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Abstract

Lagrangian motion in geophysical fluids may be strongly influenced by co-
herent structures that support distinct regimes in a given flow. The problems
of identifying and demarcating Lagrangian regime boundaries associated
with dynamical coherent structures in a given velocity field can be studied
using approaches originally developed in the context of the abstract geomet-
ric theory of ordinary differential equations. An essential insight is that when
coherent structures exist in a flow, Lagrangian regime boundaries may often
be indicated as material curves on which the Lagrangian-mean principal-axis
strain is large. This insight is the foundation of many numerical techniques
for identifying such features in complex observed or numerically simulated
ocean flows. The basic theoretical ideas are illustrated with a simple, kine-
matic traveling-wave model. The corresponding numerical algorithms for
identifying candidate Lagrangian regime boundaries and lines of principal
Lagrangian strain (also called Lagrangian coherent structures) are divided
into parcel and bundle schemes; the latter include the finite-time and finite-
size Lyapunov exponent/Lagrangian strain (FTLE/FTLS and FSLE/FSLS)
metrics. Some aspects and results of oceanographic studies based on these
approaches are reviewed, and the results are discussed in the context of
oceanographic observations of dynamical coherent structures.
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1. INTRODUCTION

Ever since Odysseus encountered the vortex Kharybdis in The Odyssey (circa 800 BCE), and no doubt
long before, coherent structures such as nonlinear waves, meandering jets, and long-lived vortices
or eddies have been familiar elements in descriptions of fluid flow in general and ocean circulation
in particular. Although lacking a precise definition, these coherent structures are typically energetic
vortical features with an organized spatial structure that remains recognizable for relatively long
periods compared with other timescales in the flow, and as such are readily identified in a given flow
(see, e.g., Hussain 1983, McWilliams 1984). Because of their constancy, such coherent features
generally exert a sustained control over the motion of fluid parcels.

For the purposes of characterizing Lagrangian motion, the problem of locating the boundaries
of coherent structures is of special importance. Indeed, one of the fascinating elements of fluid
motion is that it may be so heterogeneous despite the near homogeneity of the fluid medium itself:
Long-lived nonlinear jets and vortices that may transport fluid great distances, either by advection
within a jet or by translation of a fluid-trapping vortex, may coexist side by side with relatively
quiescent regions of flow in which the fluid parcels move, if at all, only in weak, nearly linear
wavelike oscillations. Thus the future fate of a fluid parcel—whether it rocks gently back and forth
in confined environs or makes haste toward distant parts of the field—may depend sensitively on
its precise present position relative to these internal structures of the flow.

In a flow that is dominated by coherent structures, it is by passage through a coherent-structure
boundary that the basic character of a fluid parcel’s motion changes and the exchange of fluid
between flow regimes occurs. Thus the demarcation of coherent structures through the definition
of flow-regime boundaries becomes a natural goal of Lagrangian-motion analysis. The structures
that most usefully describe the Lagrangian regime boundaries are, in general, Lagrangian objects
themselves—that is, they are composed of material curves, sets of points that move with the
fluid. The original work focusing on these material regime-boundary curves drew on the analogy
between fluid flow and the abstract flows of the geometric theory of differential equations, in
which bounding curves or surfaces can be defined that divide the phase space into distinct regions
of dynamical behavior. The separatrices of a perfect rigid-rod pendulum are a simple example of
the latter. These separatrices are the trajectories that asymptote to the unstable steady state in
which the pendulum weight is directly above the axis of suspension, and separate the reversing
oscillations about the stable, weight-down steady state from the monotonic rotations about the
axis of suspension. The analogy and approach are particularly striking and effective when the
fluid flow is two dimensional and divergence free, in which case material curves divide the plane
of motion and the flow can be completely described by a time-dependent stream function that
may be directly interpreted as the time-dependent Hamiltonian function of an abstract dynamical
system.

A closely related problem is the determination of regions in which the persistent straining of
material elements results in the efficient stirring of fluid property gradients to small scales, through
the stretching and folding processes associated in the abstract setting with chaotic dynamics (e.g.,
Ottino 1989). It turns out that the material curves that compose Lagrangian regime boundaries are
often lines of persistent Lagrangian strain, that is, sets of fluid elements that are subject to persistent
straining as they move along their Lagrangian trajectories. Such lines of persistent material strain
have become an object of study in themselves, independent of any direct connection to coherent
structures, and are even sometimes denoted as Lagrangian coherent structures.

A number of methods have been proposed to identify Lagrangian regime boundaries in ve-
locity fields obtained from ocean observations or numerical ocean circulation models. This re-
view gives a brief introduction to some of the basic concepts and some of the methods used
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to compute these structures, and provides a brief overview of some recent analyses that make
use of this approach. These methods and the associated analyses have generally focused on two-
dimensional, divergence-free conditions, which approximately hold for large classes of ocean flows.
In many cases, the persistent material strain property is used to identify the corresponding material
curves, and the connection to dynamical coherent structures may not be immediately apparent. In
Section 2, a simple example is reviewed to give a concrete illustration of many of the basic con-
cepts. Section 3 explores the connections between Lagrangian regime boundaries and lines of
persistent material strain. Section 4 summarizes recent approaches to identifying these structures
in observed or simulated ocean flows. Section 5 briefly reviews several oceanographic examples of
the associated analyses. Section 6 provides a cursory overview of some recent results on the direct
identification of dynamical coherent structures in the ocean, which do not rely on regime-boundary
analyses but instead focus on the coherent-structure cores themselves. Section 7 concludes the
review with a brief discussion and summary.

2. A KINEMATIC EXAMPLE: THE TRAVELING WAVE

Accessible examples of the basic Lagrangian structures are provided by the kinematic traveling-
wave model (Samelson & Wiggins 2006). The traveling-wave flow is a two-dimensional, time-
dependent velocity field described by a stream function ψ(x, y, t), which consists of a traveling
sinusoidal component ψ0 plus a small perturbation εψ1 that may take various forms:

ψ(x, y, t) = ψ0(x, y, t) + εψ1(x, y, t), ψ0(x, y, t) = A sin k(x + c t) sin l y . (1)

In this equation, A is an amplitude, k and l are zonal (x) and meridional ( y) wavenumbers, c is
the wave-propagation speed (with c > 0 implying westward propagation), and ε � 1 is a small
parameter. The flow is presumed to be confined to a zonal channel with rigid boundaries at
y = 0 and y = π/ l , where a no-normal-flow condition is satisfied by ψ0 and imposed on ψ1.
This and closely related models have been explored by Flierl (1981), Knobloch & Weiss (1987),
Pierrehumbert (1991), Samelson (1992), and others. In some cases, the relations between k, l,
and c may be motivated by a dynamical linear wave theory, but the Lagrangian analysis may be
carried out without regard to the dynamical origin or interpretation of the time-dependent stream
function ψ , because ψ gives a complete description of the velocity field u(x, y, t) through the usual
relation u = (u, v) = (−∂ψ/∂y, ∂ψ/∂x).

Consider a reference frame (x′, y ′) that is moving with the wave, so that

x′ = x + c t, y ′ = y . (2)

With ε = 0, the fluid velocity u′ = (u′, v′) in the comoving frame is given by

u′ = dx′

dt
= c + dx

dt
= c − l A sin kx′ cos l y ′, v′ = dy ′

dt
= dy

dt
= kAcos kx′ sin l y ′, (3)

which is a steady flow described by a stream function ψ ′
0(x′, y ′), where

ψ ′
0(x′, y ′) = −c y ′ + A sin kx′ sin l y ′. (4)

The contours of the steady stream function ψ ′
0 are the streamlines of the flow (Equation 3) in

the translating frame, and completely describe the Lagrangian motion when ε = 0. A characteristic
geometry of these streamlines is illustrated by the case A = k = l = 1, c = 0.5 (Figure 1). In
each zonal wavelength λ = 2π/k = 2π , there are two stagnation points on each of the y = 0 and
y = π/ l = π boundaries, which are staggered in x′ by λ/2. Each pair of stagnation points on a
given boundary is connected by a contour that extends into the central region of the channel from
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Figure 1
Steady streamlines in the comoving frame for the traveling-wave flow (Equations 1–3) for A = 1, k = 1,
c = 0.5, and ε = 0. The channel is bounded by rigid walls at y = 0 and y = π . There are three flow regimes:
two recirculation regions around the interior stagnation points p3 and p4 and a single central jet region
between the recirculations. These regimes are separated by two special streamlines (thick solid lines) that join
two pairs of stagnation points [( p1, p2) and ( p5, p6)]. Only the segment 0 < x′ < 2π is shown, corresponding
to one wavelength of the traveling wave. Adapted from Samelson & Wiggins (2006) with kind permission
from Springer Science+Business Media.

the upstream (western) point and then returns to the boundary at the downstream (eastern) point.
An additional stagnation point is found inside each of the two regions enclosed by a segment of
the boundary, a pair of stagnation points, and a connecting contour. The fluid parcels within the
enclosed regions loop continuously around the interior stagnation points and are forever confined
to the looping flow regimes. In contrast, the fluid parcels in the meandering jet between the two
enclosed regions move continuously downstream, carried forever eastward in the jet flow regime.

This flow geometry, described by the steady stream function in the translating frame
(Figure 1), can be compactly summarized by abstracting two sets of isolated material curves and
points from the complete field of streamlines—one set for each of the two looping flow regions.
Each set consists of a pair of stagnation points on one of the boundaries, the interior contours that
connect them, and the boundary segments that complete the enclosure of the respective looping
flow regime. These isolated elements apportion the fluid into looping and jet regimes, and so com-
pletely describe the qualitative character of the Lagrangian motion of any fluid parcel in the flow.
The interior connecting contour, which forms most of the Lagrangian regime boundary, is known
in the classical mathematical language as a separatrix, because it separates the two qualitatively
different regimes of motion.

It is natural to ask whether a similar efficient description of the qualitative character of
Lagrangian motion can be obtained for more general flows. A substantial number of the studies
discussed here have been addressed at answering this question. The basic generalizations can be
illustrated in the context of the traveling-wave flow (Equation 1). If additional, oscillatory time
dependence is added to the steady moving-frame velocity field (Equation 3) by considering ε > 0
and a suitable form for ψ1 in Equation 1, then the boundaries between the looping and jet flow
regimes will be broken and will become porous to an exchange that scales with ε and the am-
plitude of ψ1. In this case, generalized Lagrangian regime boundaries may often still be defined,
and can then be used to quantify the exchange flux between the now time-dependent regimes
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x' = 0 x' = 2π
k

Figure 2
Schematic illustration of the breakup of the regime boundaries in a moving frame under the influence of
time-dependent disturbances. As in Figure 1, the model is periodic in a direction parallel to the mean flow,
so that the right and left boundaries of the figure may be identified. In this illustration, the traveling-wave
flow is embedded in a resting ambient fluid rather than confined between rigid channel walls as in Figure 1,
and each pair of boundary stagnation points in Figure 1 is represented by a single stagnation-point analog at
the edge of a recirculation regime. Adapted from Samelson & Wiggins (2006) with kind permission from
Springer Science+Business Media.

(Figure 2). There are two parts of this generalization (e.g., Samelson & Wiggins 2006): First,
suitable analogs of the boundary stagnation points must be found, and second, a set of bounding
curves associated with these analog points must be defined that separate the flow into distinctive
regimes of Lagrangian motion.

3. REGIME BOUNDARIES AND PRINCIPAL
LAGRANGIAN STRAIN LINES

For a two-dimensional velocity field (u, v), the velocity gradient tensor G at point (x, y) may be
written as

G =
(

δ1 γ − ζ

γ + ζ δ2

)
, (5)

where

δ1 = ∂u
∂x

, δ2 = ∂v

∂y
, γ = 1

2

(
∂u
∂y

+ ∂v

∂x

)
, and ζ = 1

2

(
∂v

∂x
− ∂u

∂y

)
. (6)

The eigenvalues σG and eigenvectors xG of G satisfy

GxG = σGxG (7)

and will be real if s 2
OW > 0 and complex if s 2

OW < 0, where the Okubo-Weiss parameter s 2
OW is

s 2
OW = 1

4
(δ1 − δ2)2 + γ 2 − ζ 2. (8)

From a physical point of view, the case of real σG and s 2
OW > 0 corresponds to a local motion field

near the point (x, y) that is dominated by irrotational, straining deformation, whereas the case of
complex σG and s 2

OW < 0 corresponds to a local motion field that is dominated by vorticity and
rotation.
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In the steady traveling-wave flow (Equation 3), the Lagrangian regime boundaries that separate
the looping and jet regimes turn out to have a second identity as material lines of large Lagrangian-
mean strain. The interior stagnation points are surrounded by closed, elliptical streamlines, with
nearby fluid parcels looping endlessly about the stagnation points and essentially no local mean
straining motion (Figures 1 and 2). Consequently, the Lagrangian-mean strain for a looping
trajectory near either interior stagnation point will be essentially zero. In addition, the Lagrangian-
mean strain for trajectories following the central jet will likewise be relatively small, because the
(Eulerian) strain vanishes at the center of the jet. This is not the case, however, for the separatrix
trajectories or their time-dependent generalizations.

Because the sets of parcels that form each separatrix are those with trajectories that asymptote
toward the boundary stagnation points, the Lagrangian-mean average strain properties on these
parcels over long time intervals are dominated by the strain properties of the respective stagnation
points. For the forward semi-infinite mean, over times t with t0 < t < ∞ for any fixed t0,
the Lagrangian-mean principal strain along such a trajectory will be dominated by that of the
downstream stagnation point; for the backward semi-infinite mean, over times t with −∞ < t < t0
for any fixed t0, the Lagrangian-mean principal strain along such a trajectory will be dominated by
that of the upstream stagnation point. Thus, in a Lagrangian sense, the large material strain rates at
the boundary stagnation points will effectively extend into the interior as large Lagrangian-mean
principal strain rates for the parcels on each separatrix.

The material strain properties at the boundary stagnation points are determined by the sur-
rounding linear deformation fields, which have principal axes aligned along the directions in which
nearby fluid parcels approach the stagnation points asymptotically in infinite forward or backward
time (Figure 1). The fluid parcel at a boundary stagnation point, by virtue of its stationary position
at the center of the linear deformation field, is subject to a persistent straining motion from the
corresponding deformation field. Nearby fluid parcels that approach the downstream boundary
stagnation point on opposite sides of the separatrix will depart exponentially fast from each other
and from the stagnation point in forward time, or will approach each other and the point expo-
nentially in backward time. A similar picture holds at the upstream stagnation point, but with
time reversed. It is this exponential rate of separation or approach that is quantified by the princi-
pal rates of strain at the stagnation point and that dominates the forward-time or backward-time
Lagrangian-mean normal strain for parcels on the separatrix. Thus, because of the persistent large
strain that occurs as the separatrix parcels approach or leave the boundary stagnation points, the
separatrices are lines of large Lagrangian-mean strain.

For the weakly unsteady traveling-wave flow—that is, Equation 1 with 0 < ε � 1 and a suitable
oscillatory form for ψ1—a similar relation holds: The generalized Lagrangian regime boundaries
can again be identified as material lines of large Lagrangian-mean strain. In this case, the sepa-
ratrix is replaced by two sets of material lines, composed separately of the parcels with trajecto-
ries that asymptote to the analogs of the upstream and downstream boundary stagnation points
(Figure 2) (see also, e.g., Samelson & Wiggins 2006). The parcels that in forward time approach
the analog of the downstream point will have a large, normally divergent, principal Lagrangian-
mean strain, whereas those that in backward time approach the analog of the upstream point
will have a large, normally convergent, principal Lagrangian-mean strain. The former is nor-
mally divergent and the latter normally convergent in the sense that they indicate, respectively,
Lagrangian-mean divergence from and convergence toward the corresponding material lines, in
forward time.

This heuristic insight—that when coherent structures exist in a flow, the Lagrangian regime
boundaries tend to be indicated as material lines of large Lagrangian-mean strain—has formed the
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foundation of many attempts to identify the Lagrangian regime boundaries of coherent structures
in complex flows (see Section 4). It should be borne in mind, however, that although coherent-
structure regime boundaries may indeed often have a large Lagrangian-mean strain, it is not nec-
essarily the case that, conversely, all material lines of large Lagrangian-mean strain are themselves
Lagrangian regime boundaries. In fully developed turbulence, for example, where eddy lifetimes
are comparable to Lagrangian decorrelation times, material lines of large Lagrangian-mean strain
may have an exceedingly complex geometry with no clear connection to any identifiable localized
Lagrangian-motion regimes (e.g., Mathur et al. 2007).

Because of the importance of repeated or sustained material deformation to the analysis of
stirring or mixing in fluid flows, material lines of large Lagrangian-mean strain are an object of
interest themselves, regardless of their possible role as Lagrangian regime boundaries in flows
with coherent structures. In reflection of this intrinsic importance, these lines have sometimes
themselves been called Lagrangian coherent structures (LCSs) (Haller & Yuan 2000). In the
present geophysical fluid-dynamical context, however, in which the term coherent structure has an
established meaning as a localized, quasi-stable, vortex-dynamical feature, the LCS terminology
can lead to confusion. The LCS terminology is therefore avoided here in favor of the more
explicitly descriptive term principal Lagrangian strain (PLS) line.

4. SCHEMES AND ALGORITHMS

4.1. The Contoured-Field Approach

In simple examples such as traveling-wave flow (Equation 1), in which the unperturbed velocity
field is analytically specified and time independent in a suitable reference frame, the fixed points and
separatrices can be easily identified. For a general velocity field, obtained from ocean observations
or numerical ocean-model simulations, the identification problem is challenging. A number of
different identification schemes and algorithms have been proposed and explored. Initially, many of
these focused on finding approximate stagnation points through iterative methods initialized with
the locations of instantaneous points of zero velocity (Ide et al. 2002). However, such instantaneous
stagnation-point schemes have typically been strongly frame dependent and difficult to automate.
For example, any trajectory will appear to be a stagnation point in a moving frame that follows the
trajectory, and some relative measure of parcel motion is needed to remove this basic ambiguity.
A more successful and now widely used approach involves computing various Lagrangian-mean
quantities on a large number of trajectories, contouring the resulting field, and finding the contours
with extremal values. Because the contoured-field approaches are explicitly relative, in that the
identified features are defined by extremal rather than absolute values, they implicitly have an
approximate Galilean (or more general) frame invariance, and so automatically satisfy, at least
approximately, this fundamentally important criterion for any candidate scheme.

The Lagrangian-mean, trajectory-based, contoured-field approaches may be divided into two
categories: parcel schemes and bundle schemes. The former are based on Lagrangian means of
primary flow quantities, such as velocity, and so can be evaluated from information along an
individual parcel trajectory. [Rypina et al. (2010) refer to parcel schemes as “individual trajectory
methods,” although, of course, the quantities must be computed for a field of trajectories in
order to yield meaningful results.] The latter involve Lagrangian means of spatially differentiated
quantities, such as velocity gradients, and so effectively require information on a surrounding
(infinitesimal, open) set of neighboring trajectories. The word bundle may here be interpreted
to connote either the required groups of neighboring trajectories or perhaps the more abstract
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mathematical notion of a tensor bundle (e.g., Bishop & Goldberg 1980; strictly speaking, of course,
the parcel velocity is already an element of a tangent bundle). From a mathematical point of view,
the problem of identifying extremal contours might be anticipated to have a natural formulation
as a variational problem; this approach has recently been taken by Haller (2011), who derived
results for a bundle scheme. A gradient-based iterative scheme to locate the extremal contours in
complicated Lagrangian-mean fields has been developed by Mathur et al. (2007).

The results of a Lagrangian-mean, contoured-field scheme may be extended by computing
stagnation-point and separatrix analogs, generally by iterative methods (Haller 2000, 2001, 2002;
Ide et al. 2002; Mancho et al. 2003, 2004, 2006), with an intersection point of extremal contours
of the Lagrangian-mean fields used as an initial guess. The appropriate analogs of the stagnation
points have been called “distinguished hyperbolic trajectories” (Ide et al. 2002), but this abstract
terminology conveys little physical information. Their essential characteristic is a persistent local
strain field, similar to that of the boundary stagnation points in the traveling-wave flow, which can
support the asymptotic approach of fluid parcels in forward or backward time; therefore, the more
explicitly descriptive term PLS point is used here instead. The separatrix analogs are composed at
any given time of the fluid parcels that asymptote toward the PLS point in forward or backward
time. In the abstract terminology, the separatrix analogs are called stable or unstable manifolds
of the distinguished hyperbolic trajectory (PLS point), or, because they are composed of material
points, they may be called simply material manifolds (Samelson & Wiggins 2006). Here, they are
instead identified as either PLS lines or Lagrangian regime-boundary curves.

4.2. Parcel Schemes

As defined here, parcel schemes are those based on Lagrangian means of primary flow quantities
along an individual parcel trajectory. Examples of such schemes are the mean Lagrangian velocity
metric of Malhotra et al. (1998) and the recently proposed arc-length metric of Madrid & Mancho
(2009).

The former measure is based on the mean Lagrangian velocity of a fluid parcel over a specified
time interval, which is equal to the ratio of the distance between the final and initial positions of
the parcel to the difference between the final and initial times (Malhotra et al. 1998). In a two-
dimensional flow, this mean Lagrangian velocity is a vector, and the contoured quantity may be
the magnitude of the vector or—especially if the flow is anisotropic, as is the case for the traveling-
wave model—the value of one of the components of the vector (Figure 3). This metric is especially
useful for identifying contiguous regions of flow with a characteristic shared Lagrangian behavior.
Thus, it distinguishes relatively clearly between the jet and recirculation regimes in a traveling-
wave flow (Figure 3). However, it is not especially well suited to the problem of identifying the
boundaries between regimes, which is the primary goal.

The latter measure is constructed from the arc length of a finite-time parcel trajectory, defined
at time t as the time mean over an interval [t − τ/2, t + τ/2] of the Lagrangian integral of the
magnitude of the parcel’s velocity (Madrid & Mancho 2009). This metric (Figure 4) appears to
provide a more sensitive indicator of the regime boundaries than the mean Lagrangian velocity
itself. The essential reason for this difference is that the set of parcels forming the boundaries will
have trajectories that asymptote toward some generalized analog of the boundary stagnation points
in the traveling-wave flow, at which their motion often tends to decrease relative to other parts
of the flow, whereas parcels that are looping repeatedly in recirculation regimes will continue to
accumulate trajectory arc length even as their mean Lagrangian velocity relative to the translating
frame decreases toward zero. Thus, unlike the mean Lagrangian velocity, the arc-length metric
is able to distinguish between the recirculation regime and its boundary. Although this heuristic
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Figure 3
Cross section of a parcel-scheme metric similar to that of Malhotra et al. (1998) for a variant of the
traveling-wave flow, showing long-term mean zonal (along-channel) Lagrangian velocity in the stationary
frame for parcels initially on a section x(τ = 0) = 0 near the wave-phase equivalent of x′ = π/2 in
Figure 1. For wave and perturbation parameters as in panels a, b, d, e, and f, the recirculation regime is
characterized by a mean velocity near c = 0.1, whereas the jet regime is characterized by larger mean
velocities. For parameters as in panel c, the coherent structures are barely evident. Adapted from Samelson
(1992) with permission; original figure copyright c© 1992 by the American Meteorological Society.

argument is suggestive, and practical results with this method have so far given encouraging results,
a rigorous justification of its validity is not currently available.

4.3. Bundle Schemes

As defined here, bundle schemes are those based on Lagrangian means of spatially differentiated
quantities along a parcel trajectory. The spatial differentiation may be approximated by discrete
differences from two or more neighboring trajectories. Two bundle schemes that have received
substantial attention are those based on finite-time Lyapunov exponents (FTLEs) (Ottino 1989,
Pierrehumbert & Yang 1993, Haller 2001, Shadden et al. 2005) and finite-size Lyapunov exponents
(FSLEs) (Aurell et al. 1997, d’Ovidio et al. 2004). The stagnation-point and bounding-trajectory
analogs are then identified as ridges in the FTLE or FSLE fields. Most schemes have included
explicitly Lagrangian parcel-tracking elements, but an Eulerian alternative has recently been pro-
posed (Leung 2011) that uses the advection of Lagrangian labels (Kuebel Cervantes et al. 2003,
2004) to develop a numerical representation of the Lagrangian flow map. A variety of studies using
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Figure 4
Arc-length metric (shading) computed following Madrid & Mancho (2009) from an observational ocean
surface-velocity data set for intervals of (a) 4 and (b,c) 30 days. Panel c additionally plots segments of
Lagrangian regime boundaries representing the stable (black) and unstable ( gray) manifolds of the associated
stagnation-point analogs. In panel b, note that the contoured values are similar inside and outside the
enclosed recirculation regime (indicated by the light shading fading to dark farther inside and outside) and
distinctively different along the regime boundaries (indicated by the dark shading along narrow, isolated
curves embedded in light shading). Adapted from Mendoza & Mancho (2010) with permission; original
figure copyright c© 2010 by the American Physical Society.

variants of these schemes have given encouraging results, and in some cases further steps toward
rigorous justification of these methods have been taken (Shadden et al. 2005, Haller 2011, Haller
& Sapsis 2011).

The Lyapunov exponent terminology has been borrowed from dynamical systems theory,
where this exponent describes the asymptotic instability of phase-space trajectories, with a pos-
itive exponent for a bounded system generally implying chaotic behavior (e.g., Guckenheimer
& Holmes 1983). As a descriptor for the Lagrangian motion, however, it is disappointingly ob-
scure. The FTLE quantity itself is in essence a Lagrangian-mean principal-axis strain rate along
the given trajectory, estimated by finite differences. A more fluid-dynamical terminology for the
FTLE might be finite-time Lagrangian strain (FTLS). The FSLE is effectively also a Lagrangian-
mean principal-axis strain rate, computed instead from the time required to reach the specified
separation. A more fluid-dynamical terminology for the FSLE might be finite-size Lagrangian
strain (FSLS).

In the FTLE/FTLS approach, a fixed, finite time interval τ is chosen, and the FTLE/FTLS
at time t is computed as a mean exponential growth rate of separations between two trajectories
over the time [t, t + τ ] by dividing the logarithm of the ratio of final to initial separations by
τ (Figure 5). More generally, in two or more spatial dimensions, the computation can be done
for a field of trajectories initialized on a regular grid, and a discrete-difference estimate of the
Cauchy-Green deformation tensor can be computed along each trajectory and then diagonalized
to obtain the corresponding eigenvalues, from which a maximum FTLE/FTLS can be computed
by dividing the square root of the leading eigenvalue by τ (e.g., Shadden et al. 2005). In principle,
the FTLE/FTLS asymptotes toward a Lyapunov exponent (e.g., Oseledec 1968) as τ → ∞, which
provides the theoretical rationale for the name. A backward FTLE/FTLS may also be computed,
over the time [t + τ, t] with τ < 0.

In the FSLE/FSLS approach, the FTLE/FTLS scheme is, loosely speaking, inverted. Instead of
the fixed time interval τ , a suitable ratio of final to initial separations between two trajectories is cho-
sen a priori, and the time τ S taken for the separation ratio to reach this specified value is recorded.
The FSLE/FSLS is then defined as the mean exponential separation rate obtained by dividing the
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Figure 5
A finite-time Lyapunov exponent/Lagrangian strain (FTLE/FTLS) field for an analytic example consisting
of a triply periodic, steady, three-dimensional velocity field. Darker colors indicate larger values. Local
maxima indicate normally divergent principal Lagrangian strain (PLS) lines. Adapted from Haller (2000)
with permission from Elsevier.

logarithm of the specified separation ratio by τS (Figure 6). In two or more spatial dimensions,
τS for a given trajectory can be minimized over initial separation directions to obtain the corre-
sponding maximum FSLE/FSLS. The FSLE/FSLS approach has the practical appeal of allowing
explicit specification of the horizontal scales over which the separation rates are to be computed.
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Figure 6
Finite-size Lyapunov exponent/Lagrangian strain (FSLE/FSLS) fields calculated from forward ( positive
values) and backward (negative values) integrations in time, for a time-dependent surface-velocity field from a
numerical ocean model. Local maxima and minima indicate principal Lagrangian strain (PLS) lines. Black
dots indicate possible positions of stagnation-point analogs at the PLS-point intersections of the PLS lines.
Adapted from d’Ovidio et al. (2004) with permission.
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5. OCEANOGRAPHIC EXAMPLES

5.1. Western Boundary Currents

Perhaps the most well-developed oceanographic exploration of the Lagrangian regime-boundary
ideas is that associated with the North Atlantic’s midlatitude western boundary current—i.e., the
Gulf Stream and its offshore extension (Stommel 1965). The original work of Bower & Rossby
(1989), Bower (1991), and Samelson (1992), which identified the characteristic traveling-wave flow
structure of the meandering current and its implications for cross-jet fluid exchange, stimulated
subsequent observational analyses with an increasing theoretical motivation, as well as numerical
studies with increasingly realistic ocean models. Much of this work has previously been reviewed
by Samelson (1996) and Wiggins (2005).

These studies have largely confirmed the essential perspectives and insights of the highly ideal-
ized traveling-wave representation of Lagrangian motion in a meandering jet. Technical elements
of the approach have proven to be sound in a broader context, as evidenced, for example, by the
utility of the comoving reference frame as a context for the analysis of observed trajectories of
freely drifting subsurface floats deployed in the Gulf Stream (Lozier et al. 1997) and the demon-
strated validity of the kinematic model as a qualitative representation of Lagrangian motion in
dynamically based numerical models of meandering jets (Rogerson et al. 1999). Analysis of sub-
surface float motion in comoving reference frames defined independently through estimates of
meander propagation speeds reveals trajectories whose qualitative exchange behavior is similar to
that inferred from a variant of the traveling-wave flow (Figure 7) (Lozier et al. 1997). Numerical
simulations using a barotropic vorticity equation as an idealized representation of Gulf Stream
dynamics confirmed that the basic pathways of Lagrangian motion and fluid exchange arising in
the traveling-wave flow also occur when the velocity field is determined from a consistent dy-
namical model based on a material conservation principle for the mesoscale vorticity (Figure 8)
(Rogerson et al. 1999).

These studies of Lagrangian motion in the Gulf Stream have also produced several specific
physical insights. For example, the qualitative and to some extent quantitative characteristics of
exchange mechanisms and locations relative to meanders, and the intensification of cross-jet ex-
change with depth, are now seen as most naturally understood in the context of the traveling-wave
model of Lagrangian motion and the dependence of this model’s Lagrangian regime boundaries
on such basic physical parameters as the ratio of the traveling wave’s phase speed to the maximum
flow speed in the jet. This emphasis on the Lagrangian boundaries between the recirculation and
jet regimes as descriptors of the material motion in the Gulf Stream has proven to be a conceptual
focus with lasting value.

5.2. Coastal Flow Regimes

A coastal flow regime that has received much attention from the Lagrangian perspective is the
surface current field in and around Monterey Bay, California, on the US west coast. Extending
previous work by Coulliette et al. (2007), Shadden et al. (2009) have used remote-sensing estimates
of the surface current field from a land-based high-frequency (HF) radar system (Paduan &
Rosenfeld 1996) during periods in July through September 2003 to compute Lagrangian regime
boundaries (PLS lines) through an FTLE/FTLS approach, with comparisons to in situ surface
drifter measurements. The horizontal scale of the domain was of order 20 km, the typical surface
current speeds were of order 25–50 cm s−1, and the integration time for the FTLE/FTLS approach
was τ = 3–4 days.
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Figure 7
Subsurface motion data from RAFOS float 037. (a) Time series of float quasi-zonal speed u′ (triangles) and
estimated meander quasi-zonal phase speed c ′

x (circles) for the portion of the float’s life with phase speed
coverage. For u′, the size of the symbol is proportional to the pressure along the float’s path. Small values
denote small pressures (onshore side of the stream) and large values denote large values (offshore side of the
stream). (b) Stationary-frame trajectory with symbol size proportional to |u′ − c ′

x |. (c) Moving-frame
trajectory with symbol size proportional to |u′ − c ′

x |. The symbol spacing in all panels is 8 h. Adapted from
Lozier et al. (1997) with permission; original figure copyright c© 1997 by the American
Meteorological Society.

The regime boundaries of interest tended to separate a recirculation flow within the bay from
an offshore flow southward past its open mouth (Figures 9 and 10). The drifter trajectories were
broadly consistent with the flow structure inferred from the PLS-line analysis, although significant
quantitative differences were also found both between the drifter and inferred PLS-line positions
and between the observed and predicted drifter positions, where the prediction was based on a
single trajectory integration using the HF radar velocity field. Some of these discrepancies may
have resulted from the relatively large depth to which the drogue element on the drifters extended,
in comparison with the approximately 1-m depth of the HF radar current estimates. Shadden
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Figure 8
Composite illustrations of the potential vorticity field (dotted-line contours), fluid-exchange regions defined by
Lagrangian regime boundaries (shaded areas), and two meridional transects through the recirculation region
where Lagrangian particles are initially positioned 0.05 units apart for (a) case I at time t = 98 and (b) case
III at time t = 102, where cases I and III denote two model simulations with differing parameter values.
Panels a and b track a total of 242 and 202 particles, respectively, for 200 time units. The initial positions of
particles that exhibit rapid potential vorticity transitions—q > 0.01 and q > 0.015 for panels a and b,
respectively, over any 10-unit time interval, indicating enhanced stirring and mixing of potential
vorticity—are marked within the vertical bars. Adapted from Rogerson et al. (1999) with permission; original
figure copyright c© 1999 by the American Meteorological Society.

et al. (2009) argued that the PLS-line estimates were relatively robust because the Lagrangian
integrals used for the FTLE/FTLS computation act to smooth, or filter, the noise in the observed
HF radar velocity fields. They further suggested that the PLS-line pattern along the mouth
of the bay may be consistently related to sustained, wind-driven coastal upwelling conditions
(Figures 9 and 10). This is an example of a potentially useful and testable description of the
characteristic regional Lagrangian response to wind forcing that is posed with particular efficiency
in the present framework.

5.3. Eastern Boundary Currents

The California Current System (CCS) is an eastern boundary current regime with an active
mesoscale eddy field, located roughly 100–300 km offshore of the US west coast, including the
region to the west of the coastal embayment regime considered by Shadden et al. (2009). Harrison
& Glatzmaier (2012) recently used an observational estimate of absolute surface dynamic height
obtained from a combination of satellite altimetry and other data to compute Lagrangian regime
boundaries in the CCS region under a geostrophic velocity approximation (Figure 11). They used
a variety of bootstrapping approaches to estimate the sensitivity of the FTLE/FTLS calculation
to noise in the observed velocity field and then compared the results of the PLS-line approach to
coherent-structure identification with those obtained using an alternative approach based on the
Okubo-Weiss criterion (Okubo 1970, Weiss 1991).
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Figure 9
Fixed-time Lyapunov exponent/Lagrangian strain (FTLE/FTLS) field computed from high-frequency radar
velocity data in Monterey Bay, California. Curves of high FTLE/FTLS represent time-varying principal
Lagrangian strain (PLS) lines. A high-frequency radar velocity field at the given time is also shown. Adapted
from Shadden et al. (2009) with permission from Elsevier.

The Okubo-Weiss criterion depends on the parameter s 2
OW in Equation 8, which is computed

not from a Lagrangian quantity but rather from the instantaneous velocity gradient tensor. As
such, it differs fundamentally from the FTLE/FTLS approach, and from all other parcel and
bundle schemes as defined here. The idea of the Okubo-Weiss criterion—as used, for example,
by Harrison & Glatzmaier (2012)—is simply that large contiguous regions where s 2

OW < 0 may
be identified as coherent vortical structures. Harrison & Glatzmaier (2012) found a qualitative
correspondence between coherent-structure boundaries indicated by the zero contours of s 2

OW and
Lagrangian regime boundaries indicated by the FTLE/FTLS approach. They found empirically
that the FTLE/FTLS PLS lines are more robust to noise in the velocity field than the s 2

OW
zero contours, an advantage that they attributed to the smoothing inherent in the Lagrangian-
mean FTLE/FTLS calculations. They argued that for the expected amplitude of errors in the
observationally based velocity field, the FTLE/FTLS method should give reliable estimates of
the boundary locations of the larger eddies and stronger jets typically observed in the CCS region,
but not those of the smaller eddies or weaker jets.

5.4. A Global Snapshot

For the global ocean, Beron-Vera et al. (2008) have presented results that are similar to those
presented by Harrison & Glatzmaier (2012) for the CCS region. Beron-Vera et al.’s (2008) results
are, as the authors note, essentially a demonstration of feasibility and as such are less systematic
than those of Harrison & Glatzmaier (2012). Beron-Vera et al. (2008) showed that a snapshot
of the FTLE/FTLS field over the global ocean can be computed from an altimeter-based data

www.annualreviews.org • Lagrangian Motion and Lines of Strain 151

A
nn

u.
 R

ev
. M

ar
in

e.
 S

ci
. 2

01
3.

5:
13

7-
16

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 I

fr
em

er
 -

 B
ib

lio
th

eq
ue

 L
a 

Pe
ro

us
e 

on
 0

5/
15

/1
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



MA05CH07-Samelson ARI 9 November 2012 14:8

Measured position
Position integrated from CODAR

a
08/26/2003
09:00:00 GMT

b
08/27/2003
10:00:00 GMT

c
08/28/2003
09:00:00 GMT

d
08/29/2003
02:00:00 GMT

122.2° W

36.6° N

36.7° N

36.8° N

36.9° N

36.6° N

36.7° N

36.8° N

36.9° N

122.0° W
Longitude Longitude

La
ti

tu
de

La
ti

tu
de

121.8° W 122.2° W 122.0° W 121.8° W

Figure 10
Sequence of observed locations over several days of two drifters (circles and triangles) in Monterey Bay,
California, superimposed with a time-dependent principal Lagrangian strain (PLS) line. Abbreviation:
CODAR, coastal ocean dynamics applications radar. Adapted from Shadden et al. (2009) with permission
from Elsevier. Time information for the sequence, missing from Shadden et al. (2009), has been added.

set (Figure 12). For this snapshot, they used a Lagrangian integration time of τ = 60 days.
They then compared their FTLE/FTLS structures in this snapshot with contours of s 2

OW in a
single limited region, and argued based on the comparison that the FTLE/FTLS metric is more
sensitive and informative. They also argued that the FTLE/FTLS structures indicate that coherent
vortical eddy structures identified from closed sea-surface height contours or by the Okubo-Weiss
criterion generally do not trap and transport fluid, but this assertion was apparently made on the
relatively limited basis of a comparison of a few FTLE/FTLS structures with instantaneous sea-
surface height or s 2

OW parameters. They further compared a set of time-dependent FTLE/FTLS
structures with a single satellite-tracked drifter and suggested that the results were consistent with
the assumption that the FTLE/FTLS structures represented attracting (normally convergent)
material curves.

5.5. Numerical Models

The development of high-resolution numerical models of regional and coastal ocean circulation
over the past decade (e.g., Samelson et al. 2008, Hasumi et al. 2010, Hurlburt et al. 2011), with
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Figure 11
Coherent structures and regime boundaries in the California Current region on October 18, 2005, from an
observationally based velocity field. (a) Normally convergent (blue) and divergent (red ) principal Lagrangian
strain (PLS) lines, with two-day, time-centered trajectories (black lines); the circles indicate the final
positions. (b) Contours of sea-surface height, geostrophic velocity vectors, and the Okubo-Weiss parameter
(s 2

OW ). The sea-surface height contour interval is 3 cm, and the maximum fluid velocity is 35 cm s−1. Dark
blue regions indicate elliptical trajectories (high vorticity), and yellow and orange regions indicate areas of
high shear near instantaneous stagnation points. White lines indicate s 2

OW zero contours. Adapted from
Harrison & Glatzmaier (2012) with permission from Taylor & Francis Ltd.

horizontal grid resolutions of order 1–5 km or less, has opened up new opportunities for the di-
agnosis of PLS lines in increasingly realistic model representations of regional and coastal ocean
flows. To the extent that these models are constrained by data assimilation or by a largely deter-
ministic dynamical response to known forcing, the resulting Lagrangian regime boundaries and
PLS lines may be descriptive not only in a qualitative and general sense but also in a quantitative
and particular sense, as approximate representations or predictions of specific, observable ocean
features. Recent modeling analyses of this type include those of d’Ovidio et al. (2004), Mezič et al.
(2010), and Rypina et al. (2010).

In the earliest of these latter studies, d’Ovidio et al. (2004) used velocity fields obtained from a
numerical model of the Mediterranean Sea (Dietrich 1997, Fernández et al. 2005) to compute PLS
lines by the FSLE/FSLS method. The model had a 10-km horizontal grid resolution, adequate
to reproduce many of the larger characteristic mesoscale features of Mediterranean circulation,
such as the so-called Algerian eddies. A time average of the FSLE/FSLS field suggested higher
mesoscale stirring activity in the southern part of the basin. The main object of this work was
to introduce the FSLE/FSLS concept and approach into the oceanographic context; the authors
reported only limited qualitative and quantitative results, and made no comparisons with obser-
vations. The study served to demonstrate the feasibility of an FSLE/FSLS-based approach for
identifying PLS lines in a regional ocean model.

The more recent studies by Mezič et al. (2010) and Rypina et al. (2010) were based on models of
circulation for the Gulf of Mexico and the Philippine Archipelago, respectively. The latter used an
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Figure 12
Global snapshot of a backward-time finite-time Lyapunov exponent/Lagrangian strain (FTLE/FTLS) field on April 20, 2005,
computed using sea-surface velocities inferred from climatological hydrography and altimetry. Principal Lagrangian strain (PLS) lines
correspond to regions with the darkest red tones. Adapted from Beron-Vera et al. (2008) with permission.

FTLE/FTLS scheme, whereas the former introduced a mesohyperbolicity (meaning “hyperbolic
on average”) bundle scheme based on the spatial gradient (tensor) with respect to the initial
position of the average Lagrangian velocity appearing in the parcel scheme of Malhotra et al.
(1998). The latter gradient is essentially equivalent to the deformation gradient (tensor) that is
used to compute the Cauchy-Green tensor for the FTLE/FTLS scheme, so the mesohyperbolicity
quantity is very closely related to FTLE/FTLS; Mezič et al. (2010) explicitly showed the analytical
relation between the two quantities in their supporting online material.

For their mesohyperbolicity analysis, Mezič et al. (2010) used velocity fields obtained from a
publicly available, quasi-operational, regional numerical model of the Gulf of Mexico circulation
(HYCOM GOM10.04, supported by the US Naval Research Laboratory and Naval Oceano-
graphic Office); this model assimilates satellite sea-surface height and temperature and is forced
by surface winds and air-sea fluxes from an operational weather forecast model, the US Navy
Operational Global Atmospheric Prediction System (NOGAPS). They argued that the resulting
PLS-line structures obtained as extrema of the contoured mesohyperbolicity fields give useful
predictive information for the observed coastal incursions of oil from the massive Deepwater
Horizon blowout spill off Louisiana in the summer of 2010 (Figure 13). Huntley et al. (2011) and
Olascoaga & Haller (2012) explored related ideas in the same context.

For their FTLE/FTLS analysis, Rypina et al. (2010) used velocity fields obtained from two ded-
icated regional numerical models of the Philippine Archipelago circulation with approximately
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Figure 13
(a) Hyper-graph map showing mesohyperbolic (red and blue) and mesoelliptic ( green) Lagrangian-mean
strain regions on June 25, 2010, computed from model surface velocities over three days, for (a) the Gulf of
Mexico and (b) a coastal subdomain offshore of Plaquemines Parish, Louisiana. Adapted from Mezič et al.
(2010) with permission from AAAS.

3-km and 6-km horizontal resolutions, respectively. They did not carry out any data assimila-
tion for the regional models, but the open boundary condition information was taken from a
data-assimilating global operational model, and the regional models were forced by air-sea fluxes
computed using NOGAPS atmospheric fields. They argued that the PLS lines identified by the
FTLE/FTLS analysis (Figures 14 and 15) provide a useful framework in which to interpret the
mechanisms of mesoscale horizontal stirring and exchange within the archipelago domain. They
made a brief comparison with an observed in situ near-surface temperature transect and noted
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Figure 14
(a) Stable manifolds (blue curves) and (b) unstable manifolds (red curves) grown using a direct manifold
evolution method by releasing particles in the vicinity of a stagnation-point analog located between two
eddies in the western Sulu Sea. The background shading in panels a and b respectively indicates the forward-
and backward-time finite-time Lyapunov exponent/Lagrangian strain (FTLE/FTLS) values [principal
Lagrangian strain (PLS) rates]. (c) Superimposed results of panels a and b. In all three panels, green dots
indicate land areas. Adapted from Rypina et al. (2010) with permission; original figure copyright c© 2010 by
the American Meteorological Society.
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Figure 15
Evolution of patches of surface drifters launched in eddy cores (blue) and in a region densely covered by
intersecting principal Lagrangian strain (PLS) lines (red ) over a period of 10 days. (a) The PLS lines and
drifter patches on January 3, 2005. (b) The drifter patches 10 days later. In both panels, green dots indicate
land areas. Adapted from Rypina et al. (2010) with permission; original figure copyright c© 2010 by the
American Meteorological Society.
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some suggestive filamentary fluctuations along the edge of a recirculatory eddy, but found the
data insufficient to confirm or disprove the predicted presence of the PLS line.

6. VORTICITY-DYNAMICAL COHERENT STRUCTURES

The existence of coherent, organized structures in otherwise quasi-random, turbulent flows has
long been recognized (Hussain 1983, McWilliams 1984). Although a rigid definition does not exist,
these structures have generally been described as contiguous fluid regions with phase-correlated
vorticity and a size comparable to the transverse extent of the shear layer or another characteristic
mean-flow scale.

There are many examples of the identification of vortical coherent structures—commonly
termed eddies—in the ocean. The most comprehensive recent global compendia, which include
numerous citations of related regional studies, are those of Chelton et al. (2007, 2011). In these
two studies, the authors used eddy-tracking methods based on the Okubo-Weiss parameter and
based directly on the sea-surface height field, respectively, to identify large sets of long-lived
eddies in a nearly two-decade, global, satellite-altimeter sea-surface height data set. Chelton et al.
(2011) found more than 17,000 such eddies with lifetimes of six months or longer (Figure 16).
Furthermore, they estimated that the majority of these eddies have fluid velocities U that exceed the
corresponding eddy translation speed c, so that U /c > 1, which implies that the translating eddy
will trap and transport fluid as it moves. Idealized quasi-geostrophic modeling of eddies initialized
with scales and amplitudes characteristic of the observed eddies supports the hypotheses that these
vortical features can remain coherent for as long as two years or more and trap and transport fluid
in their cores (Figure 17) (Early et al. 2011). Numerous examples exist of freely drifting surface

Figure 16
Trajectories of 8,779 cyclonic eddies (blue lines) and 8,473 anticyclonic eddies (red lines) with lifetimes of at least 26 weeks as identified
from satellite sea-surface height fields over a 16-year period from October 1992 to December 2008. Adapted from Chelton et al. (2011)
with permission from Elsevier.

www.annualreviews.org • Lagrangian Motion and Lines of Strain 157

90° W

60° S

40° S

20° S

0°

20° N

40° N

60° N

60° W 30° W 0° 30° E 60° E 90° E
Longitude

La
ti

tu
de

120° E 150° E 180° E 150° W 120° W 90° W

A
nn

u.
 R

ev
. M

ar
in

e.
 S

ci
. 2

01
3.

5:
13

7-
16

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 I

fr
em

er
 -

 B
ib

lio
th

eq
ue

 L
a 

Pe
ro

us
e 

on
 0

5/
15

/1
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



MA05CH07-Samelson ARI 9 November 2012 14:8

0

–200

–400

5

0

SSH
 (cm

)y 
(k

m
)

0

–200

–400

–2,000 –1,500 –1,000
 x (km)

–500 0

 y
 (k

m
)

–5

a

c

b

Figure 17
Sea-surface height (SSH) and passive tracer fields from a 675-day quasi-geostrophic numerical simulation of
a westward-propagating localized eddy coherent structure versus zonal (x) and meridional ( y) distance.
(a) SSH along with the instantaneous trapped fluid contour (red ) and relative vorticity zero contour (black).
The initial and final locations of fluid parcels around the eddy perimeter (blue circles) and in the eddy core
(red circles) are also shown. (b) Final (day-675) distribution of a scalar passive tracer equal to the initial (day-0)
value of the zonal coordinate. (c) Initial distribution of the scalar passive tracer (initial zonal coordinate) for
which the final distribution is shown in panel b. The zonal axes are the same across all three panels. Adapted
from Early et al. (2011) with permission; original figure copyright c© 2011 by the American
Meteorological Society.

or subsurface ocean instruments that appear to be trapped in and transported by such features
(e.g., Figure 18) (Margolina et al. 2006). These analyses argue for the widespread presence of
vortical coherent structures and trapped Lagrangian fluid motion throughout much of the global
ocean.

This oceanographically important and now classical idea of a vortical coherent structure in
a turbulent flow differs from the concept of a PLS line in several essential ways. As noted in
Section 4.1, it is because of the associated possibility for confusion that the PLS terminology
is used here rather than the LCS alternative. The classical, dynamical coherent structures are
associated with specific vorticity features, where vorticity is an essential dynamical element of
both three-dimensional turbulence and large-scale geophysical fluid flow. At least in principle,
the classical vortical coherent structure can be identified in an instantaneous velocity (vorticity)
field. In contrast, the PLS line is not directly related to the instantaneous dynamical fluid fields, and
can be identified only by computing Lagrangian motion over long time intervals. In addition, the
rotating, stratified dynamics of geophysical fluid flow often include both an approximate material
conservation law for a vorticity (or potential vorticity) quantity and an approximate balance relation
connecting the velocity field to the conserved vorticity quantity. This leads in a direct and very
general physical way to the quasi-stability of isolated, coherent vortex structures (e.g., Flierl 1987),
a property that is sufficiently robust to allow representation of some basic dynamical processes
in terms of the interaction of point vortices (e.g., Zabusky & McWilliams 1985). In contrast, the
occurrence of persistent strain along a material trajectory or curve appears to be, from a dynamical
point of view, almost accidental; in general, there is no approximate material conservation law for
strain in geophysical or classical turbulent fluid flow. Thus, there is little evidence that strain fields
typically possess or induce the intrinsic dynamical stability or structural coherence that might
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Figure 18
(a) Anticyclonic and (b) cyclonic looping trajectories from freely drifting subsurface RAFOS floats deployed in the California Current
System. Red dots show where a float appears to have been entrained by a coherent eddy structure. Adapted from Margolina et al. (2006)
with permission.

seem to be implied by the characterization of lines of persistent material strain—PLS lines and
points—as coherent (Lagrangian) structures.

7. SUMMARY

It has been two decades since the recognition that the separatrix trajectories familiar from analytical
mechanics and the geometric theory of ordinary differential equations are useful objects of study in
simplified models of Lagrangian motion in specific ocean flow regimes. There are many important
aspects of the analysis of Lagrangian motion in the ocean that have developed independently and
have not been influenced by this perspective (e.g., see the variety of approaches represented in
Griffa et al. 2007), but there is certainly no doubt that, at a minimum, the subsequent work in
this area has produced advances in our ability to define and identify generalized analogs of these
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Figure 19
Overlays of seabird positions on principal Lagrangian strain [finite-size Lyapunov exponent/Lagrangian strain (FSLE/FSLS)] maps.
(a,c) Backward-time FSLE/FSLS values (day−1). (b,d ) Forward-time FSLE/FSLS values (day−1). Panels a and b are for the week of
September 24, 2003; panels c and d are for the week of October 6, 2003. Circles represent seabird trajectories, and triangles represent
foraging patches; each color represents the tag of a different bird. Adapted from Tew Kai et al. (2009) with permission; original figure
copyright c© 2009 by the National Academy of Sciences.

Lagrangian regime-boundary trajectories in observational estimates of ocean flow fields and in
various increasingly complex and sophisticated numerical models of ocean circulation.

A personal point of reference is an early review of these ideas by this author (Samelson 1996).
Several of the open issues discussed in that review have since been resolved, generally in favor
of the new perspective. Perhaps most notably, Rogerson et al. (1999) and others have shown
that the qualitative picture of Lagrangian motion suggested by kinematic models such as the
traveling-wave flow (Equation 1) is fundamentally correct for dynamical fluid motions with an
approximate vorticity or potential vorticity conservation law. These studies have also established
the dynamical tendency to homogenize potential vorticity along regime boundaries, as anticipated
by Samelson (1996) and others. Studies of idealized critical layers have been carried out in this
context (e.g., Ngan & Shepherd 1997) and have confirmed some of the speculations of Samelson
(1996), but more attention has been given to the analysis of general ocean flows with eddy or
other dynamical coherent structures, as indicated by the brief survey given here (Section 4). In
some cases, connections have even been made to biological signatures or processes associated with
features identified by these analyses (e.g., Figure 19) (Tew Kai et al. 2009).

A recent subtle shift in this work has been a somewhat reduced attention to the identification
of flow-regime boundaries for dynamical coherent structures and a somewhat increased attention
to the identification of lines of large Lagrangian-mean strain (PLS lines, or LCSs) as objects of
immediate interest. This shift seems to be partly the result of the recognition that the lines or
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regions of large Lagrangian-mean strain have particular interest as sites of intensive horizontal
stirring and mixing of fluid properties, and partly the result of the practical availability of methods
to compute PLS quantities that are relatively standard and straightforward (e.g., Ottino 1989,
Pierrehumbert & Yang 1993, Haller 2001, Shadden et al. 2005), in contrast, for example, to
the more phenomenologically specific methods that must typically be used to identify dynamical
coherent structures (e.g., Chelton et al. 2007, 2011).

In either case, the most success for the analysis of these features in complicated velocity fields
has been obtained through the basic step of moving from the direct identification of isolated
analogs of stagnation points to a contoured-field approach that uses local extrema of Lagrangian-
mean quantities to identify the candidate regime boundaries or PLS lines. In this sense, tangible
progress has clearly been made, and it seems likely that computational methods of this general type
will dominate the future of oceanographic Lagrangian regime-boundary and Lagrangian-mean
strain analysis. However, many of the achievements in the oceanographic literature relate only to
establishing the existence of these Lagrangian features in progressively more complex modeled
or observed flows. The basic conceptual insights offered by the simple original models have been
largely confirmed, and to some extent given a more quantitative foundation, for the more general
flows considered in the subsequent work. Beyond this confirmation, however, it is not easy to find
major advances in the physical understanding of oceanic motions that have originated with this
approach. Perhaps this is an indication that the tools are still new and the best results are yet to
come.
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