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ABSTRACT: In the present work the problem of determining the probabilistic structure of the dynamical 
response of nonlinear systems subjected to general, external, stochastic excitation is considered. The starting 
point of our approach is a Hopf-type equation, governing the evolution of the joint, response-excitation, char-
acteristic functional (see, e.g., R.M. Lewis & R.M. Kraichnan, “A space-time functional formalism for turbu-
lence”, Come. Pure Appl. Math., Vol. XV, pp. 397-411, 1962, or M. J. Beran, Statistical Continuum Mechan-
ics, Interscience Publishers, 1968). This is a linear functional differential equation, i.e. a differential equation 
containing Volterra functional derivatives. The method is applicable to any, state-space, differential system 
exhibiting polynomial nonlinearities, but in this paper it is illustrated through a detailed analysis of a simple, 
first-order, scalar equation, with a cubic nonlinearity. Emphasis is given to the case of excitation processes 
with correlation structure and continuous (or smoother) sample functions, which implies a non-Markovian 
character of the response. Exploiting the Hopf equation, we derive new partial differential equations govern-
ing the joint, response-excitation, characteristic function, which can be considered as an extension of the well-
known Fokker-Planck-Kolmogorov equation to the case of a general, correlated excitation and, thus, non-
Markovian response character. The validity of this new equation is also checked by showing its equivalence 
with the (nonlinear) infinite system of moment equations. It is also shown that the same approach, i.e. starting 
from the Hopf equation, is also able to derive the Fokker-Planck-Kolmogorov equation for the case of inde-
pendent-increment excitation. Numerical solution of this new equation for the joint characteristic function 
will be presented in a companion paper (Sapsis & Athanassoulis 2006, this Conference). Extension to general, 
multidimensional, dynamical systems exhibiting any polynomial nonlinearity will be presented in a forthcom-
ing paper (Athanassoulis & Sapsis 2006).  
 
KEYWORDS: Stochastic Dynamics, Stochastic Differential Equations, Functional Differential Equations, 
Correlated Stochastic Excitation, Fokker-Planck-Kolmogorov Equation, Generalized Fokker-Planck-
Kolmogorov Equation, Non-Markovian Responses, Characteristic Functional.  

 
 

1 INTRODUCTION 

Many problems occurring in applied sciences and 
engineering are successfully modelled as stochastic 
differential equations. A very important class of 
such problems are those modeled as stochastically 
excited, nonlinear, dynamical systems. Well-known 
examples include the dynamic responses of ships 
and other man-made structures and systems under 
the influence of wind-generated waves in the sea 
(Schlesinger & Swean 1998, Wilson 2002, Belenky 
& Sevastianov 2003, Arnold et al. 2004), the dy-
namic responses of buildings and bridges under the 
influence of earthquakes (Lin & Cai 1995, Deodatis 
1996, Kafali & Grigoriu 2003), as well as the dy-
namic responses of structures and vehicles under the 
influence of wind forces (Simiu & Scanlan 1986, 

Kree & Soize 1986, Soong & Grigoriu 1993, Hemon 
& Santi 2006). In all these cases the excitation loads 
are assumed to be known stochastic processes, either 
Gaussian or non-Gaussian, as in the case of wind 
loads. Their probabilistic and correlation structure 
can be (and, usually, have been) inferred by means 
of statistical data analysis and, in most cases, have 
been conveniently parameterized for easy reference 
and use in calculations. Most of the foundational 
facts and aspects concerning the stochastic modeling 
philosophy in engineering and applied science, and 
the corresponding mathematical background can be 
found nowadays in book form; see, e.g., Kree & So-
ize 1986, Sobczyk 1991, Soong & Grigoriu 1993, 
Roberts & Spanos 2003.  

The ultimate objective in the analysis of such 
problems is to obtain a complete probabilistic de-



scription of the response process, permitting to an-
swer any important questions about the response dy-
namics. Examples of such questions concerns the 
distributions of local extrema, of upcrossing rates at 
certain levels, of the first passage time associated 
with a critical level value, etc. To make this possible 
we need, in principle, to know the whole Kolmo-
gorov hierarchy of the n-fold, joint, probability dis-
tributions ( ) ( ) ( )( )

1 2 1 2... , ,...,
n nx t x t x tF a a a  of the n-variate 

response random variables ( ) ( ) ( )( )1 2, ,..., nx t x t x t  at 

any collection of time instances ( )1 2, , ..., nt t t  or, 

equivalently and more concisely, the Characteristic 
Functional (Ch.Fl) of the response process. Because 
of the obvious difficulties of this general concept of 
solution of the probabilistic dynamics problems, 
there is a constant tendency –at least in the applied 
and engineering literature– to avoid such an ap-
proach, resorting to simpler (partial) solution con-
cepts.  

An important, and extensively studied, context, 
permitting a relatively easy, complete characteriza-
tion of the probabilistic responses of a dynamical 
system, occurs if we assume that the excitation is a 
process with independent increments (see, e.g., 
Pugachev & Shinitsyn 1987, Soize 1994, Grigoriu 
2004). The key feature in this context is that the re-
sponse vector, in the state-space formalism, is a 
Markovian process and, thus, its probability density 
function is governed by the Fokker-Planck-
Kolmogorov (FPK) equation (in the Gaussian case) 
or by reasonable extensions of the FPK equation (in 
the non Gaussian case). Interestingly enough, there 
have been identified broad classes of problems in 
which analytic solutions of the classical FPK equa-
tion are available (see, e.g., Soize 1994), making this 
approach even more attractive.  

An approximate method dealing with nonlinear 
systems under general stochastic excitation is the 
Statistical Linearization Method (see, e.g., Roberts 
& Spanos 2003), which is based on the approxima-
tion of the full system by a ‘statistically equivalent’ 
linear one. Some variations of the method, concern-
ing local linearization in the phase space, have been 
recently presented (Pradlwarter 2001), giving prom-
ising results.  

Another well-known method that can be applied 
to any type of stochastic excitation and to any type 
of nonlinearity is the method of moments, which re-
duces the initial stochastic dynamics problem to an 
infinite system of deterministic differential equations 
for the moment functions (Beran 1968, Pugachev & 
Shinitsyn 1987). This infinite system should be trun-
cated and becomes closed (in the case of nonlinear 
problems) by means of appropriate closure schemes. 

Then, it is solved numerically, providing us with re-
stricted information about the probabilistic charac-
terization of the response process.  

Another method, in principle well-known but in 
very little use for solving practical problems, is the 
one based on the Ch.Fl of the full probability meas-
ure associated with the dynamic response. The first 
step in this direction was made by Hopf (1952) who 
derived a Functional Differential Equation (FDE) for 
the Ch.Fl associated with the probabilistic solution 
of the Navier-Stokes equations. This approach, 
known as the statistical approach to turbulence, has 
been developed further by many authors (see, e.g., 
Lewis & Kraichnan 1962, Monin and Yaglom 1971, 
1975), with only restricted success as regards the 
production of useful solutions to practically interest-
ing problems. In parallel, a simpler version of the 
same approach has been developed and applied to 
finite-dimensional dynamical systems, governed by 
Stochastic Ordinary Differential Equations (SODEs). 
See, e.g., Beran (1968). Such Hopf-type FDEs are 
always linear, and govern the Ch.Fl of the sought-for 
probability measure or –depending on the specific 
formulation– the joint Ch.Fl of the joint, response-
excitation, probability measure. In recent years suc-
cessful attempts have been reported towards the ana-
lytic determination of the response Ch.Fl for some 
classes of linear problems, even avoiding the explicit 
use of Hopf’s FDE (Caseres & Budini 1997, Budini 
& Caseres 1999, 2004). For some non-linear prob-
lems, the Ch.Fl can be expressed as a formal infi-
nite-dimensional (functional) integral (Monin & 
Yaglom 1975), which is of little (or no) practical 
use.  

In this paper, Hopf’s FDE is taken as the starting 
point of the probabilistic analysis of the considered 
stochastic dynamics problem. Because of the gener-
ality of Hopf’s approach, the method is applicable to 
any (at least) polynomially non-linear system and 
any kind of stochastic excitation. Nevertheless, for 
reasons of simplicity and clarity, our study will be 
carried out on a specific, first-order, dynamical sys-
tem, with cubic nonlinearity. The excitation process 
will be assumed, in principle, completely known, 
with a given correlation structure and continuous (or 
smoother) sample functions. This implies a non-
Markovian character of the response, making the 
approach based on the FPK equation inapplicable. 
Exploiting the Hopf FDE, new Partial Differential 
Equations (PDEs) governing the joint, response-
excitation, characteristic functions (ch.f.), are de-
rived. The corresponding equations for the joint pdfs 
are also obtained, by applying a Fourier transforma-
tion. These new PDEs, which are always linear, can 
be considered as a systematic and rigorous generali-



zation of the FPK-type equations to the case of cor-
related excitation and non-Markovian responses. As 
an additional test of validity of these new PDEs, we 
show that they produce the correct infinite system of 
the moment equations. The same approach, i.e. start-
ing from the Hopf FDE, is also applied to derive ex-
tended FPK equations, for the case of independent-
increment excitation. In this connection, the results 
recently obtained by Grigoriu (Grigoriu 2004), con-
cerning various cases of non-Gaussian, independent-
increment forcing, are derived as special cases of our 
new extended FPK equations. We also show the 
consistency of our new PDE (for the joint, response-
excitation, pdfs) with the usual (or extended) FPK 
equation, by deriving the latter as a limiting case of 
the former. A lack of rigor occurs here, when the 
sample functions of the response process are not 
continuous. It is conjectured that this derivation may 
be reformulated in a rigorous manner by invoking 
the dual of the space of cadlag (or regulated) func-
tions, recently studied by Tvrdy (Tvrdy 2002). The 
question of the numerical solution of our new PDEs 
(for the joint, response-excitation, pdfs) will be con-
sidered in a companion paper, presented also in the 
same Conference, which will be referred to as [II].  
 
Abbreviations  
 

The following abbreviations –some of which have 
already been introduced above– will be consistently 
used in the sequel:  
 B-space         Banach space  
 ch.f(s)           characteristic function(s)  
 Ch.Fl(s)        characteristic functional(s)  
 F-derivative  Frechet derivative  
 FDE(s)          functional differential equation(s)  
 FPK               Fokker – Planck – Kolmogorov  
 ODE(s)         ordinary differential equation(s)  
 PDE(s)          partial differential equation(s)  
 pdf(s)            probability density function(s)  
 SODE(s)       stochastic ODE(s)  

2  PRELIMINARIES AND NOTATION  

In this work we consider ODEs (systems) of the 
form (in state space formulation):  
 

( ) ( )( ) ( )x t G x t y t= +ɺ ,    ( )0 0x t x= ,       (2.1) 
 

where x  and y  are scalar-valued or N-vector-
valued, continuous (or smoother) functions, defined 
at least on an interval [ ]0,I t T≡  (that is, 

[ ]0, : , Nx y t T I≡ → ℝ ), and : N NG →ℝ ℝ , 1N =  
or 1N > , is also a continuous (or smoother) func-
tion. Both the excitation ( )y i  and the initial condi-

tions 0x  will be assumed known stochastic elements 
(function and variable, respectively). In contrast 
with the standard approach, followed in the case of 
an Ito SODE, the forcing ( )y i  is allowed to be 
smooth (e.g., k-times continuously differentiable), 
exhibiting any type of correlation structure in time. 
Thus, the sample functions ( )x i  and ( )y i  are con-
sidered as elements of smooth-function B-spaces, 
denoted by k  and l , respectively. Our main re-
sults will refer to the case 1N = , ( )k IC=l , 
I ⊆ℝ , 0k =  or 0k > , and k  a similar space 
with smoother elements. The whole methodology 
can be extended to the vector case 1N >  with the 
usual trouble (see Athanassoulis & Sapsis 2006 for a 
detail analysis of a second-order system).  
 

The topological dual spaces of k  and  l  are 
also B-spaces and will be denoted by =′k h  
and =′l i . The symbols ,u x  and ,v y  de-
note the standard duality pairings between k  and 
h , and  l  and i , respectively.  
 

The underlying probability space is denoted by 
( )( ),, ΩΩ ΩU c , where Ω  is an abstract version of 

the sample (trial) space, ( )ΩU  is the family of 
Borel sets of Ω , and Ωc  is the corresponding prob-
ability measure over Ω . The stochastic processes X  
and Y  are measurable maps , :X Y →Ω k?l , 
which define the induced probability spaces 

( )( ),, kk U k c  and ( )( ),, ll U l c , respec-
tively. We shall also need and consider the joint 
process :X Y → ×× Ω k l  with induced prob-
ability space ( )( ),, ×× × k lk l U k l c . In the 
sequel we shall use the notation x  or ( )x i  or 
( );x ωi , and similarly for y , for the random ele-

ment, and ( );x t ω , [ ]0,t t T I∈ ≡ ⊆ℝ , ω∈Ω , and 
similarly for y , for the sample functions, in accor-
dance with the needs of the discussion.  
 

The finite-dimensional distributions, densities 
and characteristic functions of the random element 
( );x ωi  will be denoted by ( ) ( ) ( )

1 1, ,
M Mx t x tF α α

…
… , 

( ) ( )( )
1 1, ,

M Mx t x tf α α
…

…  and ( ) ( )( )
1 1, ,

M Mx t x tφ υ υ
…

… , re-
spectively. This implies a convenient notation for 
the joint random element ( ) ( )( ); , ;x yω ωi i ; for ex-
ample ( ) ( ) ( ) ( ) ( ) ( )

1 2 1 2 3 1 2 1 2 3, , , ,x t x t y t y t y tf α α β β β  for the 2 x− , 
3 y−  density, and ( ) ( ) ( ) ( ) ( ) ( )

1 2 1 2 3 1 2 1 2 3, , , ,x t x t y t y t y tφ υ υ ν ν ν  for 
the corresponding characteristic function. The usual 
(finite-dimensional) mean value operator (ensample 
average) will be denoted by [ ]ω

iE . For example, the 
mean value function of the random element ( );x ωi  
will be written as ( ) ( );x tm x tω ω =  E . Slight varia-
tions (simplifications) of this notation will be intro-



duced later, in accordance with the needs of the 
presentation.  
 

Infinite-dimensional (global) moments, are de-
fined by integrating over the whole sample space 
k  with respect to the probability measure kc  
(See, e.g., Kree & Soize 1986, Vakhania et al. 1987, 
Egorov et al. 1993). For example, the mean (first 
moment) mk  is defined to be this element of k , 
for which the following scalar equation holds true:  
 

( ), , ,u u x dx um = ∀ ∈∫k

k

hc ,         (2.2a)  

 

where ′≡h k . Furthermore, the correlation op-
erator (second moment) is defined to be this linear 
operator :R →kk h k , for which the following 
scalar equation is valid ,u w∀ ∈h :  
 

( ), , ,w u w x u x dxR = ∫kk

k

c .                 (2.2b)  

 

The integrals appearing in the right-hand side of 
equs. (2.2) are infinite-dimensional (functional) in-
tegrals over B-spaces. (See references stated above 
or Dalecky & Fomin 1991). In general, the func-
tional integral of any bounded, measurable, continu-
ous functional : → ℂZ k , with respect to a 
probability measure  c ,  is well defined,  and  will  
be denoted by ( ) ( )x dx∫

k

cZ .  
 

Measures and integrals over infinite-dimensional 
vector spaces are related with the corresponding fi-
nite-dimensional ones through the concepts of cylin-
der sets, cylinder measures and cylinder functionals. 
Let k  be a separable B-space, h  be the dual of 
k , and 1, , Qu u… , be Q linearly independent ele-
ments of h . Then, to any element x∈k  we as-
sociate the Q−dimensional projection 

1 , , :
Q

Q

u u →Π
…

ℝk , defined by  
 

[ ] ( )
1 , , 1, , , ,

Qu u Qx u x u x=Π
…

… .        (2.3)  
 

The inverse of [ ]
1 , , Qu uΠ
…
i , applied to the Borel sets 

( )Q
ℝU , defines the cylinder sets of k . The ex-

istence of a probability measure kc  on k  im-
plies the existence of Q-dimensional (marginal) 
measures 

1, , Qu uP
…

 on Q
ℝ , associated with the ran-

dom vectors ( ) ( )( )1, ; , , , ;Qu x u xω ωi … i  by 
means of the relation  
 

( ) [ ]( )
1 1

1

, , , ,
Q Q

u u Q u u Q
E EP

k
c

−

= Π
… …

.          (2.4)  
 

for any ( )Q
QE ∈U ℝ .  

 

Consider now an arbitrary cylinder functional 
: →ℂZ k , that is a functional of the form  

 

( ) ( )1, , , ,Qx g u x u x= …Z ,      x∈k ,   (2.5)  
 

where : Qg →ℝ ℂ  is an arbitrary, measurable, inte-
grable function. In this case, the infinite-dimensional 
integral of ( )xZ  with respect to the probability 

measure c  over the space k , can be expressed 
as a Q-dimensional integral by means of the for-
mula:  
 

( ) ( ) ( ) ( )
1
, ,

Q

Q

u u
x dx g dP=∫ ∫ a a

…

k

Z c
ℝ

.      (2.6)  

 

Equs. (2.5) and (2.6) provide us with a powerful 
method for evaluating integrals over infinite-
dimensional (function) spaces. They will be referred 
to as the (Q-dimensional) Projection Theorem.  

3 A BRIEF REVIEW ON THE 
CHARACTERISTIC FUNCTIONAL AND ITS 
BASIC PROPERTIES  

3.1 Definition of the Characteristic Functional  

In this section we recall the definition and some 
basic properties of the Ch.Fl for probability meas-
ures defined on separable B-spaces.  
Definition 3.1: Let k  be a separable B-space and 

= kc c  be a probability measure defined on it. 
The Ch.Fl Y  of c  is a cylinder functional de-
fined on the dual space ′=k h  by the formula  
 

( ) ( ), ,i u xu e dx u= ∈∫
k

Y c h .        (3.1)  

 

This integral always exists provided that the corre-
sponding probability measure is well defined.  

3.2 Infinite-Dimensional (Global) Moments  

Let the Ch.Fl be differentiable in the sense of Fre-
chet. In order to calculate the F-derivative 

( )uDY , we make use of the Gateaux derivative 
(which always exists for a F-differentiable map). 
Thus, we have  
 

( )[ ]
( )

( )
0

,, , , .i u x

d u z
u z

d

i z x e dx u z

D
ε

ε

ε =

+
= =

= ⋅ ∈∫
k

Y
Y

c hA
    (3.2)  

 

Setting 0u= , we obtain  
 



( )[ ] ( )0 , ,z i z x dx zD = ⋅ ∈∫
k

Y c h .        (3.3)  

 

Since ( )[ ]0 zDY  is a continuous, linear functional 
with respect to z , there should exists an element 
m∈k , such that  
 

( )[ ] ( ), 0 ,z i z z x dxm D= − ⋅ = ∫
k

Y c . (3.3’)  

 

Comparing the above equation with the equ. (2.2a), 
it easily seen that the element m∈k  of equ. (3.3’) 
coincides with the mean value mk  of the probabil-
ity measure c . The correlation operator can be as-
sociated in a similar way with the second F-
derivative of the Ch.Fl.  

3.3 Finite-Dimensional (Point) Moments  

In the case where the space k  is a function space, 
apart from infinite-dimensional (global) moments, 
we are also interesting in finite-dimensional mo-
ments associated with finite-dimensional projections 

( ) ( ) ( )( )1 2; , ; , , ;nx t x t x tω ω ω… , for any set of time 
instances ( )1 2, , , nt t t… . This kind of moments can be 
obtained also by differentiating the Ch.Fl, this time 
using Volterra functional derivatives. (See, e.g., 
Volterra 1927/1959/2002 or Beran 1968). Volterra 
derivatives, e.g. the first-order one ( ) ( )/u u tδ δY , 
can be calculated either by applying the original 
definition to the functional, or by applying the Fre-
chet derivative ( )[ ]u zDY  at ( ) ( )z tδ= −i i . Fol-
lowing the second approach, and using equs. (3.3) 
and (2.6), we obtain  
 

( )
( )

( ) ( )[ ] ( ) ( )
0

0
def

t i x t dx
u t

D
δ

δ
δ

= − = =∫i

k

Y
Y c  

               ( )( ) ( )[ ];x ti a dF a i x tω
ω= =∫

ℝ

E ,  

and thus  
 

( )[ ] ( )
( )

01
;x t

i x t
ω

δ
ω

δ
=E

Y
.  (3.4a)  

 

Similarly we obtain  
 

( ) ( )[ ] ( ) ( ) ( )[ ]
2

1 2 1 22

1
; ; 0 ,x t x t t t

i
Dω

ω ω δ δ= ⋅ − − =i iE Y   

( )
( ) ( )

2

2

1 2

01

i u t u t

δ

δ δ
=

Y
,     (3.4b)  

 

as well as analogous expressions for higher-order 
moments. Working similarly, and using appropriate 
generalized functions, we can derive equations for 
higher-order moments involving both the values of 

the random element at some time instances, as well 
as the values of its derivatives either at the same or 
at different time instances. As an example we give 
the formula:  
 

( ) ( )[ ]
( )

( ) ( ) ( )[ ]
2

1 2 1 2

1
; ; 0 ,x t x t t t

ii
Dω

ω ω δ δ′ ′= ⋅ − −
−

i iE Y . 

4 HOPF-TYPE EQUATION FOR THE 
CHARACTERISTIC FUNCTIONAL  

In order to illustrate the derivation of Hopf-type 
FDEs for nonlinear dynamical systems, and pave the 
way to the next section, where these equations will 
be exploited to produce new PDEs for finite-
dimensional ch.fs, we shall restrict ourselves here to 
a specific case of a simple (scalar, first-order) dy-
namical system having a cubic nonlinearity, which is 
described by the following SODE:  
 

( ) ( ) ( ) ( )3; ; ; ;x t k x t ax t y tω ω ω ω+ + =ɺ , (4.1a)  

( ) ( )0 0;x t xω ω= ,  (4.1b)  
 

where ,k a  are deterministic constants, ( )0x ω  is a 
random variable with known ch.f ( )0 ,φ υ υ∈ℝ , 
and the forcing ( ),y ωi  is a real-valued random 
function, with sample space l , probability meas-
ure yc , and Ch.Fl ( ),y v v∈ =′Y l i . The 
sample space l  can be taken to be a quite general, 
separable, B-space. In the present work, it will be 
taken as a space ( ),k I IC= ⊆l ℝ , for some 

{ }0k ∈ ∪ℕ  .  
 

Standard existence and uniqness theory (see, e.g., 
Bunke 1972, or Sobczyk 1991) assure that there is a 
stochastic process ( );x ωi , with sample space =k  

( )1k IC +  and probability measure xc , and a joint 
probability space ( )( )xy× × ?k l?U k l c , 
such that the joint process ( ) ( )( ); , ;x yω ωi i  verifies 
the SODE (4.1).  
 

The joint, response-excitation, probability meas-
ure xyc  is equivalently described by the joint Ch.Fl  
 

( ) ( ) ( ), ,, ,i u x v y

xy xyu v e dx dy+= ∫ ∫
l k

Y c .   (4.2)  

 

We shall now use the SODE (4.1) in order to ob-
tain an FDE for ( ),xy u vY . Let us consider the 

Volterra u-partial derivative of xyY  at time t :  
 

( )
( )

( ) ( ) ( ), ,
,

,
xy i u x v y

xy

u v
ix t e dx dy

u tδ

δ
+= ∫ ∫

l k

Y
c .  (4.3)  



 

Since the sample space k  consists of smooth 
functions, we can differentiate (4.3) with respect to 
t , obtaining:  
 

( )
( )

( ) ( ) ( ), ,
,

,
xy i u x v y

xy

u vd
i x t e dx dy

dt u tδ

δ
+′= ∫ ∫

l k

Y
c .  (4.4)  

 

Further, we compute the three-fold u-partial Volterra 
derivative of ( ),xy u vY  at time instants 1 2 3, ,t t t I∈ :  
 

( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

3

1 2 3

, ,

1 2 3

,

, .

xy

i u x v y

xy

u v

u t u t u t

ix t ix t ix t e dx dy

δ δ δ

δ

+

=

= ∫ ∫
l k

Y

c
  (4.5)  

 

Setting 1 2 3t t t t= = =  in the latter, and combining 

with equs. (4.3) and (4.5), we get  
 

( )
( )

( )
( )

( )

( )

3

3

, , ,
xy xy xy

u v u v u vd
k a

dt u t u t u tδ δ δ

δ δ δ
+ − =

Y Y Y
  

( ) ( ) ( ) ( ) ( )3 , ,
(4.1 )

,i u x v y

xy

a

i x t kx t ax t e dx dy+′= + +  = ∫ ∫
l k

c  

( ) ( ) ( ), , ,i u x v y

xy
i y t e dx dy+= ∫ ∫
l k

c .         (4.6)  

Clearly, the last double functional integral can be 
expressed as a v-partial Volterra derivative:  
 

( ) ( ) ( )
( )
( )

, ,
,

, xyi u x v y

xy

u v
iy t e dx dy

v tδ

δ+ =∫ ∫
l k

Y
c .   (4.7)  

 

Combining (4.6) and (4.7) we derive the sought-for, 
Hopf-type, FDE that governs the joint Ch.Fl 

( ),xy u vY :  
 

( )
( )

( )
( )

( )

( )

3

3

, , ,
xy xy xy

u v u v u vd
k a

dt u t u t u tδ δ δ

δ δ δ
+ − =

Y Y Y
. 

                                 
( )
( )

,
xy

u v

v tδ

δ
=

Y
.   (4.8a)  

 

Equ. (4.8a) is a linear FDE involving Volterra func-
tional derivatives, as well as ordinary time deriva-
tives. The cubic nonlinearity of the initial SODE 
corresponds to the 3-fold Volterra derivative 

( )33 /xy u tδδ Y . From the above derivation it is clear 
that any nth-order polynomial nonlinearity of the ini-
tial differential equation is transformed to an n-fold 
Volterra derivative in the corresponding Hopf-type 
FDE. Another important feature of equation (4.8a) is 
that it holds true for any continuous functionals 

,u v∈ ∈h i .  
 

Equ. (4.8a) has to be supplemented by an appro-
priate initial condition, expressing that the probabil-
ity measure associated with the initial value ( )0,x t ω  
is given. This condition can be implemented by 
means of the joint Ch.Fl ( ),xy u vY  as follows. Set-
ting 0v=  (to restrict ourselves to the response 
process only) and ( )0u tυ δ= ⋅ −i , υ∈ℝ , (to con-
centrate only at the initial time instant), will result in  
 

( )( ) ( )( ) ( )

( ) ( ) ( )

0

0

, 0,

0

,

0

,0 ,

,

i t x y

xy xy

i t x

x

t e dx dy

e dx

υδ

υδ

υδ

φ υ

− +

−

− = =

= =

∫ ∫

∫

i

i

i

l k

k

Y c

c
  

where ( )0φ υ  is the ch.f of ( ) ( )0 0,x t xω ω= . Hence, 
the initial condition can be expressed as  
 

( )( ) ( )0 0,0 ,xy tυδ φ υ υ− = ∈i ℝY .      (4.8b)  

5 DERIVATION OF NEW PDEs FOR JOINT 
RESPONSE-EXCITATION 
CHARACTERISTIC FUNCTIONS  

In this section we shall exploit the Hopf-type FDE 
(4.8), obtained above, to derive new PDEs for the 
joint, response-excitation, ch.f when the excitation is 
a known stochastic process either with a.e. continu-
ous sample functions or smoother. In contrast with 
the case of an independent-increment excitation 
process, where the randomness of the excitation “re-
generates” every time instant and allows us to write 
explicitly an equation involving only the response 
density (the well-known FPK equation), in the case 
of a stochastic excitation with smooth sample func-
tions, the randomness evolves, in general, in a 
smoother way, as a result of the finite correlation 
time, making necessary to consider response and ex-
citation jointly.  

The causality principle dictates that the current 
value ( );x t ω  of the response, depends only on the 
history of the excitation ( )0 ;y t s t ω≤ < . However, 
this does not prevent the stochastic dependence be-
tween ( );x t ω  and ( );y t ε ω+ , 0ε> , which is a 
natural result of the smoothness and the finite corre-
lation time of the excitation, ( ), 0yyC t tε+ ≠ .  

We shall proceed to derive a PDE for the joint ch.f 

( ) ( )( ),x t y tφ υ ν  corresponding to the pair of random 
variables ( ) ( )( ); , ;x t y tω ω , fixedt = . To this end 
we apply equ. (4.8a), above, to the pair  
 

( ) ( ),u t v sυ δ ν δ= ⋅ − = ⋅ −i i ,          (5.1)  
 



( ,υ ν ∈ℝ ) and take the limit s t→ , after some ma-
nipulations. For the first term of equ. (4.8a) (see also 
equ. (4.4)), we obtain  
 

( ) ( )( )
( )

( )
( ) ( ){ } ( )

,

exp ,

xy
t sd

dt u t

dx t
i i x t i y s dx dy

dt

υ δ ν δ

δ

υ ν

δ

×

⋅ − ⋅ −
=

= + =

    

∫∫ xy

i i

k l

Y

c
  

( ) ( ){ } ( )
1

exp ,
xy

i x t i y s dx dy
t

υ ν
υ ×

∂
= + =

∂

 
 
 
  
∫∫

k l

c   

{ } ( ) ( )( )

( ) ( )( )

1
exp ,

,1
.

tx y s

x t y s

i x i y x y dxdy
t

t

fυ ν
υ

υ ν

υ

φ

×

∂
= + =

∂

∂
=

∂

 
 
 
  
∫∫
R R  

 

Taking now the limit s t→ , we get  
 

( ) ( )( )
( )

,
lim xy

s t

t sd

dt u t

υ δ ν δ

δ

δ

→

⋅ − ⋅ −    =   

i iY
  

( ) ( )( ),1 x t y s

s t
t

φ υ ν

υ
=

∂
=

∂
.     (5.2)  

 

Working similarly, we readily obtain the following 
results concerning the remaining terms appearing in 
equ. (4.8a):  
 

( ) ( )( )
( )

( ) ( )( ),, x t y tt t

u t

υ νδ υ δ ν δ

δ υ

φ∂⋅ − ⋅ −
=

∂

i iY
,   (5.3)  

 

( ) ( )( )
( )

( ) ( )( )33

3 3

,, x t y tt t

u t

υ νδ υ δ ν δ

υδ

φ∂⋅ − ⋅ −
=

∂

i iY
, (5.4)  

 

( ) ( )( )
( )

( ) ( )( ),, x t y tt t

v t

υ νδ υ δ ν δ

δ ν

φ∂⋅ − ⋅ −

∂
=

i iY
.    (5.5)  

 

Combining equs. (5.2)-(5.5) with the FDE (4.8a), we 
obtain the following PDE for the joint ch.f 

( ) ( )( ),x t y tφ υ ν , of the pair of random variables 
( ) ( )( ); , ;x t y tω ω , for every 0t t> :  

 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )3

3

, , ,1 x t y s x t y t x t y t

s t

k a
t

φ υ ν φ υ ν φ υ ν

υ υ υ
=

∂ ∂ ∂
+

∂ ∂ ∂
− =

                                         ( ) ( )( ),x t y tφ υ ν

ν

∂
=

∂
.   (5.6a)  

 

Now, since the stochastic process ( ),y ωi  is given, 
its ch.f ( )( )y tφ ν  is known. Hence, the y-marginal of 
the joint ch.f ( ) ( )( ),x t y tφ υ ν  has to coincide with 

( )( )y tφ ν , resulting in the following marginal com-
patibility condition:  
 

( ) ( )( ) ( )( )0,x t y t y tφ ν φ ν= ,       0, t tν ∈ ≥ℝ .      (5.6b)  
 

In addition, the initial condition (4.8b) implies the 
following initial condition to ( ) ( )( ),x t y tφ υ ν :  
 

( ) ( )( ) ( )( ) ( )
0 0 0

0,0 ,
x t y t x t
φ υ φ υ φ υ υ= = ∈ℝ .    (5.6c)  
 

The problem (5.6) can also be reformulated in terms 
of the joint pdf ( ) ( )( ),x t y tf α β . This reformulation, 
which can be readily obtained by means of Fourier 
transformation, will be explicitly given in [II].  
 

To the best of our knowledge, equs. (5.6a,b,c), 
governing the evolution of the joint, response-
excitation, ch.f ( ) ( )( ),x t y tφ υ ν , appear here for the first 
time. They can be considered as a new kind of 
mathematical model, providing us with the probabil-
istic characterization of the response ( ), ,x t ω ω∈Ω , 
for each t I∈ , obtained by taking the marginal of 
the joint ch.f: ( )( )x tφ υ =  ( ) ( )( ),0x t y tφ υ , υ∈ℝ . This 
mathematical model is valid for any kind of stochas-
tic excitation with a.e. continuous (or smoother) 
sample functions, having any (known) probabilistic 
structure.  
 

Although the mathematical analysis (solvability 
theory) of problem (5.6a,b,c) is an open problem, 
existing numerical evidence of the authors (Sapsis & 
Athanassoulis 2006) suggests that it might be well-
posed under reasonable assumptions.  
 

In concluding this section we should emphasize 
that the above approach can be generalized in order 
to obtain similar, linear, PDEs for the joint, N-x and 
M-y, ch.f  

( ) ( ) ( ) ( )( )
1 1

1 1... ...
,... , ,...,

N M
N Mx t x t y s y s

φ υ υ ν ν ,  

along with appropriate (marginal compatibility and 
initial) conditions. This point will be further dis-
cussed in another work (Athanassoulis & Sapsis 
2006). It seems that in this way it is possible to con-
struct a closed (finitely-solvable) hierarchy of linear 
problems providing us with the full hierarchy of the 
finite-dimensional probabilities of the stochastic re-
sponse ( );x ωi .  

6 DERIVATION OF THE FPK EQUATION FOR 
THE CASE OF INDEPENDENT INCREMENT 
EXCITATION  

Equs. (5.6) –involving the joint, response-excitation, 
ch.f. – hold true for any kind of stochastic excitation 



process, provided that the latter has at least a.e. con-
tinuous sample functions. We shall now turn to the 
most commonly studied case, those of an Ito SODE, 
where ( );y t ω  represents the generalized derivative 
of an independent-increment process. In this case the 
response ( );x t ω  is continuous but not differenti-
able. Thus, the treatment based on the Hopf equa-
tion, developed in Section 5, is not valid, since the 
duality pairings (5.1) are not applicable. The ques-
tion arises if it is possible to treat this case also by a 
similar method, starting from the Hopf equation and 
obtaining the usual FPK equation –which involves 
only the response ch.f (or pdf). In the present section 
we shall show how this is possible, by resorting back 
to the FDE for a finite-difference version of the 
SODE (4.1). The crucial property, to be exploited in 
this case, is the independence of the current value 
( );x t ω  of the response from the future increment 

( );z t
τ

ω∆ = ( ) ( ); ;z t z tτ ω ω+ − , 0τ > , of the exci-
tation. Everything presented in this Section can be 
generalized to multidimensional nonlinear dynami-
cal systems.  

Let us rewrite the SODE (4.1a,b) in a finite-
difference form: 
 

( )
( ) ( )

( )3; ;
; ;

x t z t
k x t ax tτ τ

ω ω
ω ω

τ τ

∆ ∆
+ + = ,  (6.1a)  

( ) ( )0 0;x t xω ω= ,  (6.1b)  
 

where ( );z ωi  is a known, real-valued process with 
independent increments, and ( )0x ω  is a known ran-
dom variable. The time increment τ  is assumed to 
be positive, 0τ> , and this is essential in what fol-
lows.  

The sample functions of the stochastic process 
( );z ωi  may be either continuous functions (as in the 

case of normally-distributed, independent-increment 
processes) or non-decreasing, piecewise-constant 
functions (as in the case of Poisson distributed inde-
pendent-increment processes). In the first case (con-
tinuous sample functions), it is clear that the previ-
ously developed approach can be applied to equ. 
(6.1). In the second case (cadlag sample functions) 
the applicability of the same arguments is not di-
rectly justifiable. Nevertheless, we shall take the lib-
erty not to be completely rigorous, and apply the 
same approach to the general case as well. It seems 
to us quite remarkable and fascinating that the ob-
tained PDE for the ch.f of the response ( );x ωi  coin-
cides with the known one in all examined cases. 
Thus, the results of the present section can be con-
sidered as a rigorous rederivation of the classical 
FPK equation from the Hopf FDE, in the case of 
Gaussian forcing, and as a heuristic method to derive 

analogous equations in the case of a Poissonian or an 
α−stable or a general Levy process forcing.  

Working similarly as in Section 4, we obtain the 
following Hopf-type FDE that governs the evolution 
of the Ch.Fl ( ) ( )1 ,

x z
u v

ττ− ∆
Y , parametrically de-

pendent on 0τ> :  
 

( )( )

( )
( )( )

( )

1 1

1
, ,

x z x z
u v u v

k
u t u t

τ ττ τ

τ
δ δ

τ
δ δ− −∆ ∆− + −

   ∆    

Y Y
 

 

    
( )( )

( )
( )( )

( )

1 1

3

3

, ,
x z x z

u v u v
a

v tu t

τ ττ τ

δδ

δ δ− −∆ ∆
=

Y Y
.    (6.2a)  

 

( ) ( )( ) ( )1
0 0,0 ,x z t

ττ υδ φ υ υ− ∆ − = ∈iY ℝ .  (6.2b)  
 

Note that the ( )( )1 ,
x z

u v
ττ

− ∆
Y  is the finite-differ-

ence version of ( ) ( )( )1
0

, lim ,xy x z
u v u v

τττ
− ∆→

=Y Y .  
 

Using again the arguments ( ) ( ),u vi i , given by 
(5.1), and applying the same treatment as in Section 
5, we obtain the following PDE that governs the 
joint ch.f ( )1x zττ

φ − ∆
:  

( ) ( )( )( )( ) ( ) ( )( )( )1

1

1
,1

,
x t z t

x t z s
s t

k
τ

τ

τ

τ τ

φ υ ν

τ φ υ ν
υ υ

−

−

∆−

∆
=

∂
∆ + −
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( ) ( )( )( )

( ) ( )( )( )1 1

3

3

, ,
x t z t x t z t

a
τ τ

τ τ
φ υ ν φ υ ν

υ ν

− −
∆ ∆
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=
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.    (6.3)  

 

Setting 0ν =  in the equ. (6.3) and taking the limit 
as 0τ +→ , we obtain:  
 

( )( ) ( )( ) ( )( )3

3

1 x t x t x t
k a

t

φ υ φ υ φ υ

υ υ υ

∂ ∂ ∂
+ − =
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( ) ( )( )( )1

0

0

,
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x t z tττ

τ

ν

φ υ ν

ν

−

+

∆

→

=

∂
=

∂
.       (6.4)  

 

In the left-hand side of equ. (6.4) we can already 
recognize the sought-for result. In the right-hand 
side, because of the ν−derivative, the situation is 
more complicated and should be studied further. In 
analogy with equs (4.8a) and (4.7), the “source” 
term 

( ) ( )( )( )1 , /
x t z tττ
φ υ ν ν− ∆

∂ ∂ , appearing in the right-
hand side of equs. (6.3) and (6.4), comes from the 
following functional integral  
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( )

1 ,
,

x t z t
Iττ
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≡ =
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= ∆ ×
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∫ ∫
m k
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where m  is an appropriate space of continuous 
functions. Now, using the identity  
 

( ) ( )( ) ( )( )1

1
,,

, ,
z x zx

dx d z dx d z
τ ττ τ ττ− ∆

−
∆∆ = ∆c c ,  

 

we obtain  
 

( )( ) ( ) ( )( )1

1, ,

, , .
i u x v z

x zz tI i e dx d z
τ

τ

τ

τ

τ τ
τ

−

−+ ∆

∆∆= ∆∫ ∫
m k

c
 

Let us now evaluate the above functional integral 
(for 0fixedτ = > ), under the specific choice of ar-
guments ( ) ( )u tυ δ= ⋅ −i i  and ( ) ( )v tν δ= ⋅ −i i :  
 

( ) ( )( ),I t t
τ
υδ ν δ− ⋅ − =i i   

( ) ( )
( )

( )( ), ,

z t
i x t i

x z

z t
dx d zi e

τ

τ

τ

τ

υ ν
τ

τ

∆
+

∆

    ∆
∆

 =   ∫ ∫
m k

c .  (6.5)  

 

Because of the specific form of the excitation (inde-
pendent-increment process), the response ( );x t ω  is 
stochastically independent from the future increment 
of the forcing ( ) ( ) ( ); ; ;z t z t z tτ ω τ ω ω∆ = + − . 
(at this point we make use of the assumption 0τ> ). 
As a consequence, the joint probability measure 

( )( ), ,x z dx d z
τ τ∆ ∆c  can be written in multiplicative 

form  
 

( )( ) ( ) ( )( ), ,x z x zdx d z dx d z
τ ττ τ∆ ∆∆ = ⋅ ∆c c c .  (6.6)  

 

Taking this into account, and making the substitu-
tion ν υ τ=  (note that we are interested in the dou-
ble limit 0ν→  and 0τ +→ ), the double functional 
integral in the right-hand side of (6.5) can be fac-
tored out as follows:  
 

( ) ( )( ),sI t tυδ υτ δ− ⋅ − =i i   

( ){ } ( )exp xi x t dxυ= ×∫
k

c  

( )
( ){ } ( )( )exp z

z t
i z ti d zτ

ττ τ
τ

υ ∆

∆
∆× ∆

    ∫
m

c .    (6.7)  

 

On the basis of the Projection Theorem (equ. (2.6)), 
the first functional integral of the right-hand side of 
the above equation is simply the ch.f of ( );x t ω :  
 

( ){ } ( ) ( )( )exp x ti x t dxυ υφ=∫ x

k

c ,         (6.8)  

 

To calculate the second functional integral in the 
right-hand side of equ. (6.7), we start by considering 
the functional integral:  
 

( ) ( )( ){ } ( )( )exp zi z t d zJ
ττ ττ υυ ∆= ∆ ∆∫

m

c .  

 

By the same token as above, ( )Jτ υ  is the ch.f of the 
increment ( );z tτ ω∆ : ( ) ( )( )z tJ

τ
τ υ φ υ∆= . Assum-

ing the latter is τ –differentiable in the vicinity of 
0τ += , we get  
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m

c . (6.9)  

 

The last term in (6.9) coincides –apart from the fac-
tor υ– with the second integral in the right-hand 
side of equ. (6.7). Thus, on the basis of (6.8) and 
(6.9), we can rewrite equ. (6.7) as follows:  
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lim ,I t t
τ

τ

υδ υτ δ
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          ( )( ) ( )( )
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1
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τ
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∂
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∂
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Combining now (6.4) and (6.10), we obtain  
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υ υ
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∂
= ∈
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This is in fact the generalized FPK equation for gen-
eral, independent-increment, excitation, written in 
terms of the ch.f of the response process. The corre-
sponding FPK equation, in terms of the pdf, is easily 
derived by applying a Fourier transformation (see 
[II]). It can be shown (Athanassoulis & Sapsis 2006) 
that the above equation includes as special cases 
various generalized FPK equations, recently ob-
tained by Grigoriu (2004).  
 

7 MOMENT EQUATIONS FROM THE NEW 
PDE (5.6a) 

It is worth noticing that the PDE (5.6a), derived at 
Section 5, can reproduce the infinite set of moment 
equations corresponding to the dynamical system 
equation (4.1a). Indeed, by direct integration of the 
SODE (4.1a), it is easily seen that infinite system of 
moment equations has the form  
 

( )
( )1,

1,

1

1

,
,n m

n m

s t
n

dM t s
k M t t

dt
+

+

=
+

⋅ + =   

 



( ) ( )3, , 1, ,n m n ma M t s M t s+ +=− + ,            (7.1)  
 

where ( ) ( ) ( )( ), ; ;
n m

nmM t s x t y sω ω ω   =    E . With-
out going into details, we only state that the moment 
system (7.1) can also be derived from the PDE 
(5.6a), using simple properties connecting the ch.f of 
a stochastic process and its moments.  
 

 Thus, the new linear PDE (5.6a) can be viewed as 
an “integrating scheme” for the nonlinear infinite 
system of ODEs (7.1), permitting its replacement by 
a single linear PDE.  

8 CONCLUSIONS 

In this paper a new PDE (5.6a) governing the joint, 
response-excitation, ch.f has been derived. This 
equation supplemented with the marginal compati-
bility condition (5.6b) and the initial condition (5.6c) 
can provide us with the evolution of the joint ch.f. 
Its numerical solution is studied in a companion pa-
per [II]. The method outlined above can be extended 
to general multidimensional dynamical systems ex-
hibiting any polynomial nonlinearity. A detailed ac-
count of this approach applied to a more general, 
second-order, system will be presented in a forth-
coming paper (Athanassoulis & Sapsis 2006). 
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