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ABSTRACT: In a companion paper (Athanassoulis & $$&2006 this Conference) the problem of deter-
mining the probabilistic structure of the dynamicaéponse of nonlinear systems subjected to geretal
ternal, stochastic excitation has been considexed,new partial differential equations have beerived,
governing the joint, response-excitation, charastierfunction and probability density function. 8¢e new
equations are supplemented by a marginal compgtilsbndition (with respect to the known probalyilit
distribution of the forcing), which is of non-locaharacter and, thus, difficult to implement. Tisishe price
paid for discarding the assumption that the foras@ process of independent increments, whichiaspl
that the response is now non-Markovian. In the@repaper a method for the numerical solution et¢h
new equations is introduced and illustrated throitglapplication to a specific, simple, nonlineaokgem.
The solution method is based on the representaticdhe joint probability density function (or theint
characteristic function) by means of a convex supstion of kernel functions, which permits to sitia
priori the non-local marginal compatibility condition. @ basis of this representation, the partiakdgih-
tial equation that governs the joint, responsetakon, probability density function (or the joicharacteris-
tic function) is eventually transformed to a systehordinary differential equations for the kermpalrame-
ters. Numerical results are presented for the osefirst order dynamical system, with cubic naehrity,
under smooth stochastic excitations. An importaatudre of the proposed numerical solution methatsis
suitability to be implemented using parallel ortdizited computing schemes.

KEYWORDS: Stochastic Dynamics, Numerical solutidrStochastic Differential Equations, Correlated-Sto
chastic Excitation, Generalized Fokker-Planck-Kojjmmv Equation, NomMarkovian Responses, Ker
Density Functions.

1 INTRODUCTION The underlying probability space is denoted by

In a companion paper (Athanassoulis & Sapsis zooégt'g (.Q) ';h/?zf), Y:/he;eBQ :S tthe d;ampclle@;p gce,
this Conference, subsequently referred to as [I]) we (2) is the family of Borel sets df?, and/;, is

have considered a simple dynamical system débe corresponding probability measure o¢er The
scribed by the following Stochastic Ordinary Differ stochastic processy(s,w) is a measurable map

ential Equation (SODEY), y(s,w): Q— @, which defines the induced prob-

. s/ ability space (7 =C“(1),%(%). ), |=[t,T|
x(t)+kx(t)+ax (t)_y(t,w), (1.1a) CR, k=0 or k>0. Eq. (1.1), provided it has a
x(to)=x0(w), (1.1b) strong solution, defines another stochastic process

X(s,w): Q— .25 with induced probability space
(0 =C**(1),28(0),), 2, being another proba-
bility measure to be determined. As we have already
seen in [l], use is also made of the joint, respens
excitation, processx(s,w)xy(e,w):Q— & xUy

with induced joint, response-excitation, probailit
space (XU Xy, B(U X)), D). O, is another

(') The definitions of most of the abbreviationsdigethis probability measure to be determined. The determi-

paper are given at the end of the Introductiorijo§ome addi- . o . .
tional abbreviations which will be used herein wifl defined ~Nation of & is based on the following two condi-

in the text, at their first appearance.

where k,a are deterministic constants, while the
forcing term y(s,w) is a given, real-valued, sto-
chastic process and the initial valug(w) is a
given, real-valued, random variable, with character
istic function¢, (v) ,ve R .




tions: i) (Almost) every sample-function couple forany t,s > t,, (1.2e)

(X(t’f)’y(t’w))’ tel = [t T]%,,S,?t'Sf"es_Eqs' (t.la,b), which come directly from the fact that it is a char
and i) The y—marginal of /;, coincides with the teyistic function. The last two conditions will be-
known probability measuré”), , associated with the ferred to agonstitutive conditions.

forcing process. The latter condition can be wmitte

The above problem (1.2a-e) can be equivalently
formally as

reformulated in terms of the corresponding joiet, r
f@)*y(d@:@y_ (1.1c) SPonse-excitation, pdff, )<>(X’ y). Recalling that
Faoyg (% Y) and o, (v v) constitute a Fourier

_ transform pair, i.e.
As we have shown in [l], a Hopf-type FDE gov-

erning the evolution of the joint, response-exmtat @, (v,v) =T, { fos (x,y)} :
Ch.Fl .7 (u,v) can be obtained, by exploiting the o
Volterra functional calculus. From this FDE we haveand applying the inverse Fourier transformation

managed to obtain the following linear PDE, gov- F { } to both sides of conditions (1.2a,b,c,d,e),
erning the evolution of the joint ch.f of the pair wa iyeadily obtain:

random variableix t;w) ,y(t,w)), at each time in- new linear PDE, with respect t(bx(t)y(t)<x’ y),

k25

stancet >t : of the form

1 99, s (07) 0%,y (V) of X

.M v AN 4o k—=2 x(t)y(s)( ’y) 0 3
T B o | o )+

s=t
0% (U,l/) 09 (U,V)
{0 A0yt _ o /

a2 _ » —- 0, (1.2a) + 5[yfx(t>ym(x.y)i =0, (L&)

where ¢ (U V) is the joint ch.f Ofx(t;w> and the follow new forms of thenarginal compatibility
y(s;w). Let it be noted that the function condition and of thenitial condition

Dty (Vs v) is dependent on 4 arguments, namelyf]c (y)d=1,(y), ye R, ts>t, (1.20)
v,L,v,S.

Since the stochastic functioy(-,w), wel, is ff %) dy = (=1.(x), xeR, (L2
given, its ch.f ¢, (v), vER, tel, is known. o (&) oA S
Hence, the/-marglnal of the joint ch. t/b (v u)
has to coincide with the excitation margqu@i
Thus, we have the followingnarginal compatibility
condition: f fove (X Y)dxdy = 1, t,s>t, (L)
Dyuyis (OV) =0y (v), vER, ts>t,.  (L2p)

fx(t>y(s>(x, y)>0, forany x,yc R and

and the corresponding new forms of tloastitutive
conditions

In addition, the initial condition (1.1b) impliekd any t,s >t . (1.2¢)
following initial condition for the joint characteris- o
tic function Dyt (v V) Clearly, problem (1.2) -—either in the form

(1.2a,b,c,d,e) or in the form (ladd ¢ d é)- exhibits
¢x(to)y(s)(v’o) = Dyt (v)=do(v), vER. (1.2¢) gome peculiarities making it distinctly differembin

the usual initial-boundary value problems for PDEs,
Finally, two obvious, yet essential, conditionstthacoming from problems of Mathematical Physics.

the sought-for funct|orqb (U y) should obey are These peculiarities reflect the probabilistic amigif

the following: the present problem.
In the present work an original method for the
qu(t)y(S) (0,0): 1, t,s>t,, (2.2d) numerical solution of problem (1.2) is developed,
and some first, illustrative, numerical results pre-
qu(t)y(S)(v,u) is non-negative definite sented. The main tool, on which the formulation of

w.r t. itsarguments v, v, the numerical scheme relies, is the representation



NonNegDef

the sought-for pdf and ch.f by means of a convexy, = Ax Ax. #b,. L can be (and will be) simpli-
superposition of &rnel _ansity unctions(kdfs) and fied as Ax Ax[O,oo)

their Fourier transformation, theknel ctaracteristic Using the defining properties Pr.1) — Pr.4), and
functions(kch.fs), respectively. Then, takin/g advan-gn|y these, it is not difficult to prove the folldng
tage of the linearity of the PDE (1.2a or 4.2, we Lemma 2.1 If f(x) is a continuous pdf and

derive a simple system of ODEs that govern the evok (....) is any kernel function satisfying Pr.1) —
lution of the kernel parametercally in time. I pr 4) then, for an,
the longer-time scale, the evolution of the probabil-
ity distribution is approximately described by upda lim jK(x; x,h)f(x)dx =f(x). m (2.1)
ing the representation of the sought-for pdf, is-di Inl= 0%
crete time, using the updated kernels. Possible That is, as the bandwidth decreases, the kernel
improvements of this scheme are also discussed. function shrinks around its “centerX., having the
A short presentation of the basic facts about kdfsveak asymptotic limit
is given in the next section.

K (%x,h) —20 5 5(x-x). (2.2)
2 KERNEL DENSITY FUNCTIONS On the other hand, as the bandwidth increases the

_ _ _ _ kernel function spreads out.
Kernel density functions constitute a key notioalto

within the framework of nonparametric statistical e~ Theorem 2.2The set of all convex finite super-

timation. See, e.g., Scott 1992. In our approach, positions of the formz p, K(x;x ,h ), where
kdf K(x;x,h) is mainly thought of as a generalized

—1 .
(non-symmetric) summability kernel, appropriate to.p1+ Pot.t Py =1, .p” =0 f.or ?" n, and K() '
represent pdfs (Gavriliadis 2005). The definingiS any kernel function satisfying Pr.1) — Pr.4), is
properties of arM— variate kdf are the following: dense within the set of all continuous pdfs supgzbrt

) ) in A. That is, given any continuous pdf(x), a
Pr.1) K(x;x,h) is a continuous, real-valued func- . g . Y P ( )
. : . . specific kernel functiork (x;x.,h), and an arbitrary
tion defined in a domain of the form _ _
T — Ax Ax ALNPE e Ac B is (small) numbere > 0, there exist a bandwidth pa-
K T A H =

M xM .. N .
taken to be contained in (or to be equal to) th&dMeterh, a finite set of centergx,} , in A, and

support of a target pdf, saf/(x), which is to & Vector ,\F‘):(pl’pzv--,pN) lying in the positive
be represented (see Lemma 2.1 and TheorefPne ofR™, such that
2.2, below), and 24" is the set of non-

MM max| f (x)- fV(x)| <&, 2.3a
negative definite,M x M— matrices, which can x<A ‘ (x) ( )‘ ¢ ( )
. . N
serve as covariance ma.tr'CeS, Where f N (X) — z an(X, Xnyhn) ] - (23b)
n=1

Pr2) K(xx,h)>0, for(x;x,h)e%, . .
The clue of the proof of this theorem is Lemma

Pr.3) jK(x;x,h)dle, for (x,h) e Ax.Z6)™>* | 2.1, in conjunction with the properties of the Rie-
A mann sum approximation of the integral

Pr4) lim [ K(xx,h)dx =0, [KOcx,h) f(x)dx (Athanassoulis and Gavrili-
= “Ixxl>o ddis 2002). The technical details are omitted.
forany x. e Aand & > 0. The above theorem makes clear that any (con-

tinuous) pdf can be approximated, as closely &s it
Clearly, properties Pr.2), Pr.3) ensure that eath k required, by a representation of the form (2.3b).
is a pdf on its own. Thshape of the kernel function

K (% x,h) is controlled by its covariance matrix,
also called bandwidth (or shape) parameter. h 3 REFORMULATION OF THE PROBLEM BY

quantifies the spreading of the kernel probability ~USING KERNEL DENSITY

mass around itscénter” x.. Another —simpler and REPRESENTATIONS

in many cases adequate— choice of the shape pa-

rameter is thévi-variate vector of the eigenvalues of We shall now apply the representation (2.3), Theo-
the covariance matrix. In this sense, the domaimem 2.2, in order to reformulate problem (1.2) in a



way facilitating its numerical solution. Again here Zl[gbxy](v,u,t):o, (vr)EeR?, t>t, (3.4a)
and subsequently, as in the Introduction, y are
scalars, andf, = f,, (%), by = Dys (v,v) WhereZH(v,u,t) is the linear differential operator
are four-argument, two-variate, joint, response-
excitation pdf and ch.f, respectively. For clarity, ~ 9.
the present and the subsequent sections, vector bt = ot
matrix quantities will be explicitly denoted by ogi
bold letters. It is interesting to note here that the two equenal
Applying the representation (2.3) for the pdf, andformulations —(124') or (3.3) in terms of the pdf,
the corresponding one for the ch.f, obtained bynd (1.2a) or (3.4) in terms of the ch.f- are heib-
means of a Fourier transformation, we define the agul and they will be considered in parallel, sirtbe
proximants conceptual arguments are better stated using the pd
\ formulation, while the numerical analysis is better

fx’(\lt)y(s) (X, y) — Z o} (t’s> K( X,y ;mk (t ,S) ’hk (t ,S) ) , developed USing the ch.f formulation.

Oe 9% O
4+ kv— — av S — v
ov ov ov

(3.4b)

s=t

k=1 (3.1) Substituting the approximation (3.1) into eq. (3.3)
: we obtain
(b:(lt)y(s) (U'U) - TXH?) { fx,(\lt)y(s) (X’ Y)} - N
3 Z[,[pkK<x,y;mk,hk)}: 0, (xy)eR* (3.5)
=Y P (tg)K(vwime(t,s) h¥(ts)). < '
k=1 Let us denote by (h’) the radius of the effective

(3-2)  support ofK(x,y;mj,hj). g(hj) will be taken and
Here K(v,v;m*,h*)=K (v ;m*(t;s) h*(t;s)) is always kept to be small. Since, thus, each kernel
the kch.f obtained by Fourier transformation of thefunction K(x,y;mj ,h') is taken to be concentrated
kdf K(x,y;m",h"):K(x,y;m"(t,s) h*(t S)) around its centem! :(mimj) and it is positive
m* :(m'x‘m';) is the location parameter, namely thethere, eq. (3.5), restricted in a neighborhood
position of the most probable (highest) value & th ;—%ﬁ(mj,a<hj)), is locally equivalent with the
kdf, and h* is the shape parameter, represented eequation
ther by the2x 2- covariance matrix of the kdf or by «n o
the two eigenvalues of the latter (both picturel wi Zﬁ[pkK<x,y;mk,h">}-K(x,y;m’ ’h]>: 0,
be applied to the numerical treatment). For the nu-""
merical computationé((x,y;m",h") is taken to be
a Gaussian pdf. (See, e.g., Hardle 1990, Sec. 2.9). Assuming that the system of neighborhoods
‘ Our main goal now is to exploit the representa-] /)" mj,g(hj) L j=1... ,Nj covers the essential
tions (3.1), (3.2), in order to solve the systemg,nnort of the sought-for density functiofy,, we

g'gg'bic) orﬂghe quiv?le?t(ijhé{ﬂ)d). Conttzlitiontg can assert that the global equation (3.5) is edgiita
.2d,e), or the equivalen , are automati- _ . .
cally satisfied since the approximants (3.1), (&2 with the system of local equations

by construction pdfs and ch.fs, respectively. N o o
To facilitate the discussion, let us denote eq;L[pkK<X'y'm h )}~K(x,y,m’,h'):0,

(xy)e A (m e(h))  (36)

(1.28") by v je{l...,N}, and
Lt ](xyt)=0, (xy)eR? t>t, (3.3a) v(x,y)e,ﬁLJNE%/“(mJ’,s(hJ’)). (3.7)

where £[+](x,y.t) is the linear differential operator gy taking a Fourier transformation, eq. (3.7) is
equivalently rewritten as

. Q a X3. °
P N L B L BUE7 O S o .
otl,_, ox X X Zﬁ[pkK(U,V;m ,h )}*K(U,V;mj,h])zo,
k=1
Also, equation (1.2a), obtained by a Fourier trans- v je{l... N} and

formation of the above, will be denoted by
\ (U,V) € R?, (3.8)



where x denotes the convolution operator. Although 4 (U,V) c R?. (4.33a)

the latter equation could be considered as being

more complicated than eq. (3.7), an efficient nufurthermore, assuming the amplitudes positive

merical solution scheme will be based on it. and piecewise constant, the above equation isgurth
simplified to

4 A TWO-LEVEL NUMERICAL SOLUTION = > i - o

0 <s<t<7Y and
To proceed with use will be made of a specific Tv o _l\: ’ |
choice of the kdf. Assuming a Gaussian density as je{l....N}, an
the kdf, we have V (v,) € R?, (4.3b)

kK
K(x,y,m ,C )_ On the basis of the above discussion, a two-level

KT K (two-time scale) approach comes into the scene:
1 1{X—m, k-1 X— M : .
— = _exp—= . [C ] Al a.Solve the set of independent equations (4.3b)
wal‘det[cﬂ 2\ly—m, y—-m, within each intervalr) <s<t< 7" (this is
(4.1a) the short-time phase or inner-cycle phase),
and corresponding characteristic function and then
o ) b.Come back to the complete representation and
K<v U mE Ck): exal i mﬁ v .[Ck]. v , ypdate the v_alues of })he ?Tplitudpg_, pass-
m| v 2| v ing from the interval7", 7Y | to the interval
(4.1b) 7 72 (this is thecoarse-time phase or
the outer-cycle phase).
where
The criterion for defining the sequence of coarse
m*“ =m*(t,s) = (mk(t), m(s 4.2a L : :
(t.8) = (m (1), >> (4.22) updating timesr'”, ¢=1,2,3,.., is formulated as a

is the mean vector, and sufficient condition for the validity of the assump
tions underlying the derivation of the set of inde-

(4.2b) pendent equations (4.3b). It turns out that thetmos
critical assumption is the restriction of each talbe

. : , , highly concentrated around its center. As expected,
is the covariance matrix of our Gaussian kdf. As we o )
cause of the diffusive character of the problgm,

. o k}e
have already mentioned above, a dual realization % ) )
. . ...has been found that, during the short-time phase so
the shape parameter will be considered herewith.

Apart from the covariance matric*, the vector lution, |_<ernel pgrameters evolve in gway leadng t
K K vk . . a continuous increase of the variance parameter
h :(hx,hy) having as elements the two eigenval-

k . . .
ues of the matrixC* , will also be used in this case. H h H (See, for exz.ample,.Flgures ?C’ 3¢, In Section 5,
. . . . below, and the discussion therein). The growth of
Our numerical solution scheme will be imple-

. k .
mented by restricting the kdf to be highly concenne quantity| h| leads to the spreading of the mass
trated, so that the effective supports of any péir Of the corresponding kdf, which results in the &iol

two different kernels to be practicalbyon overlap-  tion of the assumption of negligible interaction be
ping. This permits us to neglect the interaction beywyeen the kernels.

tween any pair of Gaussian kernels, i.e. to discega
the summation in the right-hand side of eq. (3.7), |1uS: the set of kemel parametars (t,s) and

and its equivalent eq. (3.8). Thus, under the abovE"(t,S) evolve in accordance with the simplified
assumption, which is equivalent with the conditiondynamical equations (4.3b) from timé” | until the

‘hku§€1, for all ke {l...,N}, wheree, is an ap-  spreading inde>ﬁ h"(t)”, of some kernel, exceeds a
propriate (small) constant, eq. (3.8) simplifies to certain critical value, say, >0. This value oft is
ﬁ[ij(v,y;mj,Cj)} — 0, t>s>t,and taken to be the next updating time ™. At that
time instant, the inner-cycle (short-time) solution
phase is interrupted, and an approximation of dhe t

Ci(t.t) C(t,s)

C*=CK(t,5)= Ck (st) CX(s.9)

vV je{1....N}, and



tal joint pdf f¥ o (x,y) is calculated by means obtained solution in the operatdi K(v,u; m',C!

of eq. (3.1), in the specific form: will result in O (at least approximately) for athes
of (v,y) c R?.

fX?““) (““)<X Y)= Since the (Gaussian) kern& v,y;mj,ci) is
C*(R?) in (v,v) and dies out ag(v,v)|— oo,

- Zpk(T(U)K(X’y ! mk(Tw’Tm»hk(T(M)'Tw»' eq. (4.3b) is equivalent to the following system of

(4.4) localized moment equations:

Then, the calculated pdf (4.4) is re-approximatgd, b 9% ;. RN
using a new set of kdfs, satisfying the concerdrati WL[K<U’V’m] ’Cjﬂ o 0. (1)
condition | h*||=¢, <¢,, with different amplitudes v=0

pk( ’“) The latter are calculated by means of arfor any (p,q) € Ny x Ny, where N, ={0,1,2,3,.} .
optimization algorithm (used also for the set up of

the initial conditions), which is described in thp-  EXploiting the specific (Gaussian) form of the ker-
pendix. After the updating of the amplitudes, the" nel, and considering the cases,q) = (1,0), (2,0)
next inner-cycle begins, and the procedure consinued"d (1,1), the following three (nonlinear) ODEs are

as described above. obtained from (5.1):
During each time intervalr'), 7¥| the ampli- ’ R KP ok
() +km ()4 3am (t)C (t,t)+a|m (t)] =m(t
tudes are considered constant and, thus, globglly, M (1) + k(1) + 3am (1) € (11 [nL( >] m )
are piecewise constant functions of time. In ftue, (5.2a)

evolution of the amplitudep, is much slower than
the evolution of the kernel parametars and h*,
and this is what justifies the piece-wise constsit +3aCy (tt)CL (t.s) = Cy (t.5)
sumption for p; in our numerical scheme. Cf Sofi et (5.2b)
al 2006 this Conference) where a similar finding ) )

came out when the sought-for pdf is represented agxyt(t13)+ kCy, (t,s)+ 3aCy (t.t)C (t.s)+

series with respect to appropriate, time-dependent, +3am(t)C, (t,s)m (t) = C,, (t.s)
basis functions. An improved numerical solution, (5.2¢)

taking also into account the evolution @f in a

continuous fashion, can be constructed and will bdhese equatlons involve the three unknown func-

published elsewhere. tions mj (t), C,,(t,t) andC, » (t.), and they are dif-
ferential equations with respect to parametrically

Sependent ors. (No derivatives with respect te

appear.) They should be satisfied for all values of

(t,s) such thatr!! <s<t<r“*. We are espe-

cially interesting in the solution of system (5@)

the diagonals=t.

5 A LOCAL-MOMENT METHOD FOR THE It has been found that if the three moment equa-
NUMERICAL SOLUTION OF EQs. (4.3b) tions (5.2a,b,c) holds true, then various othert—bu

not all- moments, corresponding to other values of

We are now focusing on the numerical treatment(p q), are also zero. Besides, there are also values

of equations (4.3b). For each value jof {1,...,N},  of (p,q), corresponding to higher-order moments,

eg. (4.3b) contains three unknown functlons namelyyr which egs. (5.1) are not satisfied. In any ctise

the response mean value(t), and covariances system (5.2a,b,c) is closed and can be efficiently

C.(t,t) and Cy(t,s), which should be determined, sojved, providing us with a reasonable approxima-

and two known functions, namely the exmtaﬂontlon of the evolution of the kernel parametarge( )

mean valuem,(s) and the autocovariand@, (s.s), C,. (t s=t) and C, (t,s=t). When the value of

introducing the appropriate, inner- cycle forcing. ‘h" exceeds the threshold valug the current

Thus, any solution scheme of eq. (4.3b) should prgpper- cycle phase is finished and the procedure

vide us with a number of equations (hopefully three g\yitches to outer- -cycle phase.

governing the evolution of the three unknown func- The numerical solution of the set of nonlinear

tions, along with the evidence that introducing thegpgs (5.2) is implemented by using the method of

Ck . (t,s)+kCL (t,5)+ 3am (t)Ck (t,s)m (t)+

It should be stressed that the accuracy of th
method proposed and developed herewith is criti-
cally dependant on the threshold valag for the
variance parameter (spreading mdﬁah} H



the quasilinearization (Bellman 1973, Lakshmikan- ter some time, independently of the initial density
tham and Malek 1994). Taking advantage of thdhe numerical results to be presented and discussed
symmetry properties of the correlation matrix, thebelow clearly comply with this behavior, dictategl b
equations can be solved on the ‘diagonal’, that i§he qualitative analysis of the studied system.
arounds=t. The sequence of time instants for the Consider first the Case I, with a bimodal initial
numerical scheme has the form pdf, defined as a convex superposition of two Gaus-
(ts): (6.8) = (tut) — (tut.y). sians with parameter valuesn =0, m,=0.6,

. . ..0,=0.1, =0.6, lit =04
An important aspect of the present method is its * 0.1, 0, =06, and amplitudesp, =0.4 and

o . o = 0.6, respectively. This initial pdf is shown in
suitability for parallel computation. Parallelizati 2 pectively 'S Iniat pat | wn |

. . ._Figure 2b, at the section=0. The excitation proc-
techniques can be applied both to the dynamic : : : . :
evolution of the kernels and to the optimization aIaéss 'S taken to be, in this case, a Gaussian sayio

. i . random function with zero mean and covariance
gorithm (see Appendix). In the first case the algo?unction given by
rithm can take advantage of the independent evolu-
tion of each kernel. For the parallelization of the 1
optimization algorithm we can split the group ofCW(T)_ECOSZ(a'
kdfs into subgroups and then independently ap-

proximate each subgroup by new kernels with small Numerical results are presented in Figure 2. More
variance. Hence, we can probably succeed fast corgpecifically, in the two upper plots of this figure

putations for systems of higher dimensions, sub¢Figures 2a and 2b), the evolution of the probagpili

(6.1)

jected to general (smooth) excitation. density f,(x) is shown, for the time interval
O<t<1.4se, enough to get the steady state re-
6 NUMERICAL EXAMPLES sponse pdf. Also, in the same figure (Figure 2a) th

orbits of mi{(t) are plotted by using thick black
We shall now apply the above described numericdlnes. The apparent discontinuities every 0.2sec ar
scheme to the numerical determination of the redue to the re-approximation of the calculated dgnsi
sponse pdf of a dynamical system (1.1), excited by by means of a new convex superposition of kdfs
known stochastic process (see below), with systefyith smaller variance, every time the concentration
parametersa and k having the values given in Ta- parametersh* exceeds the critical valug (which in
ble 1, under Case I and Case |I. this example was set tgq = 0.3). In Figure 2c the
evolution of the variance for some kdfs of the re-

Table 1 System Parameters o L
Y sponse density is shown. The diffusive character of

System parameters Case | Case Il the evolution (strictly increasing variances with r
Kk 1 1 spect to time) is clearly seen in the numericalliss
a 1 -1 Again the apparent discontinuities are due to &e r

distribution of the response pdf by using kdfs of
By performing a stability analysis to problem (1.1)smaller variances.
we found that fora > 0 (and thus also for the Case |
in Table 1), the nonlinear system has one stable
fixed point located at zero. A pitchfork bifurcatio s ‘ _ Biurcation Diagram
occurs ata=0, and the fixed point at zero becomes
unstable in the semi-axia < 0. In the same region Y
(a<0) two symmetric stable points appear at
+,/k/|a|. Hence, we have the bifurcation diagram
shown in Figure 1.

On the basis of the above described dynamical
features of the studied problem, it is natural xe e 08
pect that, in Case |, the evolved pdf will become
eventually a unimodal distribution centered at zero
while in Case Il, the probability will concentrate 15 :
around the pair of the two symmetric stable fixed ' "~ Bifurcation parameter
points +,/k/|a|, hence ultimately a bimodal distri-
bution will appear. Since the stable fixed points a
global attractors we expect to attain these restits

ed point X

Fix

|
|
|
1
05 1 15

Figure 1:Bifurcation diagram for system (1.1).
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Figure 2:a) Response pdf,, (x) andm{ (t) curves for Figure 3:a) Response pdf,, (x) andm(t) curves for
Case | with stationary excitation. b) 3D plot obthe- Case Il with stationary excitation. b) 3D plot bietre-
sponse pdf. ¢) Variance plots for some kdfs. sponse pdf. ¢) Variance plots for some kdfs.

Let us now consider our system (1.1) with pa- Numerical results concerning the evolution of the
rameter values as in Case Il. Two examples of stgesponse pdf, for the time inten@k t < 2.4sey, are
chastic excitations will be studied. First, the sam Presented in Figure 3. Although the initial pdf has
stationary Gaussian excitation as before, having ze 12ken to be a strongly asymmetric bimodal one, the

: functi - 1) i ventual!y re;sulting response density turns to be a
mean and covariance .unc'|on.g|ven.by eq (6.1) I‘gymmetrlc bimodal pdf, with modes exactly at the
applied. The initial distribution is again takenhe

bimodal (strongly asymmetric in this case, how-Stable fixed points, located Vk/|a|:i1’ as ex-

, : » ected. The interchange of probability between the
ever), and is defined as a convex superposition cﬁernels (implemented by means of the re-

two Gaussian pdfs with parameters, =—0.4,  gpnroximation of the response pdf in terms of a new
m =06, 0,=01, 0,=06, and amplitudes convex superposition of kdfs with smaller variajces
p,=0.4, p, =0.6, respectively. takes place approximately every 0.2 seconds. Bhis i



shown in the figure as an apparent discontinuity of
the mean-value and variance curves. 15

From both Figures 2a and 3a (see also Figure 4 [ °
below), we can easily observe a permanent tenden:
of m{(t)-orbits to be attracted by the stable fixed ¢
points. This means that there is a continuouswnflo
of probability mass from the outer region of the '
phase space||>1) to a strip around the locus of
the stable fixed points, which is not stopping ever
after the response pdf has been reached its siagion
form. This apparently paradoxical behavior shoulc
be addressed to the discrepancy between the t.a)
form of the response pdf, (x), and the tail form
of the Gaussian kernels w ich are used to represe
fxm( x). This fact reveals the necessity for an as
ymptotic study of the tail behavior directly frormet
differential equation (1.& ), which will permit the
construction and use of the kdfs suitably adapted t
the specific system, i.e., exhibiting the correat t
behavior. Such a construction will also facilitated
accelerate the convergence of the numerical solutic .

procedure. time sec)
Finally, in Figure 4 we present numerical results
for the Case II, with a non-stationary (cyclostatio v . %

ary) Gaussian excitation, with zero mean and co
variance function given by

0.4 T T T T T T
03— - - — \ ,,,,, - — _ \,,,,J,,,,i,,,,L,,,,L,,,f

Cr(tis) = [1+ 0. 200% ]] cot-s).  (6:2) 3if;;;;;;;;;;;;;2;22/7/4;///:/;;;;;;;;;;;/74

0 03/

Again the initial distribution is constructed as a 2f ///Z/////// ZZ/ // /f / /7/// ////////;//////X
superposition of two Gaussian pdfs with parameter
m=-0.4, m,=0.6, 0, =0.3, 0,=0.7, and am-
plitudes p,=0.4 and p,=0.6, respectively. The

X=1

oe ——————————————————————————————————————
D A B

of ////mff//////%//ﬁ// ///V///////*/*////#

03 —————————————————————————————————————

X=0

-0.5

evolution of the response probability density func-j o S .

tion is plotted for the time intervab<t < 8.0se, o /Z/Z///////////// /’/’//’/’/’/’//////W//Z

long enough so that the periodic character of ghe r - 3;2;:::::iiiiiiiii’iiii?iiii?::::f:::

sponse to become clear. O R et et e i el et s et
From Figures 4a, 4b we are able to observe tha., S e (50 c e

after a transient stage® €t < 1.5se(), the response Figure 4:a) Response pdf_ (x) and . (t) curves for
density function exhibits a periodic behavior wih _g—Case iTwith non-stationarsexcitation. 'b) 3D ptdtthe

period of approximately 4sec, which is the peribd oyesponse pdf. c) Variance plots for some kdfs.
the excitation, i.e., the period of the correlationc-
tion Cy (L,s), €q. (6.2), with respect to its first ar evolution of the joint, response-excitation, pdf of

gument. Furtthermore, tlt |fskea3|lly seen that, "s.th'nonlinear dynamical systems under general stochas-

case, a greater amount ot Kerneis 1S necessany N Qi oy citation, is developed and illustrated thrioutg

der to approximate satlsfactorlly the soug.ht-fof, pd application to a specific, simple, nonlinear system

due to the fact that the non-stationary excitait® g ey point of the numerical method is the repre-

duces a more complicated response. sentation of the joint, response-excitation, pdfd a
ch.fs by means of appropriate convex superpositions

7 CONCLUSIONS of kerngl density ar_1d kernel characteristic fumr:kl,_o
respectively. In this way, the non-local marginal

In the present work, a method for the numerical sogompatibility condition is satisfied priori, and the



(ch.f) is eventually transformed to a system ofPradlwarter, H.J., 2001, Non-Linear Stochastic Respdis-

; tributions by Local Statistical Linearization. In@tional
nonlinear ODEs for the kernel parameters. Journal of Non-Linear Mechanics, 36, 1135-1151.

From the results presented in this work we CONRoberts J.B. & Spanos P.D., 2003, Random Vibratiah $ta-
clude that the proposed method is able to produce tistical Linearization. Dover Publications. _
quite satisfactory results. Important aspects @ thSapsis, Th.P., 2005, Stochastic Analysis with Agions to

. g . Dynamical Systems. Diploma Thesis, NTUA.
methOd_are (i) Itis aNQ'leVd' particle-type method,  scott, D.w., 1992, Multivariate Density Estimatiodohn
separating the fast, inner-cycle (short-term) phase Wwiley and Sons o _ _
which describes the particle dynamics separately foso%gggém";é égill"s hSetI?SChaStIC Differential EquasioKluwer

. | upnli .

each parthle, from the slow, OUt_er_Cyde (Iongn)ar Sofi, A., Di Paola, M. & Spanos, P., 2006, A metHod de-
phase, which accounts for the interchange of prob- termining random response envelope statistics déss of
ability mass between the particles and the evaitutio nonlinear oscillatorshis Conference.
of the particles’ amplitudes. (ii) It can be impealy
keeping its two-level, particle-type character tisat

. : : . APPENDIX
to avoid the piece-wise smoothness assumption for
the amplitudesp,, and to ensure the “exact” satis-
faction of the PDE (1.4 ), by solving a linear evo-
lution problem in the outer-cycle phase. (iii) Hrc

be generalized to higher dimensional systems. An

,E.'V) It IS pIa;F]Iy S“'}f”‘b'e fgrD;I)Ear?llellze?] COTZ"” ther given or under specific control). This algnit
'ons, since the nonfinear s Tor each partiele ¢ 50 quite often throughout the numerical solu-

b_e SO'Yed mc_;lependent_ly, and the optimization algot'ion, i.e. each time the solution procedure swische
rithms is easily parallelizable.

from the inner-cycle to the outer-cycle and the cal

~ Finally, we emphasize that the method, althouglyylated density is re-approximated by means of kdfs
in this work has been applied only to problems withpf small variance. It is also used for implementing

Gaussian excitation, can be applied equally well tgnhe initialization, by representing the given iaiti

citation, characterized by arbitrary —but known+co

In this Appendix a brief outline is given of thetisp
mization algorithm which is used for the construc-
tion of appropriate approximants of the sought-for
édf in terms of kdfs exhibiting a small variance (e

relation structure and probability distributions.
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The basic optimization problem is formulated as
follows:

Given f(x) and o,, find M and {p.m},
such that

fro s )

—00 0

2

d)(:

(A.1)

min .

under the constraints:

P+ P, +...+py =1, p,=0, forallk.

For the inner-cycle/outer-cycle re-approximation of
the sought-for pdf, the integrations can be carried
out analytically leading to an explicit linear optt
zation problem, ifM is defined.M is obtained by
using a variant of an iterative, adaptive procedure
developed by Gavriliadis (2005).

For the initial data representation, the optimuati
procedure is performed quite similarly. However, in
this case, the integrations in (A.1) are performed
numerically, since, in general, the initial proldapi
distribution may not be analytically described. éd
tailed description of the solution algorithm wile b
presented elsewhere.



