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Abstract

An improved parabolic water wave transformation model is developed based on generalized [1/1] Padé approximation. For

forward scattered waves, the parabolic equation is solved using a marching scheme. The values of wave angles are calculated

after the solution of each line; so that better [1/1] generalized Padé approximation is performed. The nonlinear effects are

included using a modified dispersion equation. The model is easy to use and performs very well for complex bathymetry. The

model is tested for cases of wave angles up to 708. The numerical results show that for large wave angles, the new parabolic

model is better than all the existing parabolic models based on rational approximation.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The combined refraction–diffraction wave equa-

tion, known as the mild slope equation, derived by

Berkhoff (1972) has been widely used in coastal

engineering. The mild slope equation can also model

the wave reflections due beaches or coastal structures.

It was derived under the assumption of mild bottom

slope. However, Booij (1981) showed that this

equation is satisfactory even for bottom slope of the

order of unity.

The mild slope equation, being elliptic, is computa-

tionally demanding. Therefore, parabolic approxima-
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tions are very useful in cases where wave reflections

are not important. Several parabolic models have been

proposed. The mild slope equation used to derive the

parabolic equation is of the form of Helmholtz

equation (Li, 1997):

r2w þ k2cw ¼ 0 ð1Þ

where w=(ccg)
1/2W, W is the complex velocity

potential, and kc is the modified wave number, which

is given by:

k2c ¼ k2 �
r2 ccg

� �1=2
ccg
� �1=2 ð2Þ

where c is the wave phase velocity, cg is the wave

group velocity, x is the angular wave frequency and k
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is the wave number, which is related to the wave

angular frequency through the dispersion equation:

x2 ¼ gktanh kdð Þ ð3Þ

where, d is the local water depth and g is the

gravitational acceleration.

Assuming that the water depth is constant, Eq. (1)

can be written as:

Axx þ 2ikAx þ Ayy ¼ 0 ð4Þ

where A is the amplitude function, which is given by:

W ¼ Aexp ikxð Þ ð5Þ

Assuming that x is the predominant direction of wave

propagation.

Radder (1979) assumed that the derivatives of the

wave potential in the x-direction are very small, which

leads to:

2ikAx þ Ayy ¼ 0 ð6Þ

Eq. (6) is considered the lowest-order parabolic

approximation of the Helmholtz equation which

corresponds to [1/0] Padé approximation or the lowest

order binomial expansion.

A possible plane wave solution can be given by:

A ¼ a exp ik l � 1ð Þxþ my½ � ð7Þ

where l=cos h, m=sin h, and h is the wave angle

measured counterclockwise from x-direction.

Substituting Eq. (7) into Eq. (4), the relationship

between l and m can be found as follows:

lh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p
ð8Þ

where lh is cosine the wave angle according to

Helmholtz equation. Eq. (8) represents a circle.

However, substituting Eq. (7) into Eq. (6) leads to

the following first order parabolic approximation:

la ¼ 1� 1

2
m2 ð9Þ

where, la is the approximated cosine of the wave

angle. Eq. (9) corresponds to the first order binomial

expansion for the square root in Eq. (8). Radder’s
simple parabolic model (Eq. (9) or (6)) can accurately

predict the propagation of plane waves with angles up

to 438 without creating more than 5% error in l, where

the error in l is defined as (lh�la)/lh
100 (Li, 1997).

Other parabolic approximations are obtained by

approximating the square root in Eq. (8). Booij (1981)

developed a higher order parabolic model, which

permits waves angles up to 56.58. For constant water
depth, this parabolic model can be written as:

2ikAx þ Ayy þ iAxyy=2k ¼ 0 ð10Þ

Substituting Eq. (7) into Eq. (10), it can be found

that Booij’s model is based on [1/1] Padé approx-

imation of l.

Kirby (1986b) provided a [2/2] Padé approxima-

tion of l which leads to the following parabolic

equation:

2ikAx þ Ayy � 3Axyy=2ik � Axyyyy=8ik
3

þ Ayyyy=2k
2 ¼ 0 ð11Þ

which is accurate up to 688.
Kirby (1986b) utilized a minimax approach to

approximate the square root in Eq. (8). For constant

water depth, his parabolic model reads (Li, 1997):

2ikAx þ 2ðb1 � a1ÞAyy � 2ib1Axyy=k

þ 2kða0 � 1ÞA ¼ 0 ð12Þ

where the values a0, a1, and b1 are found by

requiring that the error in l be minimized over a

given range of wave angles. The approximated l

can be found as follows:

la ¼
a0 þ a1m

2

1þ b1m2
ð13Þ

The results of this equation at large wave angles

are approximately as accurate as Eq. (11).

According to Li (1997), Dalrymple and Kirby

(1988) developed a wide-angle model based on the

Fourier transform method for a bathymetry consist-

ing of parallel contours. Their analysis shows that

the wave field can be decomposed into an angular
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spectrum; that is the superposition of many

synchronous wave trains propagating at different

angles to the x-axis varying from 08 to F908.
Dalrymple et al. (1989) extended this model to the

irregular bathymetry situation. Although there is no

longer an angle limitation for this model, the

formulas are quite complicated, and the CPU time

required is more than that for other parabolic

models (Li, 1997).

Li (1997) developed a nonlinear parabolic

approximation for the Helmholtz equation. His

model does not have angle limitation for forward

wave propagation.

In this paper, a new parabolic model is developed

based on the generalized Padé approximation (Saied

and Tsanis, 2004). The new model is tested for

complex bathymetry using the experiment reported

by Berkhoff (1982). The case of circular shoal over

flat bottom reported by Kirby (1986b) is chosen to

test the new model for large wave angles. The new

parabolic model results are compared with Li’s

(1997) model and Kirby’s (1986b) model.
2. Parabolic model

Kirby (1986b) developed a parabolic model for

weakly nonlinear waves on slowly varying depth

based on the approximation given by Eq. (13). The

values of the coefficients a0, a1, and b1 are evaluated

by the minimax approach which minimizes the error

in l over a given range of wave angles. He solved for

the forward-scattered waves only, which has a

possible plane wave solution on the form:

Wþ ¼ Aexp

�
i

Z
k̄k xð Þdx

�
ð14Þ

where k̄(x) is some average of k(x,y) over the y-

direction and where the wave phase is assumed to

accumulate principally in the x-direction.

Kirby and Dalrymple (1986) developed an

approximate composite dispersion relation in order

to model nonlinear effects over a broad range of

depths, which reads:

x2 ¼ gk½1þ kað Þ2F1D�tanh½kd þ kað ÞF2� ð15Þ
where a is the wave amplitude=H/2, H is the wave

height and F1, F2 and D are functions given as

follows:

D ¼ cosh 4kdð Þ � 8þ 2 tanh2 kdð Þ
8 sinh4 kdð Þ

F1 ¼ tanh5 kdð Þ

F2 ¼ kd=sinh kdð Þ½ �4 ð16Þ

Incorporating Eq. (15) into the parabolic model

based on Eq. (13) leads to:

cgAx þ i k̄k � a0k
� �

cgAþ 1

2
cg
� �

x
A

þ i

x
a1 � b1

k̄k

k

� �
ccgAy

� �
y
� b1

xk
ccgAy

� �
yx

þ b1

x

�
kx

k2
þ

cg
� �

x

2kcg

�
ccgAy

� �
y

þ ix
2

�
ð1þDF1 kað Þ2Þ tanh kd þ F2kað Þ

tanh kdð Þ � 1

�
A

¼0 ð17Þ

where the subscripts represent derivatives.

Saied and Tsanis (2004) developed a set of

generalized Padé approximations for the square root

in Eq. (8) centred at a certain wave angle h=hb. The
error in calculating l with this method is effectively

zero at h=hb. The model based on the generalized

[1/1] Padé approximation has the same form as

Eq. (17). However, the coefficients a0, a1, and b1 in

Eq. (13) can be given as functions of the wave angles

as follows:

a0 ¼
coshb 4� sin2hb

� �
4� 3sin2hb

a1 ¼
� 3coshb

4� 3sin2hb

b1 ¼
� 1

4� 3sin2hb
ð18Þ

Saied and Tsanis (2004) showed that for hb=558,
the error in calculating l does not exceed 5% for
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wave angles up to 708. Therefore, a rational

approximation based on Eqs. (13) and (18) with

hb=558 can be comparable to the [2/2] Padé approx-

imation or the minimax approximation. However, the

main advantage of Eq. (18) over the minimax

approximation is that it is more accurate whenever

the wave angle h is known or can be approximately

estimated. The higher-order model of Kirby (1986a)

based on [1/1] conventional Padé approximation is a

special case from Eq. (18) where the coefficients a0,

b0 and b1 can be obtained by setting hb=08.
A new parabolic model is developed based on

Eqs. (17) and (18) in which a marching scheme is

implemented based on Crank–Nicolson scheme

(given by Kirby, 1986b). The angle hb is estimated

from the previously calculated upstream grid points as

follows:

m ¼ Im

�
BA=By

kA

�

l ¼
�
Im

�
BA=By

A

�
þ k̄k

�	
k

hb ¼ tan�1 m=lð Þ ð19Þ

The angle hb is required at i�(1/2), where i is the

index of the line at which the wave potential is

calculated along the longshore direction from j=1 to

j=jmax. However, for the first iteration, the angle hb is

calculated at i�(3/2). Generally, the wave angle is

calculated between two lines i1 and i2 and at the row j

from Eq. (19) as follows:

mi1¼ Im

"
A i1; jþ1ð Þ�A i1; jð Þ
A i1; jþ1ð ÞþA i1; jð Þ

þ
A i1; jð Þ�A i1; j�1ð Þ
A i1; jð ÞþA i1; j�1ð Þ

#	
kDyð Þ

mi2¼ Im

"
A i2; jþ1ð Þ�A i2; jð Þ
A i2; jþ1ð ÞþA i2; jð Þ

þ
A i2; jð Þ�A i2; j�1ð Þ
A i2; jð ÞþA i2;j�1ð Þ

#	
kDyð Þ

m ¼ mi1 þ mi2Þ=2ð

l¼2Im

"
A i2; jð Þ �A i2�1ð Þ
A i2; jð Þ þA i2�1; jð Þ

#	
kDxð Þþ

k̄k i2; jð Þ þ k̄k i2�1; jð Þ
2

hb ¼ tan�1 m=lð Þ ð20Þ
where i index increases in direction of wave starting

from 1 at the offshore boundary and j index represents

the alongshore direction.

Kirby (1986b) showed that results of the high-

order model based on [1/1] conventional Padé

approximation might be affected by the wave

amplitude modulations that originate in areas of

large bottom variations where the mild slope

approximation is violated. These noisy unrealistic

amplitude modulations can spread quickly to fill the

lateral extent of the model grid. The calculation of

wave angles using Eqs. (19) and (20) may be

affected significantly by these short crested wave

amplitude modulations. Kirby (1986b) showed that

the most suitable approach to suppress the unrealistic

noise is to filter the complex wave potential based on:

Aj
4 ¼ cAjþ1 þ 1� 2cð ÞAj þ cAjþ1 ð21Þ

where Aj* is the filtered complex wave potential

and c is a constant in the range 0.1bcb0.3. This

approach, however, can cause damping in the wave

amplitudes. Therefore, for cases of large bottom

variations, the wave angles are calculated using the

filtered complex potential Aj*, while the wave

amplitudes and matrix coefficients are calculated

using the unfiltered complex potential Aj. This

method smoothes the wave angles, while keeps the

wave amplitudes unchanged.

The lateral boundary conditions can either be an

absorbing or generating boundary. A perfectly

absorbing boundary condition is given by (Kirby,

1986c):

BA

By
¼ iAksinh ð22Þ

where h is the wave angle at the boundary measured

counterclockwise from the x-axis. Similarly, the

generating boundary condition is given by:

BA

By
¼ iksinh 2Ag � A

��
ð23Þ

where Ag is the generating wave potential at the

boundary. Estimation of wave angle h at the

boundary is based on Eq. (19) using the most recent

upstream wave potential (Kirby, 1986c).
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3. Model application and analysis

In order to test the new parabolic model for cases

of complex bathymetry, the case reported by Berkhoff

(1982) is considered. The experimental bathymetry

consists of an elliptic shoal situating on a plane

sloping beach of 1:50 slope. Fig. 1 shows the bottom

contours of the computational domain along with the

labelled transects 1–8 for which experimental data are

available. The incident wave height is 0.0464 m and

the wave period is 1 s. For a computational domain of

25
20 m, the grid size is Dx=Dy=0.25 m, which

corresponds to 101
81 grid points. Three iterations

for each column are required for convergence of Eq.

(17). Fig. 2 shows the wave height pattern behind the

elliptic shoal using the new parabolic model.

Comparison between the numerical results from

the proposed generalized parabolic model and the

experimental data along the eight transects as well

as the results from the higher-order parabolic model

of Kirby (1986a) are shown in Fig. 3a–h. Because

the wave angles for this case are very small, the

results of the two models are very close to each

other as shown in Fig. 3. Kirby’s (1986a) model

results, however, seem to be closer to the exper-
Fig. 1. Elliptic shoa
imental data for transect 6. The slight difference

between the two models results may be explained

by error in calculation of the wave angles by the

proposed model through Eq. (19). Generally, it is

concluded that the proposed model can simulate the

wave pattern for complicated bathymetry very well.

In order to test the capability of the new parabolic

model for wide wave angles, the circular shoal

problem used to test the nonlinear parabolic model,

which was developed by Li (1997), is adopted. Owing

to the axisymmetry of the circular shoal, the wave

focusing pattern behind the shoal should be inde-

pendent of the incident wave angle if the model is

correct (Dalrymple et al., 1989).

The water depth used is the same adopted by

Dalrymple et al. (1989), which is:

h ¼
(
h0 rNR

h0 þ a � b 1� ð0:2XVÞ2 � ð0:2YVÞ2
h i1=2

rbR

ð24Þ

where h0=0.336 m, a=0.12 and 0.18, b=0.2 and 0.3,

R=4 m is the radius of the shoal, r=(XV2+YV2)1/2 and

(XV,YV)=coordinates with the origin at the crest of the

shoal. The wave period is 1 s.
0
.3
5

l bathymetry.



Fig. 2. Wave height pattern behind the elliptic shoal (new parabolic model).
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Fig. 4 shows the wave height patterns behind the

circular shoal using the new parabolic model for

different incident wave angles. In Fig. 4a–c, the

parameters a and b are chosen as 0.12 and 0.2,

respectively. Fig. 4b and c, which correspond to

wave angles 458 and 708, respectively, are compared

with Fig. 4a, which corresponds to the case of

normal wave incidence. It can be shown that the

overall agreement between the two cases and the

case of normal incidence is good. The wave heights

along the wave focusing crest are correct without

any angle distortion. The symmetry, however, is

distorted for the case of h0=708.
In order to increase the shoal height and

consequently the bottom variation, the values of

0.18 and 0.3 were assigned to the parameters a and

b, respectively. The model results are filtered

according to Eq. (21) using c=0.05 for the case of

h0=708. For the case of h0=458 (Fig. 4e), the wave

heights along the wave focusing crest are correct

without any angle distortion. The case of h0=708 (Fig.
4f), however, reports significant change of the wave

heights along the wave focusing crest from the case of

normal incidence but still without angle distortion.
The symmetry is distorted for both cases especially

for the case of h0=708.
In order to compare Kirby’s (1986b) model with the

present model for wide wave angles, the same cases

described above are resolved using Kirby’s (1986b)

model. Fig. 5 shows the results of Kirby’s model. For

h0=458, the coefficients a0, a1 and b1 in Eq. (13) are set
to 0.999465861, �0.822482968 and �0.335107575,

respectively, which corresponds to range of applic-

ability up to 508. For h0=708, the range of applic-

ability has to be increased to 808, which corresponds

to values of 0.985273164, �0.925464479 and

�0.550974375 for the coefficients a0, a1 and b1,

respectively. Fig. 5 shows very similar results to the

present model in cases of h0=458 (Fig. 5a and c).

For the case of wide wave angle (h0=708),
significant shift towards the downstream of the

wave pattern behind the shoal is evident in (Fig. 5b

and d). Due to the error in the wave angle

calculation through Eq. (19), the proposed model’s

results for the case of h0=708 and large bottom

variations seem to be noisier than the results of

Kirby’s (1986b) model as shown in Fig. 4f and d,

respectively. However, due to the downstream shift



Fig. 3. Comparison between experimental and computational results for the elliptic shoal case.
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of the wave focusing pattern in Kirby’s (1986b)

model results, the proposed model results are closer

to the case of normal wave incidence (Fig. 4d).

Fig. 6a–b shows the longitudinal sections along the

wave focusing crests for the current model and

Kirby’s (1986b) model. It can be shown that both

models perform well for the two cases of h0=458.
However, the present model is better as Kirby’s

(1986b) model underestimates the wave heights

behind the shoal crest.

For the cases of h0=708, Kirby’s (1986b) model

significantly underestimates the wave heights behind

the shoal due to the shift in the wave focusing

pattern, which confirms that the present model



Fig. 4. Wave height patterns behind the circular shoal using the new parabolic model.
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Fig. 5. Wave height patterns behind the circular shoal using Kirby’s (1986b) model with angle ranges 508 (for a and c) and 808 (for b and d).
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performs better for wide angles as well. For the case

of large bottom variation and large incident wave

angle (h0=708), the noisy results of the present

model are evident as shown in Fig. 6b, which affects

the calculation of wave angles and consequently the

model results.
The results of Li’s (1997) model for the same

cases were inspected as well. Due to the upwind

scheme used in his model, Li (1997) reported that

Kirby’s (1986b) is better for small wave angles,

which implicitly implies that the present model is

better as well because it is better than Kirby’s



Fig. 6. Longitudinal sections along the centre of the shoal (in the direction of wave propagation).
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(1986b). For the case of h0=708 and small bottom

variations (i.e. a=0.12 and b=0.2), Li (1997)

reported slight shift of the wave pattern behind

the shoal crest. Being less than the shift reported by

Kirby’s (1986b) model, Li’s (1997) model is the

better for this case. The present model, however, is

more accurate for this case as shown in Figs. 4c

and 6a. For the large bottom variation case (i.e.

a=0.18 and b=0.3) with h0=708, after inspecting

Li’s (1997) model results, it can be shown that in

addition to the shift of the wave pattern towards the

downstream, the wave pattern immediately behind

the shoal crest is shifted in the x-direction (the

direction at which the line by line solution is

performed). This may be explained by the upwind

scheme implemented in this model. However, Li’s

(1997) model results for this particular case are

smoother than the results of the present model due

to the effect of the noisy results of the present

model in calculating the wave angles.
Table 1

Favourable parabolic model for respective

wave angle and bottom variation combinations

Small wave

angles (V458)
Large wave

angles (N458)

Small bottom variations Present model Present model

Large bottom variations Present model Li’s (1997) model
Based on the preceding discussion, Table 1

illustrates the favourable parabolic model for respec-

tive wave angle and bottom variation combinations.
4. Conclusions

The parabolic model based on the generalized

[1/1] Padé approximation for the elliptic mild slope

equation performs better than all the existing

parabolic models based on rational approximation

for large wave angles. The model can simulate

wave patterns for complicated bathymetry. The

numerical test case of the circular shoal confirms

that the new parabolic model can simulate the wave

pattern behind the shoal for very large angles up to

708. Comparison between the new model, Kirby’s

(1986b) model and Li’s (1997) model results shows

that the new model can simulate the wave heights

behind the circular shoal better than the other two

models. Li’s (1997) model performance for cases of

very wide wave angles with large bottom variations

is smoother than the current model due to the error

in wave angle calculation by the new model. The

new model is more user friendly than Kirby’s

(1986b) model because the coefficients a0, a1 and

b1 are calculated internally unlike Kirby’s (1986b)

model where the user has to specify a certain range

of applicability for wave angles.
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