  and ( ) ( )( )
1 1, ,

M Mx t x tφ υ υ
…

… , respectively. This implies a 

convenient notation for the joint random element ( ) ( )( ); , ;x yω ωi i ; for example 

( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 3 1 2 1 2 3, , , ,x t x t y t y t y tf α α β β β  for the 2 x− , 3 y−  density, and 

( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 3 1 2 1 2 3, , , ,x t x t y t y t y tφ υ υ ν ν ν  for the corresponding characteristic function. The 

usual (finite-dimensional) mean value operator (ensample average) will be denoted by 

[ ]ω
iE . For example, the mean value function of the random element ( );x ωi  will be 

written as ( ) ( );x tm x tω ω =  E . Slight variations (simplifications) of this notation will 

be introduced later, in accordance with the needs of the presentation.  
 

Infinite-dimensional (global) moments, are defined by integrating over the whole 

sample space k  with respect to the probability measure kc  (See, e.g., Kree & 

Soize 1986, Vakhania et al. 1987, Egorov et al. 1993). For example, the mean (first 

moment) mk  is defined to be this element of k , for which the following scalar 

equation holds true:  

 

( ), , ,u u x dx um = ∀ ∈∫k

k

hc ,                (2.2a)  

 

where ′≡h k . Furthermore, the correlation operator (second moment) is defined 

to be this linear operator :R →kk h k , for which the following scalar equation is 

valid ,u w∀ ∈h :  
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( ), , ,w u w x u x dxR = ∫kk

k

c .                      (2.2b)  

 

The integrals appearing in the right-hand side of eqs. (2.2) are infinite-dimensional 

(functional) integrals over B-spaces. (For detailed definitions and conditions ensuring 

existence of these integrals see references stated above or Dalecky & Fomin 1991). In 

general, the functional integral of any bounded, measurable, continuous functional 

: → ℂZ k , with respect to a probability measure  c ,  is well defined,  and  will 

be denoted by ( ) ( )x dx∫
k

cZ .  

 

Measures and integrals over infinite-dimensional vector spaces are related with the 

corresponding finite-dimensional ones through the concepts of cylinder sets, cylinder 

measures and cylinder functionals. Let k  be a separable B-space, h  be the dual 

of k , and 1, , Qu u… , be Q linearly independent elements of h . Then, to any 

element x∈k  we associate the Q−dimensional projection 
1 , , :

Q

Q

u u →Π
…

ℝk , 

defined by  

 

[ ] ( )
1 , , 1, , , ,

Qu u Qx u x u x=Π
…

… .                (2.3)  

 

The inverse of [ ]
1 , , Qu uΠ
…
i , applied to the Borel sets ( )Q

ℝU , defines the cylinder sets 

of k . The existence of a probability measure kc  on k  implies the existence of 

Q-dimensional (marginal) measures 
1, , Qu uP
…

 on Qℝ , associated with the random 

vectors ( ) ( )( )1, ; , , , ;Qu x u xω ωi … i  by means of the relation  

 

( ) [ ]( )
1 1

1

, , , ,
Q Q

u u Q u u Q
E EP

k
c

−

= Π
… …

.                 (2.4)  

 

for any ( )Q
QE ∈U ℝ .  

 

Consider now an arbitrary cylinder functional : →ℂZ k , that is a functional of 

the form  

 

( ) ( )1, , , ,Qx g u x u x= …Z ,      x∈k ,              (2.5)  
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where : Qg →ℝ ℂ  is an arbitrary, measurable, integrable function. In this case, the 

infinite-dimensional integral of ( )xZ  with respect to the probability measure c  

over the space k , can be expressed as a Q-dimensional integral by means of the 

formula:  

 

( ) ( ) ( ) ( )
1
, ,

Q

Q

u u
x dx g dP=∫ ∫ a a

…

k

Z c
ℝ

.                (2.6)  

 

Eqs. (2.5) and (2.6) provide us with a powerful method for evaluating integrals over 

infinite-dimensional (function) spaces. They will be referred to as the (Q-

dimensional) Projection Theorem.  

3 A BRIEF REVIEW ON THE CHARACTERISTIC FUNCTIONAL AND ITS 
BASIC PROPERTIES  

In this section we recall the definition and some basic properties of the Ch.Fl for 

probability measures defined on separable B-spaces.  

3.1 Definition of the Characteristic Functional  

Definition 3.1: Let k  be a separable B-space and = kc c  be a probability 

measure defined on it. The Ch.Fl Y  of c  is a cylinder functional defined on the 

dual space ′=k h  by the formula  

 

( ) ( ), ,i u xu e dx u= ∈∫
k

Y c h .         (3.1)  

 

This integral always exists provided that the corresponding probability measure is 

well defined.  

3.2 Infinite-Dimensional (Global) Moments  

Let the Ch.Fl be differentiable in the sense of Frechet. In order to calculate the F-

derivative ( )uDY , we make use of the Gateaux derivative (which always exists for 

a F-differentiable map). Thus, we have  

 

( )[ ]
( )

( ),

0

, , , .i u xd u z
u z i z x e dx u z

d
D

ε

ε

ε =

+
= = ⋅ ∈∫

k

Y
Y c hA     (3.2)  
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Setting 0u= , we obtain  

 

( )[ ] ( )0 , ,z i z x dx zD = ⋅ ∈∫
k

Y c h .                    (3.3)  

 

Since ( )[ ]0 zDY  is a continuous, linear functional with respect to z , there should 

exists an element m∈k , such that  

 

( )[ ] ( ), 0 ,z i z z x dxm D= − ⋅ = ∫
k

Y c .  (3.3’)  

 

Comparing the above equation with the eq. (2.2a), it easily seen that the element 

m∈k  of eq. (3.3’) coincides with the mean value mk  of the probability measure 

c . The correlation operator R
c

 can be associated in a similar way with the second 

F-derivative of the Ch.Fl. In this case we have 
 

( )[ ] ( )2, 0 , , , , ,w z z w w x z x dx z wR D= − = ∈∫c
k

Y hc . 

3.3 Finite-Dimensional (Point) Moments  

In the case where the space k  is a function space, apart from infinite-dimensional 

(global) moments, we are also interesting in finite-dimensional moments associated 

with finite-dimensional projections ( ) ( ) ( )( )1 2; , ; , , ;nx t x t x tω ω ω… , for any set of time 

instances ( )1 2, , , nt t t… . This kind of moments can be obtained also by differentiating 

the Ch.Fl, this time using Volterra functional derivatives. (See, e.g., Volterra 

1927/1959/2002 or Beran 1968). Volterra derivatives, e.g. the first-order one 

( ) ( )/u u tδ δY , can be calculated either by applying the original definition to the 

functional, or by applying the Frechet derivative ( )[ ]u zDY  at ( ) ( )z tδ= −i i . 

Following the second approach, and using eqs. (3.3) and (2.6), we obtain  

 

( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
0

0 ;
def

x tt i x t dx
u t

i adF a i x tD Eω
δ

δ
δ

ω  = − =     = =∫ ∫i

k

Y
Y c

ℝ

 

 

and thus  
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( )[ ] ( )
( )

01
;x t

i x t
ω δ

ω
δ

=E
Y

.   (3.4a)  

 

Similarly we obtain  
 

( ) ( ) ( ) ( ) ( )
( )

( ) ( )

2
2

1 2 1 22 2
1 2

01 1
; ; 0 ,x t x t t t

i i u t u t
DEω

δ
ω ω δ δ

δ δ
   = ⋅ − − =   i i

Y
Y ,           (3.4b)  

 

as well as analogous expressions for higher-order moments. Working similarly, and 

using appropriate generalized functions, we can derive equations for higher-order 

moments involving both the values of the random element at some time instances, as 

well as the values of its derivatives either at the same or at different time instances. As 

an example we give the formula:  
 

( ) ( )
( )

( ) ( ) ( )
2

1 2 1 2

1
; ; 0 ,x t x t t t

i i
DEω ω ω δ δ   ′ ′= ⋅ − −   −

i iY . 

4 HOPF-TYPE EQUATION FOR THE CHARACTERISTIC FUNCTIONAL  

In order to illustrate the derivation of Hopf-type FDEs for nonlinear dynamical 

systems, and pave the way to the next section, where these equations will be exploited 

to produce new PDEs for finite-dimensional ch.fs, we shall restrict ourselves here to a 

specific case of a simple (scalar, first-order) dynamical system having a cubic 

nonlinearity, which is described by the following SODE:  

 

( ) ( ) ( ) ( )3; ; ; ;x t x t k x t y tω µ ω ω ω+ + =ɺ ,  (4.1a)  

( ) ( )0 0;x t xω ω= ,   (4.1b)  

 

where ,kµ  are deterministic constants, ( )0x ω  is a random variable with known ch.f 

( )0 ,φ υ υ∈ℝ , and the forcing ( ),y ωi  is a real-valued random function, with sample 

space l , probability measure yc , and Ch.Fl ( ),y v v∈ =′Y l i . The sample 

space l  can be taken to be a quite general, separable, B-space. In the present work, 

it will be taken as a space ( ),k I IC= ⊆l ℝ , for some { }0k ∈ ∪ℕ  .  
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Standard existence and uniqness theory (see, e.g., Bunke 1972, or Sobczyk 1991) 

assure that there is a stochastic process ( );x ωi , with sample space =k  ( )1k IC +  

and probability measure xc , and a joint probability space 

( )( )xy× × ?k l?U k l c , such that the joint process ( ) ( )( ); , ;x yω ωi i  verifies 

the SODE (4.1).  
 

The joint, response-excitation, probability measure xyc  is equivalently described by 

the joint Ch.Fl  

 

( ) ( ) ( ), ,
, ,

i u x v y
xy xyu v e dx dy

+= ∫ ∫
l k

Y c .    (4.2)  

 

We shall now use the SODE (4.1) in order to obtain an FDE for ( ),xy u vY . Let us 

consider the Volterra u-partial derivative of xyY  at time t :  

 

( )
( )

( ) ( ) ( ), ,,
,i u x v yxy

xy

u v
ix t e dx dy

u tδ

δ += ∫ ∫
l k

Y
c .   (4.3)  

 

Since the sample space k  consists of smooth functions, we can differentiate (4.3) 

with respect to t , obtaining:  

 

( )
( )

( ) ( ) ( ), ,,
,i u x v yxy

xy

u vd
i x t e dx dy

dt u tδ

δ +′= ∫ ∫
l k

Y
c .  (4.4)  

 

Further, we compute the three-fold u-partial Volterra derivative of ( ),xy u vY  at time 

instants 1 2 3, ,t t t I∈ :  

 

( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
3

, ,
1 2 3

1 2 3

,
, .i u x v yxy

xy

u v
ix t ix t ix t e dx dy

u t u t u tδ δ δ

δ += ∫ ∫
l k

Y
c   (4.5)  

 

Setting 1 2 3t t t t= = =  in the latter, and combining with equs. (4.3), (4.5) and (4.1a), 

we get  
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( )
( )

( )
( )

( )
( )

3

3

, , ,xy xy xyu v u v u vd
k

dt u t u t u t
µ

δ δ δ

δ δ δ
+ − =

Y Y Y
  

( ) ( ) ( ) ( ) ( ), ,3
(4.1 )

,i u x v y

xy

a
i x t x t kx t e dx dyµ

+ ′= + +   =∫ ∫
l k

c  

( ) ( ) ( ), , ,i u x v y

xyi y t e dx dy
+= ∫ ∫

l k

c .                 (4.6)  

 

Clearly, the last double functional integral can be expressed as a v-partial Volterra 

derivative:  

 

( ) ( ) ( )
( )
( )

, , ,
,

i u x v y xy
xy

u v
iy t e dx dy

v tδ

δ+ =∫ ∫
l k

Y
c .               (4.7)  

 

Combining (4.6) and (4.7) we derive the sought-for, Hopf-type, FDE that governs the 

joint Ch.Fl ( ),xy u vY :  

 

( )
( )

( )
( )

( )
( )

( )
( )

3

3

, , , ,xy xy xy xyu v u v u vd
k

dt u t u t u t

u v

v t
µ

δ δ δ

δ

δ

δ δ δ
+ − =

YY Y Y
. (4.8a)  

 

Equ. (4.8a) is a linear FDE involving Volterra functional derivatives, as well as 

ordinary time derivatives. The cubic nonlinearity of the initial SODE corresponds to 

the 3-fold Volterra derivative ( )33 /xy u tδδ Y . From the above derivation it is clear that 

any nth-order polynomial nonlinearity of the initial differential equation is transformed 

to an n-fold Volterra derivative in the corresponding Hopf-type FDE. Another 

important feature of equation (4.8a) is that it holds true for any continuous functionals 

,u v∈ ∈h i .  
 

Equ. (4.8a) has to be supplemented by an appropriate initial condition, expressing that 

the probability measure associated with the initial state ( )0,x t ω  is given. This 

condition can be implemented by means of the joint Ch.Fl ( ),xy u vY  as follows. 

Setting 0v=  (to restrict ourselves to the response process only) and ( )0u tυ δ= ⋅ −i , 

υ∈ℝ , (to concentrate only at the initial time instant), will result in  
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( )( ) ( )( ) ( ) ( ) ( ) ( )0 0
, 0, ,

0 0
, 0 , ,i t x y i t x

xy xy x
t e dx dy e dx

υδ υδ

υδ φ υ
− + −

− = = =∫ ∫ ∫
i i

i

l k k

Y c c   

where ( )0φ υ  is the ch.f of ( ) ( )0 0,x t xω ω= . Hence, the initial condition can be 

expressed as  

 

( )( ) ( )0 0,0 ,xy tυδ φ υ υ− = ∈i ℝY .       (4.8b)  

5 DERIVATION OF NEW PDEs FOR JOINT RESPONSE-EXCITATION 
CHARACTERISTIC FUNCTIONS  

In this section we shall exploit the Hopf-type FDE (4.8), obtained above, to derive 

new PDEs for the joint, response-excitation, ch.f when the excitation is a known 

stochastic process either with a.e. continuous sample functions or smoother. In 

contrast with the case of an independent-increment excitation process, where the 

randomness of the excitation “regenerates” every time instant and allows us to write 

explicitly an equation involving only the response density (the well-known FPK 

equation), in the case of a stochastic excitation with smooth sample functions, the 

randomness evolves, in general, in a smoother way, as a result of the finite correlation 

time, making necessary to consider response and excitation jointly.  

The causality principle dictates that the current value ( );x t ω  of the response, 

depends only on the history of the excitation ( )0 ;y t s t ω≤ < . However, this does not 

prevent the stochastic dependence between ( );x t ω  and ( );y t ε ω+ , 0ε> , which is a 

natural result of the smoothness and the finite correlation time of the excitation, 

( ), 0yyC t tε+ ≠ .  

We shall proceed to derive a PDE for the joint ch.f ( ) ( )( ),x t y tφ υ ν  corresponding to 

the pair of random variables ( ) ( )( ); , ;x t y tω ω , fixedt = . To this end we apply eq. 

(4.8a), above, to the pair  

 

( ) ( ),u t v sυ δ ν δ= ⋅ − = ⋅ −i i ,                     (5.1)  

 

( ,υ ν ∈ℝ ) and take the limit s t→ , after some manipulations. For the first term of 

eq. (4.8a) (see also eq. (4.4)), we obtain  
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( ) ( )( )
( )

[ ]

( )
( ) ( ){ } ( )

,

exp ,

xy t sd
Projection Theorem

dt u t

dx t
i i x t i y s dx dy

dt

υ δ ν δ

δ

υ ν

δ

×

 ⋅ − ⋅ −   =   

= + =∫∫

i i

k l

Y

c xy

  

( ) ( ){ } ( )1
exp ,xyi x t i y s dx dy

t
υ ν

υ
×

 
∂  = + = 
∂  

 
∫∫

k l

c   

    { } ( ) ( ) ( ) ( ) ( ) ( ),1 1
exp , .

t

x t y s

x y si x i y x y dxdy
t t

f
υ ν

υ ν
υ υ

φ

×

  ∂∂  = + = ∂ ∂  
∫∫
R R

  

 

Taking now the limit s t→ , we get  

 

( ) ( )( )
( )

( ) ( ) ( ), ,1
lim xy x t y s

s t

s t

t sd

dt u t t

υ δ ν δ

δ

φ υ ν

υ

δ

→
=

 ⋅ − ⋅ −      

∂
=

∂
i iY

.             (5.2)  

 

Working similarly, we readily obtain the following results concerning the remaining 

terms appearing in eq. (4.8a):  

 

( ) ( )( )
( )

( ) ( ) ( ),, x t y tt t

u t

υ νδ υ δ ν δ

δ υ

φ∂⋅ − ⋅ −
=

∂

i iY
,               (5.3)  

 

( ) ( )( )
( )

( ) ( ) ( )33

3 3

,, x t y tt t

u t

υ νδ υ δ ν δ

υδ

φ∂⋅ − ⋅ −
=

∂

i iY
,               (5.4)  

 

( ) ( )( )
( )

( ) ( ) ( ),, x t y tt t

v t

υ νδ υ δ ν δ

δ ν

φ∂⋅ − ⋅ −

∂
=

i iY
.                (5.5)  

 

Combining equs. (5.2)-(5.5) with the FDE (4.8a), we obtain the following PDE for the 

joint ch.f ( ) ( )( ),x t y tφ υ ν , of the pair of random variables ( ) ( )( ); , ;x t y tω ω , for every 

0t t> :  

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3

3

, , , ,1 x t y s x t y t x t y t x t y t

s t

k
t

φ υ ν φ υ ν φ υ ν φ υ ν
µ

υ υ υ ν
=

∂ ∂ ∂ ∂
+

∂ ∂ ∂ ∂
− = .         (5.6a)  
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Now, since the stochastic process ( ),y ωi  is given, its ch.f ( )( )y tφ ν  is known. Hence, 

the y-marginal of the joint ch.f ( ) ( )( ),x t y tφ υ ν  has to coincide with ( )( )y tφ ν , resulting in 

the following marginal compatibility condition:  
 

( ) ( )( ) ( )( )0,x t y t y tφ ν φ ν= ,       0, t tν ∈ ≥ℝ .                  (5.6b)  

 

In addition, the initial condition (4.8b) implies the following initial condition to 

( ) ( ) ( ),x t y tφ υ ν :  

 

( ) ( )( ) ( )( ) ( )
0 0 0

0,0 ,
x t y t x t
φ υ φ υ φ υ υ= = ∈ℝ .             (5.6c)  

 

Finally, two obvious, yet essential, conditions that the sought-for function ( ) ( ) ( ),x t y sφ υ ν  

should obey are the following:  

 

( ) ( )( )0,0 1x t y sφ = ,         0,t s t≥ ,                       (5.6d)  

 

( ) ( )( ),x t y sφ υ ν  is non-negative definite w.r.t. ,υ ν , for any   0,t s t≥ .                    (5.6e)  

 

which come directly from the fact that it is a characteristic function. The last two 

conditions will be referred to as constitutive conditions.  

The above problem (5.6a-e) can be equivalently reformulated in terms of the 

corresponding joint, response-excitation, pdf ( ) ( ) ( ),x t y sf a β . Recalling that 

( ) ( ) ( ),x t y sf a β  and ( ) ( )( ),x t y sφ υ ν  constitute a Fourier transform pair, i.e.  

 

( ) ( ) ( ) ( ) ( ) ( ){ }, ,ax t y s x t y sf aυ
β ν

φ υ ν β→
→

=F ,  

 

and applying the inverse Fourier transformation to (5.6a-e), we readily obtain the 

partial differential equation  
 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )3

,
, , 0x t y s

x t y t

s t

x t y t

f a
a ka a f a

t a a
f

β
µ β β β

=

∂ ∂ ∂
+ + +

∂ ∂ ∂

    =      
,       (5.7a)  
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the following alternative forms of the marginal compatibility condition and the initial 

condition  
 

( ) ( ) ( ) ( ) ( ),x t y t y tf a da fβ β=∫
ℝ

,  β ∈ ℝ ,   0t t≥ ,          (5.7b)  

 

( ) ( ) ( ) ( ) ( ) ( )
0 0 0

0,
x t y t x t

f a d f a f aβ β = =∫
ℝ

,  a∈ℝ ,           (5.7c)  

 

as well as and the corresponding new forms of the constitutive conditions  
 

( ) ( ) ( ), 1x t y sf a dadβ β

×

=∫
ℝ ℝ

,    0,t s t≥          (5.7d)  

 

( ) ( ) ( ), 0x t y sf a β ≥ ,    for any ,a β ∈ ℝ   any  0,t s t≥ .            (5.7e)  

 

To the best of our knowledge, equs. (5.6a-e) and (5.7a-e), governing the evolution 

of the joint, response-excitation, ch.f ( ) ( )( ),x t y tφ υ ν  and pdf ( ) ( ) ( ),x t y tf a β , appear here 

for the first time. They can be considered as a new kind of mathematical models, 

providing us with the probabilistic characterization of the response ( ), ,x t ω ω∈Ω , for 

each t I∈ , obtained by taking the y−marginal of the joint ch.f or the joint pdf. This 

mathematical model is valid for any kind of stochastic excitation with a.e. continuous 

(or smoother) sample functions, having any (known) probabilistic structure.  
 

Although the mathematical analysis (solvability theory) of problem (5.6a-e) or 

(5.7a-e) is an open problem, existing numerical evidence, presented in Section 8 (see 

also Sapsis & Athanassoulis 2006), suggests that it might be well-posed under 

reasonable assumptions.  
 

In concluding this section we should emphasize that the above approach can be 

generalized in order to obtain similar, linear, PDEs for the joint, N-x and M-y, ch.f  

( ) ( ) ( ) ( )( )
1 1

1 1... ...
,... , ,...,

N M
N Mx t x t y s y s

φ υ υ ν ν   

(or the corresponding joint pdf), along with appropriate (marginal compatibility and 

initial) conditions. This point will be further discussed in another work (Athanassoulis 

& Sapsis 2007). It seems that in this way it is possible to construct a closed (finitely-

solvable) hierarchy of linear problems providing us with the full hierarchy of the 

finite-dimensional probabilities of the stochastic response ( );x ωi .  
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6 DERIVATION OF THE FPK EQUATION FOR THE CASE OF 
INDEPENDENT INCREMENT EXCITATION  

Eqs. (5.6) and (5.7) hold true for any kind of stochastic excitation process, provided 

that the latter has at least a.e. continuous sample functions. We shall now turn to the 

most commonly studied case, those of an Ito SODE, where ( );y t ω  represents the 

generalized derivative of an independent-increment process. In this case the response 

( );x t ω  is continuous but not differentiable. Thus, the treatment based on the Hopf 

equation, as developed in Section 5, is not valid, since the duality pairings (5.1) are 

not applicable. The question arises if it is possible to treat this case also by a similar 

method, starting from the Hopf equation and obtaining the usual FPK equation –

which involves only the response ch.f (or pdf). In the present section we shall show 

how this is possible, by resorting back to the FDE for a finite-difference version of the 

SODE (4.1). The crucial property, to be exploited in this case, is the independence of 

the current value ( );x t ω  of the response from the future increment 

( );z t
τ

ω∆ = ( ) ( ); ;z t z tτ ω ω+ − , 0τ > , of the excitation. Everything presented in this 

Section can be generalized to multidimensional nonlinear dynamical systems.  

Let us rewrite the SODE (4.1a,b) in a finite-difference form: 

 

( )
( ) ( )

( )3; ;
; ;

x t z t
x t k x tτ τ

ω ω
µ ω ω

τ τ

∆ ∆
+ + = ,    (6.1a)  

( ) ( )0 0;x t xω ω= ,   (6.1b)  

 

where ( );z ωi  is a known, real-valued process with independent increments, and 

( )0x ω  is a known random variable. The time increment τ  is assumed to be positive, 

0τ> , and this is essential in what follows.  

The sample functions of the stochastic process ( );z ωi  may be either continuous 

functions (as in the case of normally-distributed, independent-increment processes) or 

non-decreasing, piecewise-constant functions (as in the case of Poisson distributed 

independent-increment processes). In the first case (continuous sample functions), it is 

clear that the previously developed approach can be applied to equ. (6.1). In the 

second case (cadlag sample functions) the applicability of the same arguments is not 

directly justifiable. Nevertheless, we shall take the liberty not to be completely 
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rigorous, and apply the same approach to the general case as well. It seems to us quite 

remarkable and fascinating that the obtained PDE for the ch.f of the response ( );x ωi  

coincides with the known one in all examined cases. Thus, the results of the present 

section can be considered as a rigorous rederivation of the classical FPK equation 

from the Hopf FDE, in the case of Gaussian forcing, and as a heuristic method to 

derive analogous equations in the case of a Poissonian or an α−stable or a general 

Levy process forcing.  

Working similarly as in Section 4, we obtain the following Hopf-type FDE that 

governs the evolution of the Ch.Fl ( ) ( )1 ,
x z

u v
ττ− ∆

Y , parametrically dependent on 

0τ> :  

 

( ) ( )

( )
( ) ( )

( )
( ) ( )

( )

1 1 1

3

3

1
, , ,

x z x z x z
u v u v u v

k
u t u t u t

τ τ ττ τ τ

τ µ
δ δ δ

τ
δ δ δ− − −∆ ∆ ∆− + −

   ∆    

Y Y Y
  

      
( ) ( )

( )

1 ,
x z

u v

v t

ττ

δ

δ − ∆
=

Y
    ,            (6.2a)  

( ) ( )( ) ( )1
0 0,0 ,x z t

ττ υδ φ υ υ− ∆ − = ∈iY ℝ .               (6.2b)  

 

Note that ( )( )1 ,
x z

u v
ττ

− ∆
Y  is the finite-difference version of ( ),xy u v =Y  

( ) ( )1
0

lim ,
x z

u v
τττ

− ∆→
Y . 

 

Using again the arguments ( ) ( ),u vi i , given by (5.1), and applying the same 

treatment as in Section 5, we obtain the following PDE that governs the joint ch.f 

( )1x zττ
φ − ∆

:  

( ) ( )( ) ( )( ) ( ) ( )( ) ( )
( ) ( )( ) ( )1 1

1

3

1

3

, ,1
,

x t z t x t z t

x t z s
s t

k
τ τ

τ

τ τ

τ τ

φ υ ν φ υ ν

τ φ υ ν µ
υ υ υ

− −

−

∆ ∆−

∆
=

−
∂ ∂

∆ +
∂ ∂

=  

( ) ( )( )( )1 ,
x t z tττ
φ υ ν

ν

− ∆
∂

=
∂

.          (6.3)  

 

Setting 0ν =  in the equ. (6.3) and taking the limit as 0τ +→ , we obtain:  
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )1
3

3 0

0

1 ,
limx t x t x t x t z t

k
t

ττ

τ

ν

φ υ φ υ φ υ
µ

υ υ υ

φ υ ν

ν

−

+

∆

→

=

∂ ∂ ∂
+ − =

∂ ∂ ∂

∂

∂
.         (6.4)  

 

In the left-hand side of eq. (6.4) we can already recognize the sought-for result. In the 

right-hand side, because of the ν−derivative, the situation is more complicated and 

should be studied further. In analogy with eqs (4.8a) and (4.7), the “source” term 

( ) ( )( )( )1 , /
x t z tττ
φ υ ν ν− ∆

∂ ∂ , appearing in the right-hand side of eqs. (6.3) and (6.4), comes 

from the following functional integral  

( ) ( )( )( )
( ) ( )( ) ( )

( )( ) ( )( )
1 1

1

, ,1 1
,

,,
x t z t i u x v z

x z t
z t e dx d zI iτ τ

τ

τ τ

τ τττ

φ υ ν

τ τυ ν
ν

− −

−

∆ + ∆− −

∆

∂
∆ ∆≡ =

∂ ∫ ∫
m k

c

where m  is an appropriate space of continuous functions. Now, using the identity  

 

( ) ( )( ) ( )( )1

1
,,

, ,
z x zx

dx d z dx d z
τ ττ τ ττ− ∆

−
∆∆ = ∆c c ,  

 

we obtain  
 

( )( ) ( ) ( )( )1

1, ,

, , .
i u x v z

x zz tI e dx d zi
τ

τ

τ

τ

τ τ
τ

−

−+ ∆

∆∆= ∆∫ ∫
m k

c  

Let us now evaluate the above functional integral (for 0fixedτ = > ), under the 

specific choice of arguments ( ) ( )u tυ δ= ⋅ −i i  and ( ) ( )v tν δ= ⋅ −i i :  

 

( ) ( )( ) ( ) ( )
( )

( )( ), ,,
z t

i x t i

x z

z t
dx d zI t t ei

τ

τ

τ

τ

υ ν
τ

τ
τ

υδ ν δ

∆
+

∆

    ∆
∆− ⋅ −

 =   ∫ ∫i i

m k

c .            (6.5)  

 

Because of the specific form of the excitation (independent-increment process), the 

response ( );x t ω  is stochastically independent from the future increment of the 

forcing ( ) ( ) ( ); ; ;z t z t z tτ ω τ ω ω∆ = + − . (at this point we make use of the 

assumption 0τ> ). As a consequence, the joint probability measure 

( )( ), ,x z dx d z
τ τ∆ ∆c  can be written in multiplicative form  

 

( )( ) ( ) ( )( ), ,x z x zdx d z dx d z
τ ττ τ∆ ∆∆ = ⋅ ∆c c c .              (6.6)  
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Taking this into account, and making the substitution ν υ τ=  (note that we are 

interested in the double limit 0ν→  and 0τ +→ ), the double functional integral in 

the right-hand side of (6.5) can be factored out as follows:  

 

( ) ( )( ) ( ){ } ( )exp, xs i x t dxI t t υυδ υτ δ ×− ⋅ − = ∫i i

k

c   

( )
( ){ } ( )( )exp z

z t
i z ti d zτ

ττ τ
τ

υ ∆

∆
∆× ∆

    ∫
m

c  .            (6.7)  

 

On the basis of the Projection Theorem (eq. (2.6)), the first functional integral of the 

right-hand side of the above equation is simply the ch.f of ( );x t ω :  

 

( ){ } ( ) ( )( )exp x ti x t dxυ υφ=∫ x

k

c .                   (6.8)  

 

To calculate the second functional integral in the right-hand side of eq. (6.7), we start 

by considering the functional integral:  
 

( ) ( )( ){ } ( )( )exp zi z t d zJ
ττ ττ υυ ∆= ∆ ∆∫

m

c .  

 

By the same token as above, ( )Jτ υ  is the ch.f of the increment ( );z tτ ω∆ : 

( ) ( )( )z tJ
τ

τ υ φ υ∆= . Assuming the latter is τ –differentiable in the vicinity of 0τ += , 

we get  

 

( ) ( ) ( )( ) ( )( ) ( )( )
0

0

lim
z t i z t

z

z t
d zi eττ τ

τ τ

υ

τ

τ
τ

φ υ
υ

τ +

+

∆ ∆
∆

→
=

∆∂
∆

∂

∂
= =

∂ ∫
m

c           

 

             
( ) ( )( ) ( )( )

0
lim

i z t

z

z t
d zi e ττ

τ τ

υ

τ τ
υ

+

∆
∆

→

∆
∆

 =   ∫
m

c .        (6.9)  

 

The last term in (6.9) coincides –apart from the factor υ– with the second integral in 

the right-hand side of equ. (6.7). Thus, on the basis of (6.8) and (6.9), we can rewrite 

eq. (6.7) as follows:  
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( ) ( )( ) ( ) ( ) ( ) ( )
0 0

lim ,
1

lim
z t

x tI t t τ

τ
τ τ

υδ υτ δ
φ υ

φ υ
υ τ+ +→

∆

→
− ⋅ − =

∂
⋅

∂
i i  .           (6.10)  

 

Combining now (6.4) and (6.10), we obtain  
 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )3

3
0

lim ,
x t x t x t z t

x tk
t

τ

τ

φ υ φ υ φ υ φ υ
µυ υ φ υ υ

υ υ τ+

∆

→

∂ ∂ ∂ ∂
+ − ∈

∂ ∂ ∂ ∂
= ℝ  .    (6.11)  

 

This is in fact the generalized FPK equation for general, independent-increment, 

excitation, written in terms of the ch.f of the response process. The corresponding 

FPK equation, in terms of the pdf, is easily derived by applying a Fourier 

transformation  
 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0

3 lim
1

2
z tx t i y a

x t x t

f a
a ka f a e f y dyd

t a
τ

τ

υ
φ υ

τ
µ υ

π +

∆

→

∞ ∞
−

−∞−∞

∂

∂

∂ ∂  + + =  ∂ ∂ ∫ ∫   (6.12) 

 

It can be shown (Athanassoulis & Sapsis 2007) that the above equation includes as 

special cases various generalized FPK equations, recently obtained by Grigoriu 

(2004).  

7 MOMENT EQUATIONS FROM THE NEW PDE (5.6)  

It is worth noticing that the PDE (5.6a), derived at Section 5, can reproduce the 

infinite set of moment equations corresponding to the dynamical system equation 

(4.1a). This is a very important consistency result that can be interpreted twofold. 

From the point of view of the new PDE (5.6a), it provides an independent check of 

validity. From the point of view of the infinite system of moment equations, it 

provides an “integrating scheme” permitting the replacement of the infinite system of 

ODEs by a single linear PDE. The remaining of this section is devoted to the proof of 

the above mentioned consistency result.  

Let us denote by ( ) ( ) ( ), ; ;n m
nmM t s x t y sEω ω ω = ⋅   , , 0,1,n m= … , the joint 

( , )thn m − order moment of ( );x t ω  and ( );y s ω . Then, by direct integration of eq. 

(4.1a), it is easily seen that infinite system of moment equations has the form  
 

( )
( ) ( ) ( )1,

1, 3, , 1

1

1

,
, , ,n m

n m n m n m

s t
n

dM t s
M t t k M t s M t s

dt
µ

+
+ + +

=
+

⋅ + =− + .              (7.1)  
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We shall now derive the same equations (7.1) using the PDE (5.6a). Recall first that  
 

( ) ( )( )
( ) ( ) ( ),

0
0

; ; ,
,

n m

n m

n m
x t y s n m n m

n m
x t y s M t si iEω

υ
ν

ω ω
φ υ ν

υ ν

+
+ +

=
=

⋅
∂

 = = ∂ ∂
,    , 0,1,n m= …  . 

   (7.2)  

By direct differentiation of eq. (5.6a) we obtain  
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 31 1

1 1 1 3

, , ,n m n m n m
x t y s x t y t x t y t

n m n m n m

s t

k
t

φ υ ν φ υ ν φ υ ν
µ υ υ

υ ν υ ν υ υ ν υ

+ + + + + +

+ + +

=

  ∂ ∂ ∂∂ ∂   + + =  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

    ( ) ( ) ( )1

1

,
. ,

n m
x t y t

n m

φ υ ν
υ υ ν

υ ν ν

+ +

+

 ∂∂  = ∈ ∂ ∂ ∂  
ℝ .           (7.3)   

 

In accordance with (7.2), the first term in the left-hand side of eq (7.3) can be written 

as  

( ) ( )( ) ( )1

1,1
1

0
0

, ,
n m

x t y s n mn m
n m

M t s
i

t t
υ
ν

φ υ ν

υ ν

+ +
++ +

+
=
=

∂ ∂∂
=

∂ ∂ ∂ ∂
.             (7.4a)  

To proceed with the remaining three terms in eq. (7.3), use will be made of the 

following Lemma:  

Lemma 7.1: For every nC -differentiable function :f →ℝ ℝ , we have  
 

 ( )
( )1

1
0 0

nn

n n

x x

d f xd
xf x n

dx dx

−

−
= =

  =  . ■ 

Hence, 

( ) ( ) ( )
( ) ( ) ( )( )11

1 1
00
00

, ,
1

n mn m
x t y t x t y t

n m n m
n

υυ
νν

φ υ ν φ υ ν
υ

υ ν υ υ ν

+ ++ +

+ +
==
==

 ∂ ∂∂   = + ∂ ∂ ∂ ∂ ∂  
,          (7.4b)  

( ) ( )( )
( ) ( ) ( )( )3 31

1 3 3
00
00

, ,
1

n mn m
x t y t x t y t

n m n m
n

υυ
νν

φ υ ν φ υ ν
υ

υ ν υ υ ν

+ ++ +

+ +
==
==

 ∂ ∂∂   = + ∂ ∂ ∂ ∂ ∂  
,          (7.4c)  

and  

( ) ( ) ( )
( ) ( ) ( )( )11

1 1
00
00

, ,
1

n mn m
x t y t x t y t

n m n m
n

υυ
νν

φ υ ν φ υ ν
υ

υ ν ν υ ν

+ ++ +

+ +
==
==

 ∂ ∂∂   = + ∂ ∂ ∂ ∂ ∂  
.           (7.4d)  

Substituting eq. (7.4b,c,d) in eq. (7.3) we obtain  
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( )
( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )1 1 3

1 1 3
0
0

, , ,1

1

n m n m n m
x t y s x t y t x t y t

n m n m n m
k

n t
υ
ν

φ υ ν φ υ ν φ υ ν
µ

υ ν υ ν υ ν

+ + + + + +

+ + +
=
=

 ∂ ∂ ∂ ∂  + + =  + ∂ ∂ ∂ ∂ ∂ ∂ ∂  
 

       ( ) ( ) ( )1

1
0
0

,n m
x t y t

n m
υ
ν

φ υ ν

υ ν

+ +

+
=
=

∂
=

∂ ∂
.     (7.5)  

By applying eq. (7.2) and (7.4a), the above equation reduces to the infinite system of 

moment equations (7.1). This completes the proof of the consistency result announced 

at the beginning of this section.  

8 KERNEL DENSITY REPRESENTATION OF JOINT pdfs 

Clearly, problem (5.6) –either in the form (5.6a-e) or in the form (5.7a-e)– exhibits 

some peculiarities making it distinctly different from the usual initial-boundary value 

problems for PDEs, coming from problems of Mathematical Physics. These 

peculiarities reflect the probabilistic origin of the present problem.  

In the remaining part of this paper, an original (particle-type) method for the 

numerical solution of problem (5.6) (or (5.7)) is developed, and some first, 

illustrative, numerical results are presented. The main tool, on which the formulation 

of the numerical scheme relies, is the representation of the sought-for pdf and ch.f by 

means of convex superpositions of kernel density functions (kdfs) and their Fourier 

transformation, the kernel characteristic functions (kch.fs), respectively. A short 

presentation of the basic facts about kdfs is given below.  

Kernel density functions constitute a key notion/tool within the framework of 

nonparametric statistical estimation. See, e.g., Scott 1992. In our approach, a kdf 

( )*; ,K x x h  is mainly thought of as a generalized (non-symmetric) summability 

kernel, appropriate to represent pdfs (Gavriliadis 2005). The defining properties of an 

M−variate kdf are the following:  

 

Pr.1) ( )*; ,K x x h  is a continuous, real-valued function defined on a domain of the 

form NonNegDef
K M MA A ×= × ×D M , where MA⊆ℝ  is taken to be contained in (or 

to be equal to) the support of the target pdf, say ( )f x , which is to be 

represented (see Lemma 8.1 and Theorem 8.2, below), and NonNegDef

M M×
M  is the set 
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of non-negative definite, M M× −matrices, which can serve as covariance 

matrices. 

 

Pr.2) ( )*; , 0K x x h ≥ ,       for ( )*; , Kx x h ∈D . 

 

Pr.3) ( )* *; , 1
A

K x x h dx =∫ , for ( ),
NonNegDef

M M
x h A

×
∈ ×M .  

 

Pr.4) ( )
*

* *
0

lim ; , 0
h

x x

K x x h dx
δ

→
− >

=∫ ,     for any *x A∈  and 0δ > .  

 

A kernel characteristic function is defined as the Fourier transformation of a kdf. 

Clearly, properties Pr.2), Pr.3) ensure that each kdf is a pdf on its own. The shape of 

the kernel function ( )*; ,K x x h  is controlled by its covariance matrix h , also called 

bandwidth (or shape) parameter. h  quantifies the spreading of the kernel probability 

mass around its “center” *x . Another –simpler and in many cases adequate– choice of 

the shape parameter is the M-variate vector of the eigenvalues of the covariance 

matrix. In this sense, the domain NonNegDef

M MK A A ×= × ×D M  can be (and will be) 

simplified as [ )0,
M

A A× × ∞ .  
 

Using the defining properties Pr.1) – Pr.4), and only these, it is not difficult to 

prove the following  

Lemma 8.1: If ( )f x  is a continuous pdf and )( ⋅⋅⋅ ,;K  is any kernel function satisfying 

Pr.1) – Pr.4), then, for any x ,  
 

( ) ( )* * *0
lim ( ; , )
h

A

K x x h f x dx f x
→

=∫ .    ■               (8.1)  

 

That is, as the bandwidth decreases, the kernel function shrinks around its “center” *x , 

having the weak asymptotic limit  

 

( ) ( )0
* *; , hK x x h x xδ→→ − .                (8.2)  

 

On the other hand, as the bandwidth increases the kernel function spreads out.  
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Theorem 8.2: The set of all convex finite superpositions of the form 

1

( ; , )
N

n n n
n

p K x x h
=
∑ , where 1 2 1Np p p+ + + =… , 0np ≥  for all n , and ( ); ,K ⋅ ⋅ ⋅  is any 

kernel function satisfying Pr.1) – Pr.4), is dense within the set of all continuous pdfs 

supported in A . That is, given any continuous pdf ( )f x , a specific kernel function 

( )*; ,K x x h , and an arbitrary (small) number 0ε > , there exist a bandwidth parameter 

*h , a finite set of centers { } 1

N

n n
x

=
 in A , and a vector ( )1 2 Np , p ,..., pp =  lying in the 

positive cone of N
ℝ , such that  

 

( ) ( )max <N

x A
f x f x ε

∈
− ,                (8.3a)  

where    ( )
1

( ; , )
N

N
n n n

n

f x p K x x h
=

=∑ .    ■                                              (8.3b)  

The clue of the proof of this theorem is Lemma 8.1, in conjunction with the 

properties of the Riemann sum approximation of the integral ( )* * *( ; , )
A

K x x h f x dx∫  

(Athanassoulis and Gavriliadis 2002). The technical details are omitted. The above 

theorem makes clear that any (continuous) pdf can be approximated, as closely as it is 

required, by a representation of the form (8.3b).  

9 REFORMULATION OF THE PROBLEM BY USING KERNEL DENSITY 
REPRESENTATIONS  

We shall now apply the pdf representation (8.3b) (or the corresponding ch.f 

representation, obtained by means of a Fourier transformation) in order to reformulate 

problem (5.7) (or (5.6a)) in a way facilitating its numerical solution. Again here and 

subsequently, as in the Introduction, ( ) ( ) ( ),x t y sf f a β=xy , ( ) ( ) ( ),xy x t y sφ φ υ ν=  are four-

argument, two-variate, joint, response-excitation pdf and ch.f, respectively. For 

clarity, in the present and the subsequent sections, vector or matrix quantities will be 

explicitly denoted by using bold letters.  

Applying the representation (8.3b) for the pdf, and the corresponding one for the 

ch.f we define the approximants  
 

( ) ( ) ( ) ( ) ( ) ( )( )
1

, , , ; , , ,
N

N k k
kx t y s

k

f a p t s K a t s t sm hβ β
=

=∑ ,   (9.1)  
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( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( )( )
1

, , , , ; , , ,
N

N N k k
a kx t y s x t y s

k

f a p t s K t s t sm hυ
β ν

φ υ ν β υ ν→
→ =

= =∑ ɶF .       (9.2)  

 

Here ( ),k k k
x ym m=m  is the location parameter, namely the position of the most 

probable (highest) value of the kdf, and kh  is the shape parameter, represented either 

by the 2 2× −covariance matrix of the kdf or by the two eigenvalues of the latter (both 

pictures will be applied to the numerical treatment). For the numerical computations, 

( ), ; ,k kK a m hβ  is taken to be a Gaussian pdf. (See, e.g., Härdle 1990, Sec. 2.9).  

 

Our main goal now, is to exploit the representations (9.1), (9.2) in order to solve the 

system (5.6) or the equivalent (5.7). Conditions (5.6d,e), or the equivalent (5.7d,e), 

are automatically satisfied since the approximants (9.1), (9.2) are by construction pdfs 

and ch.fs, respectively. 
 

To facilitate the discussion, we define the linear differential operators  

[ ] [ ]3

s t

aa
k

t a a a

β
µ

=

∂∂ ∂∂
+ + −

∂ ∂ ∂ ∂

 
 ii ii

iL = .              (9.3a)  

3

3
s t

k
t

µυ υ υ
υ υ ν=

∂ ∂ ∂ ∂
+ − −

∂ ∂ ∂ ∂

i i i iɶiL = ,             (9.4a)  

And rewrite equs. (5.6a), (5.7a) in the following concise form: 

 

( ), , 0xyf a tβ  =  L  ,       ( ) 2
0, ,a t tβ ∈ ≥ℝ ,    (9.3b)  

 

( ), , 0tφ υ ν  =  
ɶL xy  ,        ( ) 2

0, , t tυ ν ∈ ≥ℝ ,   (9.4b)  

 

It is interesting to note here that the two equivalent formulations –(5.7a) or (9.3) in 

terms of the pdf, and (5.6a) or (9.4) in terms of the ch.f– are both useful and they will 

be considered in parallel, since the conceptual arguments are better stated using the 

pdf formulation, while the numerical analysis is better developed using the ch.f 

formulation.  
 

Substituting the approximation (9.1) into eq. (9.3), we obtain  
 

( )
1

, ; , 0
N

k k
k

k

p K a m hβ
=

  =  ∑L ,  ( ) 2,a β ∈ℝ                  (9.5) 
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Let us denote by ( )jε h  the radius of the effective support of ( ), ; ,j jK a m hβ . ( )jε h  

will be taken and always kept to be small. Since each kernel function ( ), ; ,j jK a m hβ  

is taken to be concentrated around its center ( ),j j j
x ym m=m  and it is positive there, eq. 

(3.5), restricted in a neighborhood ( )( ),j jεm ha , is locally equivalent with the 

equation  
 

( ) ( )
1

, ; , , ; , 0
N

k k j j
k

k

p K a K am h m hβ β
=

  ⋅ =  ∑L ,    ( ) ( )( ), ,j ja m hβ ε∈a              (9.6)  

 

Assuming that the system of neighborhoods ( )( ){ }, , 1, ,j j j Nε = …m ha  covers 

the essential support of the sought-for density function xyf , we can assert that the 

global equation (3.5) is equivalent with the system of local equations  

 

( ) ( ) { }
1

, ; , , ; , 0, 1, , , and
N

k k j j
k

k

p K a K a j Nm h m hβ β
=

  ⋅ = ∀ ∈  ∑ …L    

         ( ) ( )( )
1, ,

, , .j j

j N
a m hβ ε

=
∀ ∈

…

∪ a            (9.7)  

 

By taking a Fourier transformation, eq. (9.7) is equivalently rewritten as  
 

( ) ( ) { }
1

, ; , , ; , 0, 1, , , and
N

k k j j
k

k

p K m h K m h j Nυ ν υ ν
=

  ∗ = ∀ ∈  ∑ ɶ ɶ …ɶL  

      ( ) 2, ,υ ν∀ ∈ℝ             (9.8)  

 

where ∗  denotes the convolution operator. Although the latter equation could be 

considered as being more complicated than eq. (9.7), an efficient numerical solution 

scheme will be based on it.  

10 A TWO-LEVEL NUMERICAL SOLUTION SCHEME FOR THE SET OF EQs 
(9.8)  

To proceed to the numerical solution, use will be made of a specific choice of the kdf. 

Assuming a Gaussian density as the kdf, we have  
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( )
[ ]

11 1
, ; , exp ,

22 det

Tk k
x xk k k

k k
y y

a m a m
K a

m m
m Cβ

β βπ

−
    − −      = −         − −      

C
C

        (10.1a) 

 

with corresponding kernel characteristic function  
 

( ) 1
, ; , exp ,

2

T Tk

xk k k

k

y

m
K i

m

υ υ υ
υ ν

ν ν ν
= ⋅ − ⋅ ⋅

                                     
Cɶ m C           (10.1b)  

 

where  

( ) ( ) ( )( ), ,k k k k
x yt s m t m s= =m m              (10.2a)  

 

is the mean vector, and  
 

( )
( ) ( )
( ) ( )

, ,
,

, ,

k k
xx xyk k
k k
yx yy

C t t C t s
t s

C s t C s s

  = =   
C C              (10.2b)  

 

is the covariance matrix of our Gaussian kdf. As we have already mentioned above, a 

dual realization of the shape parameter will be considered herewith. Apart from the 

covariance matrix kC , the vector ( ),k k k
x yh h=h  having as elements the two 

eigenvalues of the matrix kC , will also be used in this case.  
 

Our numerical solution scheme will be implemented by restricting the kdf to be 

highly concentrated, so that the effective supports of any pair of two different kernels 

to be practically non overlapping. This permits us to neglect the interaction between 

any pair of Gaussian kernels, i.e. to disregard the summation in the left-hand side of 

eq. (9.7) and its equivalent eq. (9.8). Thus, under the above assumption, which is 

equivalent with the condition 1
k ε<h , for all { }1, ,k N∈ … , where 1ε  is an 

appropriate (small) constant, eq. (9.8) simplifies to  

 

( ), ; , 0,j j
jp K υ ν  =  
ɶɶ m CL           0t s t≥ ≥ ,     and  { }1, ,j N∀ ∈ … ,   and  

  ( ) 2, .υ ν∀ ∈ℝ         (10.3a)  

 

Furthermore, assuming the amplitudes jp  are positive and piecewise constant, the 

above equation is further simplified to  
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( ), ; , 0,j jK υ ν  =  
ɶɶ m CL   within each time interval    ( ) ( )1s tτ τ

+≤ ≤ ≤ℓ ℓ , 

{ }1, ,j N∀ ∈ … ,  and   ( ) 2, .υ ν∀ ∈ℝ         (10.3b)  

 

On the basis of the above discussion, a two-level (two-time scale) approach comes 

into the scene:  

a. Solve the set of independent equations (10.3b) within each interval 

( ) ( )1s tτ τ
+≤ ≤ ≤ℓ ℓ  (this is the short-time phase or inner-cycle phase), and then  

b. Come back to the complete representation and update the values of the 

amplitudes jp , passing from the interval ( ) ( )1,τ τ
+ 

  
ℓ ℓ  to the interval 

( ) ( )1 2,τ τ
+ + 

  
ℓ ℓ  (this is the coarse-time phase or the outer-cycle phase).  

 

The criterion for defining the sequence of coarse updating times ( )
τ
ℓ , 1,2,3,...=ℓ , is 

formulated as a sufficient condition for the validity of the assumptions underlying the 

derivation of the set of independent equations (10.3b). It turns out that the most 

critical assumption is the restriction of each kdf to be highly concentrated around its 

center. As expected, because of the diffusive character of the problem, it has been 

found that, during the short-time phase solution, kernel parameters evolve in a way 

leading to a continuous increase of the variance parameter kh . (See, for example, 

Figures 2c, 3c, in Section 11, below, and the discussion therein). The growth of the 

quantity kh  leads to the spreading of the mass of the corresponding kdf, which 

results in the violation of the assumption of negligible interaction between the kernels.  

Thus, the set of kernel parameters ( ),k t sm  and ( ),k t sC  evolve in accordance with 

the simplified dynamical equations (10.3b) from time ( )
τ
ℓ , until the spreading index 

( )k th , of some kernel, exceeds a certain critical value, say 1 0ε > . This value of t is 

taken to be the next updating time ( )1
τ

+ℓ . At that time instant, the inner-cycle (short-

time) solution phase is interrupted, and an approximation of the total joint pdf 

( )( ) ( )( ) ( )1 1 ,N

x y
f a
τ τ

β+ +ℓ ℓ
 is calculated by means of eq. (9.1), in the specific form:  

 

( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )1 1

1 1 1 1

1

, ,, , ; ,
N

N k k
kx y

k

f a p K a m h
τ τ

τ τ τ τβ τ β+ +

+ + + +

=

= ∑ℓ ℓ

ℓ ℓ ℓ ℓℓ .          (10.4)  
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Then, the calculated pdf (10.4) is re-approximated, by using a new set of kdfs, 

satisfying the concentration condition 2 1
k ε ε= <h , with different amplitudes 

( )( )1

kp τ
+ℓ . The latter are calculated by means of an optimization algorithm (used also 

for the set up of the initial conditions), which is described in the Appendix. After the 

updating of the amplitudes, the next inner-cycle begins, and the procedure continues 

as described above.  

During each time interval ( ) ( )1,τ τ
+ 

 
ℓ ℓ  the amplitudes are considered constant and, 

thus, globally, jp  are piecewise constant functions of time. In fact, the evolution of 

the amplitudes jp  is much slower than the evolution of the kernel parameters km  and 

kh , and this is what justifies the piece-wise constant assumption for jp  in our 

numerical scheme. An improved numerical solution, taking also into account the 

evolution of jp  in a continuous fashion, can be constructed and will be published 

elsewhere.  
 

It should be stressed that the accuracy of the method proposed and developed 

herewith is critically dependant on the threshold value 1ε  for the variance parameter 

(spreading index) ( )k th .  

10.1 A local-moment method for the numerical solution of Eqs (10.3b)  

We are now focusing on the numerical treatment of equations (10.3b). For each value 

of { }1, ,j N∈ … , eq. (10.3b) contains three unknown functions, namely the response 

mean value ( )j
xm t , and covariances ( ),

j

xxC t t  and ( ),
j

xyC t s , which should be 

determined, and two known functions, namely the excitation mean value ( )j
ym s  and 

the autocovariance ( ),
j

yyC s s , introducing the appropriate, inner-cycle, forcing. Thus, 

any solution scheme of eq. (10.3b) should provide us with a number of equations 

(hopefully three) governing the evolution of the three unknown functions, along with 

the evidence that introducing the obtained solution in the operator ( ), ; ,j jK υ ν 
  
ɶɶ m CL  

will result in 0 (at least approximately) for all values of ( ) 2,υ ν ∈ℝ .  



 32 

Since the (Gaussian) kernel ( ), ; ,j jK υ νɶ m C  is ( )2C
∞
ℝ  in ( ),υ ν  and dies out as 

( ),υ ν → ∞ , eq. (10.3b) is equivalent to the following system of localized moment 

equations:  
 

( )
0
0

, ; , 0
p q

j j
p q

v

K
υ

υ ν
υ ν

+

=
=

∂   =  ∂ ∂
ɶɶ m CL ,  ( ) 0 0,p q∀ ∈ ×ℕ ℕ , { }0 0,1,2,3,...=ℕ .  (10.5)  

 

Exploiting the specific (Gaussian) form of the kernel, and considering the cases 

( , ) (1,0)p q = , (2,0) and (1,1), the following three (nonlinear) ODEs are obtained 

from (10.5):  
 

( ) ( ) ( ) ( ) ( ) ( )
3

, 3 ,j j j j j j

x t x x xx x ym t m t km t C t t k m t m tµ+ + + = 
  ,           (10.6a)  

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , 3 , 3 , , ,j j j j j j j j

xx t xx x xx x xx xx xyC t s C t s km t C t s m t kC t t C t s C t sµ+ + + = ,       (10.6b)  

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , 3 , , 3 , ,j j j j j j j j

xy t xy xx xy x xy x yyC t s C t s kC t t C t s km t C t s m t C t sµ+ + + = ,      (10.6c)  

 

These equations involve the three unknown functions ( )j
xm t , ( ),

j

xxC t t  and ( ),
j

xyC t s , 

and they are differential equations with respect to t , parametrically dependent on s. 

(No derivatives with respect to s appear.) They should be satisfied for all values of 

( ),t s  such that ( ) ( )1s tτ τ
+≤ ≤ ≤ℓ ℓ . We are especially interesting in the solution of 

system (10.6) on the diagonal s t= .  

It has been found that if the three moment equations (10.6a,b,c) holds true, then 

various other –but not all– moments, corresponding to other values of ( , )p q , are also 

zero. Besides, there are also values of ( , )p q , corresponding to higher-order moments, 

for which eqs. (10.5) are not satisfied. In any case, the system (10.6a,b,c) is closed 

and can be efficiently solved, providing us with a reasonable approximation of the 

evolution of the kernel parameters ( )j
xm t , ( ),

j

xxC t s t=  and ( ),
j

xyC t s t= . When the 

value of ( )j th  exceeds the threshold value 1ε , the current inner-cycle phase is 

finished and the procedure switches to outer-cycle phase.  

The numerical solution of the set of nonlinear ODEs (10.6) is implemented by 

using the method of the quasilinearization (Bellman 1973, Lakshmikantham and 

Malek 1994). Taking advantage of the symmetry properties of the correlation matrix, 
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the equations can be solved on the ‘diagonal’, that is around s t= . The sequence of 

time instants for the numerical scheme has the form  

( ), :t s ( ),i it t  →  ( )1,i it t+  →  ( )1 1,i it t+ + .  

An important aspect of the present method is its suitability for parallel computation. 

Parallelization techniques can be applied both to the dynamical evolution of the 

kernels and to the optimization algorithm. In the first case the algorithm can take 

advantage of the independent evolution of each kernel. For the parallelization of the 

optimization algorithm we can split the group of kdfs into subgroups and then 

independently approximate each subgroup by new kernels with small variance. 

Hence, we can probably succeed fast computations for systems of higher dimensions, 

subjected to general (smooth) excitation. 

11 NUMERICAL EXAMPLES 

We shall now apply the above described numerical scheme to the numerical 

determination of the response pdf of a dynamical system (4.1), excited by a known 

stochastic process (see below), with system parameters µ  and k  having the values 

given in Table 1, under Cases I and II.  

 

Table 1: System Parameters 

System parameters Case I Case II 

µ  1 1 
k  1 -1 

 

By performing a stability analysis to problem (4.1) we found that for / 0kµ >  (Case I 

in Table 1), the nonlinear system has one stable fixed point located at zero. A 

pitchfork bifurcation occurs at / 0kµ = , and the fixed point at zero becomes unstable 

in the semi-axis / 0kµ < (Case II). In the same region (/ 0kµ < ) two symmetric 

stable points appear at / kµ± . Hence, we have the bifurcation diagram shown in 

Figure 1.  
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Figure 1: Bifurcation diagram for system (4.1) with respect to the bif. parameter / kµ . 

 
On the basis of the above described dynamical features of the studied problem, it is 

natural to expect that, in Case I, the evolved pdf will become eventually a unimodal 

distribution centered at zero, while in Case II, the probability will concentrate around 

the pair of the two symmetric stable fixed points / kµ± , hence ultimately a 

bimodal distribution will appear. Since the stable fixed points are global attractors we 

expect to attain these results after some time, independently of the initial density. The 

numerical results to be presented and discussed below clearly comply with this 

behavior, dictated by the qualitative analysis of the studied system.  
 

Consider first Case I, with a bimodal initial pdf, defined as a convex superposition 

of two Gaussians with parameter values 1 0,m =  2 0.6m = , 1 0.1σ = , 2 0.6σ = , and 

amplitudes 1 0.4p =  and 2 0.6p = , respectively. This initial pdf is shown in Figure 

2b, at the section 0t = . The excitation process is taken to be, in this case, a Gaussian 

stationary random function with zero mean and covariance function given by  

( )21
( ) cos 2

2YYC τ τ= .               (11.1)  

Numerical results are presented in Figure 2. More specifically, in the two upper 

plots of this figure (Figures 2a and 2b), the evolution of the probability density 

( ) ( )x tf a  is shown, for the time interval 0 1.4sect< < , large enough to get the steady 

state response pdf. Also, in the same figure (Figure 2a) the orbits of ( )k
xm t  are plotted 

by using thick black lines. The apparent discontinuities every 0.2sec are due to the re-

approximation of the calculated density by means of a new convex superposition of 

kdfs with smaller variance every time the concentration parameters kh exceeds the 
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critical value 1ε  (which in this example was taken to be 1 0.3ε = ). In Figure 2c the 

evolution of the variance for some kdfs of the response density is shown. The 

diffusive character of the evolution (strictly increasing variances with respect to time) 

is clearly seen in the numerical results. Again, the apparent discontinuities are due to 

the re-approximation of the response pdf by kdfs with smaller variances.  
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Figure 2: a) Response pdf ( ) ( )x tf a  and ( )j

x
m t  curves for Case I with stationary excitation. b) 

3D plot of the response pdf. c) Variance plots for some kdfs. 
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Let us now consider our system (4.1) with parameter values as in Case II. Two cases 

of stochastic excitation will be considered. First we will study the same stationary 

Gaussian excitation as before, having zero mean and covariance function given by eq. 

(11.1). The initial distribution is taken to be bimodal (strongly asymmetric for this 

case), and is defined as a convex superposition of two Gaussian pdfs with parameters 

1 0.4m =− , 2 0.6m = , 1 0.1σ = , 2 0.6σ = , and amplitudes 1 0.4p = , 2 0.6p = , 

respectively.  
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Figure 3: a) Response pdf ( ) ( )x tf a  and ( )j

x
m t  curves for Case II with stationary excitation. 

b) 3D plot of the response pdf. c) Variance plots for some kdfs. 
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Numerical results concerning the evolution of the response pdf, for the time interval 

0 2.4sect< < , are presented in Figure 3. Although the initial pdf has taken to be a 

strongly asymmetric bimodal one, the eventually resulting response density turns to 

be a symmetric bimodal pdf, with modes exactly at the stable fixed points, located at 

/ 1kµ± =± , as expected. The interchange of probability between the kernels 

(implemented by means of the re-approximation of the response pdf in terms of a new 

convex superposition of kdfs with smaller variances) takes place approximately every 

0.2 seconds. This is shown in the figure as an apparent discontinuity of the mean-

value and variance curves.  
 

From both Figures 2a and 3a (see also Figure 4a, below), we can easily observe a 

permanent tendency of ( )k
xm t -orbits to be attracted by the stable fixed points. This 

means that there is a continuous inflow of probability mass from the outer region of 

the phase space ( 1a > ) to a strip around the locus of the stable fixed points, which is 

not stopping even after the response pdf has been reached its stationary form. This 

apparently paradoxical behaviour should be addressed to the discrepancy between the 

tail form of the response pdf ( ) ( )x tf a , and the tail form of the Gaussian kernels which 

are used to represent ( ) ( )x tf a . This fact reveals the necessity for an asymptotic study 

of the tail behaviour directly from the differential equation (5.7a), which will permit 

the construction and use of the kdfs suitably adapted to the specific system, i.e., 

exhibiting the correct tail behaviour. Such a construction will also facilitate and 

accelerate the convergence of the numerical solution procedure.  
 

Finally, in Figure 4 we present numerical results for the Case II, with a non-

stationary (cyclostationary) Gaussian excitation, with zero mean and covariance 

function given by  

( )21
( , ) 1 0.2cos cos

2 2YY

t
C t s t s

π    = + −      
.                (11.2)  

Again the initial distribution is constructed as a superposition of two Gaussian pdfs 

with parameters 1 0.4m =− , 2 0.6m = , 1 0.3σ = , 2 0.7σ = , and amplitudes 1 0.4p =  

and 2 0.6p = , respectively. The evolution of the response probability density function 

is plotted for the time interval 0 8.0sect< < , long enough so that the periodic 

character of the response to become clear.  
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From Figures 4a, 4b we are able to observe that, after a transient state 

(0 1.5sect< < ), the response density function exhibits a periodic behavior with a 

period of approximately 4sec, which is the period of the excitation, i.e., the period of 

the correlation function ( , )YYC t s  (eq. (11.2)) with respect to its first argument. 

Furthermore, it is easily seen that, in this case, a greater amount of kernels is 

necessary in order to approximate satisfactorily the sought-for pdf, due to the fact that 

the non-stationary excitation produces a more complicated response.  
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12 DISCUSSION AND CONCLUSIONS 

In this paper new PDEs governing the evolution of the joint, response-excitation, ch.f 

and pdf of nonlinear dynamical systems under general stochastic excitation have been 

derived. The starting point of our approach is a Hopf-type equation, that governs the 

joint, response-excitation, characteristic functional, providing a probabilistically 

complete reformulation, equivalent with the underlying (nonlinear) stochastic 

differential equation. This ‘infinite-dimensional’ equation is appropriately reduced 

(by projection) to linear partial differential equations that governs the response-

excitation, characteristic (or probability density) function (see, e.g. eq. (5.6a) or 

(5.7a)). The latter equations are supplemented with (non-local) marginal compatibility 

conditions (see, e.g. eq. (5.6b) or (5.7b)) and initial conditions (see, e.g. eq. (5.6c) or 

(5.7c)), and they can provide us with the evolution of the joint ch.f. (or pdf).  

For the numerical solution of these novel PDEs (e.g., either in the form (5.6) or 

(5.7)) an original, particle-type, method is developed and illustrated through its 

application to a specific, simple, nonlinear system. The key point of the numerical 

method is the representation of the joint, response-excitation, pdfs and ch.fs by means 

of appropriate convex superpositions of kernel density or kernel characteristic 

functions, respectively. In this way, the non-local marginal compatibility conditions 

are satisfied a priori, and the PDEs governing the evolution of the sought-for pdf and 

ch.f are eventually transformed to systems of nonlinear ODEs for the kernel 

parameters.  
 

From the results presented in this work we conclude that the proposed method is 

able to produce quite satisfactory results for systems subjected to general stochastic 

excitation. Important aspects of the method are (i) It is a two-level, particle-type 

method, separating the fast, inner-cycle (short-term) phase, which describes the 

particle dynamics separately for each particle, from the slow, outer-cycle (long-term) 

phase, which accounts for the interchange of probability mass between the particles 

and the evolution of the particles’ amplitudes. (ii) It can be improved, keeping its two-

level, particle-type character, so that to avoid the piece-wise smoothness assumption 

for the amplitudes jp , and to ensure the “exact” satisfaction of the PDE, by solving a 

linear evolution problem in the outer-cycle phase. (iii) It can be generalized to higher 

dimensional systems. And (iv) It is plainly suitable for parallelized computations, 

since the nonlinear ODEs describing the evolution of each particle in the inner-cycle 
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phase can be solved independently. In addition, the computationally demanding 

optimization algorithm (see Appendix) is easily parallelizable.  

APPENDIX 

In this Appendix a brief outline is given of the optimization algorithm used for the 

construction of appropriate approximants of the sought-for pdf in terms of kdfs 

exhibiting a small variance (either given or under specific control). This algorithm is 

used quite often throughout the numerical solution, i.e. each time the solution 

procedure switches from the inner-cycle to the outer-cycle and the calculated density 

is re-approximated by means of kdfs of small variance. It is also used for 

implementing the initialization, by representing the given initial pdf as a convex 

superposition of appropriate kdfs. The basic optimization problem is formulated as 

follows:  

Given ( )f x  and 0σ , find M  and { }
1

,
M

k k k
p m

=
 such that  

 

( )

2
2

1 00

1
exp

22
min

M
k k

k

p x m
f x dx

σπσ=

+∞

−∞

     −   − −          

=∑∫ .    (A.1) 

 

under the constraints:  
 

1 2 1Mp p p+ + + =…     and    0  for all kp , k≥ .  

For the inner-cycle/outer-cycle re-approximation of the sought-for pdf, the 

integrations can be carried out analytically (since ( )f x  is already represented as a 

superposition of Gaussian kernels, with different parameters of course) leading to an 

explicit linear optimization problem, if M  is given. M  is obtained by using a variant 

of an iterative, adaptive procedure, developed by Gavriliadis (2005).  

For the initial data representation, the optimization procedure is performed quite 

similarly. However, in this case, the integrations in (A.1) are performed numerically, 

since, in general, the initial probability distribution may not be analytically described. 

A detailed description of the solution algorithm will be presented elsewhere.  
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