
 

New Partial Differential Equations Governing the Joint, Response-
Excitation, Probability Distributions of Nonlinear Systems, under 
General Stochastic Excitation. II: Numerical Solution  

Themistoklis P. Sapsis 
Graduate student, National Technical University of Athens, Dept. of Naval Architecture and Marine Engineering  

Gerassimos A. Athanassoulis 
Professor, National Technical University of Athens, Dept. of Naval Architecture and Marine Engineering 

 

ABSTRACT: In a companion paper (Athanassoulis & Sapsis 2006, this Conference) the problem of deter-
mining the probabilistic structure of the dynamical response of nonlinear systems subjected to general, ex-
ternal, stochastic excitation has been considered, and new partial differential equations have been derived, 
governing the joint, response-excitation, characteristic function and probability density function. These new 
equations are supplemented by a marginal compatibility condition (with respect to the known probability 
distribution of the forcing), which is of non-local character and, thus, difficult to implement. This is the price 
paid for discarding the assumption that the forcing is a process of independent increments, which implies 
that the response is now non-Markovian. In the present paper a method for the numerical solution of these 
new equations is introduced and illustrated through its application to a specific, simple, nonlinear problem. 
The solution method is based on the representation of the joint probability density function (or the joint 
characteristic function) by means of a convex superposition of kernel functions, which permits to satisfy a 
priori the non-local marginal compatibility condition. On the basis of this representation, the partial differen-
tial equation that governs the joint, response-excitation, probability density function (or the joint characteris-
tic function) is eventually transformed to a system of ordinary differential equations for the kernel parame-
ters. Numerical results are presented for the case of a first order dynamical system, with cubic nonlinearity, 
under smooth stochastic excitations. An important feature of the proposed numerical solution method is its 
suitability to be implemented using parallel or distributed computing schemes.  
 
KEYWORDS: Stochastic Dynamics, Numerical solution of Stochastic Differential Equations, Correlated Sto-
chastic Excitation, Generalized Fokker-Planck-Kolmogorov Equation, Non-Markovian Responses, Kernel 
Density Functions.  

 
1 INTRODUCTION 

In a companion paper (Athanassoulis & Sapsis 2006, 
this Conference, subsequently referred to as [I]) we 
have considered a simple dynamical system de-
scribed by the following Stochastic Ordinary Differ-
ential Equation (SODE(*)),  
 

( ) ( ) ( ) ( )3 ,x t k x t ax t y t ω+ + =ɺ , (1.1a) 

( ) ( )0 0x t x ω= ,  (1.1b) 
 

where ,k a  are deterministic constants, while the 
forcing term ( ),y ωi  is a given, real-valued, sto-
chastic process and the initial value ( )0x ω  is a 
given, real-valued, random variable, with character-
istic function ( )0 ,φ υ υ∈ℝ . 

                                                 
(*)  The definitions of most of the abbreviations used in this 
paper are given at the end of the Introduction of [I]. Some addi-
tional abbreviations which will be used herein will be defined 
in the text, at their first appearance.  

The underlying probability space is denoted by 
( )( ),, ΩΩ ΩU c , where Ω  is the sample space, 

( )ΩU  is the family of Borel sets of Ω , and Ωc  is 
the corresponding probability measure over Ω . The 
stochastic process ( ),y ωi  is a measurable map 

( ), :y ω →Ωi l , which defines the induced prob-
ability space ( ) ( )( ),,k

yC I=l U l c , [ ]0,I t T=  
⊆ ℝ , 0k =  or 0k > . Eq. (1.1), provided it has a 
strong solution, defines another stochastic process 
( ), :x ω →Ωi k  with induced probability space 

( ) ( )( )1
,,k

xIC +=k U k c , xc  being another proba-
bility measure to be determined. As we have already 
seen in [I], use is also made of the joint, response-
excitation, process ( ) ( ), , :x yω ω → ×× Ωi i k l  
with induced joint, response-excitation, probability 
space ( )( ),, xy× ×k l U k l c . xyc  is another 
probability measure to be determined. The determi-
nation of xyc  is based on the following two condi-



 

tions: i) (Almost) every sample-function couple 
( ) ( )( ), ,,x t y tω ω , [ ]

0
,t I t T∈ = , satisfies Eqs. (1.1a,b), 

and ii) The y−marginal of xyc  coincides with the 
known probability measure yc , associated with the 
forcing process. The latter condition can be written 
formally as  
 

( )xy ydx =∫
k

c c .               (1.1c)  

 

 As we have shown in [I], a Hopf-type FDE gov-
erning the evolution of the joint, response-excitation, 
Ch.Fl ( ),xy u vY  can be obtained, by exploiting the 
Volterra functional calculus. From this FDE we have 
managed to obtain the following linear PDE, gov-
erning the evolution of the joint ch.f of the pair of 
random variables ( ) ( )( ); , ;x t y tω ω , at each time in-
stance 0t t> :  
 

( ) ( )( ) ( ) ( )( ), ,1 x y x y

s t

t s t t
k

t

φ υ ν φ υ ν

υ υ
=

∂ ∂
+ −

∂ ∂

( ) ( )( ) ( ) ( )( )3

3

, ,
0

x y x yt t t t
a
φ υ ν φ υ ν

υ ν

∂ ∂
−

∂ ∂
= ,       (1.2a)  

 

where ( ) ( )( ),x t y sφ υ ν  is the joint ch.f of ( );x t ω  and 
( );y s ω . Let it be noted that the function 

( ) ( )( ),x t y sφ υ ν  is dependent on 4 arguments, namely 
, , ,t sυ ν .  
Since the stochastic function ( ),y ωi , ω∈Ω , is 

given, its ch.f ( )( )y tφ ν , ν ∈ℝ , t I∈ , is known. 
Hence, the y-marginal of the joint ch.f ( ) ( )( ), ,x t y sφ υ ν  
has to coincide with the excitation marginal ( )( )y sφ ν . 
Thus, we have the following marginal compatibility 
condition:  
 

( ) ( )( ) ( )( ) 00, , , ,x t y s y s t s tφ ν φ ν ν= ∈ ≥ℝ .        (1.2b)  
 

In addition, the initial condition (1.1b) implies the 
following initial condition for the joint characteris-
tic function ( ) ( )( ),x t y sφ υ ν :  
 

( ) ( )( ) ( )( ) ( )
0 0 0,0 ,x t y s x tφ υ φ υ φ υ υ= = ∈ℝ .      (1.2c)  

 

Finally, two obvious, yet essential, conditions that 
the sought-for function ( ) ( )( ),x t y sφ υ ν  should obey are 
the following:  
 

( ) ( )( )0,0 1x t y sφ = ,         0,t s t≥ ,                   (1.2d)  
 

( ) ( )( ),x t y sφ υ ν       is non-negative definite  

                          w.r.t. its arguments ,υ ν ,  

                          for any 0,t s t≥ ,                     (1.2e)  
 

which come directly from the fact that it is a charac-
teristic function. The last two conditions will be re-
ferred to as constitutive conditions.  
 

The above problem (1.2a-e) can be equivalently 
reformulated in terms of the corresponding joint, re-
sponse-excitation, pdf ( ) ( ) ( ),x t y sf x y . Recalling that 

( ) ( ) ( ),x t y sf x y  and ( ) ( )( ),x t y sφ υ ν  constitute a Fourier 
transform pair, i.e.  
 

( ) ( )( ) ( ) ( ) ( ){ }, ,xx t y s x t y s
y

f x yυ
ν

φ υ ν →
→

=F ,  

 

and applying the inverse Fourier transformation 

{ }1

x
y

υ
ν

−
→
→
iF  to both sides of conditions (1.2a,b,c,d,e), 

we readily obtain:  
A new linear PDE, with respect to ( ) ( ) ( ),x t y tf x y , 

of the form   
 

( ) ( )( )
( ) ( ) ( )( )3

,
,x t y s

s t

x t y t

f x y
kx ax

t x
f x y

=

 
 
 
   

∂ ∂+ + +
∂ ∂

 

( ) ( )( ), 0
x t y t

y f x y
x

∂
+ =

∂
   ,        (1.2a′ )  

 

the follow new forms of the marginal compatibility 
condition and of the initial condition  
 

( ) ( )( ) ( )( ),
x t y s y s

f x y dx f y=∫
ℝ

,  y ∈ ℝ ,   
0

,t s t≥ ,   (1.2b′ )  

 

( ) ( )( ) ( )( ) ( )
0 0 0

,
x t y s x tf x y dy f x f x= =∫

ℝ

,  x ∈ℝ ,  (1.2c′ )  

 

and the corresponding new forms of the constitutive 
conditions  
 

( ) ( )( ), 1x t y sf x y dxdy
×

=∫
ℝ ℝ

,    0,t s t≥      (1.2d′ )  

 

( ) ( )( ), 0x t y sf x y ≥ ,    for any ,x y ∈ ℝ  and  

            any  0,t s t≥ .     (1.2e′ )  
 

Clearly, problem (1.2) –either in the form 
(1.2a,b,c,d,e) or in the form (1.2a b c d e′ ′ ′ ′ ′ )– exhibits 
some peculiarities making it distinctly different from 
the usual initial-boundary value problems for PDEs, 
coming from problems of Mathematical Physics. 
These peculiarities reflect the probabilistic origin of 
the present problem.  

In the present work an original method for the 
numerical solution of problem (1.2) is developed, 
and some first, illustrative, numerical results are pre-
sented. The main tool, on which the formulation of 
the numerical scheme relies, is the representation of 



 

the sought-for pdf and ch.f by means of a convex 
superposition of kernel density functions (kdfs) and 
their Fourier transformation, the kernel characteristic 
functions (kch.fs), respectively. Then, taking advan-
tage of the linearity of the PDE (1.2a or 1.2a′ ), we 
derive a simple system of ODEs that govern the evo-
lution of the kernel parameters, locally in time. In 
the longer-time scale, the evolution of the probabil-
ity distribution is approximately described by updat-
ing the representation of the sought-for pdf, in dis-
crete time, using the updated kernels. Possible 
improvements of this scheme are also discussed.  

A short presentation of the basic facts about kdfs 
is given in the next section.  

2 KERNEL DENSITY FUNCTIONS  

Kernel density functions constitute a key notion/tool 
within the framework of nonparametric statistical es-
timation. See, e.g., Scott 1992. In our approach, a 
kdf ( )*; ,K x x h  is mainly thought of as a generalized 
(non-symmetric) summability kernel, appropriate to 
represent pdfs (Gavriliadis 2005). The defining 
properties of an M− variate kdf are the following:  

 

Pr.1) ( )*; ,K x x h  is a continuous, real-valued func-
tion defined in a domain of the form 

NonNegDef
K M MA A ×= × ×D M , where MA⊆ ℝ  is 

taken to be contained in (or to be equal to) the 
support of a target pdf, say ( )f x , which is to 
be represented (see Lemma 2.1 and Theorem 
2.2, below), and NonNegDef

M M×
M  is the set of non-

negative definite, M M× −matrices, which can 
serve as covariance matrices,  

 

Pr.2) ( )*; , 0K x x h ≥ ,       for ( )*; , Kx x h ∈D ,  
 

Pr.3) ( )* *; , 1
A

K x x h dx =∫ , for ( ),
NonNegDef

M M
x h A

×
∈ ×M ,  

 

Pr.4) ( )
*

* *
0

lim ; , 0
h

x x

K x x h dx
δ

→
− >

=∫ ,  

for any *x A∈  and 0δ > .  
 

Clearly, properties Pr.2), Pr.3) ensure that each kdf 
is a pdf on its own. The shape of the kernel function 
( )*; ,K x x h  is controlled by its covariance matrix h , 

also called bandwidth (or shape) parameter. h  
quantifies the spreading of the kernel probability 
mass around its “center” *x . Another –simpler and 
in many cases adequate– choice of the shape pa-
rameter is the M-variate vector of the eigenvalues of 
the covariance matrix. In this sense, the domain 

NonNegDef

M MK A A ×= × ×D M  can be (and will be) simpli-
fied as [ )0,

M
A A× × ∞ .  

 

Using the defining properties Pr.1) – Pr.4), and 
only these, it is not difficult to prove the following  

Lemma 2.1: If ( )f x  is a continuous pdf and 
)( ⋅⋅⋅ ,;K  is any kernel function satisfying Pr.1) – 

Pr.4), then, for any x ,  
 

( ) ( )* * *
0

lim ( ; , )
h

A

K x x h f x dx f x
→

=∫ .    ■    (2.1)  

 

That is, as the bandwidth decreases, the kernel 
function shrinks around its “center” *x , having the 
weak asymptotic limit  
 

( ) ( )0
* *; , hK x x h x xδ→→ − .        (2.2)  

 

On the other hand, as the bandwidth increases the 
kernel function spreads out.  
 

Theorem 2.2: The set of all convex finite super-

positions of the form 
1

( ; , )
N

n n n
n

p K x x h
=
∑ , where 

1 2 1Np p p+ + + =… , 0np ≥  for all n , and ( ); ,K ⋅ ⋅ ⋅   

is any kernel function satisfying Pr.1) – Pr.4), is 

dense within the set of all continuous pdfs supported 

in A . That is, given any continuous pdf ( )f x , a 

specific kernel function ( )*; ,K x x h , and an arbitrary 

(small) number 0ε > , there exist a bandwidth pa-

rameter *h , a finite set of centers { } 1

N

n n
x

=
 in A , and 

a vector ( )1 2 Np , p ,..., pp =  lying in the positive 

cone of N
ℝ , such that  

 

( ) ( )max <N

x A
f x f x ε

∈
− ,            (2.3a)  

where    ( )
1

( ; , )
N

N
n n n

n

f x p K x x h
=

=∑ .    ■       (2.3b)  

The clue of the proof of this theorem is Lemma 

2.1, in conjunction with the properties of the Rie-

mann sum approximation of the integral 

( )* * *( ; , )
A

K x x h f x dx∫  (Athanassoulis and Gavrili-

adis 2002). The technical details are omitted.  
The above theorem makes clear that any (con-

tinuous) pdf can be approximated, as closely as it is 
required, by a representation of the form (2.3b).  

3 REFORMULATION OF THE PROBLEM BY 
USING KERNEL DENSITY 
REPRESENTATIONS  

We shall now apply the representation (2.3), Theo-
rem 2.2, in order to reformulate problem (1.2) in a 



 

way facilitating its numerical solution. Again here 
and subsequently, as in the Introduction, x , y  are 
scalars, and ( ) ( )( ),x t y sf f x y=xy , ( ) ( ) ( ),xy x t y sφ φ υ ν=  
are four-argument, two-variate, joint, response-
excitation pdf and ch.f, respectively. For clarity, in 
the present and the subsequent sections, vector or 
matrix quantities will be explicitly denoted by using 
bold letters.  

Applying the representation (2.3) for the pdf, and 
the corresponding one for the ch.f, obtained by 
means of a Fourier transformation, we define the ap-
proximants  
 

( ) ( )( ) ( ) ( ) ( )( )
1

, , , ; , , ,
N

N k k
kx t y s

k

f x y p t s K x y t s t s
=

=∑ m h , 

  (3.1)  

( ) ( )( ) ( ) ( )( ){ }, ,N N
xx t y s x t y s
y

f x yυ
ν

φ υ ν →
→

= =F   

         ( ) ( ) ( )( )
1

, , ; , , ,
N

k k
k

k

p t s K t s t sυ ν
=

=∑ ɶ m h . 

        (3.2)  
 

Here ( ) ( ) ( )( ), ; , , ; , , ,k k k kK K t s t sυ ν υ ν=ɶ ɶm h m h  is 
the kch.f obtained by Fourier transformation of the 
kdf ( ) ( ) ( )( ), ; , , ; , , ,k k k kK x y K x y t s t s=m h m h , 

( ),k k k
x ym m=m  is the location parameter, namely the 

position of the most probable (highest) value of the 
kdf, and kh  is the shape parameter, represented ei-
ther by the 2 2× −covariance matrix of the kdf or by 
the two eigenvalues of the latter (both pictures will 
be applied to the numerical treatment). For the nu-
merical computations ( ), ; ,k kK x y m h  is taken to be 
a Gaussian pdf. (See, e.g., Härdle 1990, Sec. 2.9).  
 

Our main goal now is to exploit the representa-
tions (3.1), (3.2), in order to solve the system 
(1.2a,b,c) or the equivalent (1.2a b c′ ′ ′ ). Conditions 
(1.2d,e), or the equivalent (1.2d e′ ′ ), are automati-
cally satisfied since the approximants (3.1), (3.2) are 
by construction pdfs and ch.fs, respectively.  
 

To facilitate the discussion, let us denote eq. 
(1.2a′ ) by  
 

( ), , 0xyf x y t  = L  ,       ( ) 2
0, ,x y t t∈ ≥ℝ ,   (3.3a)  

 

where [ ]( ), ,x y tiL  is the linear differential operator  
 

[ ] [ ]3

s t

xx y
k a

t x x x=

∂∂ ∂∂
+ + −

∂ ∂ ∂ ∂

 
 ii ii

iL = .     (3.3b)  

 

Also, equation (1.2a), obtained by a Fourier trans-
formation of the above, will be denoted by  
 

( ), , 0tφ υ ν  = xy
ɶL  ,      ( ) 2

0, , t tυ ν ∈ ≥ℝ ,   (3.4a)  
 

where [ ]( ), ,tυ νiɶL  is the linear differential operator  
 

3

3
s t

k a
t

υ υ υ
υ υ ν=

∂ ∂ ∂ ∂
+ − −

∂ ∂ ∂ ∂

i i i iɶiL = .     (3.4b)  

 

It is interesting to note here that the two equivalent 
formulations –(1.2a′ ) or (3.3) in terms of the pdf, 
and (1.2a) or (3.4) in terms of the ch.f– are both use-
ful and they will be considered in parallel, since the 
conceptual arguments are better stated using the pdf 
formulation, while the numerical analysis is better 
developed using the ch.f formulation.  
 

Substituting the approximation (3.1) into eq. (3.3), 
we obtain  
 

( )
1

, ; , 0
N

k k
k

k

p K x y
=

  =  ∑ m hL ,     ( ) 2,x y ∈ℝ .     (3.5) 

 

Let us denote by ( )jε h  the radius of the effective 
support of ( ), ; ,j jK x y m h . ( )jε h  will be taken and 
always kept to be small. Since, thus, each kernel 
function ( ), ; ,j jK x y m h  is taken to be concentrated 
around its center ( ),j j j

x ym m=m  and it is positive 
there, eq. (3.5), restricted in a neighborhood 

( )( ),j j
εm ha , is locally equivalent with the 

equation  
 

( ) ( )
1

, ; , , ; , 0
N

k k j j
k

k

p K x y K x y
=

  ⋅ =  ∑ m h m hL ,  

( ) ( )( ), ,j jx y ε∈ m ha     (3.6)  
 

Assuming that the system of neighborhoods 

( )( ){ }, , 1, ,j j j Nε = …m ha  covers the essential 
support of the sought-for density function xyf , we 
can assert that the global equation (3.5) is equivalent 
with the system of local equations  
 

( ) ( )

{ }
1

, ; , , ; , 0,

1, , , and

N
k k j j

k
k

p K x y K x y

j N
=

  ⋅ =  

∀ ∈

∑
…

m h m hL
   

( ) ( )( )
1, ,

, , .j j

j N
x y ε

=
∀ ∈

…

∪ m ha       (3.7)  

 

By taking a Fourier transformation, eq. (3.7) is 
equivalently rewritten as  
 

( ) ( )

{ }
1

, ; , , ; , 0,

1, , , and

N
k k j j

k
k

p K m h K m h

j N

υ ν υ ν
=

  ∗ =  

∀ ∈

∑ ɶ ɶ

…

ɶL
 

( ) 2, ,υ ν∀ ∈ℝ      (3.8)  
 



 

where ∗  denotes the convolution operator. Although 
the latter equation could be considered as being 
more complicated than eq. (3.7), an efficient nu-
merical solution scheme will be based on it.  

4 A TWO-LEVEL NUMERICAL SOLUTION 
SCHEME OF THE SET OF EQs. (3.8)  

To proceed with use will be made of a specific 
choice of the kdf. Assuming a Gaussian density as 
the kdf, we have  
 

( )

[ ]

1

, ; ,

1 1
exp ,

22 det

k k

Tk k
x xk

k k
y y

K x y

x m x m

y m y mπ

−

=

   − −      −          − −    

C
C

m C

  

   (4.1a) 
 

and corresponding characteristic function  
 

( ) 1
, ; , exp ,

2

T Tk

xk k k

k

y

m
K i

m

υ υ υ
υ ν

ν ν ν
= ⋅ − ⋅ ⋅

                                     
Cɶ m C  

                      (4.1b)  
 

where  
 

( ) ( ) ( )( ), ,k k k k
x yt s m t m s= =m m           (4.2a)  

 

is the mean vector, and  
 

( )
( ) ( )
( ) ( )

, ,
,

, ,

k k
xx xyk k
k k
yx yy

C t t C t s
t s

C s t C s s

  = =   
C C         (4.2b)  

 

is the covariance matrix of our Gaussian kdf. As we 
have already mentioned above, a dual realization of 
the shape parameter will be considered herewith. 
Apart from the covariance matrix kC , the vector 

( ),k k k
x yh h=h  having as elements the two eigenval-

ues of the matrix kC , will also be used in this case.  
 

Our numerical solution scheme will be imple-
mented by restricting the kdf to be highly concen-
trated, so that the effective supports of any pair of 
two different kernels to be practically non overlap-
ping. This permits us to neglect the interaction be-
tween any pair of Gaussian kernels, i.e. to disregard 
the summation in the right-hand side of eq. (3.7), 
and its equivalent eq. (3.8). Thus, under the above 
assumption, which is equivalent with the condition 

1
k ε<h , for all { }1, ,k N∈ … , where 1ε  is an ap-

propriate (small) constant, eq. (3.8) simplifies to  
 

( ), ; , 0,j j
jp K υ ν  =  
ɶɶ m CL    0t s t≥ ≥ , and  

{ }1, ,j N∀ ∈ … ,   and  

( ) 2, .υ ν∀ ∈ℝ           (4.3a)  
 

Furthermore, assuming the amplitudes jp  positive 
and piecewise constant, the above equation is further 
simplified to  
 

( ), ; , 0,j jK υ ν  =  
ɶɶ m CL   within each time interval  

          ( ) ( )1s tτ τ
+≤ ≤ ≤ℓ ℓ , and  

{ }1, ,j N∀ ∈ … ,  and  

( ) 2, .υ ν∀ ∈ℝ          (4.3b)  
 

On the basis of the above discussion, a two-level 
(two-time scale) approach comes into the scene:  

a. Solve the set of independent equations (4.3b) 
within each interval ( ) ( )1s tτ τ

+≤ ≤ ≤ℓ ℓ  (this is 
the short-time phase or inner-cycle phase), 
and then  

b. Come back to the complete representation and 
update the values of the amplitudes jp , pass-
ing from the interval ( ) ( )1,τ τ

+ 
  
ℓ ℓ  to the interval 

( ) ( )1 2,τ τ
+ + 

  
ℓ ℓ  (this is the coarse-time phase or 

the outer-cycle phase).  
 

The criterion for defining the sequence of coarse 
updating times ( )

τ
ℓ , 1,2,3,...=ℓ , is formulated as a 

sufficient condition for the validity of the assump-
tions underlying the derivation of the set of inde-
pendent equations (4.3b). It turns out that the most 
critical assumption is the restriction of each kdf to be 
highly concentrated around its center. As expected, 
because of the diffusive character of the problem, it 
has been found that, during the short-time phase so-
lution, kernel parameters evolve in a way leading to 
a continuous increase of the variance parameter 

kh . (See, for example, Figures 2c, 3c, in Section 5, 
below, and the discussion therein). The growth of 
the quantity kh  leads to the spreading of the mass 
of the corresponding kdf, which results in the viola-
tion of the assumption of negligible interaction be-
tween the kernels.  

Thus, the set of kernel parameters ( ),k t sm  and 
( ),k t sC  evolve in accordance with the simplified 

dynamical equations (4.3b) from time ( )
τ
ℓ , until the 

spreading index ( )k th , of some kernel, exceeds a 
certain critical value, say 1 0ε > . This value of t is 
taken to be the next updating time ( )1

τ
+ℓ . At that 

time instant, the inner-cycle (short-time) solution 
phase is interrupted, and an approximation of the to-



 

tal joint pdf ( )( ) ( )( )( )1 1 ,N

x y
f x y

τ τ
+ +ℓ ℓ

 is calculated by means 
of eq. (3.1), in the specific form:  
 

( )( ) ( )( )( )1 1 ,N

x y
f x y
τ τ

+ + =ℓ ℓ  

( )( ) ( ) ( )( ) ( ) ( )( )( )1 1 1 1

1

, ,, ; ,
N

k k

k

k

p K x y τ τ τ ττ
+ + + +

=

= ∑ ℓ ℓ ℓ ℓℓ m h .  

                     (4.4)  
 

Then, the calculated pdf (4.4) is re-approximated, by 
using a new set of kdfs, satisfying the concentration 
condition 2 1

k ε ε= <h , with different amplitudes 
( )( )1

kp τ
+ℓ . The latter are calculated by means of an 

optimization algorithm (used also for the set up of 
the initial conditions), which is described in the Ap-
pendix. After the updating of the amplitudes, the 
next inner-cycle begins, and the procedure continues 
as described above.  

During each time interval ( ) ( )1,τ τ
+ 

 
ℓ ℓ  the ampli-

tudes are considered constant and, thus, globally, jp  
are piecewise constant functions of time. In fact, the 
evolution of the amplitudes jp  is much slower than 
the evolution of the kernel parameters km  and kh , 
and this is what justifies the piece-wise constant as-
sumption for jp  in our numerical scheme. Cf Sofi et 
al 2006 (this Conference), where a similar finding 
came out when the sought-for pdf is represented as 
series with respect to appropriate, time-dependent, 
basis functions. An improved numerical solution, 
taking also into account the evolution of jp  in a 
continuous fashion, can be constructed and will be 
published elsewhere.  
 

It should be stressed that the accuracy of the 
method proposed and developed herewith is criti-
cally dependant on the threshold value 1ε  for the 
variance parameter (spreading index) ( )k th .  

5 A LOCAL-MOMENT METHOD FOR THE 
NUMERICAL SOLUTION OF EQs. (4.3b)  

We are now focusing on the numerical treatment 
of equations (4.3b). For each value of { }1, ,j N∈ … , 
eq. (4.3b) contains three unknown functions, namely 
the response mean value ( )j

xm t , and covariances 
( ),

j

xxC t t  and ( ),
j

xyC t s , which should be determined, 
and two known functions, namely the excitation 
mean value ( )j

ym s  and the autocovariance ( ),
j

yyC s s , 
introducing the appropriate, inner-cycle, forcing. 
Thus, any solution scheme of eq. (4.3b) should pro-
vide us with a number of equations (hopefully three) 
governing the evolution of the three unknown func-
tions, along with the evidence that introducing the 

obtained solution in the operator ( ), ; ,j jK υ ν 
  
ɶɶ m CL  

will result in 0 (at least approximately) for all values 
of ( ) 2,υ ν ∈ℝ .  
 Since the (Gaussian) kernel ( ), ; ,j jK υ νɶ m C  is 

( )2C
∞
ℝ  in ( ),υ ν  and dies out as ( ),υ ν →∞ , 

eq. (4.3b) is equivalent to the following system of 
localized moment equations:  
 

( )
0
0

, ; , 0
p q

j j
p q

v

K
υ

υ ν
υ ν

+

=
=

∂   =  ∂ ∂
ɶɶ m CL ,       (5.1)  

for any ( ) 0 0,p q ∈ ×ℕ ℕ , where { }0 0,1,2,3,...=ℕ .  
 

Exploiting the specific (Gaussian) form of the ker-
nel, and considering the cases ( , ) (1,0)p q = , (2,0) 
and (1,1), the following three (nonlinear) ODEs are 
obtained from (5.1):  
 

( ) ( ) ( ) ( ) ( ) ( )
3

, 3 ,k k k k k k

x t x x xx x ym t k m t am t C t t a m t m t+ + + = 
 

 

                      (5.2a)  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
, , , 3 ,

3 , , ,

k k k k k

xx t xx x xx x

k k k

xx xx xy

C t s kC t s am t C t s m t

aC t t C t s C t s

+ + +

+ =
 

                      (5.2b)  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
, , , 3 , ,

3 , ,

k k k k

xy t xy xx xy

k k k k

x xy x yy

C t s kC t s aC t t C t s

am t C t s m t C t s

+ + +

+ =
  

 

                      (5.2c)  
 

These equations involve the three unknown func-
tions ( )j

xm t , ( ),
j

xxC t t  and ( ),
j

xyC t s , and they are dif-
ferential equations with respect to t , parametrically 
dependent on s . (No derivatives with respect to s  
appear.) They should be satisfied for all values of 
( ),t s  such that ( ) ( )1s tτ τ

+≤ ≤ ≤ℓ ℓ . We are espe-
cially interesting in the solution of system (5.2) on 
the diagonal s t= .  
 It has been found that if the three moment equa-
tions (5.2a,b,c) holds true, then various other –but 
not all– moments, corresponding to other values of 
( , )p q , are also zero. Besides, there are also values 
of ( , )p q , corresponding to higher-order moments, 
for which eqs. (5.1) are not satisfied. In any case, the 
system (5.2a,b,c) is closed and can be efficiently 
solved, providing us with a reasonable approxima-
tion of the evolution of the kernel parameters ( )j

xm t , 
( ),

j

xxC t s t=  and ( ),
j

xyC t s t= . When the value of 
( )k th  exceeds the threshold value 1ε , the current 

inner-cycle phase is finished and the procedure 
switches to outer-cycle phase.  

The numerical solution of the set of nonlinear 
ODEs (5.2) is implemented by using the method of 



 

the quasilinearization (Bellman 1973, Lakshmikan-
tham and Malek 1994). Taking advantage of the 
symmetry properties of the correlation matrix, the 
equations can be solved on the ‘diagonal’, that is 
around s t= . The sequence of time instants for the 
numerical scheme has the form  

( ), :t s ( ),i it t  →  ( )1,i it t+  →  ( )1 1,i it t+ + .  

An important aspect of the present method is its 
suitability for parallel computation. Parallelization 
techniques can be applied both to the dynamical 
evolution of the kernels and to the optimization al-
gorithm (see Appendix). In the first case the algo-
rithm can take advantage of the independent evolu-
tion of each kernel. For the parallelization of the 
optimization algorithm we can split the group of 
kdfs into subgroups and then independently ap-
proximate each subgroup by new kernels with small 
variance. Hence, we can probably succeed fast com-
putations for systems of higher dimensions, sub-
jected to general (smooth) excitation. 

6 NUMERICAL EXAMPLES 

We shall now apply the above described numerical 
scheme to the numerical determination of the re-
sponse pdf of a dynamical system (1.1), excited by a 
known stochastic process (see below), with system 
parameters a  and k  having the values given in Ta-
ble 1, under Case I and Case II.  

 
Table 1: System Parameters 

System parameters Case I Case II 

k  1 1 
a  1 -1 

 
By performing a stability analysis to problem (1.1) 
we found that for 0a >  (and thus also for the Case I 
in Table 1), the nonlinear system has one stable 
fixed point located at zero. A pitchfork bifurcation 
occurs at 0a = , and the fixed point at zero becomes 
unstable in the semi-axis 0a < . In the same region 
( 0a < ) two symmetric stable points appear at 

/k a± . Hence, we have the bifurcation diagram 
shown in Figure 1.  

On the basis of the above described dynamical 
features of the studied problem, it is natural to ex-
pect that, in Case I, the evolved pdf will become 
eventually a unimodal distribution centered at zero, 
while in Case II, the probability will concentrate 
around the pair of the two symmetric stable fixed 
points /k a± , hence ultimately a bimodal distri-
bution will appear. Since the stable fixed points are 
global attractors we expect to attain these results af-

ter some time, independently of the initial density. 
The numerical results to be presented and discussed 
below clearly comply with this behavior, dictated by 
the qualitative analysis of the studied system.  

 

Consider first the Case I, with a bimodal initial 
pdf, defined as a convex superposition of two Gaus-
sians with parameter values 1 0,m =  2 0.6m = , 

1 0.1σ = , 2 0.6σ = , and amplitudes 1 0.4p =  and 

2 0.6p = , respectively. This initial pdf is shown in 
Figure 2b, at the section 0t = . The excitation proc-
ess is taken to be, in this case, a Gaussian stationary 
random function with zero mean and covariance 
function given by  
 

( )21
( ) cos 2

2YYC τ τ= .            (6.1)  
 

Numerical results are presented in Figure 2. More 
specifically, in the two upper plots of this figure 
(Figures 2a and 2b), the evolution of the probability 
density ( ) ( )x tf x  is shown, for the time interval 
0 1.4sect< < , enough to get the steady state re-
sponse pdf. Also, in the same figure (Figure 2a) the 
orbits of ( )k

xm t  are plotted by using thick black 
lines. The apparent discontinuities every 0.2sec are 
due to the re-approximation of the calculated density 
by means of a new convex superposition of kdfs 
with smaller variance, every time the concentration 
parameters kh exceeds the critical value 1ε  (which in 
this example was set to 1 0.3ε = ). In Figure 2c the 
evolution of the variance for some kdfs of the re-
sponse density is shown. The diffusive character of 
the evolution (strictly increasing variances with re-
spect to time) is clearly seen in the numerical results. 
Again the apparent discontinuities are due to the re-
distribution of the response pdf by using kdfs of 
smaller variances.  
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Figure 1: Bifurcation diagram for system (1.1).  
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Figure 2: a) Response pdf ( )( )x tf x  and ( )k

x
m t  curves for 

Case I with stationary excitation. b) 3D plot of the re-

sponse pdf. c) Variance plots for some kdfs.  

 
Let us now consider our system (1.1) with pa-

rameter values as in Case II. Two examples of sto-
chastic excitations will be studied. First, the same 
stationary Gaussian excitation as before, having zero 
mean and covariance function given by eq (6.1) is 
applied. The initial distribution is again taken to be 
bimodal (strongly asymmetric in this case, how-
ever), and is defined as a convex superposition of 
two Gaussian pdfs with parameters 1 0.4m =− , 

2 0.6m = , 1 0.1σ = , 2 0.6σ = , and amplitudes 

1 0.4p = , 2 0.6p = , respectively.  
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Figure 3: a) Response pdf ( )( )x tf x  and ( )k

x
m t  curves for 

Case II with stationary excitation. b) 3D plot of the re-

sponse pdf. c) Variance plots for some kdfs.  
 
 

Numerical results concerning the evolution of the 
response pdf, for the time interval 0 2.4sect< < , are 
presented in Figure 3. Although the initial pdf has 
taken to be a strongly asymmetric bimodal one, the 
eventually resulting response density turns to be a 
symmetric bimodal pdf, with modes exactly at the 
stable fixed points, located at / 1k a± =± , as ex-
pected. The interchange of probability between the 
kernels (implemented by means of the re-
approximation of the response pdf in terms of a new 
convex superposition of kdfs with smaller variances) 
takes place approximately every 0.2 seconds. This is 



 

shown in the figure as an apparent discontinuity of 
the mean-value and variance curves.  
 

From both Figures 2a and 3a (see also Figure 4a, 
below), we can easily observe a permanent tendency 
of ( )k

xm t -orbits to be attracted by the stable fixed 
points. This means that there is a continuous inflow 
of probability mass from the outer region of the 
phase space ( 1x > ) to a strip around the locus of 
the stable fixed points, which is not stopping even 
after the response pdf has been reached its stationary 
form. This apparently paradoxical behavior should 
be addressed to the discrepancy between the tail 
form of the response pdf ( ) ( )x tf x , and the tail form 
of the Gaussian kernels which are used to represent 

( ) ( )x tf x . This fact reveals the necessity for an as-
ymptotic study of the tail behavior directly from the 
differential equation (1.2a′ ), which will permit the 
construction and use of the kdfs suitably adapted to 
the specific system, i.e., exhibiting the correct tail 
behavior. Such a construction will also facilitate and 
accelerate the convergence of the numerical solution 
procedure.  
 

Finally, in Figure 4 we present numerical results 
for the Case II, with a non-stationary (cyclostation-
ary) Gaussian excitation, with zero mean and co-
variance function given by  
 

( )21
( , ) 1 0.2cos cos

2 2YY

t
C t s t s

π    = + −      
.      (6.2)  

 

Again the initial distribution is constructed as a 
superposition of two Gaussian pdfs with parameters 

1 0.4m =− , 2 0.6m = , 1 0.3σ = , 2 0.7σ = , and am-
plitudes 1 0.4p =  and 2 0.6p = , respectively. The 
evolution of the response probability density func-
tion is plotted for the time interval 0 8.0sect< < , 
long enough so that the periodic character of the re-
sponse to become clear.  

From Figures 4a, 4b we are able to observe that, 
after a transient stage (0 1.5sect< < ), the response 
density function exhibits a periodic behavior with a 
period of approximately 4sec, which is the period of 
the excitation, i.e., the period of the correlation func-
tion ( , )YYC t s , eq. (6.2), with respect to its first ar-
gument. Furthermore, it is easily seen that, in this 
case, a greater amount of kernels is necessary in or-
der to approximate satisfactorily the sought-for pdf, 
due to the fact that the non-stationary excitation pro-
duces a more complicated response.  

7 CONCLUSIONS  

In the present work, a method for the numerical so-
lution of new PDEs (derived in [I]) that govern the  
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Figure 4: a) Response pdf ( )( )x tf x  and ( )k

x
m t  curves for 

Case II with non-stationary excitation. b) 3D plot of the 
response pdf. c) Variance plots for some kdfs.  

 
evolution of the joint, response-excitation, pdf of 
nonlinear dynamical systems under general stochas-
tic excitation, is developed and illustrated through its 
application to a specific, simple, nonlinear system. 
The key point of the numerical method is the repre-
sentation of the joint, response-excitation, pdfs and 
ch.fs by means of appropriate convex superpositions 
of kernel density and kernel characteristic functions, 
respectively. In this way, the non-local marginal 
compatibility condition is satisfied a priori, and the 
PDE governing the evolution of the sought-for pdf 



 

(ch.f) is eventually transformed to a system of 
nonlinear ODEs for the kernel parameters.  
 

From the results presented in this work we con-
clude that the proposed method is able to produce 
quite satisfactory results. Important aspects of the 
method are (i) It is a two-level, particle-type method, 
separating the fast, inner-cycle (short-term) phase, 
which describes the particle dynamics separately for 
each particle, from the slow, outer-cycle (long-term) 
phase, which accounts for the interchange of prob-
ability mass between the particles and the evolution 
of the particles’ amplitudes. (ii) It can be improved, 
keeping its two-level, particle-type character, so that 
to avoid the piece-wise smoothness assumption for 
the amplitudes jp , and to ensure the “exact” satis-
faction of the PDE (1.2a′ ), by solving a linear evo-
lution problem in the outer-cycle phase. (iii) It can 
be generalized to higher dimensional systems. And 
(iv) It is plainly suitable for parallelized computa-
tions, since the nonlinear ODEs for each particle can 
be solved independently, and the optimization algo-
rithms is easily parallelizable.  
 

Finally, we emphasize that the method, although 
in this work has been applied only to problems with 
Gaussian excitation, can be applied equally well to 
problems having any kind of external stochastic ex-
citation, characterized by arbitrary –but known– cor-
relation structure and probability distributions.  
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APPENDIX 

In this Appendix a brief outline is given of the opti-
mization algorithm which is used for the construc-
tion of appropriate approximants of the sought-for 
pdf in terms of kdfs exhibiting a small variance (ei-
ther given or under specific control). This algorithm 
is used quite often throughout the numerical solu-
tion, i.e. each time the solution procedure switches 
from the inner-cycle to the outer-cycle and the cal-
culated density is re-approximated by means of kdfs 
of small variance. It is also used for implementing 
the initialization, by representing the given initial 
pdf as a convex superposition of appropriate kdfs.  
 

The basic optimization problem is formulated as 
follows:  

Given ( )f x  and 0σ , find M  and { }
1

,
M

k k k
p m

=
 

such that  
 

( )

2
2

1 00

1
exp

22
min

M

k k

k

p x m
f x dx

σπσ=

+∞

−∞

−
− − =

               
∑∫ .   (A.1) 

 

under the constraints:  
 

1 2 1Mp p p+ + + =… , 0  for all kp , k≥ .  
 

For the inner-cycle/outer-cycle re-approximation of 
the sought-for pdf, the integrations can be carried 
out analytically leading to an explicit linear optimi-
zation problem, if M  is defined. M  is obtained by 
using a variant of an iterative, adaptive procedure, 
developed by Gavriliadis (2005).  
 

For the initial data representation, the optimization 
procedure is performed quite similarly. However, in 
this case, the integrations in (A.1) are performed 
numerically, since, in general, the initial probability 
distribution may not be analytically described. A de-
tailed description of the solution algorithm will be 
presented elsewhere.  


