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ABSTRACT 

Sand, 8.E., 1982. Long waves in directional seas. Coastal Eng., 6: 195--208. 

In recent years the group-induced long waves have received an enhanced degree of 
attention. Especially in nearshore regions, the Ions waves can be of considerable height, 
and consequently'the influence on harbour resonance, on the operation of ship terminals, 
on moorings of large vessels, etc. is obviously very important. It is the grouping of natural 
wave fields that generates the long waves, and they are proportional to the square of the 
short-wave height. Therefore, the expressions for the Ions-wave elevations can be found 
to include the short-wave components of the wave field and a second~)rder transfer func- 
tion. This function is presented in a diagram with dimensionless parameters. For practical 
purposes a formula for rough estimate of the long-wave height is proposed. 

The second-order equations show that the long waves are determined by the difference 
of the wave-number vectors of the short waves. This is shown to imply that the spread of 
the long waves is larger than that of the short waves, and that the wave lengths of the long 
waves are dependent on the short-wave spread. Hereby it is possible to change the long- 
wave lengths, which seems to be a quality of great practical importance. 

The long waves are also expressed in spectral terms. That is, a formula for the direc- 
tional long-wave spectrum is shown to comprise the transfer function squared and the 
short-wave amplitudes and phases. 

INTRODUCTION 

Long-period oscillations are of ten  responsible for  harbour  resonance, 
for  disturbing operat ions in ship terminals,  and for  breaking the moorings of  
large vessels. One of  the  sources tha t  generate long waves is the wave group- 
ins. The long waves in a regular wave group were shown by L o n g u e t - H i g ~ s  
and Stewart  (1964)  to  be produced  by  the radiation stress, which acts in 
the  direction o f  wave propagation.  The radiation stress is an internal com- 
pressive force proport ional  to  the  square of  the wave height. This is the  reason 
why the large waves induce a t rough of  a very long wave, and the small waves 
b e t w e e n t h e  groups produce the corresponding crest .  The resulting long- 
period oscillations are of  second order,  and they  are t ied to  the groups. Hence, 
these group-induced long waves are of  periods equal to  tha t  of  the  group,  and 
they  travel with the  group velocity. 
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During a storm in the North Sea in 1980, the Danish Hydraulic Institute 
took a 4-hour record of the wave elevations, ~(t). Since a reversed echo 
sounder was used for the measurements, also the long-wave elevations, ~(t), 
appear in the record. The comparison of about 2.5 min of the short and the 
long-wave elevations in Fig. 1 confirms the qualitative description above. 
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Fig .  1. Short- and long-wave measurements in the North Sea. The significant wave height  
was 6.5 m and the water  depth 40 m. The long waves have been doubled fc,r clearness. 

The range of periods of interest for harbours and ships is usually from 20 
sec to 2--3 rain. Typically, the groups comprise from 4 to 10 waves with the 
most probable number being 5 according to Sedivy (1978). The amplitudes 
of the second~rder, group-induced long waves are of the order of centimeters, 
rarely reaching I m. However, as, for instmsce, the damping of the long-period 
movements of a moored vessel is rather low, a critical le:-el of resonance 
response can be obtained even with small long-wave amplitudes. 

The long waves also play an important role in laboratory tests with har- 
bours, terminals and the like. Sand (1981a) showed that several undesired 
long-wave effects are introduced if the wave generators are controlled by a 
traditional first~rder signal. Also Bowers (1980) has discussed these long- 
period model phenomena. 

The group-induced long waves can, under some circumstances, be released 
and propagate as free waves. For instmlce, Tucker (1950) measured, off a 
beach in Cornwall, long-period waves, which were out of phase (a lag of some 
minutes) with the groups. They seemed to be free waves produced by wave 
trains that travelled into the breaker zone. There the short-wave energy 
was emitted, and the group-induced long waves were reflected from the 
beach. This is known as surf beat. Furthermore, BOwers (1977) has shown 
that harbour resonance can be excited by free long waves also. I~de to the 
different wave heights inside and outside the harbour, an !mbalar~ce in group- 
induced long waves arises at the entrance. Thus, free long waves necessarily 
appear, and it was shown that these are the waves that are amplified in 
resonance situations. 
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Instead of second-order long waves (of frequency fl -- f2, i.e. the group 
frequency), Bi~sel (1963) studied the diffraction around a breakwater of 
second harmonic waves (of frequency fl + f2, i.e. corresponding to twice the 
frequency of a regular wave). He experimentally verified that the diffraction 
caused the release of the second-harmonic waves that are otherwise tied to 
the primary waves. Hence, free waves of twice the basic frequency penetrated 
into the harbour, and in some cases these second<)rder phenomena were the 
dominating wave disturbances. 

It is believed that only drastic changes in the wave pattern, the bottom 
profile, etc. can cause the emission of second-order free waves. As regards 
group-induced long waves, the propagation as free waves has been discussed 
in connection with surf beat and harbour resonance, but from the above 
analogies it also seems likely that diffraction around obstacles, e.g. break- 
waters, piers etc., and diffraction caused by entrance channels will release 
the tied long waves. The following sections will, however, consider only the 
general problem of describing the directional long waves tied to wave groups 
propagating over a horizontal bottom. 

As briefly indicated above, the long waves are of great practical impor- 
tance, and they should be accounted for in wave theories and forces used 
for design, in numerical models and in physical model tests. Usually natural 
wave field~ are, as a first approximation, represented by uni<iirectional wave 
trains, an J the long waves are calculated on that basis. Below, the three- 
dimensional expressions and transfer functions for the group-induced long 
waves will be given, and comparisons are made with the results obtained 
from the assumption of unidirectional waves. The directional spectrum of 
the long waves will also be derived. 

DIRECTIONAL LONG-WAVE SOLUTION 

The one<limensional solution of the Laplace equation (or what is equiv- 
alent: the momentum equations) with respect to long waves was given by 
Bowers (1977) and Ottesen Hansen (1978). If two Fourier components con- 
stituting a regular wave group are considered, the second~)rder long wave, 
~(x,t), generated by this group can be found to be: 

~nm(X,t)/h ffi Gnmh {[(anam + bnbm )lh 2] cos (Atonmt  - -  A k n m x )  

+ [(ambn - -anbm)/h=] s i n ( / ~ t o n m t - - A k n m X ) }  (1) 

where Gnm is a t~nsfer  function applied to the frequencies indicated by 
subscripts n and m. These two frequencies are represented by cosine and 
sine terv~, with the Amplitudes a and b, respectively. The water depth is h, 
and the Jong wave is characterized by the cyclic frequency A to nm = to n --  to m 
and the wave number Aknm ffi kn - - k i n .  To find the long-wave elevations in 
an irregular wave train all the contributions similar to (1) are added. Then: 
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!~(x,t) ffi ~ ~ ~nm(X,t) with m* f f*lfo (2) 
n- -m-1  ,1~ - /# i  II 

That is, all comb.inations of pairs ate included. The lowest frequency in the 
short-wave spectrmn is denoted f*, while fo = 1 /T  is the basic Fourier frequen- 
cy, T being the length of the time series. The quantity f* is often equal to 
about 0.05 Hz since this is the lower limit for measuring equipment like wave- 
riders. It is seen from (1) that the long waves ate characterized by the frequen- 
cy difference fn --  fro, and the wave ,umber  difference kn --  kin. 

In a natural wave ,ield the wave numbers ate vectors, while the frequencies, 
wave heights, etc. ate scalars. When directional seas ate considered the long 
waves must, therefore, be expected to propagate in the direction determined 
by ~n --  ~'m, i.e. the wave ,umber  vector difference of the short waves, cf. 
Fig. 3. The long-wave frequency must, however, still be the simple difference 
f n - - f m  as in the one<iimensional case. 

The c h a t a ~ i c s  of the second~rder,  group-induced long waves are 
derived mathematically below. A definition sketch is given in Fig. 2. When 

~xx * ~yy * {J.:zZ = 0 :~-,,.U 

~ i l i l i l i i l i l l J " l / i i l l i i l i l i . " . 1 r l l i , ' l , ' . ' , ' l , "  " ";I " / / / i X , , ' / / / / / / / / / / / / / / / /  

Fig, 2. Defini t ion ske tch  l o w i n g  a wave t ra in  wi th  wave n u m b e r  1~ in direct ion s ,  

the velocity.potential l i (x~ , z , t )  is defined as: 

Cx ffi u, ~y = v and ~z = w (3) 

where u, v and w ate the velocity components indicated in Fig. 2, the Laplace 
equation can be written: 

~zx +¢yy +¢u =0 for l - :  < z < n  
- -  ~ x , y  ~ oo 

This equation should be solved with the surface conditions: 

i l t  + t txliX + ~ y l l y  -- ~Z 

f o r z  =q  
g,1 + ½ ( , ~  + 4,~, + ~,]) + ,~, : 0 

(4) 

(5) 
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These can be combined, and ~t can be eliminated so that (5) appears in terms 
of only the velocity potential ~. At the bottom the vertical velocity, w, should 
be zero, i.e.: 

~z =0  forz  =--h (6) 

Usually a perturbation technique is applied for solution of the Laplace equa- 
tion with the small parameter in the expansions being the water surface slope. 
Initially, this results in the well-known first~rder equations with a very simple 
solution. That is, a regular wavelet of amplitude a m the direction 0 appears, 
viz." 

W(x#,t) = a cos (wt - -kx  cos 0 - -ky  sin 0 + ~) (7) 

where the k-vector is projected on the horizontal axes, and ~ is the phase. 
If the regular wave in (7) is the input to the second order equations, only 

the usual second-harmonic wave would appear. Consequently, in order to 
find the group-induced long waves (difference terms) the first-order input 
must obviously consist of a~ least two frequencies, i.e.: 

~tnm(X,y,t) ffi an cos[cont - -~ l  " (x,y)] + bn sin[corot --~2" (x,y)] 

+ am c o s [ ~ m t - - ~ s "  (x,y)] +bm s i n [ w m t - - L "  (x,y)] (8) 
where the k-vectors are applied directly instead of their projections in ~ ) ,  
and ~1 indicates the wave number and direction of the an component, k2 the 
wave number and direction of the bn component, etc. The second-order 
solution now consists of two terms, viz. one corresponding to the second 
harmonic waves of frequency fn + fro, and one giving the long waves of the 
group frequency, fn --  fro. The total solution can be seen in Sharma and Dean 
(1979). If their results are rewritten for the first~)rder input corresponding to 
(8), and only the long-wave terms are retained, the long-wave elevations 
~nm (x,y,t)  become: 

~nm (x,y, t) /h ffi anam Gn~(AO ls)h cos[Awnmt  - A~I3"(x,y)]/h 2 

+ bnbm Gn~(AO 24)h cos[Awnmt  - -  A~24"(x,y)]/h 2 

+ ambnG~(AO s2)h sin[ACOnmt --  A~3z'(x,y)]/h 2 

- -  anbm G ~  (AO 14)h Sin[ AWnm t - -  Z~14-(x,y ) ]/h 2 (9) 

where G ~  is a transfer function froth., first-order short-wave to second-order 
long-wave elevations, and L~ij denotes the wave number vector of the long 
waves, i.e. ~ i -  ~j, generated by the short waves with ~i and ~j, cf. Fig. 3. As 
expected, the solution shows that  the frequencies of the group-induced long 
waves are determined simply by the difference fn --  fm.twhfle the wave num- 
ber and the direction of propagation follow from ~i -- k~-. The latter has four 
different values in (9) because of the individual directions of the short-wave 
components in (8). Of course, the sine components coul~l have been given the 
same directions as their respective cosine components, i.e. ~'2 = -*/~ and -+/~4 = "-+/~3. 
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Fig. 3. Wave number vectors ~'n,/~--~m of two short-wave components,  and the resulting long- 
wave vector k--'n --  ]i'~m • The associated angles of  travel are used for directional spectrum cal- 
culations. 

This would simplify the expression in (9) so a form like that of (1) was reached. 
The reason why individual directions are maintained is to fit the theory for 
Fourier decomposition of directional site wave records given by Sand (1979). 
In this, two directional components (an and bn) are a t t~hed  to each frequen- 
cy in very narrow intervals. Thus, the form of (9) is only a matter of principle. 
A detailed discussion of the function Gn~ , which is dependent on the differ- 
ence of the short-wave directions ~ 0 ij = 0 i - -  0 / ,  is given in the following sec- 
tion. 

In a natural, directional sea the total long-wave elevation, ~(x,y,t), becomes 
the sum of contributions from all pairs of frequencies. Due to the structure of 
the decomposition by Sand (1979), mentioned above, the result is in this case 
simply obtained by combining (9) and (2). However, if alternatively each 
frequency comprises infinitely many directional components, additional sums 
must be introduced. Thus, ff the directional components are numbered 1,2,3, 
. . .  p at each frequency, the total long-wave elevations become: 

/ ~ (x , y , t )  - ~j ~ ~ ~ ~nm(x,Y,t) ( 1 0 )  
n--m=1 m=m * p n = l  Pm =l  

It is seen from (9) that the directional long-wave amplitude, ~a, is of the order: 

~a = Gn~(/~#nm) h A n A m / h  . (11) 

where A n ,  A m  represent the amplitude expressions. This will later be applied 
for rough estimates of the long wave amplitude in d/rectional seas. 
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THE DIRECTIONAL TRANSFER FUNCTION G~ 

Solving the Laplace equation to second order gives a rather complicated 
directional transfer function, G ~ .  As indicated in (9) it is a function of frequen 
cy and direction, i.e. G,~(fm ,~fnm,Ae.nm ). It is stressed that the difference of 
the short-wave directions, A0 nm = 0 n -- 0 m ,.~ls not equal to the long-wave 
direction, 60, which is determined by ~,  --/~m. The dimensionless expression 
for Gn~ applied in (9) is: 

~ [ G ' h 2 - - k n h k m h c o s A O n m  - 1 6 " 4 n 2  n 2 , ,  ~.m~.n )] 
G ~ h  ffi 4 ~2DnD m + 4~2(D~ + D2m (12) 

where another dimensionless function has been inserted, viz.: 

G'h 2 ffi {(Vn --Din) [9m(k2n h2 -- 16 ~4D~) --9n(k~m h2 -- 16 ~4D~n )] 

+ 2(Dn --Din) 2 [knh kmh cos AOnm + 16 ,.,4r~2 r l2 ,, ~.num] }/ 

((Dn --Din)  2 - -K-h/4  ~2 } (13) 

with: 

K-h = J ~n --~m] h tanh ( I ~n - -~m J h) (14) 

The dimensionless frequency, Din, applied above is: 

Dm ffi ~ fm (15) 
g 

The expression in (12) can be shown to equal the one~limensional Gnm func- 
tion in (1) for ~Onm = 0. With the G~  function the elevations of the group- 
induced, second~rder long waves can be determined, and the angle of propaga- 
tion, 60, is easily found by means of an expression for the vector difference, 
i.e." 

tan 60 = (knh sin On --kin h sin Om)/(knh cos On --kin h cos Ore) (16) 

The directional transfer function G~ ~ h is shown in Fig. 4 together with the 
angles of propagation 60 of the resulting long waves. G ~  is a function of the 
difference AOnm, whereas 60 is a function of each of the short-wave directions 
0n and 0 m. The lower part of the diagram has, therefore, been made for wave 
components travelling symmetrically about the x-axis, i.e. 0 n = --0 m. Also 
shown is the Gnm function (applied in one<iimensional cases) for two values 
of ~fnm/ fm.  It can be concluded ~hat the long-wave amplitudes in natural 
wave fields axe clearly smaller than in plane wave trains, even for small angles 
between the short-wave components. In shallow water there seems, typically, 
to be a factor 5--10 between long-wave amplitudes generated by directional 
and uni~tirectional short waves. However, the factor decreases with increasing 
water depth. 

As regards the directions of propagation, 60, of the long waves, it can be 



202 

lq 

60 

Fig. 4. The directional transfer function G ~  for a wave group consisting of two frequen- 
cies fm= f and f .  = f + A f with angle A 0 between one another. Lower part indicates long 
wave direction of travel, 6 0, for short waves with 0 n ffi - #  m- 

seen that these are generally larger than the corresponding short-wave angles 
of travel. This is, indeed, true for shallow-water wave fields. The large spread 
of the long waves could also be deduced by considering Fig. 3. An example of 
the long-wave energy distribution is given in Fig. 5. The commonly used 
cos20 distribution is applied to a North Sea wave spectrum, S~ (f), recorded 
during a storm. The coS20 curve seen in the figure is thus valid for all short- 
wave frequencies. However, as indicated by the calculated Spectrum of the 
long waves, S~ (f), the distribution of the directions of propagation of the 
long waves is clearly broader. The spectrum calculations are discussed in a 
later section. 

QUALITIES OF DIRECTIONAL LONG WAVES 

One of the characteristics of the long waves in a uni<iirectionar wave train 
is the large amplification occurring in shaliow water,of, the Gnm function in 
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Fig. 5. A cos2e distribution applied to a North Sea wave spectrum with peak frequency 
fp = 0.088 Hz. The re~ulting long-wave spread is shown for the components with ~ f  = 
0.017 Hz. 
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Fig. 4. This is, according to Ottesen Hansen et al. (1980), due to the smaJl 
difference between the group velocity, Cg, and the phase velocity, c, making 
it possible f.,:~,r the individual waves in the group to follow the induced long 
waves. In c~e~ of directional seas, however, cause and effect cannot follow 
each other because of the directional spread. Therefore, no matter how close 
Cg comes to c, the long waves will not be amplified so much as in plane wave 
trains. This conclusion can also be drawn from Fig. 4. 

The figure is also applicable for a rough estimate of the amplitudes of the 
long waves in a directional sea. Such estimates can often be valuable in the 
planning phase of harbours, ship terminals, etc. For instance, an evaluation of 
the annual number of inoperative days and of the critical mooring forces could 
be obtained. According to (11) the G~  function, the water depth and the 
short-wave amplitudes are needed. The peak frequency, fp, is inserted in 
V~-~fp to give a reasonable estimate of one of the variables in Fig. 4. How- 
ever, to determine a value of the G ~  function also Af/f and 40 of the short 
waves should be known. The simplest way to approximate directional differ- 
ences and amplitudes of a wave field is indicated in Fig. 6a. Generally, a good 
estimate of the highest wave in a wave group is Hs, and the amplitude is there- 
fore Hs/2. This may be distributed over three directions representing the peak 
energy distribution. Thus, a reasonable a should be determined from the actual 
short wave records, or from an assumed directional distribution. Since, how- 
ever, the G~  function for 40 = 2a is much smaller than for 40 = ~, the con- 
tribution from the combination of the two oblique waves becomes rather 
small. It is, therefore, sufficient to consider the contributions from the main 
direction (Hs/4) with each of the waves in the a<lirections (Hs/8). As regards 
long-wave amplitudes, this becomes equivalent with the situation shown in 
Fig, 6b, Hence, the wave field is approximated by two waves each of am- 
plitude Hs/4 (to make a t~)~ of Hs/2) and with an angle ~ between one an- 
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Fig. 6. a. Directional distribution approximated by three wave components, b. Equivalent 
distribution as regards long-wave amplitudes. 

other. Since G~  is a function of f, Af/f  and 40 ,  only a value of Afff is left. 
Sedivy (1978) has analysed numerous records and found the most probable 
number of waves in a group to be 5, i.e. Af/f  becomes typically 0.2. Thus, 
wi th  v t ~ f p  a reasonable value of G~( fp ,  0.2, a) can be found from Fig. 4. 
Then for practical purposes a rough estimate of the long wave amplitude be- 
comes according to (11): 

~a = G,~h  ~ / 1 6  h (17) 

Consider, for example, a wave field with HI = 4 m and peak frequency 
fp = 0.1 Hz that propagates into a water depth of h ffi 10 m. The variables in 
Fig. 4 become ~ f p  ffi 0.1, A f/f  ffi 0.2 and ~0 ffi 20 °, the latter being an 
assumed, typical spreading of the peak energy. The G,~h function is then 
found to be about 0 .7 in  Fig. 4. By means of (17) the long-wave amplitude 
in the  wave field is roughly ~a = 0.7 • 1 6 / 1 6 . 1 0  = 0.07 m. For reasons of 
comparison, it can be seen that a uni<lirectional wave train with the same 
parameters would have generated long waves of amplitude ~a = 0.35 m. Since 
(17) represents a typicalamplitude, it should be noted that  an estimate of, 
for  instance, thesignificant height of  the directional long waves becomes 
approximately Hs, ~ = 3 to 4 ~a. 

Another intexestingproperty o f  directional Iongwaves is connected with 
the fact that direction and wave number a re  determined: by ~n ~-~m, T h u s ,  
the wave lengths of the long wave~ ~ e  dependent on thedkect ions  o f  the 
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short waves. This can also be deduced from Fig. 3. Since the smallest vector 
difference appears in uni<lirectional waves, the wave lengths of the long waves 
must obviously decrease for increasing spread of the short waves. This is shown 
graphically in Fig. 7. The wave field considered above gives &L/~Lu = 0.5, 
i.e. the wave length of the long wave is half the one appearing in uni<lirec- 
tional waves. This possibility of varying the long waves by changing the direc- 
tional spread of the short waves has obviously practical importance in connec- 
tion with, for instance, harbour resonance, cf. Sand (1981b). 

.5 

ALIAL u 

1 
Af l f  ~ e ~  

__ -- .2 ~ 10° 

--.1 ~ 20° 

I i , i i i . , I I . I I I ! ! I i l 

10 -2 2 5 10 "1 2 5 1 ] ~ ' f  

Fig. 7. Wave lengths, AL, of directional long waves to wave lengths, &Lu, of uni-directional 
long waves shown as function of a dimensionless frequency. 

DIRECTIONAL LONG-WAVE SPECTRUM 

Since the elevations of the group-induced long waves are already determined, 
it is possible to calculate the long-wave spectrum. The long waves depend on 
the square of the short-wave amplitudes, and the long-wave spectrum must, 
col isequently, include the fourth power of these amplitudes. In uni<iirectional 
waves the long-wave spectrum, S~(Af),  is quite easily found by means of (1). 
All the contributions to the frequency ~ f  should be added up and squared. 
That is, the simple, raw long-wave spectrum I becomes: 

2 

Gnm(f~f) (anam + bnbm ) ) [(" S~(~f) ffi 
• zffi m * 

2 
" ]/ (18) 

1This spectrum cannot be written as a function of the short wave spectrum as suggested by 
Ottesen Hansen (1978). 
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where the Gnm function from (1) is applied, and n = m + Af/fo. 
The calculation of the directional long-wave spectntm is a little more com- 

plicated. The spectrum should be written as a function of the long-wave 
frequency, Af, and the long-wave direction, 80, i.e. S~.(Af,60 ). Analogous 
with the principle in (18) contributions to a specific frequency and direction 
should be added before squaring. The problem is, however, to find the short 
wave directions that will generate a long wave with the angle 80. As mentioned 
before, two short waves travelling in the directions 0 n and 0 m, i.e. with the 
difference A0, generate a long wave in the direction ~ 0, where ~ 0 ~ A 0. The 
problem is solved by means of Fig. 3. If the angle 60 of the directional long 
wave and one short-wavecomponent in direction 0 m are given, the direction 
0 n of the remaining short-wave component has to be determined. The figure 
shows that: 

sin(SO --On)/km - sin(n --80 + Om)/kn (19) 
and then 0 n is directly found as: 

[km ] 
On = 80 --arcsin kn sin(~ - -80  + Ore) (2o) 

Since the frequencies and directions of  the short-wave components can now 
he found for given values of  the long-wave parameters Af  and 80, it appears 
that  the raw, directional long-wave spect~-um can be written as: 

8t~ (Af ~ O ) = ~.~ 
O m=--~ 

2 

Gn~ (anam + bn bm )p) 

( + 2 f0 0 
m ffi m * O m ffi -"w 

(21) 

where the G,~(f,Af, AO ) function from (12)is ~nserted, n.= m + Af/fo, On is 
found from (20), and A0 is the step (discretization) in the summation over 
directions. Thus, the a and b coefficients in (21) should be read as functions 
of frequency (indicated by n and m), but also as functions of direction (in- 
dicated by the index p). That is, two frequencies n and m comprise a series 
of coefficients, representing wavelets with different directions, which im- 
plies that p runs as p = 1, 2, 3, .... Hence, in principle all combinations of 
n, m and p should appear in (21). Dependent on the short waves and their 
decomposition a and b could, of course, be zero in some or many of the 
terms in (21), cf. for instance the structure of (9). 

Both a short and a long-wave spectrum are shown schematically in Fig. 8. 
The total_ directional wave spectrum is denoted 8~t(f,O), i.e. St# = 8nn + 8~. 
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Fig. 8. Directional spectrum consisting of  a short-  and a long-wave part. 

CONCLUSIONS 

The directional long waves induced by the grouping of a natural wave field 
have been determined. The expressions are shown to include a directional 
transfer function from which important qualities of the long waves can be 
derived. Mathematically the directional long waves are determined by the 
differences of short-wave terms, i.e. the long-wave frequency is fn - -  fro, 
while the direction of propagation and the wave number are found from 

Of practical interest are the facts that the amplitudes of the directional 
long waves seem to be significantly smaller than those of urd<iirectional waves, 
and that the wave lengths of the long waves can be altered simply by changing 
the directional spread of the short waves. Moreover, the spread of the long 
waves is clearly larger than that of the causative short waves. 

In practice it is often desirable in, for instance, an early design stage to assess 
the long-wave amplitudes in a fast and simple way. Therefore, an at tempt to 
derive a formula for rough estimates of the directional long-wave amplitudes 
was made. 

Generally, the directional spectrum is convenient for the representation of 
a natural wave field. This, of course, also applies to the long waves. By con- 
sidering the angles of travel of the short and the long waves an expression for 
the long wave directional spectrum appeared. It was found that this spectrum 
can be written as a function of the short-wave components and the directional 
transfer function. 



208 

REFERENCES 

B i ~ l ,  F., 1963. Radiating second~rder phenomena in ~mvity waves. Int. Assoc. Hydraulic 
Res., Proc. Tenth Congr., London, pp. 198--o-04. 

Bowers, E.C., 1977. Harbour resonance due to se t~ion 'beneath  wave groups. J. Fluid 
blech., 79(1): 71--92. 

Bowers, E.C., 1980. Long period disturbances due to wave groups. Proe. 17th Coastal Eng. 
Conf., Sydney, Am. Soc. Cir. Eng,, 13 pp. 

Lon~uet-HigL~ns, M.S. and Stewart, R.W., 1964. Radiation stresses in wa~Aer waves; a physical 
discussion, with applications. Deep-Sea Res., 11: 529--562. 

Ottesen Hansen, N.-E., 19"/8. Long period waves in natural wave trains. Prog. Pep. 46, 
Inst. Hydrodyn. and Hydraulic Eng., Tech. Univ. Denmark, pp. 18--24. 

Ottesen Hansen, N.-E., Sand, 8.E., Lundgren, H., 8orensen, T. and Gravesen, H., !-.~80. Cor- 
reet reproduction of group-induced long waves. Proc. 17th Coastal Eng. Conf., Sydney, 
Am. Soc. Cir. Eng., 1: 784--800. 

Sand, S.E., 1979. Three-Dimensional Deterministic Structure of Ocean Waves. Series Pape.~ 
24, Inst. Hydrodyn. and Hydraulic Eng., Tech. Univ. Denmark, 177 + xi pp. 

Sand, S.E., 1981a. Long wave problems in laboratory models. J. Waterw., Port, Coastal 
Ocean Div., Proc. Am. Soc. Cir. Eng., in press. 

Sand, S.E., 1981b. Short and long wave directional spectra. ASCE & ECOR Int. Symp. 
Directional Wave Spectra Applications '81, Berkeley, Calif., 13 pp. 

Sedivy, G., 1978. Ocean Wave Group Analysis. Pep. NPS-68 ScTh 78091, Naval Post- 
graduate School, Monterey, Calif., U.S. Dep. of Co_mmerce, 87 pp. 

Sharma, J.N. and Dean, R.G., 19"/9. Development and Evaluation of a Procedure for 
Simulating a Random Directional Second Order Sea Surface and Associated Wave Forces. 
Ocean Eng. Pep. 20, Dep. Civ. Eng., Univ. Delaware, Newark, Delaware, 189 + xii pp. 

Tucker, M.J., 1950. Surf beats: Sea waves of I to § minutes period. Proc. R. Soc. London, 
Set. A, 207: 565-5' /3.  


