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We present a depth-integrated equation for the mechanics of propagation of low-
frequency hydroacoustic waves due to a sudden bottom displacement associated with
earthquakes. The model equation can be used for numerical prediction in large-scale
domains, overcoming the computational difficulties of three-dimensional models and so
creating a solid base for tsunami early warning systems.

Key words: compressible flows, surface gravity waves, topographic effects

1. Introduction

Low-frequency hydroacoustic waves are precursors of tsunamis. Their appeal, i.e.
a propagation speed significantly larger than that of the tsunamis, is inversely
proportional to the intrinsic difficulty of their measurement, because of their low
amplitude and complex wave form evolution. As their appeal is however extremely
strong, several analytical investigations have been carried out in order to reveal the
physical characteristics of acoustic waves generated by bottom sudden displacement,
clarifying that there exists a relationship between the tsunamigenic source and the
hydroacoustic waves (Nosov 1999; Chierici, Pignagnoli & Embriaco 2010). Indeed,
the idea of using measurements of hydroacoustic waves dates back to the work
of Ewing, Tolstoy & Press (1950). The seminal work of Yamamoto (1982) shed
light on the physical features of the set of N propagating hydroacoustic modes and
the accompanying evanescent ones. By standard application of Fourier and Laplace
transforms to the transient problem of inviscid compressible ocean of constant depth
subject to a localized displacement, Stiassnie (2010) found an analytical expression
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for the wave field. In the same work, Stiassnie using the method of stationary phase,
also determined the far field, giving explicit formulae for the propagating modes and
the induced pressure field. Kadri & Stiassnie (2012) have also analysed the case of a
step-like straight discontinuity, an idealized model of the continental shelf effects on
waves incoming from deep ocean, and showed that transmitted modes are present for
any relative step ratios.

Recent experimental evidence of the existence of low-frequency elastic waves
generated by the seabed motion has been found during the Tokachi-Oki 2003
tsunami event. The observatory of the Independent Administrative Institution, Japan
Agency for Marine-Earth Science and Technology (JAMSTEC), detected the pressure
signal induced by the earthquake (Nosov et al. 2007, 2005). Nosov & Kolesov
(2007) developed a three-dimensional numerical model, reproducing most of the
hydroacoustic wave properties, but predicting a partially wrong peak frequency of the
signal. Chierici et al. (2010) incorporated into an analytical model the flow in a porous
sedimentary bed, greatly improving the agreement of their results with measurements
by Nosov & Kolesov (2007).

The complete modelling of these waves could in principle dramatically improve the
effectiveness of a tsunami early warning system (TEWS), given the recent advances
in deep-sea measurement technology. However, applications to real cases require
detailed numerical modelling in order to clearly define the time series at point A
due to a source at point B. Three-dimensional models (Nosov & Kolesov 2007) are
straightforward to use, but require unrealistic computational times when applied to
large-scale geographical areas, i.e. they cannot be used for a systematic investigation
on an oceanic scale of prediction. Hence the necessity of a two-dimensional model,
based on depth-integrated equations, that can retain all the physical features, yet at the
same time be the basis of an efficient prediction tool.

2. The mild-slope equation for hydroacoustic waves

Consider a sample computation carried out using a full three-dimensional solver in
a constant-depth domain, where an earthquake is modelled as a unit sudden elevation
of the sea bottom. The results are depicted in figure 1, which shows the free-surface
elevation η and the corresponding frequency spectrum of the ocean at 50 km from the
earthquake. Hydroacoustic waves reach the point ∼40 s after the initial time of bottom
movement. They appear to exist in some narrow frequency bands, with peaks at the
cut-off modal frequencies given by Stiassnie (2010). A modelling strategy may take
advantage of these filtering effects, by propagating separately each frequency band of
the forcing spectrum. In the following we formulate the mathematical problem for a
generic single frequency ω of the forcing spectrum. Computations presented later in
the paper are carried out for each frequency band and the final results are obtained by
simple superposition.

Consider the problem of wave propagation in a weakly compressible inviscid fluid,
where waves are generated by a moving bottom and then propagate over a mildly
sloped seabed. The seabed vertical distance from the mean water level z = 0 is
therefore a function of horizontal coordinates x, y and time t, i.e. z=−h(x, y, t).

722 R6-2



Depth-integrated modelling of hydroacoustic waves

 –1.0

 –0.5

0

0.5

1.0

1.5

0 100 200 300 400 500 600 700 800 900 1000

104

102

100

10–2

10–4
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

(a)

(b)

FIGURE 1. Results of a sample computation carried out using a three-dimensional flow solver,
showing (a) the free-surface elevation η and (b) the corresponding frequency spectrum of the
ocean at x = 50 km. The propagation acts as a filter showing energy only at the propagating
eigenmodes of the system.

The governing equation and boundary conditions for the fluid potential Φ(x, y, z, t)
are:

Φtt − c2
s∇2Φ − c2

sΦzz = 0,
Φtt + gΦz = 0 at z= 0,
Φz +∇h ·∇Φ + ht = 0 at z=−h (x, y, t) ,

 (2.1)

where ∇ and ∇2 are respectively the gradient and the Laplacian in the horizontal plane
x, y, while subscripts on dependent variables denote partial derivatives and cs is the
(constant) celerity of sound in water. The waves must also be outgoing at infinity. This
can be obtained by applying the Sommerfeld radiation condition along a boundary
placed at a finite distance from the wave sources (Givoli 1991, 1992).

Similarly to Smith & Sprinks (1975) and Mei, Stiassnie & Yue (2005) we seek
the solution of (2.1) by expanding in a series of orthogonal functions, fn(z), the
classic eigenfunctions of the constant-depth homogeneous problem, but with the local
h= h (x, y, t):

fn(z)= cosh [βn (h+ z)]
cosh (βnh)

, (2.2)

where the βn are the roots of the dispersion relation

βn =
{

n= 0 : βn = β0, ω2 = gβ0 tanh (β0h)
n > 1 : βn = iβ̄n, ω2 =−gβ̄n tan

(
β̄nh
)
.

(2.3)
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The hypothesis of a mild slope allows us to seek a solution in the form:

Φ (x, y, z, t)=
∞∑

n=0

φn (x, y, z, t)=
∞∑

n=0

ψn (x, y, t) fn (z) . (2.4)

In order to obtain governing equation and boundary conditions for each of the
φn (x, y, z, t) and ψn (x, y, t), the forcing term of the bottom boundary condition of
(2.1), ht (x, y, t), must also be expressed in terms of the eigenfunctions fn (z). Let

h (x, y, t)=
∞∑

n=0

hn (x, y, t) fn (z) for any z ∈ [−h, 0] (2.5)

and use the orthogonality property of the fn to obtain the nth expansion coefficient:

hn (x, y, t)= h (x, y, t)

∫ 0

−h
fn dz∫ 0

−h
f 2
n dz

= h (x, y, t)
2 sinh (2βnh)

2βnh+ sinh (2βnh)
. (2.6)

By virtue of expansions (2.4) and (2.5), the governing equation and boundary
conditions (2.1) can be rewritten for each of the φn as:

φntt − c2
s∇2φn − c2

sφnzz = 0,
φntt + gφnz = 0 at z= 0,
φnz +∇h ·∇φn + hnt fn = 0 at z=−h (x, y, t) ,

 (2.7)

and equivalently in terms of the ψn and fn as:

ψntt fn − c2
s∇2ψnfn − c2

sψnfnzz = 0,
ψntt fn + gψnfnz = 0 at z= 0,
ψnfnz +∇h ·∇ψnfn + hnt fn = 0 at z=−h (x, y, t) .

 (2.8)

We still require each of the φn to be outgoing at infinity. Since

φnzz = fnzzψn = β2
n fnψn = β2

nφn, (2.9)

the first equation of (2.7) can be written as:

1
c2

s

φntt −∇2φn − φnzz =
1
c2

s

φntt −∇2φn − β2
nφn. (2.10)

Upon multiplication by fn and integration over the depth, (2.10) becomes:∫ 0

−h

(
1
c2

s

φntt −∇2φn

)
fn − β2

nφnfn dz=
∫ 0

−h

(
φnzz fn − φnfnzz

)
dz. (2.11)

Straightforward application of the Green’s identity to the right-hand side of (2.11)
yields: ∫ 0

−h

(
1
c2

s

φntt −∇2φn − β2
nφn

)
fn dz= [fnφnz − φnfnz

]
0
− [fnφnz − φnfnz

]
−h
. (2.12)
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Since fn(z) takes the following values at the vertical boundaries:

fn = 1, fnz = βn tanh (βnh) at z= 0, (2.13a)
fn = 1/ cosh (βnh) , fnz = 0 at z=−h, (2.13b)

equation (2.12) becomes:∫ 0

−h

(
1
c2

s

φntt −∇2φn − β2
nφn

)
fn dz

=−1
g
ψntt − ψnβn tanh (βnh)+ [fn∇h ·∇φn]−h +

hnt

cosh2 (βnh)
. (2.14)

By virtue of the basic properties of the differential operators

∇φn =∇ (ψnfn)= fn∇ψn + ψn∇fn, (2.15a)
∇2φn =∇2 (ψnfn)= fn∇2ψn + 2∇ψn ·∇fn + ψn∇2fn, (2.15b)

equation (2.14) can be rewritten as:∫ 0

−h

(
ψntt

c2
s

f 2
n − f 2

n∇2ψn − 2fn∇ψn ·∇fn − ψnfn∇2fn − β2
n f 2

nψn

)
dz

=−1
g
ψntt −

ω2

g
ψn +

[
f 2
n∇h ·∇ψn

]
−h
+ [fnψn∇h ·∇fn]−h +

hnt

cosh2 (βnh)
, (2.16)

and then, by combining the second and third terms on the left-hand side of (2.16) into
∇(f 2

n∇ψn), (2.16) becomes:∫ 0

−h

ψntt

c2
s

f 2
n dz−

∫ 0

−h
∇
(
f 2
n∇ψn

)
dz−

∫ 0

−h
ψnfn∇2fn dz−

∫ 0

−h
β2

n f 2
nψn dz

=−1
g
ψntt −

ω2

g
ψn +

[
f 2
n∇h ·∇ψn

]
−h
+ [fnψn∇h ·∇fn]−h +

hnt

cosh2 (βnh)
. (2.17)

By virtue of Leibniz’s rule, the second term of the left-hand side can be combined
with the third term of the right-hand side, so that (2.17) becomes:

ψntt

Cn

c2
s

−∇ (Cn∇ψn)− β2
n Cnψn + 1

g
ψntt +

ω2

g
ψn − hnt

cosh2 (βnh)

= [fnψn∇h ·∇fn]−h + ψn

∫ 0

−h
fn∇2fn dz, (2.18)

where Cn(x, y) is given by:

Cn(x, y)=
∫ 0

−h
f 2
n dz= 2βnh+ sinh (2βnh)

4βncosh2 (βnh)
. (2.19)

The two right-hand-side terms of (2.18) are respectively O(|∇h|2,∇2h). Let k indicate
the wavenumber scale of the generic hydroacoustic propagating mode. The case of
a mild slope means that ∇h� kh, so that the |∇h|2 term on the right-hand side is
negligible when compared to the left-hand-side terms. Since ∇2h� ∇h, in the limit
∇h� 1, the second term on the right-hand side can be neglected. Therefore:

ψntt

Cn

c2
s

−∇ (Cn∇ψn)− β2
n Cnψn + 1

g
ψntt +

ω2

g
ψn = hnt

cosh2 (βnh)
. (2.20)
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Recalling expression (2.6) and defining

Dn(x, y)= 1

cosh2 (βnh)

∫ 0

−h
fn dz∫ 0

−h
f 2
n dz

= 4 tanh (βnh)

(2βnh+ sinh (2βnh))
, (2.21)

equation (2.20) assumes its final form:

ψntt

(
Cn

c2
s

+ 1
g

)
−∇ (Cn∇ψn)+

(
ω2

g
− β2

n Cn

)
ψn = htDn, (2.22)

which we will name the hyperbolic mild-slope equation for weakly compressible fluids,
MSEWC. Note that for an incompressible fluid, i.e. in the limit cs →∞, (2.22)
reduces to the classical mild-slope equation (MSE), with βn the wavenumber and the
function Cn→ ccg/g.

In the form (2.22) the equation still describes all the mechanics in the x, y plane,
i.e. the propagating and evanescent modes picture that we would obtain if separation
of variables were applied. The MSEWC overcomes the difficulties of finding a fully
analytical solution for more complex geometries other than the horizontal or piecewise
horizontal in the x, z vertical plane of Stiassnie (2010) and Kadri & Stiassnie (2012).
Solution of this equation can be sought once the bottom displacement spectrum is
given. The computations can be carried out by dividing the spectrum into frequency
bands and by propagating each harmonics separately via (2.22). Note that we do not
need prior knowledge of the eigenfrequencies of the propagating modes and how they
transform as they propagate (evanescent to propagating or vice versa) as the numerical
solution naturally yields the selective filtering effects.

For reference, by taking the Fourier transform of (2.22), the elliptic version of the
MSEWC can be found:

∇ (Cn∇Ψn)+
(
ω2

c2
s

+ β2
n

)
CnΨn =−iωHDn, (2.23)

where Ψn and H are the Fourier transform of respectively ψn(x, y, t) and h(x, y, t).

3. Sample computations

Sample computations have been carried out to verify if the model equation (2.22)
can be safely applied instead of more computationally expensive three-dimensional
ones. Herein we present the results for two different domains, one with a constant
water depth and the other with a varying sea bottom. In the constant-water-depth
computation, two models have been used for comparison: a finite-element solver of
the full three-dimensional mathematical problem (2.1) and the analytical solution of
Stiassnie (2010). The simplified earthquake effect is modelled as a displacement in
the vertical direction of the bottom; water depth is 1500 m. The width of the area
of the rising bottom is 30 km; and its velocity is 1 m s−1 for a total displacement of
1 m. Frequency bands of width 0.02 Hz have been selected to discretize the forcing
spectrum. The numerical solvers are applied on a computational domain 500 km long;
given the symmetry of the problem about the mid-point of the earthquake (x = 0),
computations are undertaken only for half of the physical domain. An appropriate
boundary condition is applied at the open end of the domain, so that the waves leave
the domain freely. At x = 0, a fully reflective boundary condition is used in order to
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FIGURE 2. Results for the free-surface elevation time series at 50 km from the tsunamigenic
source from the three models: (a) three-dimensional model; (b) depth-integrated model; (c)
analytical solution.

preserve symmetry. In order to correctly reproduce the wave field, the maximum mesh
size is 200 m, for a total of 1250 degrees of freedom (DOF) in the case of the depth-
integrated model equation (2.22), and more than 10 000 DOF for the three-dimensional
one (2.1). The time step is t = 0.1 s and the computational time to reproduce 1000 s
of real-time simulation was ∼1 h for (2.22) and ∼10 h for (2.1); a computer equipped
with an i7 2:67 GHz CPU and 12 GB RAM has been used.

The results are presented in figures 2 and 3 in terms of free-surface elevation η. At
x = 50 km (figure 2) the two numerical models are in optimal agreement. Both the
general structure of the time series and the values of the η are almost identical. The
analytical solution by Stiassnie (2010) is still very similar to the two numerical results
but some differences exist. At x = 100 km (figure 3) there is agreement between the
three solutions. However, the depth-integrated model does not show the modulation as
well as the other two sample results. Nevertheless the general structure of the time
series is still in very good agreement as are the values attained by the η.

In the second case of varying sea bottom, the domain geometry, depicted in
figure 4(a), has a 200 km area with a constant water depth of 2 km, an area of
100 km with a sloping bottom, and another area of 200 km with constant water depth
of 3.5 km. The model is compared only with the three-dimensional numerical model,
as an analytical solution is not readily found. The earthquake is modelled in the
shallower area (2 km water depth), it has a width of 45 km and it moves vertically
with bottom velocity equal to 2 m s−1 for a total displacement of 2 m. The maximum
mesh size is again 200 m, for a total of 3000 DOF in the case of the depth-integrated
model equation (2.22), and 30 000 DOF for the three-dimensional one (2.1). The
time step and the discretization of the spectra are the same as in the constant-depth
case. The computational time to reproduce 3000 s of real-time simulation was ∼2 h
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FIGURE 3. Results for the free-surface elevation time series at 100 km from the tsunamigenic
source from the three models: (a) three-dimensional model; (b) depth-integrated model; (c)
analytical solution.

for (2.22) and ∼24 h for (2.1), using the same computer as the previous simulation.
The results are presented in figure 4(b,c) in terms of free-surface elevation η, at a
distance x = 400 km from the moving sea bed area. The two time series are in good
agreement, both in terms of amplitude and modulation of the signal.

4. Conclusions

The correct detection of hydroacoustic waves generated by sudden displacement of
the ocean bottom could enhance significantly the efficiency and promptness of tsunami
early warning systems. Hence the need for a full modelling of the phenomenon in the
oceans and seas. We have therefore considered a weakly compressible inviscid fluid
in which waves are generated by a moving bottom and then propagate over a mildly
sloped seabed. Via a proper application of the averaging technique, we have derived a
hyperbolic mild-slope equation for weakly compressible fluids (MSEWC). Solution of
the equation allows the description of all the mechanics in the x, y plane, overcoming
at the same time both analytical and numerical difficulties. On the one hand, by
expanding in series of the vertical eigenfunctions, the MSWEC retains semi-analyticity
and can be applied to more complex geometries other than the horizontal or piecewise
horizontal in the x, z vertical plane as in the seminal work of Stiassnie (2010) and
Kadri & Stiassnie (2012). On the other hand, because computational time saving
is so dramatic, i.e. one order of magnitude shorter than the fully numerical three-
dimensional model, systematic applications supporting a TEWS in the oceans and seas
of geophysical interest will be viable. Once a bottom displacement time series and
spectrum are given, the computations can be carried out by dividing the spectrum into
frequency bands, propagating each harmonic separately and then using superposition.
So far the MSWEC has been compared with analytical solutions and three-dimensional
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FIGURE 4. The case of varying sea bottom. (a) The computational domain. (b,c) Results for
the free-surface elevation time series at 400 km from the tsunamigenic source from the three-
dimensional (b) and depth-integrated (c) models.

numerical model results. Work is in progress to obtain reliable field measurements
of hydroacoustic waves (Simeone & Viola 2011; Riccobene 2012) related to seismic
events, to measure the MSWEC performance against more realistic benchmark data
sets.
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