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ABSTRACT: In the present work the problem of deteing the probabistic structure of the dynamic
response of nonlinear systems subjected to gerettalrnal, stochastic excitation is considerBoe startin
point of our approach is a Hopf-type equation, gowvgy the evolution of the joint, response-excgatichar-
acteristic functional (see, e.g., R.M. Lewis & R.Kraichnan“A space-time functional formalism for turbu-
lence”,Come. Pure Appl. MathVol. XV, pp. 397-411, 1962, or M. J. Ber&itatistical Continuum Mechan-
ics, Interscience Publishers, 1968). This is a lineacfional differential equation, i.e.differential equatio
containing Volterra functional derivatives. The had is applicable to any, state-spad#éferential syster
exhibiting polynomial nonlinearities, but in thigger it is illustratedirough a detailed analysis of a sim
first-order, scalar equationyith a cubic nonlinearity. Emphasis is given te ttase of excitation proces
with correlation structure and continuous (or srheot sample functions, which implies a ndiarkoviar
character of the response. Exploiting the Hopf &qonawe derive new partial differential equatiaysvern-
ing the joint, response-excitation, characteriftitction, which can be considered as an extendidimeowell-
known Fokker-Planck-Kolmogorov equation to the cat@ general, correlated excitation and, thus,-non
Markovian response character. The validity of tiesv equation is also checked by showingegsivalenc
with the (nonlinear) infinite system of moment egoas. It is also shown that tlsame approach, i.e. start
from the Hopf equation, is also able to derive Fo&ker-Planck-Kolmogorov equation for the casenafer
pendent-increment excitation. Numerical solutionttof new equation for the joint chategstic functiot
will be presented in a companion paper (Sapsis BaAassoulis 200@his Conference Extension to gener:
multidimensional, dynamical systems exhibiting aoyynomial nonlinearity will be presented in a fazom-
ing paper (Athanassoulis & Sapsis 2006).

KEYWORDS:. Stochastic DynamicsStochastic Differential Equations, Functional Diéfetial Equation:
Correlated Stochastic Excitation, Fokker-Planckffofjorov Equation, Generalized Fokker-Planck-
Kolmogorov Equation, Non-Markovian Responses, Gttarsstic Functional.

1 INTRODUCTION Kree & Soize 1986, Soong & Grigoriu 1993, Hemon
& Santi 2006). In all these cases the excitati@uo
Many problems occurring in applied sciences angre assumed to be known stochastic processes, eithe
engineering are successfully modelled as stochast@aussian or non-Gaussian, as in the case of wind
differential equations. A very important class ofjpads. Their probabilistic and correlation struetur
such problems are those modeled as stochasticallan be (and, usually, have been) inferred by means
excited, nonlinear, dynamical systems. Well-knowrof statistical data analysis and, in most casese ha
examples include the dynamic responses of shigseen conveniently parameterized for easy reference
and other man-made structures and systems undgfid use in calculations. Most of the foundational
the influence of wind-generated waves in the segacts and aspects concerning the stochastic magdelin
(Schlesinger & Swean 1998, Wilson 2002, Belenkyphilosophy in engineering and applied science, and
& Sevastianov 2003, Arnolét al. 2004), the dy- the corresponding mathematical background can be
namic responses of buildings and bridges under thgund nowadays in book form; see, e.g., Kree & So-
influence of earthquakes (Lin & Cai 1995, DeodatiSze 1986, Sobczyk 1991, Soong & Grigoriu 1993,
1996, Kafali & Grigoriu 2003), as well as the dy- Roberts & Spanos 2003.
namic responses of structures and vehicles under th The ultimate objective in the analysis of such
influence of wind forces (Simiu & Scanlan 1986, problems is to obtain a complete probabilistic de-



scription of the response process, permitting to anThen, it is solved numerically, providing us wits r
swer any important questions about the response dgtricted information about the probabilistic charac
namics. Examples of such questions concerns therization of the response process.
distributions of local extrema, of upcrossing rasés  Another method, in principle well-known but in
certain levels, of the first passage time assatiatevery little use for solving practical problems,tige
with a critical level value, etc. To make this gbks one based on the Ch.Fl of the full probability meas
we need, in principle, to know the whole Kolmo-ure associated with the dynamic response. The first
gorov hierarchy of tha-fold, joint, probability dis- step in this direction was made by Hopf (1952) who
tributions Fx(t)x(t)...m(avaz’---’q]) of the n-variate  derived a Functional Differential Equation (FDE} fo
v the Ch.Fl associated with the probabilistic solitio

response random Variabléx(ti)'X(tZ)""'X(tJ) at  of the Navier-Stokes equations. This approach,
any collection of time instanceétl,tz,...,tn) or, known asthe statistical approach to turbulencdeas

, , . .been developed further by many authors (see, e.g.,
equivalently and more concisely, the Characteristi¢ o\\is & Kraichnan 1962, Monin and Yaglom 1971,

Functional (Ch.FI) of the response process. Becaus@zsy ith only restricted success as regards the
of the obvious difficulties of this general concebt qq(ction of useful solutions to practically irest-

solution of the probabilistic dynamics problems,ing problems. In parallel, a simpler version of the

there is a constant tendency —at least in the @ppli gome anproach has been developed and applied to
and engineering literature— to avoid such an apgnite_gimensional dynamical systems, governed by
proach, resorting to simpler (partial) solution €on Stochastic Ordinary Differential EquatiorSQDES.
cepts. See, e.g., Beran (1968). Such Hopf-type FDEs are

An important, and extensively studied, contextgays linear, and govern the Ch.Fl of the sought-f
permitting a relatively easy, complete characteriza robability measure or —depending on the specific

tion of the probabilistic responses of a dynamica, ., iation— the joint Ch.FI of the joint, response

system, occurs if we assume that the excitatiam is g citation, probability measure. In recent years su
process with md_ependent mcrt_ements (see‘, €-Geessful attempts have been reported towards the ana
Pugachev & Shinitsyn 1987, Soize 1994, GrlgorluIytic determination of the response Ch.Fl for some
2004). The key feature in this context is thate  oj55ses of linear problems, even avoiding the eipli

sponse vector, in the state-space formalism, iS @se of Hopf's FDE (Caseres & Budini 1997, Budini
Markovian process and, thus, its probability d@nsn& Caseres 1999, 2004). For some non-linear prob-
function is governed by the Fokker-PIanck-B1

. . _ ems, the Ch.Fl can be expressed as a formal infi-
Kolmogorov (FPK) equation (in the Gaussian case)jie_gimensional (functional) integral (Monin &

or by reasonable extensions of the FPK equation (i‘?aglom 1975), which is of little (or no) practical
the non Gaussian case). Interestingly enough, the

have been identified broad classes of problems in In. this paper, Hopf's FDE is taken as the starting
which analytic solutions of the classical FPK equanint of the probabilistic analysis of the consitér

tion are available (see, e.g., Soize 1994), maki  gyqchastic dynamics problem. Because of the gener-
approach even more attractive. . . . ality of Hopf’s approach, the method is applicatole
An approximate method dealing with nonllnearany (at least) polynomially non-linear system and

systems under general stochastic excitation is thg, \ing of stochastic excitation. Nevertheless, fo
Statistical Linearization Method (see, e.g., Rabert..2<ons of simplicity and clarity, our study wik b

& Spanos 2003), which is based on the approXimgsyried out on a specific, first-order, dynamicgs-s

t_ion of the full system b.y a ‘statistically equieal’ tem, with cubic nonlinearity. The excitation progses
linear one. Some variations of the method, concerngiii pe assumed. in principle, completely known
ing local linearization in the phase space, _ha\zmbe with a given correlation structure and continuons (
recently presented (Pradlwarter 2001), giving promgmgather) sample functions. This implies a non-
ising results. Markovian character of the response, making the

Another well-known method that can be applied, o040k hased on the FPK equation inapplicable.
to any type of stochastic excitation and to anyetyp gy oiting the Hopf FDE, new Partial Differential

of nonlinea'rit'y. is the method of moments, which 'Equations (PDEs) governing the joint, response-
duces the initial stochastic dynamics problem 10 ag,itation, characteristic functions (ch.f.), are-d

infinite system of detgrministic differential eqieaits .\ o4 The corresponding equations for the joirfspd
for the moment functions (Beran 1968, Pugachev & ¢ 550 obtained, by applying a Fourier transferma
Shinitsyn 1987). This infinite system should bentru ;01 These new PDEs, which are always linear, can

cated and becomes closed (in the case of nonlinegg .onsidered as a systematic and rigorous generali
problems) by means of appropriate closure schemes.



zation of th_e F_PK-type equations to the case of cottions x, will be assumed known stochastic elements
relatedlgxcnatlon and n'on-Markowan responses. Afunction and variable, respectively). In contrast
an additional test of validity of these new PDES, W yjth the standard approach, followed in the case of

show that they produce the correct infinite systém an lto SODE. the forcingy(-) is allowed to be

the moment equations. The same approach, i.e: sta " - : -
ing from the Hopf FDE., is also applied to defive ex Snooth (e.g. k-times continuously differentiable),

tended FPK equations, for the case of independe xhibiting any type of cprrelation structure in ém
increment excitation. In this connection, the ressul | NUS: the sample functions(+) and y() are con-
recently obtained by Grigoriu (Grigoriu 2004), con-Sidered as elements of smooth-functiBrspaces,
cerning various cases of non-Gaussian, independerfienoted by“" and?//, respectively. Our main re-
increment forcing, are derived as special casesiof sults will refer to the caseN =1, @/ =C*(1),
new extended FPK equations. We also show thé C R, k=0 or k>0, and.% a similar space
consistency of our new PDE (for the joint, respensewith smoother elements. The whole methodology
excitation, pdfs) with the usual (or extended) FPKcan be extended to the vector case-1 with the

equation, by deriving the latter as a limiting cage syal trouble (see Athanassoulis & Sapsis 2008 for
the former. A lack of rigor occurs here, when theygiai| analysis of a second-order system).

sample functions of the response process are not i o .
continuous. It is conjectured that this derivatinay The topological dual spaces 67> and f// are
be reformulated in a rigorous manner by invoking?|S0 B-spaces and will be denoted s " =
the dual of the space of cadlag (or regulated)-func@nd /' =) . The symbolgu, ) and(v,y) de-
tions, recently studied by Tvrdy (Tvrdy 2002). Thenote the standard duality pairings betwe&h and
question of the numerical solution of our new PDEsS//, and ¢/ and C)", respectively.

(for the joint, response-excitation, pdfs) will ten- The underlying probability space is denoted by
sidered in a companion paper, presented also in t ’%(Q)@) Where Q) is an abstract version of

same Conference, which will be referred to as [ll]. the sample (('ztri;i|) space?s (Q) is the family of

Borel sets of2, and %" is the corresponding prob-

_ o _ ability measure ovef). The stochastic process&s
The following abbreviations —some of which haveang v are measurable mapX,Y:Q— .2 @,

already been introduced above— will be consistently 1., define the

Abbreviations

induced probability spaces

used in the sequel: (40, 8(0), 2, ) and (v, 28(%Y), ., ), respec-
B-space Banach space tively. We shall ‘also néed and cons/ider the joint
ch.f(s) characteristic function(s) y A L J
Ch.FI(s) characteristic functional(s) process XxY QH/KX Y/ with 'f‘?”ced prob-
F-derivative Frechet derivative ability space (£t X/, 5 (UX ), 7,.,). In the
FDE(s) functional differential equation(s ~ Sequel we shall use the notation or x(e) or
FPK Fokker — Planck — Kolmogorov x(-;w), and similarly fory, for the random ele-
ODE(s) ordinary differential equation(s) ment, andx(t;w), teft, T|=I1C R, weQ, and
PDE(s) partial differential equation(s) similarly for y, for the sample functions, in accor-
pdf(s) probability density function(s) dance with the needs of the discussion.

SODE(s)  stochastic ODE(s) The finite-dimensional distributions, densities

and characteristic functions of the random element
2 PRELIMINARIES AND NOTATION x(-;w) will be denoted bny(tl)mxm(O‘l"“’O‘M)’

. . fx(tl)‘.‘f(t,w)(al""_'al\/]) a_nd st(tl).‘.x(tM) UpsyUy )5 162
In this work we consider ODEs (systems) of thespectively. This implies a convenient notation for

form (in state space formulation): the joint random elemer(tx(-;w), y(-;w)); for ex-
. ample {0y o (w2 bufa0) for the 2-x,
(1) =G(x(0)+ %Y. x(t)=x, (2.1)  3—vy density, andh, . oy (G0 Vaaag) for

the corresponding characteristic function. The lsua
finite-dimensional) mean value operator (ensample
verage) will be denoted l:Ez’“’[- . For example, the

mean value function of the random elemexl(lt;w)

will be written asm,, = E*|x(tw)|. Slight varia-

tions (simplifications) of this notation will be tho-

where x and y are scalar-valued oN-vector-
valued, continuous (or smoother) functions, define
at least on an intervall =[t,,T| (that is,
Xyt T]=1—-R"), andG R" — R", N=1

or N>1, is also a continuous (or smoother) func-
tion. Both the excitationy(-) and the initial condi-




duced later, in accordance with the needs of the Consider now an arbitrary cylinder functional
presentation. G 20 — C, that is a functional of the form

Infinite-dimensional (global) moments, are de- @
fined by integrating over the whole sample space””(x) - g((q, x><q? %’)
2" with respect to the probability measufe,
(See, e.g., Kree & Soize 1986, Vakhaeial. 1987, ) , o ) )
Egorov et al. 1993). For example, the mean (fir'stgrable f““C“R”- In th_'s case, the mﬂmte-dmems_al_
moment)Mm, is defined to be this element 6 , integral of //(x) with respect to the probability

for which the following scalar equation holds true: Measure?” over the spac&’l’ , can be expressed
as aQ-dimensional integral by means of the for-

xe. &, (2.5)

where g :R? — C is an arbitrary, measurable, inte-

{um, ) :f(u,x>@\‘(dx) . Yue@/, (2.2a) Mmula:
a o P _
where 7/ = .27’ . Furthermore, the correlation op- ’;lf(/(x) () Rng(a) Foa (). (2.6)

erator (second moment) is defined to be this linear d id ith ul
operatorR,,, ¢// — U, for which the following Equs. (2.5) and (2.6) provide us with a poweriu
scalar equation is valitfu we 7/ - m.ethod. for eval_uatlng integrals over infinite-

A dimensional (function) spaces. They will be refdrre

(w,R u>:f(w X)(u, ) 7 (o) (2.2b) to as the (Q-dimensiondProjection Theorem

The integrals appearing in the right-hand side o8 A BRIEF REVIEW ON THE

equs. (2.2) are infinite-dimensional (functionat} i CHARACTERISTIC FUNCTIONAL AND ITS
tegrals overB-spaces. (See references stated above BASIC PROPERTIES

or Dalecky & Fomin 1991). In general, the func-

tional integral of any bounded, measurable, coRtinu3.1  Definition of the Characteristic Functional
ous functional / & — C, with respect to a

probability mea??,fre‘@) 's well defined, and will basic properties of the Ch.Fl for probability meas-
be denoted b)d};ﬁ(x) 7 (dx). ures defined on separalBespaces.

Measures and integrals over infinite-dimensionapefinition 3.1 Let .2 be a separablB-space and
vector spaces are related with the corresponding fi>'— 2, be a probability measure defined on it.
nite-dimensional ones through the concepts of eylinThe Ch.FI.77~ of & is a cylinder functional de-
der sets, cylinder measures and cylinder funct®nal fined on the dual spacél’ ' = 7/ by the formula
Let .20 be a separablB-space,”/ be the dual of
20, and u,...,u,, beQ linearly independent ele- .7 (u) = fé“‘”@j(d)@, ue /(. (3.1)
ments of 7/ . Then, to any elementc .2 we as- @
sociate  the Q-—dimensional  projection This integral always exists provided that the corre
II, . 2 — R°, defined by sponding probability measure is well defined.

In this section we recall the definition and some

I, = ((w (4 %) (2.3) 3.2 Infinite-Dimensional (Global) Moments

_ . Let the Ch.Fl be differentiable in the sense of-Fre
Th? Inverse OfHuqu [+], applied to the Borel sets chet. In order to calculate theé--derivative
%)(RQ)’ defines the cylinder sets &ft’ . The ex- D.7 (u), we make use of the Gateaux derivative

istence of a probability measur@’, on U im-  (which always exists for &-differentiable map).
plies the existence of-dimensional (marginal) Thus, we have

measuresP%_“,UQ on R°, associated with the ran- -
dom vectors E<u1 () R (T X(u))>) by D ()] 7= d.7 (u+e2)
means of the relation de

e | (3.2)
Pon(E)= (T [€]). g T E0ETT(@ v=d

Uppeeey @b

for any E, € %’(RQ) _ Settingu =0, we obtain



D.7 (0)[2] - i-f(Z, XN (Y, = . (3.3) the random element at some time instances, as well
as the values of its derivatives either at the same

. - _ _ _ _ at different time instances. As an example we give
Since D.7~(0)[Z] is a continuous, linear functional the formula:

with respect toz, there should exists an element L
Me .2, such that E*[X (t;w) x(t?;w)]:ﬁ~Dz(%\(O)[é'(.ftl),é(.ftz)].

(zm=-i-D7(0)[4=[(z 37 (d}. (3.3)

27

27

_ ) ) 4 HOPF-TYPE EQUATION FOR THE
Comparing the above equation with the equ. (2.2a), CHARACTERISTIC FUNCTIONAL
it easily seen that the elememic .2 of equ. (3.3")
coincides with the mean valug,, of the probabil- In order to illustrate the derivation of Hopf-type

ity measure?” . The correlation operator can be as-FDEs for nonlinear dynamical systems, and pave the
sociated in a similar way with the secord  Way to the next section, where these equations will

derivative of the Ch.FI. be exploited to produce new PDEs for finite-
dimensional ch.fs, we shall restrict ourselves here
3.3 Finite-Dimensional (Point) Moments a specific case of a simple (scalar, first-order) d

. . namical system having a cubic nonlinearity, whigh i
In the case where the spa¢é is a function space, described by the following SODE:

apart from infinite-dimensional (global) moments,

we are also interesting in finite-dimensional mo- X(t'w)—i—kx(t' w>+ a)?( tw)z }(tw) (4.1a)
ments associated with finite-dimensional projection " " ’
(x(t;w), X(t;w), ..., X(t;w)), for any set of time X(t;w) = % (w), (4.1b)

instanceqt,,t,,...,t,). This kind of moments can be
obtained also by differentiating the Ch.Fl, thisei
using Volterra functional derivatives. (See, e.g.,
Volterra 1927/1959/2002 or Beran 1968). Volterra
derivatives, e.g. the first-order ore” (u)/éu(t),
can be calculated either by applying the origina
definition to the functional, or by applying theeFr
chet derivativeD.7 (u)[ 7] at z(+)=6(+ — t). Fol-
lowing the second approach, and using equs. (3.

where k,a are deterministic constants,(w) is a
random variable with known ch.b,(v),veR,
and the forcing y(s,w) is a real-valued random
functlon with sample spacé/ , probablllty meas-
Hre &7, and Ch.FL.7 (v), ve @/ =0 The
sample spacéV/ can be taken to be a quite general,
separableB-space. In the present work, it will be
ken as a spacé/ =C*(1), | CR, for some

and (2.6), we obtain < NU{O} '
o Standard existence and unigness theory (see, e.g.,
8.7 (0) o D7 (0)[5(- — t)] =i f (t)77 (dx) = Bunke 1972, or Sobczyk 1991) assure that there is a
su(t) ‘ ' stochastic process(«;w), with sample spacél =
_ fadF — e [x(tw)], C**(1) and probability measuré”,, and a joint
probability space(@i”x(// CB( Fxf”/),fﬂx’y),
and thus such that the joint proces(+;w), y(+;w)) verifies
the SODE (4.1).
oTofen 167 (0) - o .
E [X(t,w)] =—, (3.4a) The joint, response-excitation, probability meas-
i ox(t) ure &/, is equivalently described by the joint Ch.Fl
Similarly we obtain
Y . Fy(uy)= [ [0z (dx dy. (4.2)
E' (G w)x(tiw)] = 5D 7 (0)[8(- 1), 6(- =t )] =

1 87 (0) We shall now use the SODE (4.1) in order to ob-
=S (3.4b)  tain an FDE for.7 (u,v). Let us consider the

i” su(t,)éu(t,)
Volterrau-partial derivative of 7, at timet:
as well as analogous expressions for higher-order
moments. Working similarly, and using approprlate5r (u,v) N
generalized functions, we can derive equations for— ff'x N (dx dy. (4.3)
higher-order moments involving both the values of



_ o _ Equ. (4.8a) has to be supplemented by an appro-
Since the sample spacél consists of smooth priate initial condition, expressing that the proiba
functions, we can differentiate (4.3) with respet  jty measure associated with the initial vabag,,w)

t, obtaining: is given. This condition can be implemented by

g 67 (uv) means of the joint Ch.FU”_(u,v) as follows. Set-
a97 ,\Uv f fix’(t)ei(<“‘*>*<v'y>)@;y(dX dy. (4.4) ting v=0 (to restrict ourselves to the response
dt  6u(Y) o process only) andi=v-6(—t,), vE R, (to con-

) centrate only at the initial time instant), willtét in
Further, we compute the three-falepartial Volterra

derivative of. 7, (u,v) at time instants,,t,,t, € : 7, (v8(~—1,),0) =ffei(<““("‘“)'X>*<°’y>),@>;y(dx, dy) =
A G = [ (9 = o, (),
su(t)su(t)su(t) (4.5) ) z (0)= ()
_ : : . () 0 where ¢, (v) is the ch.f ofx(t,,w)= x,(w). Hence,
[['X(tl)'X(IZ)'X(tS)e 7, (ax dy. the initial condition can be expressed as
Settingt, =t, =t,=t in the latter, and combining Ty (08(+=1).0) =y (v) . vER. (4.80)
with equs. (4.3) and (4.5), we get
. P s 5 DERIVATION OF NEW PDEs FOR JOINT
d87, (Y | 67 (uy) 8T (uy RESPONSE-EXCITATION
dt  éu(t) su(t) (Su(t)3 CHARACTERISTIC FUNCTIONS
» - (4.12) . _ .
=iff[x’(t)+kx(t)+ ax (] &4 Do (dx dy = In this section we shall exploit the Hopf-type FDE
y @ (4.8), obtained above, to derive new PDEs for the
:iffy(t) @ Dep (dx dy). (4.6) joint, response-excitation, ch.f when the excitai®

a known stochastic process either with a.e. continu
Clearly, the last double functional integral can beous sample functions or smoother. In contrast with
expressed as\apartial Volterra derivative: the case of an independent-increment excitation

process, where the randomness of the excitation “re

o (D@D G [y ) — 6.7, (u,v) 47 generates” every time instant and allows us toewrit

ff'y( )¢ 7y (dx dy = sv(t) - (4.7) explicitly an equation involving only the response
v density (the well-known FPK equation), in the case
Combining (4.6) and (4.7) we derive the sought-forf & stochastic excitation with smooth sample func-

Hopf-type, FDE that governs the joint Ch.FItions, the randomness evolves, in general, in a
O (u v)' smoother way, as a result of the finite correlation
Xy ! .

time, making necessary to consider response and ex-

d 67, (uy) 67 (uy) &7 (uy citation jointly.

Bl + K _a - , The causality principle dictates that the current
dt  su(t) su( 1) su(t) value x(t;w) of the response, depends only on the
67, (u,v) history of the excitationy(t, < s< tw). However,
= —= (4.8a) . .
sv(t) this does not prevent the stochastic dependence be-

o ' ' tween x(t;w) and y(t+e;w), >0, which is a
tEqU- l(‘(‘j-&'?‘) '? a linear F?IE mvolzj/!ng Vci!terradfu_nc natural result of the smoothness and the finiteecor
ional derivatives, as well as ordinary time defiva 5tian + T
tives. The cubic nonlinearity of the initial SODE lation time of the excitatioriC,, (t+¢,) = 0.
corresponds to the 3-fold Volterra derivative
§°7,,16u(t)’. From the above derivation it is clear
that anyn™-order polynomial nonlinearity of the ini-
tial differential equation is transformed to afold
Volterra derivative in the corresponding Hopf-type . _
FDE. Another important feature of equation (4.82) i = vd(e=t), v=rb(—9, (1)
that it holds true for any continuous functionals
ue @/, vel) .

We shall proceed to derive a PDE for the joint ch.f
qu(t)y(t)(v,v) corresponding to the pair of random
variables (X(t;w), y(t;w)), t= fixed. To this end
we apply equ. (4.8a), above, to the pair



(v, v € R) and take the limis— t, after some ma-

nipulations. For the first term of equ. (4.8a) (aés®
equ. (4.4)), we obtain

P, t)(u), resulting in the followingmarginal com-
patibility condition:

Doy (O) = 6,y (v),  veR, t=t,. (5.6b)
d (67, (v-6(s—1),v-6(s—5))
dt su(t) - In addition, the initial condition (4.8b) implielet
(1) following initial condition to qb Oy (v, y)

dxtt exp{ivx (t)+ivy (s)} 22, (dx,dy) =
¢x(to)y(tn) (U'O):éb)(to)(v) :%(U) , veR. (5.6c)

The problem (5.6) can also be reformulated in terms

ff exp{ivx(t) +ivy(s)}2 (dx,dy)| =

Xy of the joint pdf f, (o ,(3). This reformulation,
; i which can be readlly obtamed by means of Fourier
ot ff explivxtivy} £ (x.y) dx transformation, will be explicitly given in [Il].
xR

196, (U v) To the best of our knowledge, equs. (5.6a,b,c),
_ — e 2 governing the evolution of the joint, response-
_ o v o excitation, ch.fo, (v,v), appear here for the first
Taking now the limits — t, we get time. They can be considered as a new kind of
4 (SzJ)\Xy(U-(S(-—t), u-é(-—s)) _mz?lthematical _moc_lel, providing us with the probabil-
lim — = istic characterization of the responsét,w), w € (2,
dt su(Y) for eachte |, obtained by taking the marginal of
1 0¢,y9 (V1) 5.2 the joint ch.f: ¢, (v ): Dyy(0:0), vE R . This
~ ot t (52) mathematical model is valld t)or any kind of stochas

tic excitation with a.e. continuous (or smoother)
Working similarly, we readily obtain the following sample functions, having any (known) probabilistic
results concerning the remaining terms appearing igtructure.

equ. (4.8a): Although the mathematical analysis (solvability

P theory) of problem (5.6a,b,c) is an open problem,

T (v-6(e— S(e— 0 , S ) . -

67 (v-5(-=t),v-6(=1)) _ Doy (V) , (5.3) existing numerical evidence of the authors (Safsis
su(t) v Athanassoulis 2006) suggests that it might be well-

posed under reasonable assumptions.

8T (v-8(s—1),v-5(s—1)) _ ‘93¢x<t>v(t><“’”> , (5.4)

In concluding this section we should emphasize

(Su(t)3 o’ that the above approach can be generalized in order
to obtain similar, linear, PDEs for the joilN;x and
51’:)/7~(U.6<o—t),1/.6<o—t)) _ (9§Z5X<t)y(t) (U,I/) . 55) M-y, ch.f
5\/('[) v qb( ) dta)os1) - )(SM)(Ul,...UN ,Vl,...l/M),

along with appropriate (marginal compatibility and
Combining equs. (5.2)-(5.5) with the FDE (4.8a), Wejpjtial) conditions. This point will be further dis
obtain the following PDE for the joint ch.f cussed in another work (Athanassoulis & Sapsis
qﬁx(t)y(t)(v,V), of the pair of random variables 2006). It seems that in this way it is possibleda-
(x(t; w), y(t;w)) , for everyt > t,: struct a closed (finitely-solvable) hierarchy afdar

problems providing us with the full hierarchy ofth

106,5 (00)) ka(b““(v’y) P64, (vw) _ finite-dimensional probabilities of the stochastie
v | v P sponsex(s;w).

_ a¢x<t)y(t) (UW) 5.6

= ————- (563 g DERIVATION OF THE FPK EQUATION FOR

o THE CASE OF INDEPENDENT INCREMENT

Now, since the stochastic procegb,w) is given, EXCITATION

its ch.f gb (u) is known. Hence, thg-marginal of

the Jomt chf ¢ oyt (U 1/) has to coincide with Equs. (5.6) —involving the joint, response-exodafi

ch.f. — hold true for any kind of stochastic exta



process, provided that the latter has at leastare. analogous equations in the case of a Poissonian or

tinuous sample functions. We shall now turn to then — stable or a general Levy process forcing.

most commonly studied case, those of an Ito SODE, Working similarly as in Section 4, we obtain the

where y(t;w) represents the generalized derivativefollowing Hopf-type FDE that governs the evolution

of an independent-increment process. In this d&se tof the Ch.El .7 (u,v), parametrically de-

responsex(t;w) is continuous but not differenti- pendent onr > 0: {riag

able. Thus, the treatment based on the Hopf equa-

tion, developed in Section 5, is not valid, sinbe t

duality pairings (5.1) are not applicable. The quest *A

tion arises if it is possible to treat this cassodly a

similar method, starting from the Hopf equation and s ,,

obtaining the usual FPK equation —which involves ‘5‘*}?(771@2)(“"’) B o7 a9 6.2

only the response ch.f (or pdf). In the presentisec 5u<t)3 B sv(t) - (6.29)

we shall show how this is possible, by resortingkba

to the FDE for a finite-difference version of the -

SODE (4.1). The crucial property, to be exploited i ~ *" ™ Z)(Ué(._t")’o) = %(v), veR. (6.20)

this case, is the independence of the current value . ... the. 7~ (uv) is the finite-differ-

X(t;w) of the response from the future increment ion ot Az |

A z(tw)=z(t+7,w)— A tw), 7>0, of the exci- ence version orr (u V)_Tlin/ x(rt )(U’V)

tation. Everything presented in this Section can be Using again the arguments(), () given by

generalized to multidimensional nonlinear dynami-{5.1), and applying the same treatment as in Sectio

cal systems. 5, we obtain the following PDE that governs the
Let us rewrite the SODE (4.1a,b) in a finite-joint ch.f ¢

57

T

(g
difference form: 1, (¢ : )) X kagbx(l)( JU(‘))(U v)
. . T T\ X0 (- a «9) vV -
S o an(ea) -2 @1 0 .
o v,V o v,V
X(t;w) = % (w), (6.1b) a xm(’gy’io) - b ;Zﬂ) . (6.3)

where z(+;w) is a known, real-valued process with Setting » =0 in the equ. (6.3) and taking the limit
independent increments, ang(w) is a known ran- asT — 0" . we obtain:

dom variable. The time increment is assumed to
Itz)?/vgosnlve ,7>0, and this is essential in what fol- 109, (v) e 96, (v) ) asqsx( (v) B
The sample functions of the stochastic procesd’ v o’
z(+;w) may be either continuous functions (as in the _ 8¢X(1>(771AT2<Q)(U”/>|
case of normally-distributed, independent-increment = m O ‘
processes) or non-decreasing, piecewise-constant v=0
functions (as in the case of Poisson distributeie-in
pendent-increment processes). In the first case- (co
tinuous sample functions), it is clear that thevpre
ously developed approach can be applied to e
(6. 1)y In the secongezaseadlag samplepl?unctlons) qmore complicated and should be studied further. In
the applicability of the same arguments is not di2nalogy with equs (4.8a) and (4.7), the “source”
rectly justifiable. Nevertheless, we shall take libe ~ t€rm 8% (U v)/ov, appearing in the right-
erty not to be completely rigorous, and apply théand side of equs (6.3) and (6.4), comes from the
same approach to the general case as well. It seef@owing functional integral
to us quite remarkable and fascinating that the obé¢ Ol A»Z(t))(u,u)

(6.4)

In the left-hand side of equ. (6.4) we can already
recognize the sought-for result. In the right-hand
side, because of the— derivative, the situation is

tained PDE for the ch.f of the responsig; w) coin- 3 = |T(U,V) =

cides with the known one in all examined cases. v _

Thus, the results of the present section can be cor i(T’lATZ(t))é(<U’X>+<V'T 24 5
sidered as a rigorous rederivation of the classical 7 «

FPK equation from the Hopf FDE, in the case of N e (dx’d<771A72))’

Gaussian forcing, and as a heuristic method toséeri A a40)



where 4" is an appropriate space of continuousBy the same token as aboul;( ) is the ch.f of the
functions. Now, using the identity increment A z(t,w): J (v) = P t( ). Assum-

|ng the latter isT—differentiable |n the vicinity of

R o P TN R et

we obtain 3%;@) (v) _
= il ocaa ). T
o lim w—a(A’z(t))e“’(ATz(t)) “ A ,(d(A 7)) =
Let us now evaluate the above functional mtegral T—0 or ’
(for 7= fixed> 0), under the specific choice of ar- ’ A2(D) .
gumentsu(s) = v-6(s —t) andv(s) = v-5(s —1): = lim |[ ]e' P (d(A2). (6.9)
T — pd T !

| (v6(s —t), v-6(s —t)) = ;

, A The last term in (6.9) coincides —apart from the fa
ff [A z ] [ 1220 ]K/JX“(d)g d(A 2). (6.5) tor v— with the second integral in the right-hand
side of equ. (6.7). Thus, on the basis of (6.8) and

. o ) (6.9), we can rewrite equ. (6.7) as follows:
Because of the specific form of the excitation énd

pendent-increment process), the respom(iew) is lim |T(U5(. —t), vr-8(s —t)) -
stochastically independent from the future incremen™ ~°

of the forcing A z(tjw) = Z(t+7;w)— 4 tw). 1 i 09, 4y (V)
(at this point we make use of the assumptian0). T (bx(‘)(U)}mf or
As a consequence, the joint probability measure o _
P x,(dx d(A2) can be written in multiplicative Combining now (6.4) and (6.10), we obtain
form

(6.10)

o . 8%0(“) 4 ko 99y, (v) B auasﬁf%(t) (v) _
D ddxd(d 2) =D (d)-7, (dA, 3). (66) ot v o'
Taking this into account, and making the substitu- — by (v) lim 0%, 49 (V) vER. (6.11)
tion v =v 7 (note that we are interested in the dou- R ’

ble limit v — 0 and 7 — 0"), the double functional
integral in the right-hand side of (6.5) can be-fac
tored out as follows:

This is in fact the generalized FPK equation fan-ge
eral, independent-increment, excitation, written in
terms of the ch.f of the response process. The€orr

|5(U5(° —t), w-é(- —t)) — sponding FPK equation, in terms of the pdf, islgasi
_ - derived by applying a Fourier transformation (see
= fexp{lvx(t)}f/)x(dx) X [II]). It can be shown (Athanassoulis & Sapsis 2006

that the above equation includes as special cases

(Az(1) - P various generalized FPK equations, recently ob-
XL[I[ T ]eXp{IUA"Z(t)} 7..d(82). 67) tained by Grigoriu (2004).

On the basis of the Projection Theorem (equ. (2.6))
the first functional integral of the right-hand sidf

the above equation is simply the ch.fx(ft;w): 7 MOMENT EQUATIONS FROM THE NEW
PDE (5.6a)
feXp{'”X W (dx) = 6, (v), (6:8) It is worth noticing that the PDE (5.6a), derived a

@& Section 5, can reproduce the infinite set of moment
To calculate the second functional integral in theequations corresponding to the dynamical system

right-hand side of equ. (6.7), we start by considpr equation (4.1a). Indeed, by direct integration haf t
the functional integral: SODE (4.1a), it is easily seen that infinite systaim

_ - moment equations has the form
J. (v):fexp{lv(ATz(t))} D, .,(d(A, 2). L aM ()
s n+1,m
Nl dt

+ an+lm( ) =

s=t



=-a Mn+3,m(t' S) + Mn,rml(t’ S) !

where M (t,s) = E¥ QNX( tw)]'[ U sw)]m). With-
out going into details, we only state that

(7.1)

system (7.1) can also be derived from the PDE

(5.6a), using simple properties connecting the ah.f
a stochastic process and its moments.

Thus, the new linear PDE (5.6a) can be viewed

an “integrating scheme” for the nonlinear infinite

Grigoriu, M., 2004, Characteristic function equasofor the
state of dynamic systems with Gaussian, PoissorLany
white noise Probabilistic Engineering Mechanic$9, 449-
461.

the mopme Hemon, P. & Santi, F., 2006, Simulation of a spigtiaorre-

lated turbulent field using biorthogonal decomposit J.

Wind Eng. and Ind Aerodynamjds press

Hopf, E., 1952, Statistical Hydromechanics and Fonal
Calculus. Journal of Rational Mechanics and Analysj
87-123.

afali, C. & Grigoriu, M., 2003, Non-Gaussian modet spa-
tially coherent seismic ground motiond! Btern. Conf. on

system of ODEs (7.1), permitting its replacement by Appl. of Statis. and Prob. in Civil Engineering ASP9),

a single linear PDE.

8 CONCLUSIONS

San Francisco, California.
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In this paper a new PDE (5.6a) governing the jointlin, Y.K. and Cai G. Q., 1995Probabilistic Structural Dy-

response-excitation, ch.f has been derived. Thi
equation supplemented with the marginal compati

bility condition (5.6b) and the initial conditio®.Gc)

can provide us with the evolution of the joint ch.f
gPradlwarter, H.J., 2001, Non-Linear Stochastic Rasp Dis-

Its numerical solution is studied in a companion p

per [ll]. The method outlined above can be extended

g Nhamics McGraw-Hill, Inc.
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