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The paper extends a pilot study into a detailed investigation of properties of breaking
waves and processes responsible for breaking. Simulations of evolution of steep
to very steep waves to the point of breaking are undertaken by means of the
fully nonlinear Chalikov–Sheinin model. Particular attention is paid to evolution
of nonlinear wave properties, such as steepness, skewness and asymmetry, in the
physical, rather than Fourier space, and to their interplay leading to the onset of
breaking. The role of superimposed wind is also investigated. The capacity of the
wind to affect the breaking onset is minimal unless the wind forcing is very strong.
Wind is, however, important as a source of energy for amplification of the wave
steepness and ultimately altering the breaking statistics. A detailed laboratory study
is subsequently described. The theoretical predictions are verified and quantified. In
addition, some features of the nonlinear development not revealed by the model (i.e.
reduction of the wave period which further promotes an increase in steepness prior to
breaking) are investigated. Physical properties of the incipient breaker are measured
and examined, as well as characteristics of waves both preceding and following the
breaker. The experiments were performed both with and without a superimposed
wind, the role of which is also investigated. Since these idealized two-dimensional
results are ultimately intended for field applications, tentative comparisons with
known field data are considered. Limitations which the modulational instability
mechanism can encounter in real broadband three-dimensional environments are
highlighted. Also, substantial examination of existing methods of breaking onset
detection are discussed and inconsistencies of existing measurements of breaking
rates are pointed out.

1. Introduction
The breaking of deep-water surface waves represents an interesting and challenging

problem of fluid mechanics. Such breaking is a strongly nonlinear intermittent random
process, very rapid compared to other processes in the system of surface waves in
general and wind-generated waves in particular. The distribution of breaking on
the water surface is not continuous, but its role in maintaining the energy balance
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within the continuous wind-wave field is critical. Despite the significant research effort
devoted to the subject in the past decades, a compelling physical understanding and
mathematical description of the phenomenon remain elusive.

Ocean wave breaking plays the primary role in air–sea exchange of momentum,
mass and heat, and constitutes the major element of one of the most significant
mechanisms which drive wave evolution – wave energy dissipation. It is also of
importance for ocean remote sensing, coastal and maritime engineering, navigation
and other practical applications.

In this paper, we will be mostly interested in hydrodynamic rather than air–sea
interaction aspects of wave breaking. Waves are known to break even in the total
absence of wind forcing, provided hydrodynamic conditions are appropriate (e.g.
Melville 1982; Rapp & Melville 1990; Babanin et al. 2007b). Why and when will
such breaking occur? Breaking waves are not only steep but have been found also
to exhibit such distinct nonlinear features as vertical and horizontal asymmetries (e.g.
Caulliez 2002; Young & Babanin 2006), some of which cannot be reproduced by
perturbation theories. Therefore, fully nonlinear theories have to be employed in the
search for mechanisms leading to breaking onset.

Beyond the point of onset, breaking occurs very rapidly, lasting only a fraction of
the wave period (Rapp & Melville 1990), but the wave may lose more than a half
of its height (Liu & Babanin 2004). Thus, the wave energy that slowly accumulated
under wind action over hundreds of wave periods is suddenly released in the space of
less than one period. Conceptually, however, the process of wave collapse is different
from the processes leading to breaking onset and should be considered separately. It
will not be the focus of the present paper.

Intermittency is another distinct difference between breaking and other mechanisms
involved in wave evolution. It is only under very strong winds that the percentage
of breaking crests in a time series can reach 50 % or more. Normally it is well
below 10 % (Babanin, Young & Banner 2001). This intermittent process is, however,
still sufficient to balance the continuous process of wind input and nonlinear
evolution.

As stated above, breaking is primarily a hydrodynamic process. While the effect of
a breaking event on the instantaneous wind input can be very significant (Babanin
et al. 2007a), the very large density difference between the air and the water means
that instantaneously the wind can only play a minor role in determining breaking
onset and the subsequent breaking progress. As instantaneous, we mean the time
scale of the order of one period, at which the breaking happens. On the longer time
scale of hundreds of wave periods, however, the role of the wind is very important
in increasing, albeit slowly, wave steepness (nonlinearity) which can then lead to
wave breaking. The wind also appears to play a role in altering wave modulation
properties and subsequent energy loss due to wave breaking. These multiple roles of
wind forcing will also be discussed in the paper.

This paper extends our pilot numerical/laboratory study of wave breaking onset
(Babanin et al. 2007b). As outlined in Babanin et al. (2007b), the topic is not new and
over the last 30 years, theoretical (e.g. Longuet-Higgins & Cokelet 1978), experimental
(e.g. Melville 1982) and numerical (e.g. Dold & Peregrine 1986) approaches have been
applied to investigate instability mechanisms active in nonlinear wave fields, which
lead to wave breaking. These mechanisms relate to the Benjamin–Feir-like (BF)
instability (Benjamin & Feir 1967) which controls the modulation of trains of weakly
nonlinear waves, and as a result, some waves can become very large and ultimately
break (e.g. Chalikov 2007).
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This study is done in terms of free-surface wave properties in physical rather than
Fourier space. We do not rely on existence of wave groups (sidebands) in the initial
wave field because the formation of the appropriate wave groups accompanying
wave breaking is an internal process in the nonlinear wave field subject to physical
instabilities. Rather, our initial conditions consist of steep monochromatic waves
which are allowed to evolve and this evolution appears to inevitably lead to breaking if
the initial waves are sufficiently steep. Sidebands naturally grow from the background
noise and are expected to be defined by the ratio of characteristic wave steepness
ε = ak0 to spectral bandwidth �ω/ω0, where k0 and ω0 are some characteristic
wavenumber and angular frequency respectively, and a is the mean amplitude at this
wavenumber:

MI =
ε

�ω/ω0

. (1.1)

This ratio was shown important in the original studies of instabilities of weakly
modulated trains of monochromatic carrier waves of small amplitudes. Here, we
denote this ratio as MI (modulational index). Our study mainly deals with slowly
modulated two-dimensional monochromatic waves, which are, however, even initially
not of the small amplitude, and therefore, analogy of the observed empirical
modulational interplay with the small-amplitude near-monochromatic theoretical BF
process should be treated with caution. In our paper, MI signifies the fact that
the wave steepness and length of wave modulation (or number N of waves in the
modulation where 1/N ∼ �k/k0) are not independent quantities, i.e. steeper waves
will correspond to fewer waves in a modulation. Thus, if nonlinear monochromatic
waves are allowed to evolve, they will form groups where N is not a free parameter,
but will be defined by the initial steepness ε.

In Babanin et al. (2007b), prediction of the breaking onset of two-dimensional
waves in deep water was attempted first by means of a fully nonlinear numerical
model and then tested in a laboratory experiment. Distance to the point of breaking
could be controlled by varying the initial monocromatic steepness (IMS) ε0. Thus,
the incipient breaker was measured and found to asymptote at the Stokes steepness
limit of 2εbr ≈ 0.88.

This paper extends the pilot study into a detailed investigation of the properties
of breaking waves and the processes responsible for breaking. In § 2 of the present
paper, simulations of the evolution of steep to very steep waves to the point of
breaking are undertaken by means of the fully nonlinear Chalikov–Sheinin model
(Chalikov & Sheinin 2005). Particular attention is paid to the evolution of nonlinear
wave properties, such as steepness, skewness and asymmetry, and to their interplay
leading to the onset of breaking. The role of the superimposed wind is also mentioned.

In § 3, the detailed laboratory study is described. The theoretical predictions are
verified and quantified. In addition, some features of the nonlinear development not
revealed by the model (i.e. reduction of the wave period which further promotes an
increase in steepness prior to breaking) are investigated. Since the location of the
incipient breaker can be controlled, its physical properties are examined as well as
characteristics of waves both preceding and following the breaker. The experiments
were performed both with and without a superimposed wind, the role of which is
also investigated.

Since these idealized two-dimensional results are ultimately intended for field
applications, in § 4, tentative comparisons with known field data are considered.
Limitations which the BF mechanism can encounter in real broadband three-
dimensional environments (e.g. Brown & Jensen 2001; Onorato, Osborne & Serio
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2002) are highlighted. Also, existing methods of breaking onset detection are discussed
and the inconsistencies of existing measurements of breaking rates are pointed out.
Finally, overall conclusions of the study are summarized.

2. Numerical simulations
Numerical computations of nonlinear surface waves have previously been

undertaken based on solutions of the potential flow equations (e.g. Watson & West
1975; Longuet-Higgins & Cokelet 1976; West, Brueckner & Janda 1987) and with
a Cauchy-type integral algorithm (Dold 1992). Both schemes have no limitation in
terms of wave steepness, and both were capable of simulating the initial phase of wave
breaking (the later stages are rotational and remain extremely difficult to simulate
directly). More recently, a method based on a Taylor expansion of the Dirichlet–
Neumann operator was developed by Craig & Sulem (1993). Capabilities of this
method were illustrated by computing the evolution of modulated wave packets and
a low-order approximation of a Stokes wave for relatively short periods of time.
We should point out that this appears to be a principle limitation of all the above
schemes: for a steep wave field, they have only been used for simulations of relatively
short time/space evolution.

A numerical scheme for direct hydrodynamic modelling of one-dimensional
nonlinear gravity and gravity–capillary waves was developed by Chalikov & Sheinin
(1998) (see also Chalikov 2005, 2007; Chalikov & Sheinin 2005). This approach is
based on a non-stationary conformal mapping, which allows the equations of potential
flow with the inclusion of a free surface to be written in a surface-following coordinate
system. This transformation does not impose any restrictions on the shape of the
surface, except that it has to be possible to represent this surface in terms of a Fourier
series.

Let us consider periodic one-dimensional deep-water waves whose dynamics is
described by principal potential equations. Due to the periodicity condition, the
conformal mapping for infinite depth can be represented by the Fourier series (see
details in Chalikov & Sheinin 1998, 2005):

x = ξ +
∑

−M�k<M,k �=0

η−k(τ ) exp(kζ ) ϑk(ξ ), (2.1)

z = ζ +
∑

−M�k<M,k �=0

ηk(τ ) exp(kζ ) ϑk(ξ ), (2.2)

where x and z are Cartesian coordinates, ξ and ζ are conformal surface-following
coordinates, τ is time, ηk are coefficients of the Fourier expansion of free surface
η(ζ, τ ) with respect to the new horizontal coordinate ζ :

η(ζ, τ ) = h (x(ζ, ξ = 0, τ ), t = τ ) =
∑

−M�k�M

ηk(τ ) ϑk(ζ ), (2.3)

ϑk denotes the functions

ϑk(ξ ) =

{
cos kξ for k � 0,
sin kξ for k < 0

(2.4)

and M is truncation number.
Nontraditional presentation of the Fourier transform with the definition (2.4) is, in

fact, more convenient for computations with real numbers, such as (ϑk)ξ = kϑ−k and
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(Akϑk)ξ = −

∑
kA−kϑk . So, the Fourier coefficients Ak form a real array A(−M : M),

thus making possible a compact programming in Fortran 90. Such presentation can
be generalized for two-dimensional case.

Note that the definition of both coordinates ξ and ζ is based on Fourier coefficients
for surface elevation. It then follows from (2.1) and (2.2) that time derivatives zτ and
xτ for Fourier components are connected by a simple relation:

(xτ )k =

{
− (zτ )−k for k > 0,

(zτ )k for k < 0.
(2.5)

Due to conformity, the Laplace equation retains its form in (ξ, ζ ) coordinates. It is
shown in Chalikov & Sheinin (1998, 2005) that the potential wave equations can be
represented in the new coordinates as follows:

Φξξ + Φζζ = 0, (2.6)

zτ = xξG + zζF, (2.7)

Φτ = FΦξ − 1

2
J −1

(
Φ2

ξ − Φ2
ζ

)
− z, (2.8)

where (2.7) and (2.8) are written for the surface ζ = 0 (so that z = η, i.e. the surface
elevation), J is the Jacobian of the transformation:

J = x2
ξ + z2

ξ = x2
ζ + z2

ζ , (2.9)

G is an auxuliary function:

G = (J −1Φζ )ζ=0 (2.10)

and F is a generalization of the Hilbert transform of G, which for k �= 0 may be
defined in Fourier space as

Gk =

{
−F−k for k > 0,

Fk for k < 0,
(2.11)

actually following from (2.5). Above, Φ is the velocity potential (and Φζ is the
derivative of the potential with respect to the ‘vertical’ coordinate ζ at the surface), z

represents the shape of the surface.
Equations (2.6)–(2.11) are written in non-dimensional form with the following scales:

length L, where 2π/L is the (dimensional) horizontal wavenumber, time L1/2g−1/2 and
the velocity potential L3/2g−1/2 (g is the acceleration of gravity). Capillary effects and
external pressure were not taken into account in this investigation. Note that the
adiabatic equations for surface waves outside the capillary interval are self-similar:
they are invariant over length scale L, and this makes the numerical approach very
effective and allows broad interpretations of laboratory experiments.

The boundary condition assumes vanishing vertical velocity at infinite depth

Φζ (ξ, ζ → −∞, τ ) = 0. (2.12)

Solution of the Laplace equation (2.6) with boundary condition (2.12) yields to Fourier
expansion which reduces the system (2.6)–(2.8) to a one-dimensional problem:

Φ =
∑

−M�k�M

φk(τ ) exp(kζ ) ϑk(ξ ), (2.13)

where φk are Fourier coefficients of the surface potential Φ(ξ, ζ = 0, τ ). Equations
(2.6)–(2.8), (2.10) and (2.11) constitute a closed system of prognostic equations
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for the surface functions z(ξ, ζ = 0, τ ) = η(ξ, τ ) and the surface velocity potential
Φ(ξ, ζ = 0, τ ). For more detailed descriptions of the analytical and numerical model,
we refer to Chalikov & Sheinin (1998, 2005).

Remarkably, this new formulation is also simpler than the original set of equations
since the nonlinear conformal coordinate transformation removes a number of
nonlinear terms. For the stationary case, this method coincides with the classical
complex variable method, e.g. Crapper (1957), and an efficient numerical scheme (CS)
for this was developed by Chalikov & Sheinin (1998). Note that this scheme is more
precise than the popular surface integral scheme (Dold 1992). In addition, compared
to the CS scheme, the surface integral method is too complicated: a complete set of
its equations occupy several pages. For the CS scheme, the equations take three lines
and the core of the numeric scheme takes 11 lines in Fortran 90.

The accuracy of this scheme was demonstrated by a long-term simulation of very
steep Stokes waves (ak = 0.42). The stability of Stokes waves has been a subject of
significant speculations. In the CS case, 11 decimal places of precision and a fourth-
order Runge–Kutta scheme were sufficient to simulate the propagation of a virtually
undisturbed Stokes wave for up to 1000 periods.

The conformal mapping even made it possible to reproduce the initial stages of
the breaking process where the surface ceases to be a single-valued function. Thus,
the CS scheme has a number of important advantages: (i) comparison with an exact
solution showed that the scheme has extremely high accuracy; (ii) it preserves integral
invariants; (iii) it is very efficient: its computation time scales as M log(M) where
M is the number of modes, whereas the Dold scheme scales as as M2; (iv) the
scheme demonstrates stability over millions of time steps (thousands of periods of
the dominant wave). This scheme is able to reproduce a nonlinear concentration of
energy in physical space resulting in wave breaking and potentially in the appearance
of freak waves.

In the CS model, the wave model is coupled with an atmospheric boundary layer
model:

Φτ = FΦξ − 1

2
J −1

(
Φ2

ξ − Φ2
ζ

)
− z − p, (2.14)

where p is a surface pressure, which describes exchange of momentum and energy
between the air and water. In the present investigation, in order to speed up
the computations, the coupling was conducted by means of a β-function which
parameterized the connection of the surface pressure and the surface shape on the
basis of an exhaustive set of numerical simulations by means of the coupled model.
Real and imaginary Fourier amplitudes of pressure pr and pi are calculated as linear
function of amplitudes of water elevation ηr and ηi:

pr + ipi = (βr + iβi)(ηr + iηi). (2.15)

The real and imaginary parts of this β-function are functions of non-dimensional
frequency Ω = u(lk/2)ω where u(lk/2) is wind velocity at height equal to half of
wavelength lk , ω = |k|1/2 (both ω and k are non-dimensional variables). Thus, it is
possible to introduce wind forcing of the waves. This option will be actively employed
in our study.

2.1. Testing the Chalikov–Sheinin model

For the purposes of the present study, the model’s ability to reproduce wave evolution
without limitations in terms of steepness or duration of propagation is crucial. For this
reason, the CS model was chosen for the detailed numerical simulations of physical
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Figure 1. Geometric definition of wave skewness and asymmetry. The wave propagates from
left to right. Solid line: numerically simulated incipient breaker; dashed line: harmonic wave;
dash-dotted line: Stokes wave. Dotted lines are the mean (zero) water level (horizontal) and
the line drawn from the breaker crest down to the level of its trough (vertical).

characteristics of strongly nonlinear waves leading to the onset of breaking. Before
being employed in the present study, the CS model had previously been extensively
verified and tested (Chalikov & Sheinin 1998, 2005) and used in a number of strongly
nonlinear applications (e.g. Chalikov 2005, 2007). It was now additionally checked in
terms of its capacity to model nonlinear wave features associated with wave breaking.

One of early motivations for the present study was to search for a theory able
to describe wave asymmetry with respect to the vertical axis. Definitions of the
asymmetry and skewness are given in figure 1, reproduced with modifications from
Babanin et al. (2007b). In mathematical terms, these definitions are

As =
b1

b2

− 1, Sk =
a1

a2

− 1. (2.16)

Thus, positive skewness represents a crest sharper than the trough and negative
asymmetry represents a wave tilted forwards.

Intrinsically, both the asymmetry and the skewness are natural features of steep
deep-water waves regardless of their size, crest length, forcing or generation source.
Importantly for this study, experimentally observed asymmetry As has been broadly
associated with the wave breaking (e.g. Caulliez 2002; Young & Babanin 2006).
Perturbation theories cannot reproduce such asymmetry for deep-water waves, and
therefore, since we intended to study physical features of near-breaking waves, a fully
nonlinear theory was obviously required. Figure 1 illustrates the capacity of the CS
model in this regard. In the figure, three types of waves of the same height and
length, i.e. of the same mean steepness, are shown. Once the skewness is non-zero
and the amplitude a is not clearly defined, a definition of the wave steepness in terms
of ak becomes ambiguous. Therefore, unless otherwise specified, the steepness will
be expressed in terms of wave height H = a1 + a2 rather than wave amplitude a, as
ε = Hk/2. In these terms, a steepness ε = 0.335 of the wave shown in the figure far
exceeds the limits of a perturbation analysis.

The dashed line in figure 1 represents a steep sinusoidal wave (Sk = As = 0). Such a
wave will immediately transform itself into a Stokes wave (e.g. Chalikov & Sheinin
2005), an example of which is shown in the figure by the dash-dotted line. This steep
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Stokes wave is highly skewed (Sk = 0.39), but remains symmetric (i.e. As = 0). The
incipient breaker in figure 1 (solid line, Sk = 1.15, As = −0.51) was produced by the
CS model, in a simulation which commenced with an initially monochromatic wave
of IMS = 0.25 (initial monochromatic steepness). Such a wave profile visually looks
realistic for a breaker and corresponds to, or even exceeds, experimental values of
skewness and asymmetry for breaking waves previously observed (e.g. up to As = −0.5
instantaneously in Caulliez 2002 or As = −0.2 on average in Young & Babanin 2006).
It is worth noting that the steepness of the individual wave has grown very significantly
at the point of the breaking: from IMS = 0.25 to ε = 0.335. Result shown in figure 1
was obtained for initially assigned harmonic wave at wavenumber k =1 and number
of modes M = 1024. All other computations described below were conducted for an
harmonic wave assigned at k = 16 and number of modes M =2048.

Disturbance seen at the crest of the incipient breaker in figure 1 has to be mentioned.
For waves of very high steepness, instabilities of the local flow near wave crest,
which are different from instabilities of the whole wave, are known to develop (e.g.
Longuet-Higgins & Dommermuth 1997). Thus, the CS model is not only capable of
producing realistic values of the asymmetry, typically associated with the breaking
experimentally, but even demonstrates crest instabilities expected theoretically.

2.2. Simulating the evolution of nonlinear waves to breaking

In the numerical simulations, a wave is regarded as breaking if the water surface
becomes vertical at any point. Criterion for terminating the model run was defined
by the first appearance of a non-single value of surface in the interval x = (0, L):

x(i + 1) < x(i), i = 1, 2, 3, . . . , N − 1, (2.17)

where N is the number of points on the wave profile over its length L.
We will concentrate on three physical properties: wave steepness, skewness and

asymmetry and their inter-relationships. We will then try to reproduce and investigate
these properties in a laboratory experiment with two-dimensional waves. If these
properties are indeed linked to wave breaking, but the percentage of breaking waves
is small, as it usually is (see § 1), then examination of average steepness, skewness or
asymmetry is likely to be of little use. Therefore, the majority of our analysis will
concentrate on nonlinear properties of individual waves.

Figure 2 shows the simulated evolution of the nonlinear wave properties to the
point of breaking in the presence of wind forcing. The wind forcing is expressed
in terms of ratio U/c where U is the wind speed and c is the phase speed of the
wave with wavenumber k. Three sets of subplots correspond to three wind-forcing
conditions: U/c = 2.5 (moderate forcing), U/c = 5.0 (strong forcing) and U/c = 10.0
(very strong forcing). The initial steepness chosen is IMS = 0.26, which should lead to
a fast evolution to breaking onset.

The period of the modulation of all the nonlinear properties shown is equal to
twice the wave period. While the maxima of instantaneous steepness keep growing,
the skewness and asymmetry oscillate without a noticeable increase in magnitude.
Thus, it can be concluded that it is some critical value of local steepness which defines
the breaking.

Figure 2(a–c) corresponds to a moderate wind-forcing condition of U/c = 2.5. The
maximum of instantaneous steepness keep growing and reach a value of ε = 0.34
at the point which is interpreted as incipient breaking by the model. Figure 2(d–f )
corresponds to much stronger wind forcing of U/c = 5.0. Apart from the faster
steepness growth, almost all the other properties of the nonlinear evolution remain
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Figure 2. Simulations of steepness (a, d, g), skewness (b, e, h), asymmetry (c, f, i ) of the wave
of IMS =0.26 as it evolves from the initial conditions to the point of breaking. The values of
U/c are 2.5 (a–c), 5.0 (d–f ) and 10.0 (g–i ). The x -axis shown at the bottom remains the same
for all.

similar to the previous test. Steepness (ε = 0.36) and skewness (Sk = 0.82) values at
breaking are close to those of the above test, asymmetry at breaking approaches zero.

It is interesting to note that, according to known results on the wave amplification by
wind, the wave growth increment at non-extreme conditions should be approximately
a quadratic function of the wind (e.g. Donelan et al. 2006). If indeed there is some
critical steepness signifying the breaking onset, then doubling of the wind speed in our
numerical tests should lead to this limiting value being reached four times faster. This
conjecture produces a result close to that simulated: the duration of the evolution to
breaking has now been reduced from 32 to 9 wave periods (almost 4 times).

A further doubling of the wind input, as shown in figure 2(g–i ), led to another
reduction of the evolution duration – from nine to three periods. This is again
consistent with Donelan et al. (2006) who showed that at very strong winds the
relative wave growth actually slows down. The other patterns of the wave nonlinear
evolution appear unaltered, the maximum values of steepness ε = 0.36 and skewness
Sk = 0.83 are almost similar to the previous case. These values also demonstrate that
the instantaneous effect of the wind on the breaking onset is negligible as the wind
forcing of U/c = 10.0 is now very strong.

The oscillations of asymmetry are shifted in phase with respect to steepness and
skewness. The asymmetry oscillates about zero in the range ±0.45 which means that
the waves are periodically tilted backwards and forwards. If the point of maximum
steepness (skewness) is passed without breaking, the asymmetry becomes negative,
i.e. the wave begins to lean forwards. If this point signifies the breaking onset, the
wave still apparently continues to tilt forwards, and this explains why all the breaking
waves exhibit negative asymmetry. In these simulations, the negative asymmetry does
not appear to be an indication of the breaking but is rather an indication of the
modulation phase at which breaking-in-progress may or may not occur.

Figure 3 shows a composite set of fetch-versus-steepness dependences for different
values of wind forcing U/c = 1–11. The fetch is expressed in dimensionless terms of
number of wavelengths (wave periods) to the breaking at a particular IMS. Figure 3
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Figure 3. Numerical simulations, number of wavelengths to the breaking versus IMS = ak,
different wind forcing of U/c = 1, 3, 7.5, 8, 8.5, 11 is shown with progressively thickening lines.

allows the estimation, based on the numerical simulations with the CS model, of when
a two-dimensional wave breaks. As it will be shown in § 3, quantitative application
of these numerical results to laboratory waves may be limited, but qualitatively this
picture agrees well with the experiment.

2.3. Influence of wind and initial steepness

The role of the wind in the wave breaking has already been mentioned (see also
Waseda & Tulin 1999, for a discussion of the wind influence on the modulational
instability). It is apparently very important in growing the wave steepness (i.e. figures 2
and 3). In this section, we will discuss the capacity of the wind to affect the breaking
onset, i.e. can the wind push a steep wave over and thus reduce the limiting steepness
at breaking?

Due to the very large density difference between the water and the air, such a
possibility seems unlikely (e.g. figure 2). In figure 4, the nonlinear features of the
incipient breaker are shown as a function of IMS for a variety of wind-forcing
conditions. The simulations were run for a limited number of wave periods and some
waves may not break (e.g. for U/c =3, the waves do not have enough time to break
if IMS < 0.25).

In figure 4(a), the limiting steepness at breaking onset is plotted for U/c = 3 (dotted
line), 5 (dashed line), 8 (dash-dotted line) and 11 (solid line). The incipient breaking
steepness actually grows, rather than being reduced, with stronger wind forcing.
Even though the growth is marginal, the four lines clearly separate and therefore
instantaneous steepness at breaking appears to be somewhat larger at stronger winds.
The skewness and asymmetry of the incipient breakers (figures 4b and 4c) do not
depend on wind except at the extreme wind forcing of U/c = 11. Thus, it is only at
extreme conditions that the wind is capable of influencing the wave shape at breaking,
and even then the effect is marginal.

3. Laboratory experiment
To begin this section, it should be emphasized that comparisons of the numerical

simulations of nonlinear wave evolution described above with the laboratory
experiments in this section can only be qualitative. Firstly, no matter how sophisticated
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the model is, it is still a simplification of the physical environment and disregards
or possibly suppresses some natural features. One of such features is the three-
dimensionality of wave motion. Even in the quasi-two-dimensional environment of
the wave tank, some directional features may still play an essential role. For example,
Melville (1982) showed that at steepness ε > 0.3 the wave crests develop a crescent-
shaped perturbation and such wave behaves in a more complicated way compared
to the strictly two-dimensional BF case. This has a significant consequence for our
simulations. The two-dimensional CS model predicts immediate breaking onset for
ε > 0.29 whereas in the laboratory experiments of Melville (1982) such waves become
short crested but can persist without breaking for some time.

Another significant difference between the laboratory and model is the continuous
nature of modes in the experimental environment, even if those modes are only minor
background noise, and the discrete nature of numerical modes. It is important to
understand that at the initial stages of development, the necessary modes, defined
by MI (1.1), should grow from the continuous noise. These modes, however, can be
suppressed or even removed completely in a discretized numerical model. In such a
circumstance, the waves, even if they are steep Stokes waves, will propagate for an
indefinitely long period without breaking, as was described in § 2.

If the model is constructed so as to allow multiple modes, another numerical feature
still distinguishes the model from nature. The background noise, the source of the
necessary modes dictated by MI , cannot be completely reduced to zero in nature. In a
digitized medium it can, however, be made very small. For example, in the CS numeric
scheme, the eleventh-order decimal accuracy is employed. Such accuracy is essential
for precise simulations, but since it is the only source of noise in the system, it can
obviously slow down the development of the initial BF modes. As is sometimes done
in numerical simulations (e.g. Dold & Peregrine 1986), the modes can be deliberately
introduced as initial conditions. Such an approach was not, however, employed in
the present study, since in this scenario MI of the system is pre-defined, and wave
development to breaking may be altered.
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The model has obvious limitations in simulating the final stages of incipient
breaking and in our simulations it was stopped when the water surface became
vertical at any point. Strictly speaking, this geometrical property of the surface can
be used as a physical definition of the breaking onset. In the numerical simulations
it was noticed that the local steepness can be very large, but the carrier wave can
still recover to a non-breaking state. If, however, a negative slope appears locally, the
wave never returns to a non-breaking scenario because the water volume intersecting
the vertical line tends to collapse. Apparently, the same considerations are applicable
to the physical waves too.

At present, the concept of incipient breaking or breaking onset is poorly defined
and even ambiguous. Traditionally, the initial phases of a breaker-in-progress are
treated as incipient breaking. In Caulliez (2002), for example, surface elevations were
recorded, differentiated, and the wave was regarded as a ‘near-breaker’ if its slope
exceeded 0.586 anytime between two subsequent zero-downcrossings. This criterion is
an estimate of the highest slope which a Stokes wave can reach (Longuet-Higgins &
Fox 1977). But if this slope is exceeded, then the wave is already breaking. This is
not an incipient breaker, but represents breaking in progress. Features and physics
of breaking-in-progress, however, may be very different to that of incipient breaking.
Thus, investigation of geometric, kinematic, dynamic and other properties of breaking-
in-progress, such as whitecapping, void fraction, acoustic noise emitted by bubbles,
etc., will be of little assistance if we are seeking to understand the causes of breaking.

In this paper, as in Babanin et al. (2007b), we suggest that the incipient breaker is
defined dynamically as a wave which has already reached its limiting-stability state,
but has not yet started the irreversible breaking process. That is, breaking onset is the
ultimate point at which the wave dynamics caused by initial instabilities is still valid.
The state of breaking onset is instantaneous unlike breaking-in-progress which can
be further subdivided into a number of stages with different properties and different
dynamics (Liu & Babanin 2004).

3.1. Laboratory set-up

The laboratory experiment was conducted in the Air–Sea Interaction Salt-Water
Tank (ASIST) at RSMAS, University of Miami (http://peas.rsmas.miami.edu/
groups/asist). The tank is a stainless-steel construction with a working section of
15 m × 1 m × 1 m. Its programmable fan is capable of generating centreline wind
speeds in the range of 0–30 m s−1. Immediately downstream of the fan, extensive flow
straightening devices are installed to condition the air flow and introduce appropriately
scaled turbulence. Values of wind speed U used in this paper will be those extrapolated
to 10 m height.

ASIST includes a fully programmable piston wavemaker able to produce both
monochromatic waves and waves with a predefined spectral form. A set of dedicated
measurements showed that amplitude of the first harmonics is of the order of 1 % of
the amplitude of sinusoidal waves generated by the piston in the range of steepness
ak between 0.25 and 0.3. These waves are dissipated at the opposite end of the facility
by a minimum-reflection beach. The ASIST beach design has been a subject of a
special research project. A gently sloping (10o) grid of 2.5 cm diameter acrylic rods
is used. A perforated acrylic plate is placed beneath the rods to split wave orbital
velocities into multiple turbulent jets to increase viscous dissipation. The energy of
the reflected component is approximately 5 % of the incident energy depending on
the initial wavelength.
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Figure 5. Time series of surface elevations η measured at the first wave probe. (a) Waves of
U/c = 0 and IMF= 1.6 Hz for different IMS: 0.31 (solid line), 0.25 (dashed line), 0.23 (dotted
line). (b) Waves of IMS =0.23 and IMF = 1.6 Hz under different wind forcing: U/c = 0 (solid
line), U/c =1.4 (dashed line), U/c = 11 (dotted line). The waves propagate from right to
left.

In ASIST, sloshing motion becomes increasingly important at wave frequencies
exceeding 2.2 Hz. For frequencies below 2 Hz, the waves remain two-dimensional
with phase fronts perpendicular to propagation direction. Therefore, our laboratory
experiments with two-dimensional waves were limited to frequencies below 2 Hz.

In the present experiment, monochromatic deep-water two-dimensional wavetrains
were generated by the wave paddle. The water depth was held at 0.4 m, providing deep-
water conditions for the wave frequencies involved. With a tank length of 13.24 m,
surface elevations were recorded at 4.55, 10.53, 11.59 and 12.56 m from the paddle.
For each record, IMS was varied in such a way that the waves would consistently
break just after one of the wave probes. In this way, the dimensional distance to
breaking, wavetrain properties immediately prior to breaking and detailed properties
of the incipient breaker could be measured. Note that this breaker is a result of
nonlinear wave evolution, and its physics is different to, for example, breaking due to
coalescing wave packets.

In figures 5 and 6, time series of surface elevations η at the first and the second wave
probes are shown. All the waves in these time series are generated with the same initial
monochromatic frequency IMF =1.6 Hz, but with different initial steepness IMS and
wind forcing U/c, as indicated.

Figure 5(a) corresponds to zero wind forcing. Since the initial steepness of
IMS =0.31 (solid line), 0.25 (dashed line) and 0.23 (dotted line) is quite high,
modulation is already visible developing at the first probe, 4.55 m from the wavemaker.
At this stage, the modulation is still quite weak, and differences other than those due
to the initial wave height are hardly distinguishable.

In figure 5(b), waves of IMS =0.23 are plotted with no wind forcing (solid line,
for cross-reference with figure 5a), U/c = 1.4 (dashed line) and a very strong wind
of U/c = 11 (dotted line). The effect of the wind on the profile of the mechanically
generated waves is not noticeable at this first probe, except for the extreme forcing
case, where wind-generated ripples are clearly visible in the time series.
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Figure 6. Time series of surface elevations η measured at the second wave probe,
IMF= 1.6 Hz. (a) IMS = 0.31, U/c = 0; (b) IMS = 0.25, U/c = 0; (c) IMS = 0.23, U/c = 0;
(d ) IMS = 0.23, U/c = 11. The waves propagate from right to left.

The wave profiles look very different at the second probe, 10.53 m from the paddle,
some 10 wavelengths downstream (figure 6). In all the cases, breaking still has not
occurred. Waves in figure 6(a–c) evolve without wind forcing, and in the bottom
subplot waves are shown strongly forced (U/c = 11).

Figure 6(a) shows initially very steep waves of IMS = 0.31. By the time they
reach the second probe, they have developed into very strongly modulated groups
of six waves. Less initially steep waves (IMS = 0.25, figure 6b) evolve into groups of
some seven waves. Even less steep waves (IMS = 0.23, figure 6c) exhibit groups
of approximately 7.5 waves (15 waves in two modulations). Note that no initial
modulation was introduced. This observation is consistent with the discussion in § 1,
i.e. if MI for the system does not change, a larger initial steepness should lead to
fewer waves in the modulation.

The effect that the wind forcing has on BF modulation is demonstrated in
figure 6(d ). Here, we define the modulation depth R to be

R =
Hh

Hl

, (3.1)

where Hh and Hl are the heights of the highest and lowest waves in the group.
In figures 6(c) and 6(d ) waves of IMS = 0.23 are shown with and without wind,
respectively. The influence of wind is revealed in the reduction in R from 2.1 without
wind to 1.3 with a wind of U/c = 11. As pointed our by our reviewer, it is the crests’
change that appears the main reason for the sharp decrease in R.

It was observed that this change also led to a very significant reduction in the
breaking severity (§ 3.4). The severity (energy loss in a breaking event) is a very
important breaking property as, along with the frequency of breaking occurrence
(breaking rate), it defines the energy dissipation in a wave field.

3.2. Measurements of the evolution of nonlinear waves to breaking

Nonlinear evolution of two-dimensional laboratory waves to breaking will now
be investigated in a fashion similar to the numerical study of § 2. The nonlinear
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characteristics of interest (i.e. individual wave steepness, skewness and asymmetry)
will be obtained by means of zero-crossing selection and analysis of individual waves.
In addition to these three characteristics, we will scrutinize the behaviour of the
period (frequency) of individual nonlinear waves. This feature was not identified in
the dimensionless numerical simulations, but in the laboratory it appears to be quite
variable, even in the train of waves of initially uniform frequency. The effect of such
local frequency variation is significant for the breaking onset study since, when wave
height growth is accompanied by a synchronous reduction of wave period, this has a
combined impact on the local wave steepness.

It should be noted that there is a conceptual change in the frame of reference
compared to the numerical model results. In the case of the model, a single wave was
followed as it approached the point of breaking. Here, observations are made at a
single point as a succession of waves passes.

Figure 7 shows a wave record with IMF = 1.8Hz, IMS = 0.30 and no wind forcing,
measured at the second probe. In figure 7(a), the measured water surface elevation
η is plotted as a function of time in seconds, and in all the other subplots the dots
correspond to the successive waves selected by zero-crossing means. The highest waves
in each modulation are incipient breakers as IMS was chosen such that the point
of breaking was located immediately after the probe at a distance of 10.73 ± 0.1 m
from the wavemaker. The apparent consistency of the shape of these near breakers
allows an investigation of characteristic geometric properties of the breaking onset
(see § 3.3). H is always defined in terms of the rear height, and thus the local steepness
and skewness are the rear-face steepness and skewness.

Steepness, skewness, asymmetry and frequency of the individual waves are shown
in figure 7(b–e). The major features seen in the numerical model are confirmed by
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Figure 8. (a) Spectra P of the time series of IMF = 1.8 Hz, IMS = 0.30, U/c = 0. Solid line
corresponds to the pre-breaking spectrum measured at the second probe (see time series in
figures 7). Dashed line is post-breaking spectrum measured at the third probe (time series
in figure 9). Multiples of IMF are shown with solid vertical lines. Multiples of the incipient
breaker 2 Hz frequency are shown with dashed vertical lines. (b) Ratio of the pre-breaking
and post-breaking spectra. Solid horizontal line signifies ratio of 1, vertical lines have the same
meaning as in (a).

the laboratory data. In particular, at the point of breaking, skewness is positive and
maximal (i.e. wave is peaked up) whilst asymmetry is small (i.e. wave is not tilted
forwards) and keeps decreasing.

It is worth mentioning that oscillations of the skewness and asymmetry obtained
in our two-dimensional simulations and experiments are also observed in directional
wave fields. In Agnon et al. (2005), a methodology was developed to describe fine-
scale inhomogeneity of wave-field skewness and asymmetry. Continuous time series
of skewness were obtained as a running average of the third moment of surface
elevation, and asymmetry as a running average of the third moment of the Hilbert
transform of the surface elevation. It was found that in field conditions wave skewness
and asymmetry oscillate at a scale of a few wave periods.

A feature which was not determined from the dimensionless numerical model is
that there is also a modulation of the frequency of individual waves (figure 7e).
This modulation takes place at the same scale as oscillations of the other nonlinear
characteristics. At the point of breaking the frequency increases rapidly. The combined
sudden increase in the wave height and contraction of the wave period prior
to breaking is a significant feature of the breaking onset. If, as suggested in
§ 2, loss of water-surface stability rather than anything else defines the breaking,
then this feature certainly contributes to reaching the critical local steepness. Once
detected, for example by wavelet techniques, it may signify the imminent onset of
breaking.

This change of frequency prior to breaking is further illustrated in figure 8(a)
where the spectrum of the time series of figure 7 is plotted. If the wave of
IMF = 1.8 Hz simply evolved into a steep Stokes wave, a 1.8 Hz peak of the spectrum
would bring about first, second and third harmonics indicated by the vertical solid
lines. In figure 8(a), however, the harmonics, as well as the peak itself are now
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probe prior to breaking; dashed line: same waves 1.2 s later at the third probe. The waves
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defined by the incipient breaker. The harmonics are located at double, triple and
quadruple frequencies of this breaker whose frequency is about 2 Hz (vertical dashed
lines).

Therefore, immediately prior to breaking, a frequency upshift of the spectral energy
occurs in the laboratory two-dimensional situation (see also figures 10 and 11).
Combined with the sudden growth of the wave height at the imminent breaking, this
feature has been previously used to detect the breaking events in directional wave
fields (Liu & Babanin 2004). Again, this is indirect, but encouraging corroboration
that the present two-dimensional study may have relevance for real three-dimensional
waves.

In addition, independent observations report a frequency downshift due to breaking
(e.g. Tulin & Waseda 1999; Meza, Zhang & Seymour 2000). Wave series immediately
before and after the breaking are compared in figure 9. In figure 9, the solid line shows
the waves of IMF =1.8 Hz, IMS =0.30, U/c =0 at the second probe (10.53 m from
the wavemaker), as in figure 7, and dashed line – at the third probe (11.59 m from the
paddle). Breaking of the three incipient breakers seen at the second probe happened
(started and finished) between the two probes. The wave which is seen following
the incipient breaker at the second probe also broke between the two probes. This
consistent double breaking, with a small-time delay, is again in agreement with
field observations (e.g. Donelan, Longuet-Higgins & Turner 1972, who observed up
to several consequent waves breaking at the top of wave group). These breaking
processes happened in a period of 1.2 s, the time required by the 1.8 Hz waves to
travel the distance between the probes. Therefore, the record made at the third probe
is time shifted by 1.2 s in an attempt to superimpose what should have been the same
waves, if the breaking did not take place.

The individual waves and the group propagate with different speeds. In case of deep-
water waves of 1.8 Hz frequency shown in figure 9, and in a close-to-linear scenario,
the relative speed of wave propagation within the group is crelative = 0.44 m s−1 and
relative position of a wave over 1.2 s will be shifted by 0.52 m. This is comparable
with one wavelength of such waves λ=0.48 m. That is, in absence of breaking, each
wave would approximately move one position ahead, and height of the highest wave
would be significantly reduced without any breaking.

Now that breaking has occurred, the correlation between the two time series is
poor. The incipient breaker and wave following it practically disappeared, as well
as the entire modulation. The number of waves in the segment is also reduced, i.e.
frequency downshifting has occurred.
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This frequency downshift is analysed in spectral terms in figure 8(a) where, along
with the spectrum of time series at the second probe, the third probe spectrum is also
plotted. The downshift from the 2 Hz peak of the incipient breaker is very significant,
and is also noticeable with respect to IMF =1.8 Hz which was the peak frequency in
the wave field before the point of breaking onset. As indicated above, this feature
has been observed before (e.g. Tulin & Waseda 1999), and the downshift occurs on a
time scale of tens of wave periods. This is is much faster than the scale of thousands
of wave periods for the four-wave resonant nonlinear interactions usually attributed
with the downshifting. That is, upshifting the wave energy occurs at the point of
breaking onset, but the overall effect of the breaking is downshift.

Apart from the frequency downshift, a significant loss of wave energy is observed
between the two spectra shown in figure 8(a). In figure 8(b), the ratio of the pre-
breaking spectrum to the post-breaking spectrum is plotted. In the range of relevant
frequencies up to 11 Hz, the average ratio is 1.8, which translates into a loss of 45 %
of the energy. It is most instructive to analyse where this loss comes from.

In both absolute and relative terms, most of the loss came from the peak which
was reduced by a factor of 5. With the exception of the second harmonic (shifted
to 3.6 Hz), the other harmonics have almost completely disappeared. For frequencies
above the spectral peak, the average ratio is approximately 1.7.

This result contradicts observations by Meza et al. (2000) who studied the
dissipation of energy of laboratory two-dimensional waves with a narrow spectrum.
They found that the energy is lost almost entirely from the higher frequencies whereas
the spectral peak remained unchanged after breaking. In Meza et al. (2000), as in many
other laboratory investigations, breaking was simulated by means of coalescing wave
packets, i.e. superposition formed a high wave which broke. The limiting steepness
of such waves ak = 0.44 (Brown & Jensen 2001) is the same as the steepness of the
incipient breaker measured in this study (§ 3.3), but the physics of the linear-focusing
breaking appears to be quite different to the physics of our experiment.

Under field conditions, Young & Babanin (2006) observed that when the dominant
waves break they lose some 30 % of their energy and a similar amount of energy
is also lost proportionally across the spectrum, the so-called cumulative effect. By
obvious analogy, such observation again suggests the nonlinear evolution mechanism,
rather than wave superposition, as a likely cause of wave breaking in the field. The
modulational instability may have limitations in directional fields (see discussion
in § 4), and it is clear that at least some part of the cumulative effect in the field
spectral environment is due to induced breaking (Manasseh et al. 2006) and residual
turbulent viscosity (Babanin & Young 2005), i.e. reasons other than removal of bound
energy observed in figure 8. It is obvious, however, that the modulational instability
mechanism is more consistent with field results than the linear-superposition breaking,
which does not provide a satisfactory explanation of the observed field features.

3.3. Measurements of the breaking onset

While the properties of waves breaking due to focusing coalescing packets have
been previously described in great detail (e.g. Rapp & Melville 1990), physical
characteristics of breaking resulted from the nonlinear wave evolution have rarely
been measured. As the location of the breaker can be controlled by varying the IMS
at the wavemaker, the waves were made to break immediately after a wave probe
and thus the properties of incipient breakers could be directly estimated.

Quantitative characteristics of these waves are analysed in figures 10 and 11.
Figure 10 shows a comprehensive set of statistics of the properties of the 20 highest
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incipient breakers and their relationship with the preceding and following wave.
Figure 10(a) is a plot of skewness versus steepness. Values of limiting local steepness,
the property which was revealed by the model as the likely indicator of breaking, is
in the range of 2ε ≈ 0.8. For a real wave, even if two-dimensional, such steepness is
extremely high. Noting that near the crest the wave is even steeper, it is not surprising
that the wave is about to break.
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The skewness of the 20 highest waves in figure 10(a) scatter from almost 0 to
almost 1. As indicated in the simulations in § 2, we would expect the skewness to
also have a limiting value. Clearly, however, such a limit is not a robust breaking
characteristic. Asymmetry is also scattered, from As = −0.33 to As = 0.75 (figure 10b).

A robust property of the breaking, in figure 10(c), is the wave frequency. The scatter
of this property is small, with all the values falling into a range from f = 2 to 2.08 Hz
(from 1.11 to 1.16 IMF). Thus, the wave clearly reduces in length prior to collapse.
We should mention that the measured steepness ε = kH/2 is the physical rear-face
steepness, and therefore the effect of period contraction has already been accounted
for.

In figure 10(e–h), the skewness of the wave following the incipient breaker
(figure 10e) and its asymmetry (figure 10f ) are much less scattered than the skewness
and asymmetry of the breaker itself: Skf = 0.32 to 0.70, Asf = −0.29 to 0.33. We have
already discussed the double breaking in § 3.2, which means that this following wave
will break soon after the incipient breaker. Thus, its physical shape is not random
and should exhibit some characteristic properties leading to breaking. The skewness
and asymmetry of the following wave, however, do not correlate with the skewness
and asymmetry of the breaker (figures 10g, 10h and 10m).

In figure 10(i–l ), the skewness of the wave preceding the breaker is even less
scattered: Skp = −0.55 to +0.12 (figure 10i ). Remarkably, it is essentially negative, i.e.
rear trough of the preceding wave is always deeper than its crest. The asymmetry
Asp = 0–1.33 is never negative (a couple of large Asp = 1.33 values are off scale in
figure 10j and not shown), that is this wave is tilted backwards. There is no correlation
of skewness and asymmetry of this preceding wave with those of the near-breaker
(figures 10k, 10l and 10n). The fact that the three waves, surrounding the breaking
event, obviously exhibit some quasi-universal form, but that variations of their shape
are not correlated with each other, means that these shape distortions are random.
Therefore, it is not the mean characteristics of the observed shapes, but rather their
limiting values which should produce asymptotic universal form parameters. These
will be investigated for the highest breakers in figure 11.

Figure 10(o, p) shows the local frequency of the following ff and preceding fp

waves versus the frequency of the breaker fb. IMF = 1.8 Hz is shown with two solid
lines. Although ff and fp are more scattered than fb, the correlation is present. In
figure 10(p), all the data points are in the second quadrant and thus the preceding
wave is decreasing in length along with the incipient breaker. In figure 10(o), the
points are on average in the fourth quadrant. Therefore, while the incipient breaker is
decreasing in length, the following wave is actually longer than its initial value defined
by IMF = 0.18Hz. Since we know that double breaking will occur, this following wave
should now be rapidly shrinking. Thus, some very active physics must be involved in
the short time scale evolution of this set of very nonlinear waves.

Figure 11 shows asymptotic, rather than statistical properties of the incipient
breaker. In figure 11, the characteristics of the five steepest waves are plotted. As
discussed above, transition to breaking happens very rapidly, and breaking onset and
its location may be somewhat modulated due to, for example, uneven number of
waves in the nonlinear oscillations. Thus, we would expect that it is the highest waves
measured that would be closest to the ultimate limiting characteristics of the incipient
breaker.

For the steepest five waves shown in figure 11, the asymptotic dependence of
skewness on steepness is very clear (figure 11a). Note that the bottom scale of
figure 11 t is different to that of figure 10. For the 20 steepest incipient breakers,
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Figure 12. As in figure 7, with wind forcing. A segment of the time series with IMF = 1.5 Hz,
IMS =0.30, U/c = 3.9. (a) Surface elevation η; (b) rear-face steepness ε; (c) skewness Sk

(rear-trough depth is used); (d ) asymmetry As; (e) frequency (inverse period), IMF = 1.5 Hz is
shown with solid line. The waves propagate from right to left.

skewness was broadly scattered, now that onset is close, it asymptotes to a value of
1, i.e. crest of the wave is twice as high as its trough (2.16).

The steepness appears to approach an asymptotic limit of ε = kH/2 ≈ 0.44 which
apparently represents an absolute steepness limit (Babanin et al. 2007b). We should
point out that this limit is remarkably close to the theoretical steady limiting steepness
of ak =0.443, i.e. the Stokes limit H/λ=1/7 where λ= 2π/k is the wavelength. Such
an observation is very important because it signifies that the waves break once they
achieve this well-established state, beyond which the water surface cannot retain
its stability. Thus the limiting steepness, rather than anything else, will trigger the
breaking. We can postulate that the other geometric, kinematic and dynamic criteria
of breaking, explored in the literature, are indicative of a wave approaching this state,
but are not a reason or a cause for the breaking. As this limit is approached, the
asymmetry starts to decrease and becomes negative (figures 11b and 11d ), i.e. the
wave starts tilting forwards.

3.4. Laboratory investigation of the influence of wind forcing

Following the approach of § 2, we now investigate the influence of wind on the
nonlinear wave evolution and breaking onset. Figure 12 is similar to figure 7, but
moderately strong wind forcing of U/c = 3.9 is now applied to the mechanically
generated waves. Note that IMF = 1.5 Hz is different from IMF = 1.8Hz in figure 7.
This is done in order to have incipient breakers, as before, at the probe 2 where data
is recorded.

In figure 7, R = 4 whereas in figure 12, R = 2.9, i.e. the difference in the modulation
depth is 1.4 times. Thus, we observe the expected feature of smearing of the modulation
by the wind. This smearing is reflected in all the other nonlinear properties shown in
the figure. The steepness (figure 12b), skewness (figure 12c) and asymmetry (d ) are
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Figure 13. As in figure 9, with wind forcing. A segment of the time series with IMF= 1.5 Hz,
IMS = 0.30, U/c = 3.9. Solid line: surface elevations at the second probe prior to breaking;
dashed line: same waves 1.04 s later at the third probe. The waves propagate from right to left.

intentionally plotted at the same scale as those in figure 7 even though their range of
oscillations is now noticeably reduced. Because of the IMF change, the scale of the
frequency plot (e) could not be left the same, but scale limits were kept proportional
to those in figure 7. Reduction of the local frequency oscillations, moderated by the
wind, is also apparent.

Influence of the smearing on the wave breaking is demonstrated in figure 13. This
figure is analogous to figure 9 except the wind forcing is imposed and IMF =1.5 Hz is
different. The wave time series are compared immediately before and after breaking.
The solid line shows the waves of IMF = 1.5 Hz, IMS = 0.30, U/c =3.9 at the second
probe (10.53 m from the maker) and the dashed line at the third probe (11.59 m
from the paddle). Breaking of the four incipient breakers seen at the second probe
occurred (started and finished) between the two probes. The breaking was very gentle
when visually observed. The wave following this gentle incipient breaker now does
not break, i.e. the wind cancelled the double-breaking effect. With IMF = 1.5 Hz,
the time necessary to travel the distance between the two probes is estimates as
1.04 s and therefore the record made on the third probe is shifted back by 1.04 s
in order to superpose what should be the same waves if the breaking did not take
place.

Since gentle breaking did occur, matching the two series is not exact. In figure 9,
the incipient breaker and the wave following it practically disappeared, as well as the
entire modulation. Here they are all present and each wave in the modulation can be
tracked at the third probe. In contrast to figure 9, after breaking the number of the
waves did not change and no downshifting is visible. As seen in the figure, the breaking
resulted in truncation of the crest of the breaker and smoothing of the modulation.
It should be pointed out that the individual waves and the group propagate with
different speeds which fact also accounts for some differences observed.

In figure 14, analogous to the no-wind figure 10, the statistics of a comprehensive
set of properties for the 20 highest incipient breakers and their links to the preceding
and following wave are shown. For the 20 waves approaching breaking, the wind
influence generally brought more order to their shapes, as the scatter of almost all the
properties is reduced and the marginal dependences became clearer. Qualitatively, the
wind changed the shape of the preceding wave which is now not skewed negatively on
average (figure 14i ) and increased the steepness of the following wave from ε = 0.19
to ε = 0.27 on average (not shown).

With regard to the asymptotic shape of the breaker, the wind in figure 15 has a
scattering rather than a stabilizing influence. In figure 15, analogous to figure 11,
characteristics of the five steepest waves are plotted in the presence of wind.
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Figure 14. As in figure 10, with wind forcing: IMF= 1.5 Hz, IMS =0.30, U/c = 3.9.
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statistics for five steepest incipient breakers.

Apparently, at these very last pre-breaking stages, the wind is capable of modifying the
wave, which is about to lose its stability, and to somewhat randomize its characteristics.
In figure 15(a), the limiting skewness is plotted versus limiting steepness. Skewness
no longer approaches 1, but steepness extends beyond the 2ε =0.88 limit and reaches
2ε = 0.97. The asymmetry is no longer negative, that is, the breakers do not tilt
forwards (figure 15b). Frequency remains a robust property and stays in almost the
same range of fb =1.11–1.19 IMF (figure 15c).

Therefore, whilst the breaking is mainly a hydrodynamic process, wind, if present,
does influence the incipient breaking. As was noticed in the numerical simulations,
this influence is small, but it is noticeable and diverse – from the shape-stabilizing
effect when approaching breaking onset to the shape-randomizing effect at the point
of breaking.
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Figure 16. (a) ASIST laboratory data. Number N of wavelengths to breaking versus IMS.
No wind forcing. �: IMF = 1.6 Hz; ×: IMF = 1.8 Hz; +: IMF = 2.0 Hz. The parameterization
(4.1) is shown with solid line. Squares are data points derived from Melville (1982). (b) Black
Sea. Properties of individual waves in the range of frequencies f = fp ± 0.3fp of a Black Sea
record with fp = 0.25 Hz. Frequency (inverse period) f versus steepness ε. +: all waves; :
those waves with ε > 0.08; squared: those waves exhibiting whitecapping. Solid lines show
peak frequency fp = 0.25 Hz (horizontal) and the breaking threshold ε = 0.08 (vertical).

4. Discussion and conclusions
In the numerical simulations of § 2, figure 3 was the main result because it allowed

us to predict the distance to breaking in dimensionless terms: number of wavelengths
to breaking N = xbreak/λ as a function of wave steepness and wind forcing, where
xbreak is the dimensional distance. Examination of its laboratory analogue was moved
to this section as its applicability to field conditions will also be discussed.

The laboratory dependence of the distance-to-breaking on IMS was obtained
and parameterized in Babanin et al. (2007b). The relevant figure 5(a) of Babanin
et al. (2007b) is reproduced with modifications as figure 16(a) here. Number N is
plotted versus IMS for three different initial frequencies of IMF = 1.6 Hz (circles),
IMF = 1.8 Hz (crosses) and IMF =2.0 Hz (pluses). All the measurements shown are
conducted without wind.

In accordance with the numerical simulations, for each wavelength an increase
of its initial steepness resulted in the breaking occurring closer to wavemaker. In
dimensionless terms, this dependence was parameterized as follows:

N = −11 arc tanh(5.5(ε − 0.26)) + 23 for 0.08 � ε � 0.44. (4.1)

Consistent, with the model results, the formula imposes two threshold values of IMS.
For ε > 0.44, the wave breaks immediately (compared to ε = 0.3 for the model) and
if ε < 0.08 the wave, in the absence of wind forcing, will never break (compared to
ε = 0.1 for the model). In the figure, two points (squares) are also shown which were
derived from figures 1 and 2 of Melville (1982) for comparison.

Comprehensive wind-forcing picture similar to the numerical result in figure 3 could
not be obtained in ASIST where available range of distances and wavelengths was
limited by the tank dimensions. Besides, as pointed out by our reviewer, presence of
a sustained wind in the tank may cause a significant shear layer and vorticity field



Breaking of two-dimensional waves in deep water 457

0 2 4 6 8 10 12
0

5

10

15

20

25

x b
re

ak
/λ

U/c

Figure 17. Number N of wavelengths to the breaking versus wind forcing U/c. o:
IMF =1.5 Hz; x: IMF = 1.55 Hz; +: IMF= 1.6 Hz; *: IMF =1.7 Hz.

in the water. The latter can lead to steeper steady free surfaces and thus make direct
quantitative comparisons problematic. Qualitatively, however, the laboratory results
are in full accord with numerical simulations. In figure 17, number N is plotted
versus wind-forcing parameter U/c for four different IMFs: IMF = 1.5 Hz (circles),
IMF = 1.55 Hz (crosses), IMF = 1.6Hz (pluses) and IMF = 1.7Hz (asterisks). At each
IMF, initial steepness IMS was kept constant, and therefore the apparent trend of
reduction of distance-to-breaking is due to wind only.

We now discuss the possibility of applying our results to waves in the field. A
number of features of nonlinear wave behaviour leading to the breaking, which
were revealed both in our two-dimensional simulations/measurements and in known
field observations have been mentioned above. These are the double breaking found
in our laboratory experiments and observed in the field by Donelan et al. (1972),
the upshifting of spectral energy (figure 8) observed in Liu & Babanin (2004),
oscillations of the skewness/asymmetry (figures 2 and 7) in Agnon et al. (2005)
and cumulative effect (figure 8) in Young & Babanin (2006). Gemmrich & Farmer
(2004) analysed velocity field under the passing breaker and found upshifting of wave
energy followed by downshifting (figure 12 in Gemmrich & Farmer 2004), which is
qualitatively similar to the upshifting–downshifting observed in this paper (figures 8
and 9). Similarly, conclusion of Melville & Matusov (2002) about breaking waves
propagating at some 80 % of the characteristic linear phase speed can be interpreted
as an indirect support of the pre-breaking wave shrinkage. The fact that doubling
the wind input brings about wave breaking four times as fast (§ 2.2, figure 2) is
consistent with field experiments on wind input (Donelan et al. 2006). Although all
these indicators of the modulational instability behaviour are indirect, they are many
and diverse.

What is against direct extrapolation of outcomes of the present paper into field
conditions is known experimental and theoretical results on limitations which BF
mechanism has in broadband, and particularly in three-dimensional fields (e.g.
Brown & Jensen 2001; Onorato et al. 2002, 2009; Waseda, Kinoshita & Tamura
2009). We concluded that modulational instability is the driving force behind nonlinear
evolution of our waves to breaking, and since our study was initially monochromatic
and two-dimensional, and field waves are spectral and directional, this issue has to
be addressed before applying our results to such waves.
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Brown & Jensen (2001) studied the focusing of unidirectional waves and found
that BF instability is impaired in focusing (i.e. spectral) wavetrains. Such study
needs to be extended into spectra typical of field waves and examined further. There
is a reasonable expectation, however, that the modulational mechanism may work
for reasonably steep waves with a narrow spectrum (e.g. Waseda et al. 2009). For
unidirectional spectral waves, Alber (1978) derived a requirement which can be
expressed as

MI > 1, (4.2)

and this condition can be satisfied for spectra of young wind waves (e.g. Onorato
et al. 2001).

There is no analogue of MI and condition (4.2) available for three-dimensional
characteristics of the modulational instability mechanism. In Onorato et al. (2002),
directional effects were investigated and quantitative criterion β was obtained in terms
of width of directional spectrum D(θ) where θ is angle in radians:

D(θ) = cos2
( π

2β
θ
)
, (4.3)

i.e. if the directional width is greater than β = 15, the modulational instabiltiy appears
to be suppressed. There was a typing error in Onorato et al. (2002), and value of
β has to be actually multiplied by π/180, that is the criterion is β ≈ 0.26 (Onorato,
personal communication 2007). Since the Onorato et al. (2002) model is weakly
nonlinear rather than fully nonlinear, the criterion should only be regarded as an
approximation, but we will use it as a reference point here.

To compare width of the (4.3) spectrum with observations, integral value A was
estimated:

A−1 =

∫ β

−β

D(θ) dθ, (4.4)

which was used in the field study of Babanin & Soloviev (1987, 1998a) to measure
directional distributions (the higher is A, the narrower is the spectrum). For β =0.26,
A= 3.8 which is well above the experimentally observed values. It should be mentioned
that this theoretical value is in excellent agreement with the laboratory experiment of
Waseda et al. (2009) who concluded that the critical directional spread is A ≈ 4.

Modulational instability, however, may still be found applicable, at least for the
dominant waves if they are steep enough. It is not unreasonable to expect a directional
condition analogous to (4.2) being relevant. Parameter A (4.4) can be used for this
purpose as it has the proper physical meaning of the inverse relative width of the
directional spectrum whose peak is normalized to be 1.

At the spectral peak, a relative steepness (as the wave spectrum develops) is defined
by

√
γ where γ is the peak enhancement of the JONSWAP spectrum. That is, for the

peak, we can define a directional analogue of MI as

MId = A
√

γ . (4.5)

Now, it is informative to look at how this Index evolves over the wave development.
From (19) of Babanin & Soloviev (1998a), at the spectral peak

A = 1.12
(U10

cp

)− 0.50

+ (2π)−1, (4.6)
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and from (44) of Babanin & Soloviev (1998b):

γ =
7.6

2π

U10

cp

, (4.7)

that is,

√
γ = 1.10

(U10

cp

)0.50

. (4.8)

Therefore,

MId = 1.23 +
1.1

2π

(U10

cp

)0.50

(4.9)

is a weak function of the wind forcing, and its value at the spectral peak varies from
1.40 to 1.79 for U10/cp in the range from 0.89 to 10 where U10/cp =0.89 signifies full
development (Pierson–Moscowitz limit).

Now, if the MId assumption is valid and the critical value for this Index is in the
range of MId = 1.4–1.8, the ‘focusing’ effect of directionality can be overcome by a
stronger nonlinearity if waves grow steeper. It is worth noting here that the directional
spectra broaden towards frequencies above the peak (e.g. Babanin & Soloviev 1998a).
This means that, even if applicable at the peak, the directional modulational instability
may not be working at higher frequencies and some other causes of breaking and
dissipation will have to be found in that spectral band. In this regard, two-phase
behaviour of the breaking has indeed been observed in field experiments of Babanin &
Young (2005); Manasseh et al. (2006), i.e. the direct dependence of breaking on
spectral density at the peak and an induced breaking/dissipation at higher frequencies.

In any case, the issue of modulational instability in real spectral directional fields
cannot be solved now, but with caution we will try to apply our results to the field
data. Another problem, of the technical kind, still prevents direct comparisons of
breaking rates obtained by means of (4.1) and field observations. Relationship (4.1)
predicts the probability of incipient breaking, whereas in the field it is impossible to
directly measure whether a wave is an incipient breaker or not. At best, we can detect
quantities which result from the breaking process, that is we count waves already
breaking. Common measures of this type include the acoustic signature of breaking
waves, void fraction or surface whitecap coverage. However, a breaking wave emits
sound and forms whitecaps over a substantial part of its period whereas the incipient
breaking is an instantaneous state, and therefore the probability of encountering such
sound or whitecaps is significantly higher than the probability of breaking onset
(Liu & Babanin 2004).

Qualitative comparisons of the laboratory and field breaking-probability depend-
ences were done in Babanin et al. (2007b) and featured well. Here, in figure 16(b)
we plot frequency (inverse period) of individual dominant waves (from frequency
range of f = fp ± 0.3fp) versus steepness of these individual waves. This is done for
a Black Sea record with fp = 0.25 Hz used by Babanin et al. (2001) to obtain field
breaking rates in the same frequency band. If there was no shrinking of the wavelength
prior to breaking, as described in this paper, at each steepness the distribution of
the frequencies around fp = 0.25 Hz would be approximately even. It is so for waves
of ε < ≈ 0.12. For steeper waves, and some of these detected deep-water wind-
generated three-dimensional waves have an enormous by field standards steepness up
to ε = 0.27, the distribution is clearly biased towards higher frequencies. Waves with
ε > 0.17 are all shorter than those of the peak frequency fp = 0.25 Hz, and the higher
is the individual steepness, the higher is the individual frequency. Since on average
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the highest waves are observed at the peak frequency, and the peak is very sharp,
the only plausible explanation for this observation is that these abnormally steep,
but rare waves are those in transition towards or just after the incipient breaking.
Thus, the very existence of such abnormally high and shrunk waves indicates that the
modulational instability mechanism is most likely still active in these field conditions.

It is very informative to see in this plot which waves are detected as breaking by
observing whitecaps. Such waves are indicated by squares. Liu & Babanin (2004)
classified phases of the wave breaking process into incipient, developing, subsiding
and residual stages. At the incipient phase, waves are at their steepest and the
surface has already lost its stability, but there are no whitecaps formed. Whitecaps
are observed at developing and subsiding stages. The latter phase is characterized by
very broken shape of waves and their steepness may be well below the field average.
The last, residual stage was introduced formally following Rapp & Melville (1990)
as such phase of breaking progress when the whitecap is already left behind, but the
turbulent front is still moving downstream.

In figure 16(b), vertical solid line identifies the threshold of ε =0.08 below which
even two-dimensional waves are not expected to break. Yet, a significant number of
them, some with steepness as low as ε = 0.03 are detected as whitecapping. This is
the subsiding (not breaking) phase, still detected as breaking if relied on whitecap
observations. On the other end, out of two waves with ε ≈ 0.27, one wave does not
exhibit whitecaps and another does, that is the first one is on its way up to the
limiting steepness and another is on its way down while collapsing. This observations
highlights uncertainties and ambiguity of existing definitions of breaking rates.

Finally, we would like to summarize main results, findings and conclusions of
the numerical and laboratory investigations of the deep-water breaking in two-
dimensional circumstances. Modulational instability mechanism is not the cause of
the breaking, as it may or may not lead to the breaking. The breaking will occur if the
wave in the course of its nonlinear evolution reaches the limiting steepness, that is the
water surface becomes unstable and collapses. Evolution of nonlinear wave properties
was mainly investigated in the physical rather than Fourier space. Particular attention
was paid to steepness, skewness and asymmetry of individual waves, and to their
interplay leading to the breaking onset. Individual wave steepness was found to be
the single parameter which determines whether the wave will break immediately,
never break or take a finite number of wavelengths to break. Dimensionless distance
to the breaking can be parameterized in terms of the wave steepness as the primary
parameter. Properties of the incipient breaker were measured in detail.

If the wind forcing is superimposed, it can play multiple roles in affecting the wave-
breaking dependences. Wind action is important on longer scales in altering breaking
statistics because of enhancing the wave steepness. At moderate winds, doubling the
wind speed leads to the limiting steepness and breaking four times as fast. At stronger
wind forcing, this effect slows down. Wind capacity to affect the breaking onset at
short time scale is marginal unless the wind forcing is very strong.

Detailed laboratory observations revealed a number of additional features of the
breaking process. At the breaking onset, wave period decreases (frequency increases)
which further instigates the steepness growth towards the limiting state. Wave
preceding the breaker is tilted backwards and negatively skewed. Wave, following
the breaker is transient. Its steepness, skewness, asymmetry and frequency are all
growing, and it breaks soon after the first breaker (double breaking). Features of the
shape of the three waves appear to be inter-connected, particularly as the breaking
onset is approaching, which fact indicates strong and rapid nonlinear interactions in
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the system. At the breaking onset, upshift of the spectral energy takes place. After the
breaking, downshifting occurs. Superimposed wind influences the wave modulation
and breaking severity. Strong wind makes the breaking more frequent, but smoothens
the modulation, cancels the double breaking and reduces the breaking strength. As a
result, it affects the total dissipation in an unknown way. This very important issue
needs further research.

Nature of breaking process, resulted from the nonlinear evolution and from
the coalescing linear waves, is essentially different. While the limiting steepness
of ε = ak =Hk/2 = 0.44 appears to be the same in both cases, energy loss and
distribution of this loss across the spectrum are dissimilar. This conclusion implies
significant consequences for wave dissipation studies, i.e. research of the breaking
and the dissipation have to be separated. While any process which leads to the
critical steepness will cause the wave collapse, their end result in terms of the spectral
dissipation will have principle differences. In other words, the breaking is in a way
a kinematic effect (i.e. moving water surface becomes unstable, no matter what is a
balance of forces other than gravity) whereas the energy dissipation following the
breaking is a dynamic process which remembers the history (i.e. depends on the
driving forces both before and after the breaking onset).

A significant number of features typical of ocean breaking waves was reproduced
in this two-dimensional fully nonlinear study which points out to the modulational
instability as a likely mechanism active in the field, at least at the scale of
dominant waves. Most important further research, however, is needed into the role
of this mechanism in broadband and three-dimensional wave fields, particularly at
the shorter wave scales. Since there are theoretical and experimental indications
that this mechanism can be suppressed if frequency and directional spectra are
broad, nature of wave energy dissipation and breaking can be different in three-
dimensional wave fields, particularly at smaller scales characterized by broader angular
distributions.

Alex Babanin and Dmitry Chalikov conducted this research with the support
of a research development scheme (RDS) grant of the Swinburne University of
Technology. The authors are thankful to Alastair Jenkins and Yulia Troitskaya for
useful discussions.
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