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In media for which the speed of sound is position dependent, propagating sound will be refracted and, in 
some cases, focused. In the focusing regions, usually referred to as caustics or convergence zones, significant 
amplification of the pressure levels above those predicted by spherical spreading has been observed for con- 
tinuous waves as well as for explosive pulses. In addition, the waveforms of explosive pulses undergo drastic 
distortion. In the present paper, an asymptotic theory of the refraction and focusing of sound originating 
from a point source in a stratified medium is presented. It is applicable to realistic velocity profiles and 
encompasses both transient pulses and harmonic waves. A comparison with Barash's and Goertner's recent 
experiment involving explosive pulses indicates that the theory gives reliable estimates of the peak pressure 
levels at caustics, but reproduces only qualitatively the shape of the focused pulse. The discrepancy is attrib- 
uted mainly to the neglect of finite-amplitude effects in the theory's formulation. The inaccuracies inherent 
in the high-frequency asymptotic methods employed in the theory are discussed in some detail. 

INTRODUCTION 

Because the speed of sound varies from point to 
point in most bodies of water, propagating sound 
energy does not travel in straight lines but rather is 
refracted into curved paths. Under certain conditions, 
the paths will converge and sound energy that had pre- 
viously been distributed over a large volume is focused 
into a narrow region. The formation of these focusing 
regions--called caustics or convergence zones--is easy 
to visualize in the ray picture of geometric acoustics. 
Consider a converging bundle of rays. The cross-sec- 
tional area of the bundle evidently diminishes in the 
direction of propagation, and eventually the focal point 
may be reached where the cross-section vanishes. Ordi- 
narily the focal points of adjacent ray bundles do not 
coincide, but lie on a surface called the caustic. In special 
cases, the focal points do coalesce. Since in ray theory 
the intensity along a ray is inversely proportional to the 
cross-sectional area of the ray bundle, an infinite 
intensity would be predicted at the focus. For finite 
nonzero wavelengths, the focus can only be defined as 
a region with a high concentration of energy; only in 
the short wavelength limit where ray theory is rigor- 
ously valid will this region shrink to a point at which an 
infinite intensity is predicted. Experimentally, Barash 
and Goertner • have observed peak pressures over five 
times the values expected for isovelocity water for 

underwater explosion shock waves; at the same time, 
the width of the focused pulse was reduced by a 
factor of 3 or more compared to that of unrefracted 
pulses. The maximum pressures are generally found in 
the regions where ray theory predicts the formation of 
caustics. 

In this paper, the refraction and focusing of waves 
originating from a point source in a stratified medium 
is considered, the ultimate objective being the explana- 
tion of experimental data on the behavior of under- 
water explosive shock waves at caustics. While there is 
a large amount of literature in optics concerning caustics 
(primarily restricted to waves in homogeneous media), 
the consideration of caustics in underwater sound is 

relatively new (since about 1941), and most of the 
published work on the subject has been devoted to 
harmonic sources and to specific models of the propagat- 
ing medium. 2-9 Mathematical treatments of caustics, 
mostly confined to steady-state sources, are given in 
Refs. 10-12. We extend present theories along two lines. 
Drawing upon the procedures presented by Seckler and 
Keller, •3 we present a generalized formulation applicable 
to arbitrary sound-velocity profiles, for which both the 
source and the caustic may be contained in a non- 
homogeneous region. Secondly, in addition to harmonic 
waves, we consider transient pulses and, in particular, 
explosive-type signals. 
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The formulation is based on the fundamental assump- 
tion that nonlinear effects may be neglected. In regions 
away from caustics, the theory is equivalent to geo- 
metrical acoustics. However, in the vicinity of caustics, 
geometrical acoustics is not valid, but through the use 
of a higher-order approximation, the theory yields 
predictions on the caustic itself and in the nearby 
shadow zone, for time-harmonic waves. Nevertheless, 
for explosive pulses, the theory again predicts an in- 
finite intensity at caustics, which suggests that linear 
acoustics itself may be invalid in focal regions. 14 The 
most satisfying way to remedy this defect would be to 
introduce finite-amplitude effects directly into the 
theory, but, up to the present, the mathematical com- 
plexities of this task have not been overcome. In the 
hope, however, that some sort of correspondence to 
reality will be achieved, viscous dissipation, which is 
known to exist experimentally and which can be 
handled mathematically, is incorporated into the 
theory to ensure finite pressure levels. 

A comparison of theoretical predictions with the 
results of an experiment involving explosive pulses 
indicates that reasonable predictions of peak pressure 
levels at caustics can be obtained with the neglect of 
nonlinear effects. The fact that the waveform of the 

focused pulse is predicted only qualitatively is probably 
due to the omission of finite-amplitude effects from the 
theoretical framework. In general, since the theory is 
based on the linear acoustics approximation, it is 
certainly not expected to yield valid results for large- 
amplitude pressure waves. Nevertheless, the present 
theory can be viewed as a necessary first step towards a 
more comprehensive formulation incorporating non- 
linear effects, and work towards this end is currently 
in progress. 

It is plausible, however, that nonlinear and refractive 
phenomena may, to some extent, act independently 
so that their effects on a propagating wave may be 
linearly superposed. A method based on this point 
of view is described in an accompanying paper by 
Blatstein. 1' It uses the present theory in conjunction 
with the empirically valid similitude equations 16 
(which include finite-amplitude effects) and, in effect, 
accounts for nonlinearities during the propagation of 
the explosive pulse to the caustic vicinity (but ignores 
them at the caustic itself). The method shows good 
correlation with the results of experiments involving 
large explosives and great propagation ranges, and is 
partially successful in short-range experiments. 

The present paper is divided into four parts. In 
Sec. I, the theory of refraction and focusing phenomena 
from a harmonic source is evolved. Equation 14, the 
central result of Sec. I, gives the pressure at and in the 
vicinity of a caustic. In Sec. II, these results are used 
to describe focusing and refraction phenomena from 
a transient source by means of Fourier transformation. 
Equation 25 gives the time-dependent field in the 

caustic vicinity. In Sec. III, predictions of the theory 
are compared with some experimental results collected 
recently in a flooded quarry by Barash and Goertner 
(see Fig. 13). In Sec. IV, the results of the paper are 
summarized and some conclusions discussed. Details 

of the theoretical development not given here can be 
found in Refs. 17 and 18. 

I. REFRACTION AND FOCUSING FROM 
A HARMONIC SOURCE 

We obtain a high-frequency solution for a harmonic 
point source in a refractive medium. This asymptotic 
solution is the same as ray acoustics and gives rise to 
an infinite pressure at a caustic. Consequently, a 
higher-order approximation is obtained for which the 
pressure remains finite. The accuracy of the approxi- 
mation is then discussed. Finally, some examples are 
given that illustrate the application of the theory and 
also give some further insight into its domain of 
validity. 

A. General Solution for a Point Source 

We consider a medium whose sound speed varies in 
the vertical direction, which we take to coincide with 
the z axis of a Cartesian coordinate system (x,y,z). For 
brevity, we assume that there is no water surface or 
bottom interface present. We assume a sound source at 
the origin that emits an initially spherical harmonic 
wave, 

P exp[--iw(t--R/c)'] 

(4•rR) 

where R is the radial distance from the source to the 

observation point. We must find solutions to the re- 
duced wave equation 

V•.p-½k%e(z)p= --P6(x)6(y)6(z), (1) 

where p is the pressure field, n(z) is the index of refrac- 
tion normalized at the source 

=c(O)/c½), 

c(z) is the sound speed (a function of z), and k is the 
wavenumber at the source 

(The time-dependence factor e -i•t has been suppressed 
in Eq. 1 and is omitted in the following.) 

Because the problem is cylindrically symmetric 
around the z axis, it is convenient to introduce the 
cylindrical coordinate system (r,•Y,z), where r is the 
radial distance in the horizontal direction and t• is the 

azimuthal angle in the horizontal plane. By applying 
a Hankel transform, 1ø Eq. 1 can be reduced to an 
ordinary differential equation' 

O•'f/Oz•'-}-k•'[n•'(z)- •'-]f= -- (P/2•-)b(z), (2) 
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FIG. 1. Schematic representation of the WKB solutions in the 
presence of a turning point. 

where the Hankel transform of p is defined by 

= 
ß 

and the inverse transform is given by 

p(r,z) = f (•,Z)Jo(k•r)kSd•. 

The path of integration in the inverse transform can 
be extended to include the entire • axis by following a 
standard procedure. so We obtain 

2 "' 

We can consider this integral a superposition of 
partial waves which, in regions at distances from the 
source large compared to a wavelength and for which 
n does not vary appreciably over a wavelength, appear 
over localized regions as being approximately of the 
form 

A (•,r,z) expEik•r+ik (n 2-- •2)•z-]. 

For •< n, such terms resemble plane waves propagating 
at an angle sin-•(•/n) with the z axis. Those terms with 
•>n decrease exponentially in the z direction (inhomo- 
geneous waves), and their contribution to the integral 
will be small for large kz. 

For the present we need only concern ourselves with 
the nature of the integrand in ranges of • where •< n, 
since the behavior in this region largely governs the 

form of the wave. The range of such values of • varies 
with z; at the source, where z=0, we accordingly 
consider • < 1. 

For a specific •, there may exist points z, at which 
n(z,,)=•. Such points are called the turning points of 
differential equation, Eq. 2. The propagation angle 
sin-•(•/n) becomes horizontal and the vertical compo- 
nent of the wave's motion reverses its direction. It is 
shown that corresponding to each reflection at a 
turning point, at most, one caustic is formed. We study 
the formation of a caustic, after reflection at the first 
turning point. Reflections from further turning points 
will be ignored. 

B. The WKB Solution 

An exact solution of Eq. 2 is only possible for certain 
simple analytical forms of c(z). However, a general 
high-frequency asymptotic solution can be given with 
the aid of the WKB approximation. a• We assume in 
the following that a turning point exists and that it lies 
below the source. This happens if c(z) monotonically 
decreases with increasing z or, if c(z) is not monotonic, 
if the existence of a boundary prevents the formation 
of turning points above the source. 

The WKB solutions corresponding to waves that 
have left the source but have not passed through a 
turning point are 

Pexp{ q- ik[ •o(0) -- •o(z)']+i•r/2 } 
f(•,z) = , (3) 

4•rk (n s-- •s)•(1 - •s)• 

where the sign in the exponential is taken positive or 
negative depending on whether z is negative or positive. 
The WKB solution corresponding to the wave reflected 
at the turning point (but traveling away from the 
source in the r direction) is given by 

?expliE½(0)+(z)]l 
= . (4) 

4,rk (n s-- •s): (1 -- •s)• 

The auxiliary function •(z) is defined by 

= 

A schematic picture of the WKB solutions is given in 
Fig. 1. 

C. Ray-Acoustics Solution 

The inverse Hankel transform is evaluated asymp- 
totically in the limit of large frequency by means of 
the method of steepest descents? • Substituting for the 
Hankel function its asymptotic form for large argu- 
ments, and for f(•,z) the WKB approximations given 
by Eqs. 3 and 4, we obtain for waves which have left 
the source (but which have not passed through a turning 
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point) 

where 

P 4•r 

X .2,rr(n2_ •) •'e ikW(•.r,z)+i•r/4 (6) ' 

W ( •,r,z) = •r4- E • (O) -- • (z)-] , 

and, for the wave reflected at the turning point, 

p(r,z) =-- d• 

x (n(1 - 
where 

•'e ikW(•,r,z)-i•r/4 (7) 
w = + v (0) + v ½). (8) 

The branch cuts of the square roots in Eqs. 6 and 7 lie 
along the negative axis, and, for positive real values of 
the arguments, the positive square root is to be taken. 

If OW/O• has zeros at •=•j, and k is sufficiently 
large, the method of steepest descents informs us that 
the main contributions to the integral are in the vicinity 
of these zeros. We expand W(•) around 

W (•) = Wiq-« (•- 5s)2W/'q-..., (9) 
where 

W.i= W (•j),Wj" = O•W (,•)/O,• ø- ] •=•, etc. 

By definition 
w/=0. 

Assuming the amplitudes in the integrands of Eqs. 6 
and 7 are slowly varying in the neighborhood of •, 
and neglecting higher-order terms in Eq. 9, we find, 
provided W/'•O, for the wave incident upon the 
turning point 

; 

Xexp{ik[•sr+v(O)--v(z)•+i•r/2}, (11) 

and for the reflected wave 

pr(r,z) 4,r J r(1-•?)•(n2-•?)•E•"(O)q-•"(z)• 
Xexp{ik[•3r+•(O)+•(z)•}. (12) 

In writing Eqs. 11 and 12, we have, for brevity, 
assumed that W/' is positive, and we also recall that 
we are confining ourselves to modes with •<n(z), 1. 
Furthermore, with the assumption that c(z) mono- 
tonically decreases with increasing height, it can be 
shown that •i_>_0. 

C(Zr): c( 0)/½ 

t-inc ident 
wove 

Fro. 2. Ray diagram and velocity profile. 

Equations 11 and 12 are equivalent to the ray- 
acoustics solutions; each term corresponds to a ray 
leaving the source at an angle 0•=sin-l• with the 
vertical (see Fig. 2). 

It might appear that Eqs. 11 and 12 are not valid 
at turning points, where (n•--•?) • vanishes. However, 
as z • z,, the term e"(z) in the denominator will be 
found to diverge as (n --• ) •, and hence no singularity 
appears. Furthermore, since, from Eq. 5, both •(z) --• 0 
and •' (z)--• 0 as z • z,, the phases of Eqs. 11 and 12 
become identical at the turning point. [Note that the 
,r/2 in the phase of Eq. 11 is cancelled by the appearance 
of an i in the denominator, which arises because 
W•" -• -- (n •-- •/?)-• as z -• z•.-] Thus the two ray 
solutions have well-defined bounded identical limits 

at turning points and hence are usable at these points. 
It therefore follows that there is no phase shift at a 
turning point (unless the turning point lies on a 
caustic). The absence of a phase shift at a turning 
point has been verified in an exactly soluble problem 
(see Sec. I-E and also Ref. 23); experimental evidence •'• 
also appears to confirm the same conclusion. 

The ray solutions cannot, however, be used at a 
caustic. Mathematically, a caustic will arise when the 
denominator in Eqs. 11 or 12 vanishes because Wy" 
goes to zero. In the range under consideration (in 
which n> •), •/' (z) is an increasing function of decreas- 
ing z. Hence, the denominator in the expression for pg 
will have no zeros other than at the origin. However, 
for increasing z, •/'(z) decreases and there may exist 
a point z at which •," (z)=- •," (0). The location of the 
caustic is then found from the solution of this equation, 
which is independent of r, and from Eq. 10, or 
r= q'(z)--•' (0), where • is defined in Eq. 5. In dif- 
ferentiation with respect to •, it should be kept in 
mind that the lower limit of integration in Eq. 5 is a 
function of • through the relation n(z,)= •. The order 
of integration and differentiation should not be reversed 
unless this dependence is taken into account. 

We conclude that the rays will not encounter a 
caustic between the source and first turning point, 
but may pass through at most one caustic after passing 
the turning point. In other words, only the ray reflected 
at the turning point (Eq. 12) can pass through a caustic. 
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No second caustic will be encountered unless the rays 
are reflected again by a second turning point. 

D. The Field at a Caustic 

Consider some point on the caustic (rc,zc). The ray 
going through this point is given by •= •c, the solution 
of W'(•,r•,z•)=O. By definition, we also have for a 
point on the caustic W"(•,zc)=O. W" is independent 
of r (see Eq. 8). Hence, for some point at the same 
depth but not on the caustic (r•rc, z=z•), we have 
W'(•s,r,z•)=O but W"(•s,z•)•O, while at this same 
point W'(•,r,z•)•O but W"(•,,z•)=0. 

For points not on the caustic, if we expand W(•) 
around •, we will automatically get rid of the term 
in W": 

W(•,r,zc) = Wc(r)-]-Wf (r)A•d-•W,'" (A •)3, 

where 

A•---- •-- •,Wc(r)--= W (•,r,z•), . . . etc. 

From Eq. 8 it follows that 

W•' (0 - W•' ½3 = [•+ •' (0) + •' (z3 • 
-E•+•'(o)+•'½•)], 

and, using the fact that Wf (re) =0, 

Wf (r) = r--r• = Ar. 

Assuming the amplitude factor in Eq. 7 is slowly vary- 
ing, the integral becomes 

p(r,Zc) = e ikW*(r)-ir/4 
2•rr (n 2 (z•)- •2)-• (1 -- 

where 

2 

and 

s=A•I4-k• 
p = •'Ark•, 

r=(«lw/"l) -*, wz"o. 

The integral can be expressed in terms of the Airy 
function (Fig. 3), giving 

P { 2•r•c -•' p(r,z•) =--k•/ø• ' 

XAi(4-k•-Ar)eikW,(r)-g=/4 w '"•0. (14) 

This solution expresses the field at an arbitrary height 
z• as a function of •r, the horizontal distance from the 
caustic. The sign of Wf" is negative if the shadow zone 
lies between the z axis and the caustic boundary; it is 
positive if the illuminated zone covers the same region 
(Fig. 4). The applicability of Eq. 14 is restricted not 
only to large frequencies, but also to the vicinity of the 
caustic. It is, however, valid on both sides of the 
caustic (•r>0, •r<0) as well as on the caustic itself 
(•r=0). On the caustic, the pressure is seen to increase 
with the one-sixth power of frequency. 

On the illu•nated side of the caustic (the positive 
x axis in Fig. 3), the interference of rays approaching 
and receding from the caustic produces spatial oscilla- 
tions in the field amplitude. Note that the peak pressure 
occurs not on the caustic itself, but at some distance 
away. In the shadow zone (the negative x axis), the 
amplitude is strongly damped with distance. 

The ray solution for the reflected wave, Eq. 12, 
becomes inaccurate in the vicinity of the caustic, while 
the caustic field solution, Eq. 14, is valid only in a 
region around the caustic. It can be shown •* that the 
layer about the caustic in which Eq. 14 rather than the 
ray solution must be used, is defined by 

Because Eq. 14 is applicable in a layer centered on the 
caustic, it is referred to as the "caustic boundary-layer 
solution." 

On the shadow side of the caustic, the roots •y of 
Eq. 10 are complex. According to geometrical acoustics, 
this region corresponds to the shadow zone. By the 
introduction of complex rays, ray theory can be 
extended to predict nonzero pressures in this region. 
In the vicinity of the caustic, the caustic boundary- 
layer solution is still valid. 

E. Accuracy of the Caustic Field Solution 

A number of approximations have been used to 
obtain the caustic boundary-layer solution, and it is 
therefore useful to obtain an estimate of its accuracy. 

If we retain the next higher-order terms in the Taylor 
series expansions of the amplitude factor of Eq. 7 and 
the phase function, Eq. 9, we have 

'(n' •')•(1 •')•' a• (16) 
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and 

W (•) = Wc(r)+W,' (r)A•+ (1/6)Wd" 
+(1/24)W/"'(z•) 4. (17) 

Higher-order terms in the asymptotic expansion of the 
Hankel function and similar higher-order corrections 
to the WKB solutions can be ignored, since they will 
lead to terms of much higher order in frequency than 
those we derive below. 

If we imagine that the term involving We'"' in 
Eq. !7 is a small correction, then we may write 

e •kw <•> = exp{ ik[Wc (r) + ArA•+ (Wd"/6) (A •)a•} 
X[-l+ik(Wd"'/24)(zX•)4•. (18) 

If we suppose that the term containing A• in Eq. 16 
is also small, then retaining only lowest-order correc- 
tion terms, the substitution of Eqs. 16 and 17 into 
Eq. 7 gives 

ik 
F F 'A F W "" X[ •d-• •q-•-• • • (At/)41, (19) 

where 

and 
? = F U - 

F,=F(•0, Fd=OF(•)/O•I •:•. 

w2-o wE'-o 

FIG. 4. Relation of shadow-zone location to sign of Wd". 

By comparison with Eq. 13, the integral of the first 
term in the square brackets in Eq. 19 is the caustic 
boundary-layer solution of Eq. 14. The remaining 
terms can be evaluated by noting that, for the integral 

dSeiktara•+(w,/o) (a•)al (A•) n, 

a recursion formula 

Iv = In_• (n= 1, 2, 3, 4, ...) 

holds, where 

Io = (2•-•'/k•) Ai(q-p), (W,'"X0). 

The final result for the pressure is 

p(r,zc) =--k•/6f 
(1 - 

Ai (--bO)eikWc(r)-i•/4-• - Wzf • 
4•rk•/6 r[n • (zc) -- •?]•- (1 -- 

1 

•'• 2•rtjc W,'"'[-2 Ai'(-4-p)+p • Ai(-4-p)-! e 'kwc(r)+i•/', XAi' (q-0)-+--- 
24 - 

(20) 

where 

and 
Ai' (4-p)=d Ai(x)/dx[ 

Equation 20 expresses the pressure field as the sum of 
the caustic boundary-layer solution (Eq. 14) and a 
"correction" term. The correction is to be applied only 
in the caustic boundary layer defined by Eq. 15. A more 
complete analysis indicates that the pressure field can 
be expressed in terms of an asymptotic series, • for 
which Eq. 14 is the leading order term and the correc- 
tion is the next higher-order term, provided that the 
quantity p is always finite. Because of Eq. 15, this con- 
dition is automatically satisfied. 

It should be recalled that asymptotic series are 
radically different from the convergent series usually 
encountered. For a convergent series, the accuracy of 
a partial sum can generally be increased by the use of 
additional terms and the process repeated indefinitely 

to achieve any desired degree of accuracy. In contrast, 
for an asymptotic series, the addition of higher order 
terms to the leading term may at first increase the 
accuracy of the answer, but eventually a point will be 
reached where the use of additional higher-order terms 
will decrease the accuracy. 

Although the optimum procedure for using the 
asymptotic series whose first two terms are given in 
Eq. 20 has not been determined, a study 2•.•ø of other 
asymptotic series suggests that the correction term 
can be useful in several ways: (1) If the magnitude of 
the correction term is very small in comparison to the 
caustic boundary-layer solution, then the latter is an 
accurate approximation. (2) If, on the other hand, the 
correction is much larger than the uncorrected term, 
then the caustic boundary-layer solution is probably 
very inaccurate. In this instance, an analogous study 
by Senior •ø suggests to us that the best possible answer 
is obtained by using the caustic boundary-layer solution 
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FiG. 5. Comparison of partial sums of an asymptotic expansion 
with exact answer (adapted from Senior, Ref. 26). 

alone. (3) Finally, if Eq. 20 is used to represent the 
pressure, the result may be more accurate down to 
lower frequencies than Eq. 14 alone, which tends to 
become progressively more erroneous as the frequency 
decreases. Ultimately, however, even Eq. 20 will begin 
to err drastically for sufficiently low frequencies. 

These "rules" governing the use of higher-order 
terms in an asymptotic expansion are illustrated in one 
of the problems studied by Senior, the backscattering 
of plane sound waves by a rigid sphere. For a quantity 
closely related to the backscattering amplitude, 
Senior computes the values of an exact series expression 
and compares them with various partial sums of an 
asymptotic expansion for the same quantity. The 
expansion is expressed in inverse powers of ka, where 
k is the wavenumber and a the radius of the sphere 
(Fig. 5). In Fig. 5, the curve labeled "l-term" is 
obtained by retaining only the leading-order term of 
the asymptotic expansion. The curve labeled "2-term" 
is computed from the first two terms of the expansion, 
and so on. 

Rule (1) is illustrated by a comparison of the 1-term 
and 2-term partial sums with the exact result. In the 
range ka• 4, the magnitude of the second term of the 
expansion is clearly small compared to the first term; 
the 2-term sum is very close to the 1-term sum, and both 
are quite accurate. ',•!, 

Rule (2) is illustrated by the behavior of the 1- and 
2-term partial sums as ka--• O. As ka decreases from 4, 
the magnitude of the ratio of the second-order term to 
the first-order term grows from 0.37 at ka--4 to 0.5 
at ka=3, and then to 1 at ka-l.5, and finally ap- 
proaches infinity as ka--•O. At the same time, the 
accuracy of the first term diminishes. Nevertheless, 
for small ka, the best possible answer is still given by 
the leading-order term alone. Turning our attention 
back to Eq. 20, we see that for p fixed, as k--• 0, the 
correction term actually diverges, while the leading- 
order term vanishes. Judging from Senior's example, 
we expect it would be best to ignore the correction term 
entirely at "low" frequencies, where the threshold of 
the low-frequency regime could be defined as that 
frequency below which the correction term is about the 
same magnitude as or greater than the leading-order 
term. 

With reference to rule (3), note that the figure indi- 
cates that for ka>•2, the 3-term sum is a markedly 
better approximation than any of the other partial 
sums, thus showing how much the accuracy of the 
leading term of an asymptotic expansion can be 
improved upon by the proper use of higher-order terms. 
On the other hand for kay< 1, the 3-term sum yields 
a much worse approximation than either the 2- or 
1-term sum. In many asymptotic series, the addition 
of just the lowest-order correction term alone to the 
leading-order term suffices to improve the accuracy 
over a range of the parameters involved. However, 
for Eq. 20 as for many asymptotic expansions en- 
countered in practice, it is extremely difficult to deter- 
mine a priori the optimum number of terms to use for 
maximum accuracy. One possible approach is to use 
as many te•ns as needed to give the best possible 
agreement with experiment. 

F. Three Examples 

Three examples are considered for which the integral 
of Eq. 5 can be evaluated analytically. Some observa- 
tions on the theory's domain of validity are discussed. 

1. Homogeneous Medium 

For a homogeneous medium 

and hence 

n(z) = 1. 

While for such a medium there will be no turning points 
or caustics, it is of interest to compare the results of 
the asymptotic theory with the exact solution. We only 
have to consider the incident wave, for which 

W(•,r,z)=•rq- z[ (1-•2) «, 

W' (•,r,z) = r - I z • (1 - •)-•, 
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The equation W•=0 has only one root 

or 

0•= tan -• (r/lz), 

which follows from the relation 0i=sin-•i. 
Excluding the case z=O, corresponding to the hori- 

zontal ray 0•=•r/2, we find that W/'<0 for all z; 
hence there are no caustics. Substituting in Eq. 11, 
we obtain 

Wltt I •e-ik W1--½i•- /2 
P 

=--.[sin0• cosO•/r z I ]-• exp[ik(r sin0•+ [z I cos0•)] 
4•r 

= (P/4•r)(e'er/R), 

where 

R= 

Hence, in the absence of refraction, the asymptotic 
solution is identical to the exact solution. 

Note that despite the use of the large argument 
approximation for Hoa)(k•r) as an intermediate step 
in obtaining the asymptotic solution, the final result 
is valid for all frequencies and any distance from the 
source. Also, it can be verified that the lowest-order 
correction to the above result (which should be of order 
I/k) is identically zero. This suggests that all higher- 
order corrections may vanish as well, although this has 
not been proven. 

2. Medium with a Constant Velocity Gradient 

A medium with a sound velocity that increases 
linearly with depth, 

c(z)=co(1-az), a>0, 

n(z)=l/(1--az), 

gives rise to refraction phenomena and turning points. 
An exact solution for this case was obtained by Pekeris 27: 

p (r,z) = (P/2•ra) [- (1 -- az)¾RR'• exp[-i2v tanh -• (R/R') •, 

where 

and 

R= 

R' = [-r2q - (z-- 2/a?-]•, 

We now obtain the ray solution. For a ray with 
•/< 1, the turning point is given by 

z,=(1/a)(1--1/•). 

Hence 

•o(z,•) = - [-1-- •(1--az)2] • 

+ln { 
•o' (z,•)= --[1--•(1--az)•]l/a•, 

1--[-1-- •(1--az)•]•}), •(1--az) 

and 

•o" (z,•) = { a•2[ 1 -- • (1 -- az)•] • 

The ray solution is found by substitution in Eqs. 11 
and 12. The result is 

P (1-- az) :' 
p(r,z) .... 

2•-a RR' exp[i2k• tanh-'(R-•) ]- 
This solution illustrates the behavior at the turning 
point described in Sec. I-C. As z-->z,, (W'--•') « 
=[-1/(1--az)2--•]l--> O, but •o"--• m as [1/(1--az) 2 
--•'-]-•, and consequently there is no singularity in the 
denominator of Eqs. 1! or 12 at the turning point. 
Similarly, as z -• z,, •(z) and •' (z) --• 0, and the phases 
in Eqs. ! 1 and 12 become identical at the turning point, 
where we recall that in Eq. 11, W"<0 and the •r/2 in 
the phase is canceled by an i in the denominator, which 
appears when the square root of W" is taken. Hence, 
there is no abrupt phase shift at the turning point and 
furthermore, the ray solutions have well-defined 
identical limits at the turning point. This result agrees 
with the exact solution that displays no discontinuous 
or singular behavior at the turning points. We also 
note that for the turning-point reflected ray 

Wit (z,5) = [-a•: (1 -- 5:)•]-1 + { a52[ 1 -- 5s(1 -- az):] «}-• 
> 0 for all z; 

hence no caustics are formed. 

The relationship between the exact and ray solutions 
can be clarified further. By expanding v into a series, 

= 1 4(k)a 

![ 
1 1 

2[-4(k/a) •] 8[16(k/a) 4] 

we may write 
' ] 16[64(k/a) 6] 

exp[i2u tanh-•(•)] = exp (i2 tanh-'(R-•) 
k 1 1 a 2[4(k/a)'] 8[16(k/a) •-] 

16164(k/ a)•'] 
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with which the exact solution can be transformed 
through use of the Taylor series expansion for the 
exponential to take the form 

P(1--az)':' I (R•) 1 - exp i2• tanh -• p(r,z) 2ra RR' 
P(1 --az)•" 

2•raRR • expIi2 ! tanh-•(•)l 

x[1- 
[-i2 tanh-•(R/R')] Fi2 tanh-•(R/R')] 2 

2[-4 (/e/a)• 2{4F16(k/a)2•} 

[i2 tanh-•(R/R') • 8[16(k/a)3 • • ' " . 
The first term in the expansion of the exact solution is 
seen to be the ray-acoustics solution. The ray-acoustics 
solution is therefore an accurate approximation when 
the higher-order terms in the expansion are small. 
For a fixed location (R, R' fixed), the higher-order terms 
will vanish as k/a-• •. Hence the ray solution is 
accurate when o•>>Oc/Oz, i.e., when the frequency is 
much larger than the gradient of the velocity profile. 

For k/a fixed, we examine the behavior of the 
quantity tanh-•(R/R ') as a function of location to 
determine how the accuracy of the ray solution depends 
on position. Since tanh-• x is a function that increases 
monotonically from zero at x-0 to infinity as x • 1, 
tanh -• (R/R') -• 0 as R -• 0 while tanh -• (R/R') -• oo 
as R-• m [since (R/R •) -• 1 as R-• m •. Hence, for 
any given value of k/a, the ray solution's accuracy 
decreases with increasing range from the source. 

Our results can be interpreted as follows. When the 
propagating wave is sufficiently close to the source, the 
medium's effect must be small and the wave must look 

very much like that from a point source in a homo- 
geneous medium. We would therefore expect from the 
previous example that our theory should give an 
accurate result in the source vicinity. We see from the 
exact solution that the correction terms to the ray 
solution will indeed be small close in, and it can be 
verified that the ray-acoustics solution approaches the 
limit Pe•kR/4•rR as R-• 0. As the wave moves away 
from the source, the influence of the medium becomes 
progressively more important, and the effects of refrac- 
tion cause the ray-acoustics solution to alter from its 
close-in behavior and the correction terms to grow in 
importance. 

This result supports the observation we made in the 
first example about the use of the large argument ex- 
pansion of tIo(•)(k•r) in obtaining the ray-acoustics 
solution. We conclude that the accuracy of ray acoustics 
does not necessarily depend on the condition kr>> 1. 

We should also note that the higher-order corrections 
to the ray solution, as well as the ray solution itself, 
show no unusual behavior at the turning points of the 
rays. Thus, although the WKB approximation is used 
as an intermediate step in obtaining the ray-acoustics 
result, and although it is well known that the WKB 
method breaks down in the vicinity of the turning 
points of Eq. 2, the accuracy of the ray-acoustics solu- 
tion does not deteriorate as the field point approaches 
the ray turning points. The explanation of this apparent 
paradox is that if Eq. 2 is thought of as describing one- 
dimensional wave propagation, the turning point of 
Eq. 2 corresponds to a caustic and the WKB solution 
will indeed diverge there. However, we are in reality 
considering two-dimensional wave propagation, for 
which it is well known that the ray-acoustics solution 
and the higher-order corrections to it are well behaved 
at ray turning points. The ray solution diverges only at 
a caustic which, in the two-dimensional case, is always 
separated from the turning points of the rays. 

3. Medium with a Bilinear Profile 
A medium with a bilinear sound-speed profile will 

display the formation of a caustic. We assume the sound 
speed defined by 

c(z) =Co, z>0, 
c (z) = co (1 - az), z < O. 

While this profile is very similar to one considered by 
Brekhovskikh 28 and identical to that studied by 
Friedman, •'9 it happens to be an appropriate model for 
the experiment analyzed in this paper and, in addition, 
it provides another illustration of the application of the 
general formulation we have developed to a specific 
profile. 

We assume the source to be at a height z0 above the 
origin rather than at the origin itself. We obtain the 
turning-point-reflected ray solution for z>0 only. 

The ray solution for the wave reflected at the turning 
point is given by 

p (r,z) =-- Y'. 4r J (1 -- •?)W/" eik 
where 

W (•,r,z) = •r q- qv (z) q- qv (Zo) 
= •r+ (Z+Zo)(1-- •2)•-- 2a -• 

X F (1 - •') «- tanh -• (1 - •2)«-], 
W'=r - (Z+Zo)•(1-$•.)-•-2(a$)-•(l_$2)•, 
W" = - (Z+Zo) (1 - •2)-•_• 2 (a•2)-• (1 - 

Letting W'=0, we obtain a quadratic equation in the 
variable •(1-•2)-•. For r=r,=F8a-•(z-l-zo)]i, we find 
that W"=0 as well, and that the quadratic equation 
has one real root 

•, = [4 (•-+- z0) •' -+- r,2 ]-•r •, 

corresponding to the caustic. 
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For r>rc, there are two real roots given by 

•/• (1 -- •/•-)--.:- - --_t: 
•. 2 2 (z+z0) (Z•Zo) •' a(z-+-Zo) 

corresponding to the rays approaching and receding 
from the caustic; and for r<rc, no real roots exist, 
corresponding to the shadow zone. 

Figure 6 shows the ray diagram corresponding to this 
model. The caustic has two branches, only one of which 
penetrates into the region z>0. Note that each ray has 
passed through a turning point before it encounters the 
caustic and also that the rays have only one point of 
tangency with a caustic. 

The two branches meet at a cusp. At the cusp, 
W'"=0 and hence the caustic boundary-layer solution 
breaks down. For a treatment of this region, see 
Brekhovskikh? 

We can get some further insight into the accuracy 
of the caustic boundary-layer solution by evaluating 
the magnitude of the ratio of the correction term to the 
caustic boundary-layer solution. Confining our atten- 
tion to the caustic itself, after substitution of the 
formulas for •, and r, into Eq. 20, this ratio becomes 

(1•)« I Ai' (0) 1 ['aCz-+-Zo)/2-]"• A-• ] k/'a [« [-1-3-a(z+z0)/2-]":" 
From the discussion in Sec. I-E, it will be recalled that 
the caustic boundary-layer solution is expected to be 
accurate when this ratio is small compared to unity. 

For a fixed location (z fixed), the ratio goes to zero 
as [k/all goes to infinity. That is, the caustic boundary- 
layer solution will be accurate for frequencies much 
larger than the velocity gradient in the region z<0. 
If we prefer, we can think of k as fixed and a as a 
variable. Since the medium becomes homogeneous 
everywhere in the limit a-* 0, the magnitude of a is 
a measure of the amount of refraction present. Now the 
ratio increases as a increases; hence we conclude that 
the larger the velocity gradients and the more pro- 
nounced the refraction, the larger the error in the 
caustic boundary-layer solution. 

For fixed [k/a I, the ratio increases monotonically 
with increasing z. From the ray diagram of Fig. 6, 
it will be noted that the separation between a given 
point on the caustic and the turning point of the ray 
through that same point on the caustic increases with 
increasing height. This suggests that the accuracy of 
the caustic boundary-layer solution diminishes with 
increasing distance between the caustic point and the 
turning point of the related ray. 

II. REFRACTION AND FOCUSING FROM A 

TRANSIENT SOURCE 

The ray-acoustics and caustic boundary-layer solu- 
tions developed in Sec. I for a harmonic source are used 

:c o (1-oz) 
o 

c(z)=c(o) 
z 

Fro. 6. Bilinear sound-speed profile and associated ray diagram. 

to describe transient sources by means of Fourier 
transformation. The properties of the transient forms 
of the ray-acoustics solutions are studied, and it is 
shown that the ray solution that has passed through a 
caustic exhibits a precursor and an infinite peak pres- 
sure for steep-fronted source pulses. The transient form 
of the caustic boundary-layer solution is likewise found 
to distort the initial source pulse severely, constricting 
its width, adding a precursor, and yielding an infinite 
peak pressure for source pulses with abrupt steps. The 
use of the correction terms to the caustic boundary- 
layer solution in the time-dependent case is discussed. 
Finally, the inclusion of viscous effects into the theory 
is described. 

A. Fourier Transformation of the Harmonic Solutions 

The solution for a transient source can be obtained 

from the solution for a harmonic source by Fourier 
transformation. We again start with an initially spheri- 
cal wave near the origin of the form 

F(t--R/c) 
p(R,t) . (21) 

4•rR 

The governing time-dependent wave equation is given 
by 

WP-E1/c•'(z) -] (02/oF)p= -t• (x)•5 (y)•5 (z)F (t). 
The Fourier transform 

• (co) = f:oo P (t) e•tdt 
satisfies the transformed equation 

W'• + •%•' ½) • = - P ½)• (•)• (y)O (z), 
which is identical to the equation for the harmonic 
source, provided we replace the amplitude factor P by 
the transform of the transient pulse, /?(co). The time- 
dependent solution is given by the inverse transform of 
the harmonic solution 

_ ! ;+• p(r,z,t)-•j_o ø e-•½(r,z,w)dw. (22) 
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(a) 

EXACT AND 
RAY ACOUSTICS 

(b) x 
__g 

(•) ½:• 

t fRAY I'"•' ACOUSTICS 

EXACT 

EXACT AND .•i RAY ACOUSTICS 

FIG. 7. Comparison of exact and ray-acoustics pressure-time 
histories for an impulsive point source in a constant-velocity- 
gradient medium. (a) R•0; (b) R=R•0; (c) R=R2>>R•. 

The range of integration includes negative as well as 
positive frequencies. In Sec. I, we have tacitly assumed 
co to be positive. Extension to negative frequencies is 
accomplished by imposing the physical requirement 
that p(r,z,t) be real for all t. This implies that 

(23) 

where the asterisk denotes complex conjugate. Hence, 
if our solutions are to be extended to negative fre- 
quencies, they must be modified by means of Eq. 23. 

B. The Ray Solution 

In instances where a caustic has not been encountered 

by a ray, it has been shown that W"<O for a wave 
that has not passed through a turning point, while 
W">O for one that has. From Eqs. 11 and 12, both 
cases can be represented by the formula 

4•- (•- •)•(n•- •)• l w" I ' 
where 5 is a solution of W' =0. Note that this expression 
automatically satisfies Eq. 23. From Eq. 22 we obtain 

w"l 
(24) 

The time history of the pulse apparently undergoes no 
distortion, and the delay given by W/c equals the travel 
time of the pulse along the ray. This result is not, in 
general, rigorously valid because it is based on a high- 
frequency approximation. Since the front of a pulse of 
any arbitrary shape is determined by the high-fre- 
quency portion of the spectrum, we expect Eq. 24 to 
yield a good description of the pulse onset. It will not, 
in general, give valid results at large times beyond the 
passing of the front. 

The accuracy of Eq. 24 also depends upon the non- 
homogeneity of the medium. For example, in a homo- 
geneous medium, the ray solution, Eq. 24, is exact for 
all times. For a medium with a constant velocity 
gradient, it can be seen from our discussion in Sec. I-F 
that the ray solution is a good approximation over a• 
large time range for observation points close to the 
source, but that as the distance to the source increases, 
the accuracy of the ray theory in the time domain 
beyond the front decreases. This type of behavior can 
be verified using the results of Myers, • who gives an 
exact solution for a &function pulse (see Fig. 7). 
Close to the source, the exact pressure time history is a 
b function, the same as ray acoustics would predict 
[-Fig. 7 (a)•. As the pulse propagates, it develops a tail 
behind the front [-Fig. 7 (b)•, which becomes progres- 
sively more pronounced as the range increases [-Fig. 
7(c)•. These two examples suggest that if refractive 
effects are absent (as in the first example) or if they 
have not had a chance to take effect (as in the case of 
the nearby observation point in the second example), 
then the ray solutions will be accurate over a long 
time domain. But as the pulse propagates, the effects 
of refraction accumulate, and the ray solution becomes 
less and less accurate for epochs beyond the wavefront. 

For a ray which has passed through a caustic, the 
term W" in the denominator of the ray solution will 
become negative, contributing a •r/2 term to the phase: 

where the function 
X exp[-ik W (r,z) - (iv/2) sgnco], 

multiplies the phase shift in order to comply with 
Eq. 23. While the phase shift appears to be of little 
consequence for harmonic waves, it leads to significant 
distortion for transient pulses. For example, a transient 
pulse, upon undergoing a •r/2 phase shift in the fre- 
quency domain, is changed into a Hilbert transform in 
the time domain •2 

(2s) 
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where 

1 /j F(r) Fu(t) =- Pr •dr, 
•r o•r--I 

and Pr denotes principal value. 
Figure $ shows some pulses together with their 

Hilbert transforms. The transformed pulses have two 
characteristics that are unacceptable on physical 
grounds' 

(1) precursors extending back to t-•--• •; 
(2) logarithmic singularities corresponding to step 

discontinuities in the pulse. 

We discuss the implications of these features on the 
validity of the theory. They are associated with, 
respectively, the lower and upper limits of the fre- 
quency spectrum. 

1. Precursors 

Since the solution in the frequency domain was based 
on a high-frequency approximation, it is not necessarily 
correct in the low-frequency limit. Unreasonable be- 
havior at large times, whether positive or negative, is 
therefore understandable in terms of the approximations 
used. 

2. Singularities 

The singularities in the transformed pulse are not the 
consequence of any approximations made within the 
theory. While, strictly speaking, step discontinuities 
are physically unrealizable because of the presence of 
dissipative processes, the theory will predict exceedingly 
large amplitudes for explosive pulses, which have very 
short risetimes, so that the validity of the linear acoustic 
approximation for predicting the peak pressure is 
brought into question. 

C. The Transient Field at a Caustic 

In the vicinity of the caustic, we obtain using Eq. 14 

p(r,zc,t)= P(co) k 

[ 2•r•c X 'r(n2_•}/il_•/)• Ai(+ k •i'Ar) 
Xexp{i[kW•--wt-Or/4) sgnw']}dw, (W/"•O). (26) 

F(') I 
i i 

F(t) =0, t•O,t>to 

F½,) I FH(t) 

I 
F(t )=e-M H (t) FH( I )=- e-•f x Et(Xt) 

F(t ): te-XtH (t) FH(t )=[• .-re 'xt Et(M)+I] 

Fig. 8. Three simple pulse shapes and their Hilbert transforms. 

Because the caustic field solution initially increases 
with frequency as Iwl 1/6, the amplification due to 
focusing will be most pronounced for the high-fre- 
quency components. The discussion of Sec. II-B suggests 
that because of the presence of the term 0r/4)sgnw in 
the phase, the pulse shape will change radically as we 
approach the caustic. On the caustic, near where the 
highest intensities occur, we can obtain the time history 
from Eq. 26 with Ar=0, or 

p(r,z•,t) = i' Ai (0) 

x fj• P(oo) oo •/o exp{ioo[Wdc-t-Or/4) [oo ]}do,. 
Figure 9 shows the time history of the pressure pulse 

on the caustic for a triangular pulse. The time history 
exhibits drastic distortion and an infinitely long 
precursor. In addition, the peak pressure will become 
infinite if the risetime of the initial pulse vanishes. In 
this instance, the pressure-time history can be shown 
to have a term whose time dependence is proportional 

The "corrected" caustic boundary-layer solution of 
Eq. 20 can be used to calculate a time history that 
may be somewhat more accurate than the result of 
Eq. 26. Recalling the restriction of Eq. 15 and also the 
discussion following Eq. 20, and using Eq. 20, we obtain 

p(r,z•,t)---- P(co) k11/ø Ai(+lklCar) exp i kW,-cot-- )] 1 sgnw dco4 
4 8•r 2 

• =•c Ai'(+ Ik i•'Ar)-[-2•'••[r(n2 -- 
! 

2•rt/• W/'" 
- 

XF2 Ai,(+ [kli•ar)-q-I k W.(Ar)"Ai(+lk •i'/Xr)]} exp{i[kW,--wt-+-(r/4) sgnw dw, (W/"<> 0). (26') 
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p(t) 

t o tl 
time 

INITIAL PULSE 

I I I 

-10 -5 0 10 -5 •0. 5 ,• time (secs) 
Fro. 9. Transient waveform at a caustic for a triangular pulse. 

The risetime to of the pulse is 10 -7 sec and the duration t• is 
10 -s sec. 

Here COma,•c/(•'[Arl) •, which follows from Eq. 15, and 
Wr•in is the frequency at which the correction term is 
about the same magnitude as the caustic boundary- 
layer solution. The choice of C0r•in, it will be recalled, 
follows from the discussion of Senior's results given in 
Sec. I-E. 

D. Viscous Effects 

We have seen that the peak pressure of a steep- 
fronted pulse will become infinite at a caustic and 
remain so over its subsequent propagation path. 
However, a propagating medium of practical interest, 
such as the ocean, exhibits viscous damping. The 
incorporation of viscosity into the theory ensures 
finite pressure levels. 

An approximate treatment of viscous effects is now 
given. Close to the source, the pressure is an initially 
spherical wave as in Eq. 21. The time-dependent wave 
equation, including viscous damping terms, is •a 

V•p 

where v is the kinematic viscosity coefficient 

where n is the coefficient of bulk viscosity, t• the coeffi- 

cient of shear viscosity, and p the density of the 
medium. 

For a sinusoidal source (e -•t time dependence) of 
strength F, the viscous wave equation becomes 

•n•(z) 
'•= --•(x)•(y)•(z)•. 

If •v/c•(g)[((1 and the variation of c(g) in the spatial 
domain of interest is small enough, then in the factor 
•l-i•v/c•(g)•, c(z) may be replaced by c(O) and an 
effective propagation constant may be defined' 

k 

[1 -iwv/c • (0)• (27) 
ikv 

•k[1 +2c(0)•' 
In situations of practical interest, these approximations 
will be valid up to very high frequencies. For example, 
in fresh water, wv/c • is about 0.1 for a frequency of 
10 TM Hz. For the steady-state wave equation we obtain 

V'• + k•n • (z) • = -• (x)b (y)b (z) P, 

corresponding to Eq. 1. The development of the ray 
solutions and caustic field solution now evolves as in 

the inviscid case, the only difference being the appear- 
ance of k, instead of k. In the first approximation, using 
Eq. 27, the transient field in the caustic vicinity is 
given by 

p(r,z•,t) = 

Xexp -iw t ..... sgnw dw (28) 
c 2c a 4 

The absorption factor exp{--•,Ww•/2ca}, which 
appears in the caustic boundary-layer solution (and 
which will also appear in the ray solution) will guarantee 
finite peak pressures, even for pulses with vanishing 
risetimes near the source. The net effect of viscosity is 
to cause the pulse to acquire a nonzero risetime by the 
time it reaches the caustic. 

III. COMPARISOl•I OF THEORY AI•ID 

EXPERIMEI•IT 

In their experiment, Barash and Goertner t detonated 
a small (i-lb) submerged pentolite explosive charge in a 
body of water with a depth-dependent sound-speed 
profile as shown to the left of Fig. 10. To the right is the 
associated ray diagram. A group of the rays emanating 
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from the source intersect in such a way that an envelope, 
the caustic, is formed. With a vertical array of hydro- 
phones, Barash and Goertner observed the pressure 
pulses produced at points in the vicinity of the caustic 
at a horizontal range of 300 ft from the charge (see 
Fig. 11). 

The theory requires two items as input data before 
predictions can be made: a sound-speed profile and a 
specification of the pressure pulse at the sound source, 
the pentolite charge in this case. We discuss each item 
separately. 

A. Model Sound-Speed Profile 

Since it appears to be a reasonable fit to the data, we 
use a bilinear profile as shown in the left half of Fig. 6. 
The associated ray diagram exhibits a two-branched 
caustic. The almost horizontal branch corresponds to 
the experimental caustic. The lower branch of the 
theoretical caustic is superfluous to the analysis of the 
experiment. It appears only because the surface iso- 
velocity layer of the actual profile has been omitted 
from our model; had it been included, the superfluous 
branch would extend down from the cusp only a short 
distance. This can be understood by observing that all 
rays emitted at too large an angle with respect to the 
-]-z axis would not pass through a turning point before 
encountering the isovelocity layer. Their subsequent 
paths--straight lines followed by reflection at the 
water surface--would not permit formation of the lower 
caustic branch beyond a certain range. 

However, the "lateral wave," a signal with a distinct 
onset which is sometimes observed to occur prior to 
the caustic-related pulse, probably owes its origin to 
the existence of the surface layer. The small amplitude 
signals preceding the large peaks in the experimental 
records of Fig. 1! may be lateral waves. Normally, 
lateral waves are thought of as disturbances that 
travel along an interface at which the speed of sound 
undergoes an abrupt change and that radiate energy 
into the region of lower sound speed? However, it 
has been theoretically demonstrated 35 that lateral 
wave-type propagation can occur in the case of two 
isovelocity half-spaces whose sound speeds differ and 
which are connected by an arbitrary transition layer. 
The lateral wave will propagate along the intersection 
between the transition region and the half-space with 

Fro. 10. Experimental sound-speed profile and associated ray 
diagram. 

DEPTH BELOW PRESSURE VS TIME 
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Fzo. 11. 1)ressure pulses observed near caustic (from Barash 
and Goertner, Ref. 1). 

the higher sound speed. In the experiment we are 
considering, it seems likely that lateral waves could 
be excited along the intersection of the surface iso- 
velocity layer and the transition region extending from 
about 15 ft to about 30 ft in depth. The ray diagram in 
Fig. 10 shows rays traveling almost horizontally at a 
depth of about 15 ft, and these may, in fact, correspond 
to lateral waves. Since the model we have selected does 

not have an upper isovelocity regime, it will be unable 
to predict this type of signal. 

The omission of the water surface from the model 

profile is of no concern since a surface-reflected pulse 
arrives at the caustic much later than the caustic- 

focused pulse. 

B. Model Explosive Pulse 

The pressure pulse produced in the vicinity of a 
submerged explosive is generally described as having a 
negligible risetime and an exponential decay, the 
decay constant and peak pressure being functions of the 
charge weight, type, and the range. The pressure pulse 
for a pentolite charge is described empirically out to 
moderate distances by •6 

p(R,t)=2.25XlO'(WVR)'.'Oe -*/*D (in lb/in.'), 

where p is the instantaneous pressure at time t after 
the onset of the shock front and to is the decay constant 
of the exponential pulse or the time for the pressure to 
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F(t) 

TIME 

Fi½. 12. Theoretical time history. 

decay to 1/e=0.368 of its initial value. The decay 
constant is given by 

where W is the weight of the charge in pounds and R is 
the range from the source in feet. 

Our theory, on the other hand, allows a pressure 
pulse of the form 

p(R,t) = 
4•rR 

in the vicinity of the source. The theory allows only 
spherical spreading, while the empirical expressions 
involve an inverse power of the range somewhat larger 
than unity. The discrepancy is a manifestation of the 
omission of finite-amplitude effects. As a result, the 
theoretical predictions depend upon the range at which 
the theoretical and empirical pressure pulses are made 
to coincide. For example, as the matching point is 
moved outward from 1 to 10 charge radii (the charge 
radius was 0.068 ft), the predicted peak amplitude on 
the caustic decreases by 30%. We chose the matching 
point at 10 charge radii. 

For mathematical convenience, the theoretical time 
history is taken to be a continuous function composed 

•i THEORY •_ • •l/e ..... • 
-- 4 •: -• 31 x 105sec • 

I •X X • hme 
-- • • X EXPLOSIVE PRESSURE 

•% •LSE NEAR SOURCE 

- • • •= EXPERIMENT 
- _ • • THEORY WITH 

7 

LL 2 

<r 1 

o 

-1 

_, 

-4xlO -5 -2xlO -• 0 2xlO -s 4x 10 '• 6xlO '• 8xlO -• 10 -• 
TI ME (secs) --• 

Fro. 13. Comparison of theoretical prediction of shock wave- 
form at a caustic with experimental waveform. 

of two straight line segments (Fig. 12), 

?(t)=o, t<o, 

=A (t•--t)/l•, 0<t<tD, 

t, 

=0, t>i2, 

where tD is the empirical decay time at 10 charge radii. 
The three free constants, A, t•, and t2, are determined 
by requiring that the model expression match the 
empirical pressure pulse in peak value (at t-0), at 
t = tD and at t = 2tD. As a consequence, the theory cannot 
yield valid predictions for times on the order of 2tD or 
larger after peak value occurs. Since the theory is a 
high-frequency asymptotic theory, accuracy for large 
times cannot be expected in any case. 

The theoretical prediction obtained using Eq. 28 is 
compared with experiment in Fig. 13. The ordinate is 
the amplification factor' the ratio of the theoretically 
predicted--or experimentally observed--pressure on 
the caustic to the peak pressure which would have been 
seen at the same point of observation if the medium were 
nonrefracting. In the upper right of the figure is the 
time history of the explosive pressure pulse near the 
source. 

The theoretically predicted peak value is about 
60% too large, while the remainder of the theoretical 
time history falls significantly below the experimental 
curve. 

The curve labeled "Theory with Correction" shows 
the effect of using the correction term discussed in 
Sec. I-F. The correction term was added to the caustic 

boundary-layer solution and the resultant expression 
used to calculate the waveshape according to the 
prescription given in Eq. 26'. The minimum frequency 
of application of the correction term was chosen to be 
Wmin = 103 (see Fig. 14), although a choice of a lower 
minimum frequency, even down to w=l, does not 
alter the final result in any important way. Figure 14 
suggests that the asymptotic errors in the theory will 
begin to be noticeable for circular frequencies of about 
103 or 104; in the time domain, we might expect the 
theoretically predicted time history to become in- 
accurate for times larger than about 10 -4 sec. The 
"corrected" theoretical curve of Fig. 13 supports this 
conclusion; the time-dependent correction term is 
clearly insignificant over the time range shown. The 
influence of as)maptotic errors in the theory on the 
accuracy of the predicted pulse shape is therefore 
unimportant, and the discrepancy between theory and 
experiment must be attributable to other factors. The 
most likely sources of error are (1) the neglect of finite 
amplitude effects; (2) the omission from the theory of 
the distorting effects of the experimental equipment; 
and (3) the absence of a lateral wave. 
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1. Finite-Amplitude E•ects 

Probably the most important deficiency of the theory 
is the assumption that the laws of linear acoustics are 
valid. Even for explosive pulses in isovelocity water 
where the complications of refraction are absent, the 
discrepancy between experiment and predictions of the 
present theory is quite pronounced (Fig. 15). Since 
linear acoustics neglects the complicated dissipative 
processes physically occurring as well as the dependence 
of the propagation speed on pressure amplitude, the 
theory predicts too large a peak pressure at any given 
range, while the decay constant is predicted to be inde- 
pendent of distance and to be smaller than the observed 
values. We might therefore anticipate that even in the 
presence of refractive effects, the incorporation of finite- 
amplitude effects into the present theory would tend 
to lower the predicted peak pressure in Fig. 13 and to 
increase the predicted decay time. Work on the in- 
corporation of nonlinear effects into the present theory 
is currently in progress. A method of accounting for 
nonlinearities is described in the accompanying paper 
by Blatstein2 s 

2. Hydrophone Response 

Another factor that may contribute to the overly 
large predicted peak pressure in Fig. 13 is the neglect, 
in the theoretical computations, of the high-frequency 
cutoff of the hydrophones used in the experiment. 
Inclusion of the hydrophone response would suppress 
the high-frequency components of the theoretical pulse 
and thereby lower the peak value. For example, the 
gauge response completely suppresses all frequencies 
above 3X l0 s Hz, 36 while at a frequency of 5 X l0 s Hz, 
the fractional attenuation due to viscosity alone is 
about 0.6. Hence, the gauge cutoff overwhelms the 
effects of viscous attenuation. BlatsteinJ s in his 
analysis of experimental results similar to those con- 
sidered here, includes the gauge response in his com- 
putations and finds that the theoretically predicted 
peak pressure agrees very closely with experiment. 

3. Lateral Wave 

Prior to the occurrence of the peak pressure, the 
theoretical and experimental time histories show a 
significant discrepancy. In this time regime (and 
perhaps later as well), the observed pressure may con- 
sist of a superposition of the tail of a lateral wave 
and the caustic-focused pulse. This could possibly 
account for the larger values of the observed pressures 
as compared to the theory, which does not include an 
isovelocity surface layer in the sound-speed profile 
and consequently will not predict a lateral wave. Work 
on the incorporation of a lateral wave into the theory 
is in progress, however, and the results will be reported 
at some future date. 
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FzG. 14. Relative magnitude of the correction term and the 
caustic boundary-layer solution as a function of frequency. 

IV. SUMMARY AND CONCLUSIONS 

An asymptotic theory has been developed to describe 
the focusing and refraction of both harmonic sound and 
transient pulses emanating from a point source in an 
arbitrarily stratified medium. Away from focusing 
regions, the theory is equivalent to geometrical acous- 
tics. In the vicinity of caustics, the theory predicts, 
for harmonic waves, a spatially oscillating field ampli- 
tude on the illuminated side of the caustic with the 

peak pressure near, but not quite on, the caustic. In the 
shadow zone, the field is damped with increasing dis- 
tance from the caustic boundary. Transient pulses in 
the focusing zone will exhibit severe distortion, of which 
the most striking features are amplification of the peak 
pressure, narrowing of the pulse width, and a precursor. 
The influence of the approximate asymptotic methods 
employed in the theory on its domain of validity is 
discussed in some detail. A quantitative means of 
estimating the theory's accuracy in the vicinity of 
caustics is derived. Generally, it appears that the 
inaccuracies of the theory increase with increasing 

15,900 psi 

159 psi 

30.8/•secsx• 567pst 
.8/a. secs 

• • •1L_92.6/• secs 
(a) (b) 

:50.8 • secs 
'• 161 psi. 

(c) 

Fro. 15. Observed pressure-time history (dashed line) from 
-•-lb Pentolite explosive source in nonrefracting medium com- 
pared with time history predicted by theory (solid line). R is the 
range from the source. For clarity of presentation, differences in 
arrival times are not drawn to scale. (a) R =0.68 ft; (b) R = 100 ft; 
(c) R=300 ft. 
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sound-velocity gradients and/or increasing distance 
along a ray from the source. 

A comparison of the theory with the results of an 
experiment involving underwater explosives shows that 
a reasonable prediction of the peak pressure at a 
caustic can be obtained. However, the predicted pulse- 
width is too narrow, most probably as a result of the 
neglect of nonlinear effects. 
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