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a b s t r a c t 

In shallow water, the spectral evolution associated with energy transfers due to three-wave (or triad) 

interactions is important for the prediction of nearshore wave propagation and wave-driven dynamics. 

The numerical evaluation of these nonlinear interactions involves the evaluation of a weighted convolu- 

tion integral in both frequency and directional space for each frequency-direction component in the wave 

field. For reasons of efficiency, operational wave models often rely on a so-called collinear approximation 

that assumes that energy is only exchanged between wave components travelling in the same direction 

(collinear propagation) to eliminate the directional convolution. In this work, we show that the collinear 

approximation as presently implemented in operational models is inconsistent. This causes energy trans- 

fers to become unbounded in the limit of unidirectional waves (narrow aperture), and results in the 

underestimation of energy transfers in short-crested wave conditions. We propose a modification to the 

collinear approximation to remove this inconsistency and to make it physically more realistic. Through 

comparison with laboratory observations and results from Monte Carlo simulations, we demonstrate that 

the proposed modified collinear model is consistent, remains bounded, smoothly converges to the uni- 

directional limit, and is numerically more robust. Our results show that the modifications proposed here 

result in a consistent collinear approximation, which remains bounded and can provide an efficient ap- 

proximation to model nonlinear triad effects in operational wave models. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

The evolution of ocean waves due to three-wave (or triad) in-

eractions near the coast and in shallow water is important for the

rediction of nearshore wave characteristics (see e.g. Herbers et al.,

0 0 0 ) and wave-driven dynamics (see e.g. Hoefel and Elgar, 2003 ).

n deep water, these interactions are generally off-resonant and

he nonlinear evolution is governed by higher-order resonances

 Hasselmann, 1962 ). In contrast, near the coast, due to reduced wa-

er depth, these three-wave interactions approach resonance and

an drive O (1) energy transfers on length scales of O (10) wave-

engths (e.g. Janssen et al., 2006 ). In particular, in the surf zone, the

volution of the wave spectrum is almost entirely dictated by the

alance between nonlinear triad interactions and depth-induced

reaking (e.g. Kaihatu and Kirby, 1995; Herbers et al., 20 0 0; Smit

t al., 2014 ). Accounting for these effects in operational wave mod-

ls for coastal wave propagation (e.g. Tolman, 1990; Komen et al.,

994; Booij et al., 1999 ) is therefore important. 
∗ Corresponding author. 
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Operational wave models describe the spatial 2D evolution of

he directional wave spectrum E ( σ , θ ; x , t ) through geographical

pace x = (x, y ) , and through frequency σ and directional space θ ,

y solving a wave action balance equation of the form (e.g. WAMDI

roup, 1988 ): 

∂N 

∂t 
+ 

∂ c g,x N 

∂x 
+ 

∂ c g,y N 

∂y 
+ 

∂ c σ N 

∂σ
+ 

∂ c θ N 

∂θ
= 

S 

σ
. (1)

Here, N(σ, θ ; x , t) = E/σ is the wave action density, σ = 2 π f is

he radian frequency, c g, x , c g, y , c σ , c θ denote transport velocities

n geographical, frequency and directional space, respectively, and

 represents the source terms that account for non-conservative

nd nonlinear processes, including triad interactions. The difficulty

ith incorporating three-wave nonlinearity is that these interac-

ions will result in the development of high-order correlations

or which a separate transport equation should be evaluated, and

ome closure approximation invoked (e.g. Eldeberky, 1996; Becq-

irard et al., 1999; Herbers et al., 2003; Janssen, 2006 ). Because

f the inherent complexity of the problem and for reasons of effi-

iency, much effort has gone into developing efficient approxima-

ions for the evolution of the unidirectional energy density spec-

https://domicile.ifremer.fr/10.1016/,DanaInfo=dx.doi.org+j.ocemod.2016.06.009
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trum E ( σ ; x , t ) (e.g. Eldeberky, 1996; Becq-Girard et al., 1999;

Toledo and Agnon, 2012 ). In this context, one of the first – and per-

haps most widely used – of these approximations is the Lumped

Triad Approximation (LTA; Eldeberky, 1996 ). This efficient approx-

imation, which amongst numerous other simplifications (see e.g.

Becq-Girard et al., 1999 ), accounts only for self-self interactions

and takes the form 

S 1 D nl3 ( σ1 ) ∝ ( W 1 ) 
2 
[
( E 2 ) 

2 − 2 E 1 E 2 
]

− 2 ( W 3 ) 
2 
[
( E 1 ) 

2 − 2 E 1 E 3 
]

(2)

where W i = W ( σi , x ) is an interaction coefficient (given by Madsen

and Sørensen, 1993 ; their Eq. 5.4) and E i = E( σi ) with σ1 = σ ,

σ2 = σ/ 2 and σ3 = 2 σ . For brevity, the dependence on x (or x )

and t is implied in the spectral quantities. To apply this unidirec-

tional self-self formulation in a fully directional model, Booij et al.

(1999) proposed to use Eq. (2) along each spectral direction. This is

achieved by simply replacing each occurrence of E i in Eq. (2) with

its directional counterpart E 1 
i 

= E( σi , θ1 ) to obtain the directional

source term 

S nl3 ( σ1 , θ1 ) ∝ ( W 1 ) 
2 
[ (

E 1 2 

)2 − 2 E 1 1 E 
1 
2 

] 
− 2 ( W 3 ) 

2 
[ (

E 1 1 

)2 − 2 E 1 1 E 
1 
3 

] 
. 

(3)

The source term defined in Eq. (3) is what is known as the

collinear approximation which we will refer to as the Original

Collinear Approximation (OCA). In this approximation, directional

components are completely isolated so that each discrete direc-

tion is treated as an independent unidirectional wave field. The as-

sumption that energy transfers predominantly occur between (al-

most) collinear waves is probably reasonable for harmonic genera-

tion and transfer of energy to shorter waves in wave fields propa-

gating over a relatively uniform beach. However, over complicated

topography, where energy transfers between waves at significant

angles may be important ( Toledo, 2013; Groeneweg et al., 2015 ),

this approximation should generally be used with care. Moreover,

the collinear approximation is not at all suited for modelling infra-

gravity wave generation for which full directionality would have to

be retained ( Herbers et al., 1995 ). 

Even though directionally-coupled models are available (e.g. the

fully directional SPB model; Becq et al., 1998 ), the collinear ap-

proximation is still the most widely applied triad model (for in-

stance in e.g. WAVEWATCH III, SWAN, TOMAWAC), principally be-

cause the numerical evaluation of these less restrictive models is

prohibitively expensive for routine operational use. Despite its con-

tinued use, the performance of the directional version of the LTA is

highly unsatisfactory, which is often ascribed to the shortcomings

of the underlying LTA model. As a consequence, effort s towards the

improvement of the OCA have focused on improving the underly-

ing LTA approximation (see e.g. Booij et al., 2009 ). 

Although the LTA model is undoubtedly a crude approximation,

the principal source of the errors in the OCA is not due to the

LTA. Instead, it results from the directional decoupling as applied

in the OCA. For instance, from Eq. (3) it can be shown that the

OCA predicts unbounded energy transfers in the limit of unidirec-

tional waves, and generally underestimates nonlinear transfers in

short-crested seas. To illustrate this numerically, we consider en-

ergy transfers predicted by S nl 3 ( σ , θ ) (as implemented in SWAN)

for a directional wave spectrum of the form E( σ, θ ) = D (θ ) E(σ ) .

In the simulations, we increasingly reduce the aperture of the di-

rectional distribution D ( θ ), while maintaining the same frequency

spectrum E(σ ) = 

∫ 
E( σ, θ ) dθ . From these simulations (see Fig. 1 ),

we see that the energy transfers as predicted by the OCA become

excessively large as the directional width is reduced. In fact these

transfers greatly exceed the energy transfers predicted by the uni-

directional triad model of Eldeberky (1996) on which the SWAN

collinear model is based, and to which it should reduce to if the

collinear model is consistent. 
Clearly, the excessive energy transfers for narrow directional

pertures indicates that the collinear approximation fails to reduce

o the unidirectional limit. This inconsistency is the principal mo-

ivation for the present study. To identify the source of the error,

e revisit the formulation of the collinear approximation as used

n various models and provide a more consistent formulation that

emoves the unrealistic sensitivity to directional aperture, while re-

aining similar efficiency gains ( Section 2 ). By no means do we ar-

ue that the collinear approximation, even in a more consistent

orm, represents a complete description of the three-wave interac-

ions. However, we acknowledge that approximations for increas-

ng efficiency are a reality for many operational applications and

ur objective here is to improve the collinear approximation to en-

ure it is at the very least internally consistent to improve its po-

ential for operational use. 

To show the differences between the original and proposed ap-

roximation, we calibrate and validate both collinear models using

aboratory data, and with Monte Carlo simulations with a deter-

inistic model ( Section 3 and 4 ). We discuss and summarize our

rincipal results and their implications in Section 5 and 6 . 

. Collinear triad approximations 

In order to identify the source of the inconsistency in the OCA,

nd derive an improved version of the collinear approximation, the

onsistent Collinear Approximation (CCA), we consider the source

erm for energy transfers due to triad interactions for weakly non-

inear waves over slowly varying bathymetry. This can be written

s (e.g. Eldeberky, 1996; Becq et al., 1998; Smit and Janssen, 2016 )

 nl3 ( σ1 , θ1 ) = c g, 1 

∫ 2 π

0 

∫ ∞ 

−∞ 

W 

2 , 1 −2 
2 , 1 −2 

Im 

{
B 

2 , 1 −2 
2 , 1 −2 

}
d σ2 d θ2 (4)

here W is a real coupling coefficient, B denotes the bispec-

rum and Im { . . . } denotes the imaginary part of the argument.

he shorthand notation W 

2 , 1 −2 
2 , 1 −2 

(and for B, E etc.) relates to

 ( σ2 , σ1 − σ2 , θ2 , θ1 − θ2 ) where the subscript and superscript de-

ote the frequency and directional components involved, respec-

ively. Eq. (4) gives the complete source term for a WKB approxi-

ation of weakly nonlinear waves. In order to arrive at a collinear

pproximation we need to introduce a series of assumptions, and

e will step through them systematically. As a first step, all the

nteraction coefficients are replaced by their unidirectional equiv-

lents (i.e. W 

2 , 1 −2 
2 , 1 −2 

→ W 

1 , 1 
2 , 1 −2 

≡ W 2 , 1 −2 ) and the bispectrum is ex-

ressed in terms of local products of the spectral components

hile making use of its symmetries, so that S nl 3 can be written

s 

 nl3 ( σ1 , θ1 ) = 2 c g, 1 

[∫ σ1 

0 

W 2 , 1 −2 B 

1 
2 , 1 −2 

d σ2 − 2 

∫ ∞ 

0 

W 2 , 1 B 

1 
2 , 1 

d σ2 

]

(5)

here the first and second integrals represent contributions due to

he sum and difference interactions, respectively, and 

 

1 
2 , 1 −2 

= �1 
2 , 1 −2 

∫ 2 π

0 

Q 

2 , 1 −2 
2 , 1 −2 

d θ2 . (6)

Here �1 
2 , 1 −2 

= �( σ2 , σ1 − σ2 , θ1 ) is an (empirical) factor that

pproximately accounts for the closure approximation implied and

he development of the bispectrum towards resonance for collinear

hallow waves (see e.g. Becq-Girard et al., 1999 ), and 

 

2 , 1 −2 
2 , 1 −2 

= 

[
W 2 , 1 −2 E 

2 
2 E 

1 −2 
1 −2 − E 1 1 

(
W 1 , −2 E 

2 
2 + W 1 , 2 −1 E 

1 −2 
1 −2 

)]
. (7)

Equivalent expressions for the difference contribution are

chieved by replacing the subscript and superscript pairs. The ex-

ression of the bispectrum in terms of an algebraic relation to

roducts of local energies is possible by introducing a quasi-normal
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Fig. 1. Energy transfers due to nonlinear triad interactions for a wave field with a JONSWAP spectrum ( H m 0 = 5 m and T p = 12 s) in 5 m water depth for varying directional 

widths as computed by the OCA implementation in SWAN (see Booij et al., 1999 ). As the directional width is reduced, energy transfers greatly exceed the transfers predicted 

by the unidirectional triad model of Eldeberky (1996 ; thick solid line) on which the OCA model is based, and to which it should – in theory – reduce to. The fact that it 

does not suggests that there is an inconsistency in the collinear approximation. 
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losure approximation for the nonlinear hierarchy and assuming

hat three-wave correlations can be expressed in terms of the

roducts of local spectral components (see Herbers et al., 2003;

anssen, 2006 ). Although all the assumptions to approximate the

onlinear term can be questioned independently, we will assume

ere that they are reasonable for the intended range of application

f the collinear approximation. 

From here, the final step towards the collinear approximation

s to replace all the spectral components by the directional com-

onents, simply drop the directional integration, and add a cali-

ration constant for tuning. The Original Collinear Approximation

OCA) can then be written as 

 

1 
2 , 1 −2 

≈ B 

1 , (OCA ) 
2 , 1 −2 

= α �1 
2 , 1 −2 Q 

1 
2 , 1 −2 (8) 

ith 

 

1 
2 , 1 −2 = 

[
W 2 , 1 −2 E 

1 
2 E 

1 
1 −2 − E 1 1 

(
W 1 , −2 E 

1 
2 + W 1 , 2 −1 E 

1 
1 −2 

)]
(9) 

nd where α is a (dimensional) calibration constant. Effectively,

ith these approximations each direction is considered in isola-

ion as if it was a unidirectional wave field and energy is only ex-

hanged between collinear components. From the series of approx-

mations, it is this last step which introduces the inconsistency that

auses the erratic behavior for narrow-aperture waves (see Fig. 1 ). 

By simply dropping the directional integration, the effects of di-

ectional width are effectively (but implicitly) moved to the cali-

ration coefficient, which thus becomes strongly dependent on the

irectional aperture of the wave field. The consequence of this is

hat, once calibrated, energy transfers become exaggerated when

pplied to wave fields with narrower apertures than for which it
as calibrated. This can be readily seen if we consider the spe-

ial case of a wave field with directional aperture �θ , and a uni-

orm distribution of wave energy in directional space, such that

(σ, θ ) = E(σ ) / �θ for θ ∈ �θ (and 0 elsewhere). For this case,

ue to the omission of the directional integral, without making any

rovisions to ensure dimensional consistency, we have 

 

1 , (OCA ) 
2 , 1 −2 

= 

α

�θ
B 

1 
2 , 1 −2 

. (10) 

This shows that for a given, and fixed, value of the calibra-

ion coefficient α, the dropping of the directional integration in-

roduces a strong dependency on the directional aperture �θ and

n the limit of �θ → 0 the result becomes unbounded. This is

hat causes the erratic behavior for the energy transfers in general

nd unrealistic amplification of energy transfers for small aperture

ave fields specifically, as seen in Fig. 1. 

.1. A consistent collinear approximation (CCA) 

Although the collinear approximation relies on a number of as-

umptions to simplify the numerical evaluation, it is principally the

ropping of the directional integration that introduces an incon-

istency and limits the potential of the collinear approximation in

perational wave models. To maintain a similar level of efficiency,

hile bypassing this inconsistency, we propose a slight modifica-

ion of the collinear terms, which can be written as 

 

1 , (CCA ) 
2 , 1 −2 

= α �1 
2 , 1 −2 Q 

1 
2 , 1 −2 

(11) 
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where 

Q 

1 
2 , 1 −2 

= 

1 

2 

(
W 2 , 1 −2 E 

1 
2 

E 1 1 −2 − E 1 
1 

{
W 1 , −2 E 

1 
2 + W 1 , 2 −1 E 

1 
1 −2 

})

+ 

1 

2 

(
W 2 , 1 −2 E 

1 
2 E 

1 
1 −2 

− E 1 1 

{ 

W 1 , −2 E 
1 
2 

+ W 1 , 2 −1 E 
1 
1 −2 

} )
(12)

in which 

E j 
i 

= 

∫ θ j + p θ / 2 

θ j −p θ / 2 

E ( σi , θ ) dθ (13)

and where p θ is a tuning parameter which determines how

close the approximation mimics a unidirectional model. Effectively

thus, in this approximation, which we refer to as the Consistent

Collinear Approximation (CCA), instead of simply dropping the di-

rectional convolution integral (see Eq. 4 ) we assume that ∫ 2 π

0 

E 2 2 E 
1 −2 
1 −2 d θ2 ∝ 

1 

2 

[ 
E 1 

2 
E 1 1 −2 + E 1 2 E 

1 
1 −2 

] 
(14)

and absorb the dimensionless constant of proportionality into the

calibration factor α. By rewriting the collinear approximation in

this way, we prevent the inconsistency and potential singular-

ity as present in the original formulation. Moreover, since E 1 
2 

≤∫ 2 π
0 E 1 

2 
dθ = E 2 it follows that 1 

2 

∫ 2 π
0 [ E 1 

2 
E 1 

1 −2 
+ E 1 

2 
E 1 

1 −2 
] dθ ≤ E 2 E 1 −2 

so that the directionally-integrated energy transfers are always

less than or equal to the transfers in an equivalent unidirectional

wave field. The latter is internally consistent with the underlying

premise that the collinear interactions are closest to resonance and

are the most efficient contributors to the nonlinear transfers. In

fact, with p θ = 2 π , the integrated energy transfer becomes 

S nl3 ( σ ) = 

∫ 2 π

0 

S nl3 ( σ, θ ) dθ = S 1 D nl3 ( σ ) with p θ = 2 π

In this sense, the parameter p θ is an independent calibration

parameter, such that if the magnitude of p θ is reduced (and thus

the integration aperture in the interaction term), the strength of

the interactions in wide-aperture wave fields is suppressed, con-

sistent with what is typically observed. Although the CCA ( Eq. 11 )

does require an additional directional integral (compared to the

OCA), its efficiency is similar to the OCA since it reduces the full

convolution to a simple one-dimensional integral and a multiplica-

tion, while still reproducing the qualitative features of Eq. (8) . 

For a complete model, we would still need to introduce suit-

able approximations for the closure factor �1 
2 , 1 −2 

, which in itself

has not been resolved in the literature (see, for example, Orszag,

1974; Janssen, 2006 for an overview) and is outside the scope of

this work. Since our primary goal is to resolve the directional sen-

sitivity issue in the OCA, and to allow a direct comparison between

the models, we will continue to use the closure assumption and

other simplifications as implied by the LTA. However, to empha-

size that the collinear approximation, and the improvement pro-

posed in this work is in essence an approximation layer on top

of an underlying 1D triad model, we also implement an OCA and

CCA version of the Stochastic Parametric Boussinesq (SPB) model

by Becq-Girard et al. (1999) . This model differs from the LTA-based

collinear model in that it accounts for triad interactions between

all frequency components and not just the self-self interactions.

In essence, the collinear SPB implementation has the same decou-

pling between directional components, but includes all wave-wave

interactions for each directional component individually and does

not suffer from the limitations of the restriction to only self-self

interactions as does the LTA. For further details regarding the two

different models, we refer to Appendix A . 

3. Model setup and observations 

In what follows, we compare simulations with the SWAN wave

model (version 40.91A) using both the Original Collinear Ap-
roximation (OCA, Eq. 8 ) and the Consistent Collinear Approxi-

ation (CCA, Eq. 11 ) for a range of different wave conditions.

e couple the collinear approximations to both the LTA model

 Eldeberky, 1996 ) and the SPB model ( Becq-Girard et al. 1999 ). Fur-

hermore, in the CCA, we set p θ = 2 π for all the numerical results,

nd discuss the implications of other choices for p θ in Section

 . Model simulations are run with the dissipative source terms

uggested by Zijlema et al. (2012) with the Battjes and Janssen

1978) depth-induced wave breaking model scaled with γ = 0 . 73

nd the curvature-based stopping criteria of Zijlema and van der

esthuysen (2005) with a cap of 50 iterations. 

To calibrate the models, we consider two unidirectional labo-

atory data sets described by Beji and Battjes (1993) and Boers

1996) with random waves (characterized by a JONSWAP spectrum

t the wave maker) propagating over a barred-beach profile (see

ig. 2 ). The Beji and Battjes (1993) data set consists of a single

ave condition with a significant wave height of H m 0 = 0 . 023 m

nd a peak period of T p = 2 . 0 s. The Boers (1996) data set con-

ists of three wave conditions with H m 0 = 0 . 160 , 0.220 and 0.107

 and T p = 2 . 1 , 2.1 and 3.4 s, respectively. We chose these data

ets as they have been used extensively for calibration in previ-

us triad studies (see e.g. Booij et al., 1999 and van der Westhuy-

en, 2007 ). Following those studies, we approximate the unidirec-

ional conditions with a small (but otherwise arbitrary) directional

idth of σθ = 2 ◦ (as defined by Kuik et al., 1988 ) uniformly over

ll frequencies. Furthermore, computations are performed with fre-

uency resolution � f = 0 . 05 f and frequency range [0.0837, 2.5] Hz

nd [0.15, 2.0] Hz for the Beji and Battjes, and Boers data set, re-

pectively. Computations include a 20 ° directional sector, centered

bout the mean wave direction with �θ = 0 . 05 ◦. Subsequently, to

emonstrate the sensitivity of the collinear approximations to the

irectional aperture of the incident wave field, we perform simula-

ions with varying directional widths ranging from 0.1 ° ≤ σ θ ≤ 5 °.
To verify the effect of the collinear approximation for direc-

ional wave fields, for which detailed observations are less readily

vailable, we compare the collinear approximation models to

onte Carlo simulations with a second-order accurate determinis-

ic Boussinesq model based on an angular-spectrum decomposition

 Herbers and Burton, 1997 ). Although the interaction coefficients

n the Herbers and Burton (1997) model are slightly different

rom those in the LTA and SPB models (which also differ), these

ifferences are negligible compared to the effects of the collinear

nd closure approximations in these models. The only physical

rocesses included in the deterministic model and the SWAN

odels are the triad interactions and depth-induced wave break-

ng dissipation (all other source terms are turned off in SWAN).

ince dissipation in the deterministic model is implemented con-

istently with SWAN, we can ascribe any differences between the

onte Carlo simulations and the collinear approximations to the

ollinear approximation, and the closures implied by the LTA and

PB models. 

The directional wave simulations are run over a plane beach

sing the same beach profile as in the laboratory setup of Smith

2004 ; see Fig. 3 ). However, instead of unidirectional incident

aves, we generate directional wave conditions at the incident

ave boundary. We use the laboratory setup by Smith (2004 ) so

hat we can verify the deterministic model for unidirectional wave

ropagation against observations for the same beach profile (not

hown). 

The simulations are initialized at Station 1 (see Fig. 3 ) with

pectra identical to that measured by Smith (2004 ). The incident

ave field consists of a TMA spectrum with H m 0 = 0 . 09 m, T p =
 . 5 s and γT MA = 3 . 3 for Case A (broad-banded in frequency space)

nd γT MA = 100 for Case B (narrow-banded). For the directional

istribution, we apply a cos m θ model uniformly to all frequencies

nd consider the directional widths σθ = 2 ◦, 4 °, 10 °, 20 ° and 30 °. 
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Fig. 2. Configuration of the Beji and Battjes (1993 ; Panel A) and Boers (1996 ; Panel B) laboratory flume experiments. The measurement locations are indicated by the vertical 

dashed lines and the location of the offshore boundary is indicated by the solid dot near the wavemaker. 

Fig. 3. Configuration of the Smith (2004 ) laboratory flume experiment. Annotations are as in Fig. 2 . 
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Monte Carlo simulations with the deterministic model consist

f 128 realizations with a spatial resolution �x = 0 . 025 m, a lat-

ral wavenumber array defined as �k y [ −M/ 2 + 1 , . . . , M/ 2 ] with

 = 32 and �k y = 0 . 1 , and a frequency array consisting of 120 fre-

uencies with � f = 0 . 025 Hz. In what follows, we consider the de-

erministic model results as a proxy for observations, and compare

hese with SWAN computations with similar settings as before but

ith � f = 0 . 1 f (over the range [0.2, 3.0] Hz) and �θ = 1 ◦ over a

ull circle. 

. Results 

.1. Unidirectional random waves 

To calibrate α for both collinear models (OCA and CCA) and

oth triad closure models (LTA and SPB), α was varied over

he range 0.01 ≤ α ≤ 1.50 with �α = 0 . 01 . For each data set,
he scatter index, s.i. = 

√ 

N 

∑ 

( χcomp. − χobs ) 
2 
/ 
∑ 

χobs was com-

uted where N denotes the sample size and χ represents either

he significant wave height, H m 0 or the mean wave period, T m 02 

omputed from the spectral moment m n = 

∫ ∫ 
σ n E( σ, θ ) dσd θ (i.e.,

 m 0 = 4 
√ 

m 0 and T m 02 = 2 π

√ 

m 0 m 

−1 
2 

). The subscripts comp . and

bs . refer to the computed and observed values, respectively. 

From the scatter indices for H m 0 and T m 02 , the optimal cali-

ration coefficients for the OCA model were found to be αOCA 
LTA 

=
 . 04 and αOCA 

SPB 
= 0 . 07 with an averaged scatter index of s.i. = 5%

nd s.i. = 8% , respectively. These low α values are consistent with

revious studies (e.g. Booij et al., 1999 and van der Westhuysen,

007 ). However, they are small compared to the original calibra-

ion values of Eldeberky (1996) and Becq-Girard et al. (1999) , i.e.,

= 1 . Using the CCA implementation, optimal values closer to α =
 are found with αCCA = 0 . 52 ( s.i. = 5% ) and αCCA 

SPB 
= 0 . 87 ( s.i. = 8% ).
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Fig. 4. Scatter indices for the computed H m 0 ( ◦) and T m 02 ( �), averaged over the Beji and Battjes (1993) data set and all cases from the Boers (1996) data sets for OCA and 

CCA models (Panels A and B, respectively). 
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Using the calibrated model values, we consider the influence of

changing the directional aperture of the incident spectra between

0.1 ° ≤ σθ ≤ 5 ° ( Fig. 4 ). From the scatter index, it is seen that the

CCA implementation ( Fig. 4 B) is insensitive to the directional width

of the incident wave spectrum for σ θ ≤ 4 °, and appears to con-

verge to the unidirectional limit, which is consistent with what we

would expect on physical grounds. In contrast, the scatter index

for the OCA implementation ( Fig. 4 A) shows a strong sensitivity

to the directional width of the incident spectrum. In particular, as

the unidirectional limit is reached, the OCA errors increase signifi-

cantly, consistent with what was seen in Fig. 1. 

4.2. Sensitivity to directional spreading 

For the idealized directional cases considered, error characteris-

tics for T m 02 are shown in Fig. 5 . While these results demonstrate

a decrease in modeling performance with increased σ θ , which

is likely caused by the models’ inability to account for the non-

collinear interactions, there is a clear reduction of error between

the OCA (blue lines) and the CCA (black lines) for directional wave

conditions. For the conditions shown, with σ θ ≥ 4 °, the typical er-

ror in the CCA simulations, for both LTA and SPB models, is less

than 50% of the errors in the OCA simulations. The errors for H m 0 

(not shown) are significantly smaller with s.i. ≈ 6% and less vari-

ability in errors between the directional cases ( �s.i. ≈ 3% ). This is

consistent with the fact that triad interactions redistribute energy,

thus primarily affect the spectral shape, to which T m 02 is very sen-

sitive. 

To further investigate these differences, the com puted spectra

for Case A with σθ = 30 ◦ are presented for three locations in the

first row of Fig. 6 (Panels A-C). At Station 2, negligible differences

between the two model variants occur (OCA; black lines and CCA;

blue lines) and overall both are in good agreement with the deter-

ministic model (dashed red lines) irrespective of the choice of triad

model (LTA or SPB). However, as the waves propagate into shal-

lower water and the influence of the triad interactions becomes

stronger, the differences become more apparent. At Station 6, just
 i
utside the surf zone, the OCA (coupled to either the LTA or SPB)

enerally underestimates energy transfers. This underestimation of

nergy transfers in the OCA particularly affects the higher frequen-

ies, i.e., f / f p ≥ 4 and results in an underestimation of the high-

requency tail by an order of magnitude. At Station 10, which is

eep inside the surf zone, this effect is further enhanced. In con-

rast, with the CCA both triad models perform much better. In par-

icular when combined with the SPB, the overall agreement with

he Monte Carlo simulations is excellent. 

The more narrow-banded incident spectrum of Case B shows

ell-defined harmonic peaks in the Monte Carlo simulations at

tation 2 and Station 6 ( Fig. 6 D-F; second row). By Station 10, the

igh-frequency tail is again largely featureless due to the continued

ction of the triad interactions ( Smith and Vincent, 1992 ). As in

ase A, the OCA models transfer insufficient energy to the higher

requencies, whereas the CCA models predict significant amplifica-

ion of energy, in better agreement with the Monte Carlo simula-

ions. In particular when coupled with the SPB, the CCA reproduces

oth the harmonic generation and the eventual development into

 featureless tail very well, and is in good quantitative agreement

ith the Monte Carlo simulations. In contrast, the CCA combined

ith the LTA cannot reproduce the enhanced energy levels at the

on-self-self interaction frequencies (e.g. at 3 f p ) nor does it predict

he featureless high-frequency tail (e.g. Booij et al., 2009 ). Further-

ore, with the LTA, energy levels at self-self interaction frequen-

ies (e.g. at 4 f p ) are typically overestimated. These discrepancies

ppear due to fundamental limitations of the LTA to capture these

ynamics and are not associated with the collinear approximation.

In any case, the application of the CCA is shown to significantly

educe the total rms-error for T m 02 for both the LTA and SPB mod-

ls. When combined with the LTA, the average rms-error for T m 02 

or Case A and B with σθ = 30 ◦ goes from 26% for the OCA to 18%

or the CCA. With the SPB model, this error goes from 36% for the

CA to 7% for the CCA. These error reductions are shown to be at

east comparable, if not larger than the error differences between

he LTA and SPB triad models themselves (either with OCA or CCA

mplementation). 
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Fig. 5. Scatter index of T m 02 as a function of directional width for Cases A and B. Comparison is between the OCA (combined with LTA or SPB model) and CCA (with the LTA 

or SPB model). 

Fig. 6. Variance density spectra for the Case A and B directional wave conditions with σθ = 30 ◦ at Stations 2, 6 and 10. The gray and red dashed lines represent incident 

spectra and the Monte Carlo model results, respectively. The spectra computed with the OCA are represented by the black lines and with the CCA in blue with additional 

( ×) markers. The solid and dashed-dotted lines represent spectra computed with the LTA and SPB triad models, respectively. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 7. Energy transfers due to nonlinear triad interactions for a wave field as in Fig. 1 for varying directional bandwidths as computed with the CCA. 
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5. Discussion 

In this study, we revisited the collinear approximations used in

operational wave models. We showed that in its conventional form,

the OCA can become unbounded resulting in unrealistic transfers

of energy away from the spectral peak that results in large er-

rors and potential numerical instabilities. Historically, this incon-

sistency has mostly gone unnoticed likely because collinear triad

models are typically calibrated with flume-type experiments using

a fixed, and small, directional distribution with directional spread-

ing, σ 0 
θ

(as done here in Section 4.1 ). As a consequently, the cal-

ibration parameter formally becomes a representative angle that

is only valid for that particular directional distribution. If the cal-

ibrated model is subsequently applied to waves with a different

directional spreading, σ θ (but otherwise identical spectral charac-

teristics), the integrated energy transfers change approximately by

a factor σ 0 
θ
/ σθ . Therefore, for wider directional distributions, the

predicted energy transfers rapidly decrease, whereas for narrow

distributions, these transfers grow without limit. The net result

in operational conditions (where typically σθ > σ 0 
θ

) is that these

energy transfers are almost always underestimated. While heuris-

tically, one could argue that this is qualitatively reasonable since

we would expect lower transfers in short-crested seas, this result

relies on a completely arbitrary directional spreading σ 0 
θ

used to

represent unidirectional conditions with which the model was cal-

ibrated. Furthermore, in the few cases where the wave field is

indeed more narrowly supported (where nonlinear transfers are

stronger and important), predicted energy transfers become effec-

tively unbounded, which may produce unphysical results, and pos-

sibly introduces numerical stability issues. For these reasons, a for-

mulation that is internally consistent, reduces to the correct lim-
ts for narrow-band wave fields, always produces bound results,

nd for which we have, through p θ , some degree of control over

ow strongly the interactions attenuate with increased directional

preading, is much to be preferred. 

In this work, to focus our discussion, we used p θ = 360 ◦ for all

umerical simulations. In this case the integrated energies ( Eq. 13 )

re determined by computing the full directional integral over the

nergy spectrum. The fact that this gives reasonable results is en-

ouraging as the assumption p θ = 360 ◦ is actually the least com-

atible with the collinear assumption on which the approximation

s based. The principal effect of p θ is to reduce the strength of the

nergy transfers. For instance, using a similar setup as Fig. 1 , we

ee that by reducing p θ we have some control on the strength of

he interaction ( Fig. 7 ). 

To assess the sensitivity and robustness of the proposed

ollinear approximation to p θ we present the scatter indices nor-

alized by the full directional integral equivalent for Case B with

θ = 2 ◦, 10 ° and 30 ° in Fig. 8 . For all three wave conditions the

ormalized scatter index asymptotes to unity for p θ  σθ and

onvergence to the full integral is mostly found for p θ ≈ 3 σθ in

greement with Fig. 7 . A notable exception is found for σθ = 30 ◦

here smaller scatter indices are found for lower values of p θ . This

uggests that the use of the full directional integral, in very short-

rested seas may lead to some overestimation of the energy trans-

ers (which are small to begin with). The increased scatter index

or T m 02 for smaller values of p θ is counterintuitive since we would

nticipate that results should improve (albeit possible slightly) for

ore realistic values for p θ . This effect is due to an overestima-

ion of T m 02 due to the insufficient transfer of energy to the higher

requencies. 



J.E. Salmon et al. / Ocean Modelling 104 (2016) 203–212 211 

Fig. 8. Sensitivity of the CCA to the directional integration bandwidth p θ for Case B for varying σ θ (2 °, black; 10 °, blue and 30 °, magenta). The vertical axis represents 

the scatter index normalized with the scatter index with the full directional integral. The horizontal dashed red line indicates unity. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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In this work, we set out to identify the source of the unrealistic

ehavior of the triad source terms when using the OCA to increase

he computational efficiency when coupled to the LTA or a differ-

nt triad model. We propose an alternative collinear formulation

CCA) and compare results for the CCA coupled to two different

riad models (LTA and SPB). However, the optimum choice of triad

odel is clearly outside the scope of this paper. Our objective is

o identify the source of the unrealistic behavior of triad source

erms when used together with the OCA to increase the compu-

ational efficiency. Clearly, the overall quality of the model will

reatly depend on the underlying triad model to which the CCA is

oupled. The use of any collinear approximation (such as the CCA),

nd the implied decoupling of non-collinear components remains

n admittedly crude approximation driven primarily by the need

or efficiency in operational wave models. Possibly, with the im-

rovements proposed here, we can make these collinear models

ore useful for operational models, and allow larger-scale models

o capture some of the principal nonlinear shallow-water effects at

easonable computational cost. 

. Conclusions 

In this study, we consider collinear approximations used

n operational wave models to compute the nonlinear source

erm for three-wave interactions for directional wave fields by

liminating the interactions between non-collinear wave compo-

ents. We demonstrate that the Original Collinear Approximation

OCA), which is presently used in operational wave models (e.g.

WAN), severely overestimates energy transfers in the unidirec-

ional limit (where energy transfers in that approximation become

nbounded). At the same time, the OCA underestimates energy

ransfers in short-crested seas. We propose a Consistent Collinear

pproximation (CCA) which has the proper asymptotic behavior in

he unidirectional limit and remains well-behaved for wave fields

ith a wider directional aperture. Comparisons with flume experi-

ents demonstrate that the CCA is a significant improvement over

he OCA, is more robust and performs much better overall. Com-

arisons of the CCA model to Monte Carlo simulations show a sig-

ificant improvement in overall performance over the OCA. Further

mprovements are expected through improvements to the underly-

ng triad model. 
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PPENDIX A. Collinear versions of the LTA and SPB models 

The collinear approximations discussed in the main text take

he form (repeated for convenience) 

 nl3 ( σ1 , θ1 ) = 2 c g, 1 

[∫ σ1 

0 

W 2 , 1 −2 B 

1 
2 , 1 −2 

d σ2 − 2 

∫ ∞ 

0 

W 2 , 1 B 

1 
2 , 1 

d σ2 

]

(A1) 

here the first integral term represents the sum interactions

 σ 2 , σ1 − σ2 ) and the second the difference interactions ( σ 2 , σ1 +
2 ). The OCA and CCA are then obtained using the corresponding

stimates for the bispectrum 

 

1 , ( OCA ) 
2 , 1 −2 

= α�1 
2 , 1 −2 Q 

1 
2 , 1 −2 B 

1 , ( CCA ) 
2 , 1 −2 

= α�1 
2 , 1 −2 Q 

1 
2 , 1 −2 

(A2) 

ith Q 

1 
2 , 1 −2 

and Q 

1 
2 , 1 −2 

defined as in Eqs. (9) and ( 12 ), respectively.

The LTA model expresses the imaginary part of the bispectrum

n terms of its magnitude and phase ( Kim and Powers, 1979 ) and

ses a parameterization for the biphase ϕ using the spectrally-

ased Ursell number ( Doering and Bouwen, 1995; Eldeberky, 1996 ;

is Eq. 3.19) to control the magnitude of the energy transfers. The

uasi-normal closure then takes the form 

LTA 
2 , 1 −2 = 

sin | ϕ Ur | 
�k 2 , 1 −2 

(A3) 

here �k 2 , 1 −2 = k 1 − k 2 − k 1 −2 represents the wave number mis-

atch. To further reduce the computational costs of the integrals

n Eq. (A1) , the LTA model makes the following additional simplifi-

ations. First, it is assumed that the coupling coefficients are equiv-

lent, i.e., W 2 , 1 −2 = W 1 , −2 = W 1 , 2 −1 in the expressions for Q 

1 
2 , 1 −2 

nd Q 

1 
2 , 1 −2 

. Secondly, the integrals are approximated by the prod-

ct of a representative value of the integrand, taken to be the self-

elf interactions and an effective frequency interaction bandwidth

σ . Applying this approximation and arguing that δσ and �k scale

ith σ 1 and k 1 , using the notation σ2 = σ1 / 2 for convenience, the

CA version of the LTA is given as 

 LTA ( σ1 , θ ) = 2 παLTA c g, 1 c 1 sin | ϕ Ur | 
[ 

W 2 , 2 Q 

1 
2 , 2 

− 2 W 1 , 1 Q 

1 
1 , 1 

] 
. (A4) 
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The OCA version of the LTA is obtained by replacing Q with Q

in Eq. (A4) . 

The SPB model of Becq-Girard et al. (1999) assumes a closure

approximation based on Holloway and Hendershott (1977) . In this

case the closure factor takes the form 

�SPB 
2 , 1 −2 = 

μ

( �k 2 , 1 −2 ) 
2 + μ2 

(A5)

where μ represents a proportionality constant between the bis-

pectrum and the fourth-order cumulant. In the SPB model, μ =
0 . 95 k p, 0 − 0 . 75 , a dimensional parameter where k p , 0 is the deep

water peak wave number. For application in a 2D wave model,

where the offshore region is not well defined, we replace the deep

water peak wave number with the local peak wave number, k p .

The CCA version of the SPB may then be expressed as 

S SPB ( σ1 , θ ) = 8 παSPB c g, 1 μ

[∫ σ1 

0 

W 2 , 1 −2 
Q 1 

2 , 1 −2 

( �k 2 , 1 −2 ) 
2 + μ2 

d σ2 

− 2 

∫ ∞ 

0 

W 2 , 1 
Q 1 

2 , 1 

( �k 2 , 1 ) 
2 + μ2 

d σ2 

]
(A6)

As with Eq. (A4) , the OCA version of the SPB is obtained by

replacing Q with Q in Eq. (A6) . 
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