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S U M M A R Y
This study formulates Love-wave excitation in terms of the interaction between a propagating
ocean wave and the sea-bottom topography. By assuming a Fraunhofer diffraction range, or
far-field approximation, I theoretically derive an equivalent point force for the Love-wave
excitation. The equivalent point force acts in the same direction as the propagation direction of
the ocean wave. The excited Love wave has a radiation pattern characterized by sin θ , where θ is
the angle between the propagation directions of the Love and ocean waves. The efficiency of the
excitation is then investigated by employing both deterministic and stochastic models for sea-
bottom topography. When a seamount given by a Gaussian function is used as a deterministic
model, the equivalent point force has a narrow peak against the wavenumber of the ocean
wave; a strong interaction occurs at λ = 2.2d, where λ is the ocean-wave wavelength and
d is the characteristic scale of the seamount. On the other hand, when randomly fluctuating
sea-bottom topography characterized by a power-law spectrum is used, the interaction can
occur over a wide range of the ocean wave wavelength.
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1 I N T RO D U C T I O N

Earthquakes excite oscillations of the Earth. High-sensitivity sensors have revealed that the oscillation, or seismic wave, can have causes
other than earthquakes. Ocean waves generate microseisms, or small and continuous seismic signals with the period of 3–20 s. By analysing
the microseisms recorded by a Gräfenberg array (GFR array, Harjes & Seidl 1978) in Germany, Friederich et al. (1998) showed the wave
was composed of both Rayleigh and Love waves generated from various regions in the Atlantic Ocean, the Arctic Sea and the Mediterranean
Sea. They discussed the excitation mechanism relating to the ocean swell and its interaction with sea-bottom topography. In 2007 March,
tiltmeters of Hi-net, a nationwide seismic network in Japan (Obara 2002) detected anomalous signals with a dominant period of approximately
20 s. By analysing the signals together with records of a GFR array, Matsuzawa et al. (2008) determined that the signals were composed
of both Rayleigh and Love waves radiating from a source located in the Atlantic Ocean. They identified the migration path of the source,
which roughly corresponded to the path of a cyclone during this period. This suggests that the ocean swell induced by the cyclone generated
Rayleigh and Love waves. Also, when hurricane Katrina struck land during 2005 August around the Gulf of Mexico, broad-band seismic
stations in Southern California detected seismic signals from the hurricane. Gerstoft et al. (2006) carefully analysed records over various
frequency bands and found body and surface waves in these records.

Another example is found in the Earth’s background free oscillation. Rayleigh waves from 2 to 20 mHz (Kobayashi & Nishida 1998;
Nawa et al. 1998; Suda et al. 1998; Tanimoto et al. 1998; Nishida & Kobayashi 1999) and Love waves below 0.01 Hz (Kurrle & Widmer-
Shnidrig 2008) and from 0.01 to 0.1 Hz (Nishida et al. 2008) are continuously observed, irrespective of the occurrence of earthquakes. These
waves are referred to as the background-free oscillation or the Earth’s hum. The estimated distribution of the excitation sources indicates
that the sources are weaker in continental regions than in ocean regions, and they exhibit clear seasonal variation (Rhie & Romanovicz
2004; Nishida & Fukao 2007). Although the search for the excitation mechanism of the background oscillation has been inconclusive (Fukao
et al. 2002; Tanimoto 2005; Webb 2008), ocean loading is considered to be a strong candidate (e.g. Rhie & Romanovicz 2004, 2006; Kurrle
& Widmer-Shnidrig 2008; Nishida et al. 2008).

The pressure from ocean waves loads on the sea bottom, which excites the seismic oscillation (Longuet-Higgins 1950; Hasselman 1963;
Tanimoto 2005, 2007; Webb 2008). When a flat sea bottom is assumed, the normal traction acting on the sea bottom excites Rayleigh waves,
but the lack of shear traction fails to excite Love waves. To simulate Love-wave excitation, Fukao et al. (2010) have recently proposed a
reasonable model whereby, when there exists sea-bottom fluctuations, ocean waves can generate shear traction on the sea bottom and excite
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Love waves. They assumed no preferred directivity in the total excited Love wave supposing randomly and homogeneously distributed
sources.

Although the assumption of randomly and homogeneously distributed sources is a good approximation in the first instance, it may not
always be valid if we take into account a realistic distribution of the excitation sources (Rhie & Ramonowicz 2004; Nishida & Fukao 2007).
Furthermore, for the case of a cyclone-induced microseism (Friederich et al. 1998; Gerstoft et al. 2006; Matsuzawa et al. 2008), we should
model the source as a point source rather than considering randomly homogeneously distributed sources. To apply the theory to the above
cases, or to deeply understand the Love-wave excitation due to ocean waves, we need to develop a sound mathematical basis for the shear
traction excitation mechanism by rigorously taking the directions of wave propagation and the gradient of the sea-bottom topography into
account, whereas those directions for 2-D sea-bottom topography have not been rigorously included in the past.

This study formulates the Love-wave excitation in terms of the interaction between a propagating ocean wave and the sea-bottom
topography. Assuming a Fraunhofer diffraction range, or far-field approximation, I theoretically derive an equivalent point force for the
excited Love wave, and show that the equivalent point force acts in the same direction as the propagation direction of the ocean wave.
Additionally, we derive some important properties of the excited Love wave using both deterministic and stochastic models for the sea-bottom
topography.

2 L OV E - WAV E E XC I TAT I O N D U E T O T H E I N T E R A C T I O N B E T W E E N
T H E S E A - B O T T O M T O P O G R A P H Y A N D A P RO PA G AT I N G O C E A N WAV E

We use Cartesian coordinates (Fig. 1a) taking the z-axis in the vertically downward direction and the x- and y-axes in a horizontal plane. The
average or background water depth is h0. As shown in Fig. 1(b), the sea-bottom fluctuation is assumed to exist only within the extent of L
around (0, 0, h0). A plane ocean wave propagating along the x-axis interacts with the sea-bottom fluctuation and excites a Love wave.

2.1 Ocean wave propagation

Assuming incompressible and irrotational water flow, we use linear potential theory to describe the motion in the ocean (e.g. Stoker 1958;
Saito & Furumura 2009b). The velocity potential φ satisfies the Laplace equation,

�φ = 0, (1)

the boundary conditions at the surface are given by

∂φ

∂t
− g0η = 0 for z = 0, (2)

∂φ

∂z
= ∂η

∂t
for z = 0, (3)

and the boundary condition at the bottom for constant water depth by

∂φ

∂z
= 0 for z = h0, (4)

O

Ocean Wave 
Incidence

Love Wave 

X

Y

L

Localized
Sea-bottom fluctuation

X,Y

Z

h0
Sea bottom 

Sea surface O

(a) (b)

r

 

ˆ r ˆ  

Figure 1. Coordinates for Love wave excitation due to the interaction between ocean wave and sea-bottom topography. (a) The x and y-axes are in a horizontal
plane and the z-axis is pointing vertically downwards. (b) A plane ocean wave propagating along the x-axis interacts with the localized sea-bottom topography
with extent L.
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where g0 is gravitational acceleration and η(x, y, t) is the vertical displacement at the sea surface, or ocean wave. When an ocean wave η(x, y,
t) is propagating along the x-axis as a plane wave,

η (x, y, t) = η0 exp [−i (ωt − kx)] , (5)

the velocity potential φ is given by

φ (x, y, z, t) = g0η0

−iω

cosh [k (h0 − z)]

cosh kh0
exp [−i (ωt − kx)] , (6)

where k is the wavenumber of the ocean wave. The dispersion relation is given by ω2 = g0k tanh kh0. The ocean wave causes excess pressure
at the sea bottom.

pe (x, y, h0) = −ρ0
∂φ (x, y, h0)

∂t
= −ρ0g0η0

cosh kh0
exp [−i (ωt − kx)] , (7)

where ρ0 is the water density. We then allow the water depth h to depend on the location. The water depth is given by h(x, y) = h0 +h1ξ (x, y).
The fluctuation ξ is localized around r =

√
x2 + y2 ∼ 0 within the size of L; the fluctuation vanishes (ξ = 0) outside the region

(Fig. 1b). The unit normal vector with respect to the sea bottom z = h(x, y) is given by, n̂(x, y) = C0(∂h/∂x x̂ + ∂h/∂yŷ − ẑ) , where
C0 = [1 + (∂h/∂x)2 + (∂h/∂y)2]−1/2, x̂, ŷ and ẑ are unit basis vectors for the x, y and z coordinates, respectively. The traction excited by the
excess pressure on z = h(x, y) then given by −pen̂. When the gradient of the sea-bottom fluctuation is small (|h1∇ξ | << 1), the horizontal
traction on the horizontal plane of z = h0 is approximately given by

T (x, y, h0) ≈ −pe (x, y, h0) h1∇ξ (x, y)

= ρ0g0η0h1

cosh kh0
exp [−i (ωt − kx)] ∇ξ,

(8)

where ∇ = ∂/∂x x̂ + ∂/∂yŷ is the gradient in the horizontal (x, y) plane. Eq. (8) represents the horizontal traction produced by the interaction
between the ocean wave and the sea-bottom fluctuation, which acts as a moving source for Love wave excitation.

2.2 Love-wave excitation and propagation

We consider a Love wave using cylindrical coordinates (r, θ , z) (Fig. 1b). When a point force F exp[−iωt] is applied at r = 0 and z = h0, the
resulting Love wave is approximately given by

uLOVE (r, θ, z, t) ≈ exp [−iωt]
∑

n

l1 (kn, h0, ω)
[
l1 (kn, z, ω) θ̂

]
8cU I1

√
2

πknr

(
F · θ̂

)
exp

[
i
(

knr + π

4

)]
, (9)

(e.g. Snieder 1986; Aki & Richards 2002). In eq. (9), θ̂ (= − sin θ x̂ + cos θ ŷ) is the unit basis vector for the θ coordinate. The pa-
rameter kn is the wavenumber, c is the phase velocity, U is the group velocity, l1(kn, z, ω) is an eigenfunction of the Love wave and
I1 = 1/2

∫ ∞
−∞ ρ[l1(kn, z, ω)]2dz. When the horizontal traction T(x, y, t) = T′(x, y) exp[−iωt] is distributed within the size of L around r =

0 (Fig. 1b), Love waves at r >> L are approximately given by

uLOVE (r, θ, z, t) ≈ exp [−iωt]
∑

n

l1 (kn, h0, ω)
[
l1 (kn, z, ω) θ̂

]
8cU I1

×
∞∫

−∞

∞∫
−∞

√
2

πkn |r − r′|
(

T′ (x ′, y′) · θ̂
)

exp
[
i
(

kn

∣∣r − r′∣∣ + π

4

)]
dx ′dy′, (10)

where r = x x̂ + yŷ and r′ = x ′x̂ + y′ŷ. When the observed distance r is far away from the source region L (r >> L), we may make the
approximation |r − r′| ≈ r in the denominator in eq. (10). We take diffraction into account by approximating |r − r′| ≈ r − r̂ · r′ in the
exponent where r̂ is the unit basis vector for the r-axis. This approximation is valid when r >> π−1 L2kn , which corresponds to the region of
Fraunhofer diffraction in optics (e.g. p. 45, Chernov 1960). Then, substituting eq. (8) into eq. (10), we calculate thus

uLOVE (r, θ, z, t) ≈ exp [−iωt]
∑

n

l1 (kn, h0, ω)
[
l1 (kn, z, ω) θ̂

]
8cU I1

ρ0g0η0h1

cosh kh0

×
∫

x ′,y′

∫ √
2

πkn |r − r′| exp
[
i
(

kn

∣∣r − r′∣∣ + π

4

)] (
−∂ξ (x ′, y′)

∂x ′ sin θ + ∂ξ (x ′, y′)
∂y′ cos θ

)
exp

[
ikx ′] dx ′dy′

≈ exp [−iωt]
∑

n

l1 (kn, h0, ω)
[
l1 (kn, z, ω) θ̂

]
8cU I1

√
2

πknr
exp

[
i
(

knr + π

4

)] ρ0g0η0h1

cosh kh0

×
∫

x ′,y′

∫ (
−∂ξ (x ′, y′)

∂x ′ sin θ + ∂ξ (x ′, y′)
∂y′ cos θ

)
exp

[
i
{
kx̂ · r′ − kn r̂ · r′}] dx ′dy′. (11)
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Introducing the difference wavenumber between the Love and oceanic waves as K = kn r̂ − kx̂ and performing integration by parts with
respect to x ′ and y′, we finally obtain

uLOVE (r, θ, z, t)

≈ exp [−iωt]
∑

n

l1 (kn, h0, ω)
[
l1 (kn, z, ω) θ̂

]
8cU I1

√
2

πknr
exp

[
i
(

knr + π

4

)] ρ0g0η0h1

cosh kh0

× i
(−Kx sin θ + Ky cos θ

) ∞∫
−∞

∞∫
−∞

ξ
(
x ′, y′) exp

[−iK · r′] dr′

= exp [−iωt]
∑

n

l1 (kn, h0, ω)
[
l1 (kn, z, ω) θ̂

]
8cU I1

√
2

πknr
exp

[
i
(

knr + π

4

)]

× iρ0g0η0h1

cosh kh0

(
K · θ̂

)
ξ̂ (K) , (12)

where ξ̂ (K) is the 2-D spatial Fourier transform in (x, y) coordinates of the sea-bottom fluctuation,

ξ̂ (K) =
∞∫

−∞

∞∫
−∞

ξ
(
r′) exp

[−iK · r′] dr′. (13)

Eq. (12) is the equation for a Love wave generated by the interaction between an ocean wave and the sea-bottom topography.

3 L OV E WAV E

3.1 Equivalent point force

For the Love-wave excitation due to the interaction between an ocean wave and fluctuating sea-bottom topography, we obtain an equivalent
horizontal force applied at r = 0 and z = h0.

Fequivalent = iρ0g0η0h1

cosh kh0
ξ̂ (K) K, (14)

by comparing eq. (12) and eq. (9). Considering that the ocean wave propagates much more slowly than the Love wave, we may make the
approximation K = kn r̂ − k ≈ −k = −kx̂ and obtain

Fequivalent ≈ −iρ0g0η0kh1

cosh kh0
ξ̂ (−kx̂) x̂. (15)

Eq. (15) indicates that the equivalent body force acts in the same direction as the propagation direction of the ocean wave (Fig. 2).

X

Y

r 

Equivalent 
Point Force 

Figure 2. Equivalent point force for the Love wave excitation. The equivalent point force is striking in the same direction as the propagation direction of the
ocean wave. The radiation pattern of the Love wave is given by sin θ where θ is the angle between the propagation directions of the Love wave and the ocean
wave.
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Figure 3. Two models for sea-bottom topography. (a) A seamount is modelled by the Gaussian function. It is referred to as the deterministic model. (b) The
randomly fluctuating sea bottom is modelled by a stochastic parameter ξ . The statistical features of ξ can be defined by introducing its ensemble {ξ (x)}. It is
referred to as a stochastic model.

3.2 Radiation pattern and the amplitude of the Love wave

From eq. (12), we obtain

uLOVE (r, θ, z, t) = exp [−iωt]
∑

n

l1 (kn, h0, ω)
[
l1 (kn, z, ω) θ̂

]
8cU I1

√
2

πknr
exp

[
i
(

knr + π

4

)]

× iρ0g0η0kh1

cosh kh0
ξ̂ (kn r̂ − kx̂) sin θ

≈ exp [−iωt]
∑

n

l1 (kn, h0, ω)
[
l1 (kn, z, ω) θ̂

]
8cU I1

√
2

πknr
exp

[
i
(

knr + π

4

)]

× iρ0g0η0kh1

cosh kh0
ξ̂ (−kx̂) sin θ for k >> kn .

(16)

The radiation pattern or the dependence on the angle θ appears as sin θ ξ̂ (kn r̂ − kx̂) in the second equation in eq. (16). Considering that the
ocean wave is much slower than the Love wave (k >> kn), the radiation pattern of the Love wave can be simplified to sin θ in the last equation
of eq. (16). The Love wave propagating perpendicular to the propagation direction of the ocean wave shows the largest amplitude, while no
Love wave radiates towards the propagation direction of the ocean wave (Fig. 2).

Whereas the radiation pattern is independent of the wavenumber of the ocean wave, the amplitude depends on the wavenumber. The
factor 1/cosh kh0 = 1/cosh[2πh0/λ] where λ = 2π/k in eq. (16) indicates the relation between the water depth h0 and the ocean wave
wavelength λ. The value of 1/cosh[2πh0/λ] increases with increasing wavelength and takes its maximum value of 1 when the wavelength
is much greater than the water depth. Fukao et al. (2010) refer to it as the hydrodynamic filtering effect. The factor kh1ξ̂ (−kx̂) in the last
equation of eq. (16) indicates the relation between the ocean wave wavelength and the size of the sea-bottom fluctuation. Fukao et al. (2010)
referred to this effect as the topographic coupling effect and investigated it for a circular cone hill. This study also investigates effects but
utilizes two modelling approaches for the sea-bottom fluctuation. The first approach is deterministic. We suppose a seamount represented
by a Gaussian function (Fig. 3a). The second approach is stochastic, where we suppose a randomly fluctuating sea-bottom topography
(Fig. 3b).

3.2.1 Deterministic model: a seamount

We use the Gaussian function

ξ (x, y) = exp

[
− x2 + y2(

d
/
2
)2

]
(17)

for modelling a seamount. This is very similar to the circular cone hill investigated by Fukao et al. (2010) in the sense that it has a single
characteristic scale of d as diameter. The difference is that an analytical solution is obtained without approximations when the Gaussian
function is used. The 2-D Fourier transform [eq. (13)] of eq. (17) is given by

ξ̂ (m) = πd2

4
exp

[
−d2m2

16
,

]
(18)
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Normalized Wavenumber, kd

(a) kd exp[-k2d2/16]

Normalized Wavenumber, ka
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Figure 4. Functions (a) kd exp[−k2d2/16] and (b) k2a2(1 + k2a2)−κ−1. The function {ka exp[−k2a216]}2 is also plotted with a dashed line for comparison
in (b).

where m = |m| is the wavenumber of the sea-bottom fluctuation. Substituting eq. (18) into eq. (16), we obtain

uLOVE (r, θ, z, t) ≈ exp [−iωt]
∑

n

l1 (kn, h0, ω)
[
l1 (kn, z, ω) θ̂

]
8cU I1

√
2

πknr
exp

[
i
(

knr + π

4

)]

× e−iπ/2ρ0g0η0πd2

4

kh1

cosh kh0
exp

[
− k2d2

16

]
sin θ

= exp [−iωt]
∑

n

l1 (kn, h0, ω)
[
l1 (kn, z, ω) θ̂

]
8cU I1

√
2

πknr
exp

[
i
(

knr + π

4

)]

× e−iπ/2ε1ρ0g0η0πd2

4

kd

cosh kh0
exp

[
− k2d2

16

]
sin θ, (19)

where we assume a scaling h1 = ε1d of the seamount. The factor kd exp[−k2d2/16] represents the interaction between the ocean wave and the
seamount. Fig. 4(a) shows the function of kd exp[−k2d2/16] against the wavenumber of the ocean wave normalized by the diameter, kd . The
function takes its maximum value when kd = 2

√
2 ≈ 2.8. In other words, the strong interaction between the ocean wave and the seamount

generates the largest equivalent point force when the ocean wave has a wavelength approximately twice the diameter of the seamount: λ ∼
2.2d.

3.2.2 Stochastic model: randomly fluctuating sea-bottom topography

Stochastic approaches can be a very powerful tool in investigating complicated features in the observations. For investigating the bathymetry
(e.g. Fox & Hayes 1985) and its interaction with waves (e.g. Carrier 1970; Mysak 1978), stochastic approaches have often been employed.
We employ a stochastic method and assume here that the sea bottom is fluctuating randomly in space (Fig. 3b). To simulate the fluctuation
stochastically, an ensemble of the fluctuation {ξ (x)} is introduced. We also assume that the ensemble average of the fluctuation is zero
〈ξ (x)〉 = 0, where the ensemble average is denoted by 〈· · ·〉. The statistical properties of the fluctuation are characterized by the autocorrelation
function (ACF), R(xd ) = 〈ξ (x)ξ (x + xd )〉, or the power spectral density function (PSDF), P(m) = ∫∫

R(xd )exp[−im · xd ]dxd (e.g. Sato &
Fehler 1998).

A statistical property of the Love wave can be represented by the mean-square ensemble average,〈∣∣uLOVE
∣∣2

〉
≈ sin2 θ

∑
n

l1 (kn, h0, ω)2 l1 (kn, z, ω)2

64c2U 2 I 2
1

2

πknr

ρ2
0 g2

0η
2
0 (kh1)2

cosh2 kh0

〈∣∣∣ξ̂ (−kx̂1)
∣∣∣〉

= sin2 θ
∑

n

l1 (kn, h0, ω)2 l1 (kn, z, ω)2

64c2U 2 I 2
1

2

πknr

ρ2
0 g2

0η
2
0 (kh1)2

cosh2 kh0

L2 P (−kx̂1) , (20)

where the relation L2 P(m) = 〈|ξ̂ (m)|2〉 is used. Eq. (20) represents the relation between the PSDF of the sea-bottom fluctuation and the
mean-square amplitude of the Love wave.

The PSDF of the sea-bottom fluctuation is well characterized by a power law (e.g. Fox & Hayes 1985; Goff & Jordan 1988; Turcotte
1989). As example, we consider the isotropic PSDF P(m) = P(m) characterized by the von Karman type PSDF which also indicating a
power law at large wavenumbers (e.g. Goff & Jordan 1988; Sato & Fehler 1998),

P (m) = 4πε2a2

(1 + a2m2)κ+1
≈ 4πκε2a−2κm−2κ−2 for am >> 1 (21)

where ε represents the rms value of the fluctuation ξ , and a is the correlation distance (a < L). The order κ controls the power of the PSDF
at larger wavenumbers (am >> 1). A small κ increases the PSDF at larger wavenumbers, which makes the fluctuation of the sea bottom
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rougher. The studies using the von Karman-type PSDF reported that the value of κ ranges between 0.5 and 1.0 for the sea-bottom fluctuation
(Goff & Jordan 1988, Goff & Tucholke 1997). Substituting eq. (21) into eq. (20) we obtain〈∣∣uLOVE

∣∣2
〉
≈ sin2 θ

∑
n

l1 (kn, h0, ω)2 l1 (kn, z, ω)2

64c2U 2 I 2
1

2

πknr

ρ2
0 g2

0η
2
0 (kh1)2

cosh2 kh0

L2 4πε2a2

(1 + k2a2)κ+1

= sin2 θ
∑

n

l1 (kn, h0, ω)2 l1 (kn, z, ω)2

64c2U 2 I 2
1

2

πknr
ρ2

0 g2
0η

2
0 L2a2 1

cosh2 kh0

4πε2ε2
1k2a2

(1 + k2a2)κ+1
, (22)

∝
{

4πε2ε2
1k2a2 for ka << 1

4πε2ε2
1 (ka)−2κ for ka >> 1

,

where we use the scaling h1 = ε1a for the sea-bottom fluctuation. The factor 4πε2ε2
1k2a2(1 + k2a2)−κ−1 represents the interaction between

the ocean wave and the sea-bottom fluctuation. Fig. 4(b) depicts the factor k2a2(1 + k2a2)−κ−1 against the wavenumber of the ocean
wave normalized by the correlation distance, ka. The factor is proportional to k2a2 irrespective of the value of κ when the normalized
wavenumber is small (ka << 1). On the other hand, when the normalized wavenumber is large, the factor depends on κ such that
4πε2ε2

1k2a2(1 + k2a2)−κ−1 ≈ 4πε2ε2
1(ka)−2κ . When κ is 1.0, the excitation has a peak against the normalized wavenumber as in the

case of a seamount. Note that the function obeying a power law in large wavenumbers (solid lines in Fig. 4b) shows gradual decrease against
the wavenumber compared to the case of the Gaussian PSDF (dashed line in Fig. 4b). Hence, the interaction occurs over a wider range of
the wavenumber for the case of randomly fluctuating sea-bottom topography characterized by the von Karman-type PSDF than the seamount
given by the Gaussian function. When κ becomes small, dependence on the wavenumber becomes weaker and the interaction occurs over
a wider range of the wavenumber. The value of κ usually ranges between 0.5 and 1.0 for the sea-bottom fluctuation (Goff & Jordan 1988,
Goff & Tucholke 1997). As an extreme case of κ = 0, the value of 4πε2ε2

1k2a2(1 + k2a2)−κ−1 becomes constant for the larger wavenumbers
(ka >> 1).

4 D I S C U S S I O N

This study consistently took the force direction into account for 2-D bathymetry ξ (x, y), and successfully derived the analytical representation
of the equivalent shear traction for any sea-bottom fluctuation distribution ξ (x, y) [eq. (15)]. The equivalent point force is, in general, a
complex number allowing phase shift and acting in the same direction as the propagation direction of the ocean wave. Those are theoretically
derived for the first time in this study. The direction of the equivalent point force then leads that the radiation pattern of the Love wave is always
sin θ . It may be surprising that the radiation pattern is independent of the sea-bottom topography ξ (x, y) [see eq. (16)]. This simple pattern
comes from the fact that the ocean wave is propagated much more slowly than the Love wave (k >> kn). If we cannot approximate K by k in
ξ̂ (K) in eq. (16), the radiation pattern then depends on the sea-bottom fluctuation ξ (x, y) and also on the wavenumber of the Love wave. A
situation where we cannot approximate K by k occurs with wave scattering (e.g. Snieder 1986; Maeda et al. 2008); the incident and radiated
waves propagate with the same (or nearly the same) velocity. Saito & Furumura (2009a) theoretically investigate tsunami (long-wavelength
ocean wave) scattering.

It should be noted that the formulation of this study has employed some assumptions. The gradient of the bathymetry is small,
|h1∇ξ | << 1 in eq. (8), the far field approximation r >> L and flat free surface are assumed for the Green’s function of the Love wave
(eq. 9), the sea-bottom fluctuation is localized within the size of L and the Fraunhofer diffraction range r >> π−1 L2kn is supposed in the
calculation. Among those approximations, the far field approximations including the Fraunhofer diffraction range would be acceptable in
many occasions because we divide the source region, or a vast ocean, into small regions with the size of L even when the source region in total
is very large. Also, surface waves usually dominate over body waves in real records, indicating the importance of the far field term. We here
numerically investigate the assumption that the gradient of the bathymetry is small, |h1∇ξ | << 1. We consider that the bathymetry locally
has the slope characterized by ∂h/∂x = tan φ. In deriving eq. (8), we approximate [1 + (∂h/∂x)2]−1/2(∂h/∂x) ≈ ∂h/∂x . Fig. 5 compares
[1 + (∂h/∂x)2]−1/2(∂h/∂x) and ∂h/∂x as functions of the angle φ, showing that the difference between the two functions is within 10 per cent
when the angle is smaller than 25◦. We may consider the gradient of the bathymetry is small in the formulation when the slope is smaller than
25◦.

This study has considered two types of sea-bottom topography: a seamount and a randomly fluctuating sea bottom. When we suppose
a seamount, an ocean wave with a specific wavelength characterized by λ ∼ 2.2d can effectively interact with the topography. This simple
model would be useful to understand the underlying process for the Love wave excitation mechanism. On the other hand, when we suppose
a random sea-bottom fluctuation characterized by the von Karman-type PSDF, we can easily adjust the range of the wavenumber that can
efficiently excite Love waves by changing the value of κ and a. This flexibility would be useful when we interpret the real records in the light
of the model. The von Karman-type PSDF is an example in stochastic modelling of the bathymetry. We employed it because it shows a power
law in the wavenumber domain as the real sea-bottom bathymetry (e.g. Fox & Hayes 1985; Goff & Jordan 1988; Turcotte 1989). Another
reason is that it has the analytical representations both in the wavenumber and spatial domains (e.g. Sato & Fehler 1998), which sufficiently
ensures the existence of the inverse Fourier transform of the PSDF and then the realization of ξ (x, y) in the spatial domain. The analytical
representation of the von Karman type PSDF can provide the better perspectives for the Love-wave excitation mechanism. Our formulation,
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Figure 5. Functions tan φ (solid line) and [1 + tan2 φ]−1/2 tan φ (dashed line).

on one hand, does not limit the type of PSDF until eq. (20). Eq. (20) holds for any function of the PSDF. For example, the PSDF characterized
by two or three different powers can be another candidate for realistic modelling of the bathymetry (e.g. Fox & Hayes 1985; Goff & Tucholke
1997). Also, in some areas, sea-bottom topography clearly shows a preferred orientation (anisotropic PSDF), such as an ocean ridge or a
trench (e.g. Goff & Jordan 1988). Eq. (20) also holds for an anisotropic PSDF in 2-D space (e.g. Saito 2006a, b).

5 C O N C LU S I O N S

This study has theoretically studied the Love wave excitation due to the interaction between propagating ocean wave and sea-bottom
topography. By assuming a Fraunhofer diffraction range, or that the distance from the sea-bottom topography to an observation point is much
greater than the spatial extent of the sea-bottom fluctuation, I derived an equivalent point force given by eq. (15) for the Love-wave excitation.
The equivalent point force acts in the same direction as the propagation direction of the ocean wave. The excited Love wave has a radiation
pattern characterized by sin θ where θ is the angle between the propagation directions of the Love and ocean waves. The efficiency of the
excitation is then investigated by employing both deterministic and stochastic models for sea-bottom topography. When a seamount given
by a Gaussian function is used as a deterministic model, the equivalent point force has a narrow peak against the wavenumber of the ocean
wave; a strong interaction occurs at λ = 2.2d where λ is the ocean-wave wavelength and d is the characteristic scale of the seamount. On the
other hand, when randomly fluctuating sea-bottom topography characterized by a power-law spectrum is used, the interaction can occur over
a wide range of the ocean wave wavelength.
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