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Abstract

We derive and analyze transport equations for the energy density of waves of any kind in a random

medium. The equations take account of nonuniformities of the background medium, scattering by random

inhomogeneities, polarization e�ects, coupling of di�erent types of waves, etc. We also show that di�usive

behavior occurs on long time and distance scales and we determine the di�usion coe�cients. The results are

specialized to acoustic, electromagnetic, and elastic waves. The analysis is based on the governing equations

of motion and uses the Wigner distribution.
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1 Introduction and Summary

1.1 Radiative Transport Equations

The theory of radiative transport was originally developed to describe how light energy propagates

through a turbulent atmosphere. It is based upon a linear transport equation for the angularly

resolved energy density and was �rst derived phenomenologically at the beginning of this century

[1,2]. We shall show how this theory can be derived from the governing equations for light and

for other waves of any type, in a randomly inhomogeneous medium. Our results take into account

nonuniformity of the background medium, scattering by random inhomogeneities, the e�ect of

polarization, the coupling of di�erent types of waves, etc. The main new application is to elastic
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waves, in which shear waves exhibit polarization e�ects while the compressional waves do not, and

the two types of waves are coupled. We also analyze solutions of the transport equations at long

times and long distances and show that they have di�usive behavior.

Transport equations arise because a wave with wave vector k0 at a point x in a randomly

inhomogeneous medium can be scattered into any direction k̂ with wave vector k, where k̂ = k=jkj.
Therefore one must consider the angularly resolved, wave vector dependent, scalar energy density

a(t;x;k) de�ned for all k at each point x and time t. For scalar waves, energy conservation is

expressed by the transport equation

@a(t;x;k)

@t
+ rk!(x;k) � rxa(t;x;k)�rx!(x;k) � rka(t;x;k) (1.1)

=

Z
R3

�(x;k;k0)a(t;x;k0)dk0 � �(x;k)a(t;x;k):

Here !(x;k) is the frequency at x of the wave with wave vector k, �(x;k;k0) is the di�erential

scattering cross-section -the rate at which energy with wave vector k0 is converted to wave energy

with wave vector k at position x- andZ
�(x;k0;k)dk0 = �(x;k) (1.2)

is the total scattering cross-section. Both � and � are nonnegative and � is usually symmetric in

k and k0. For acoustic waves !(x;k) = v(x)jkj, with v the sound speed (3.36), and the di�erential

scattering cross-section is given by

�(x;k;k0) =
�v2(x)jkj2

2
f(k̂ � k̂0)2R̂��(k� k0) + 2(k̂ � k̂0)R̂��(k� k0) + (1.3)

R̂��(k � k0)g � �(v(x)jkj � v(x)jk0j):

Here R̂��, R̂�� and R̂�� are the power spectra of the uctuations of the density � and compressibility

� de�ned by (4.3) and (4.37). The left side of (1.1) is the total time derivative of a(t;x;k) at a

point moving along a ray in phase space (x;k), with the frequency adjusting to the appropriate

local value. The right side of (1.1) represents the e�ects of scattering.

The transport equation (1.1) is conservative when (1.2) holds because thenZ Z
a(t;x;k)dxdk = const

independent of time. For simplicity we will assume that there is no intrinsic attenuation. However,

it is accounted for easily by letting the total scattering cross-section be the sum of two terms

�(x;k) = �sc(x;k) + �ab(x;k)
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where �sc(x;k) is the total scattering cross-section given by (1.2) and �ab(x;k) is the intrinsic

attenuation rate.

The reason that the power spectral densities of the inhomogeneities determine the scattering

cross-section (1.3) is seen most easily from a Born expansion of the wave solution for weak inho-

mogeneities. The single scattering approximate solution of (1.1) and the second moments of the

single scattering approximate solution for the underlying wave equation must be the same. The

latter are determined by the power spectra of the inhomogeneities. The same considerations ex-

plain the appearance of the delta function in the scattering cross-section (1.3) when the random

inhomogeneities do not depend on time, for then the frequency is unchanged by scattering. The

transport equation (1.1) arises also when the waves are scattered by discrete scatterers that are

randomly distributed in the medium. In this case the scattering cross-section (1.3) is the same

as the cross-section of a single scatterer times the density of scatterers. We will deal only with

continuous random media.

Equation (1.1) has been derived from equations governing particular wave motions by various

authors, such as Stott [3], Watson et.al. [4], [5], [6], [7], Barabanenkov et.al. [8], Besieris and

Tappert [9], Howe [10], Ishimaru [11] and Besieris et. al. [12] with a recent survey presented in

[13]. These derivations also determine the functions !(x;k) and �(x;k;k0) and show how a is

related to the wave �eld. We shall derive (1.1) and these functions as a special case of our more

general theory.

We expect that radiative transport equations will provide a good description of wave energy

transport when (i) typical wavelengths are short compared to macroscopic features of the medium

(high frequency case), (ii) correlation lengths of the inhomogeneities are comparable to wavelengths

and (iii) the uctuations of the inhomogeneities are weak. Condition (ii) is important because it

allows strong interaction between the waves and the inhomogeneities, which is the most interesting

and di�cult case to analyze. In addition to these three conditions, the inhomogeneities must

not be too anisotropic because in layered random media wave localization occurs even with weak

uctuations, instead of transport [14]. When the uctuations are strong, wave localization can

occur even when the inhomogeneities are isotropic [15], [16].

We shall also analyze the di�usive behavior of solutions of (1.1) which emerges at times and

distances that are long compared to a typical transport mean free time 1=� and a typical transport

mean free path jrk!j=�. In this regime the phase space energy density a(t;x;k) is approximately

independent of the direction of the wave vector k, a(t;x;k) � �a(t;x; jkj). In the simplest, spatially

4



homogeneous case, �a satis�es the di�usion equation

@�a

@t
= rx � (Drx�a) (1.4)

with a constant di�usion coe�cient D = D(jkj), (5.13, 5.14), determined by the di�erential scat-

tering cross-section �. Di�usion approximations for scalar transport equations are well known [17],

including their behavior near boundaries [18], [19]. Our results show that di�usion approximations

are also valid for the more general transport equations that arise for electromagnetic and elastic

waves.

1.2 Transport Theory for Electromagnetic Waves

To describe electromagnetic waves in isotropic media we must know their state of polarization.

Therefore the radiative transport theory of electromagnetic waves must account for energy transport

in di�erent states of polarization. Such transport equations were �rst proposed by Chandrasekhar

[1]. They are a coupled system of transport equations for the Stokes parameters I; Q; U; V as

functions of time, position and wave number [20]. The Stokes vector is related to the coherence

matrix W (t;x;k) by

W (t;x;k) =
1

2

 
I + Q U + iV

U � iV I �Q

!
: (1.5)

In terms of W , which is Hermitian and positive de�nite, Chandrasekhar's transport equation is

@W

@t
+ rk!(x;k) � rxW �rx!(x;k) � rkW +WN(x;k) �N(x;k)W (1.6)

=

Z
R3

�(x;k;k0)[W (t;x;k0)]dk0 � �(x;k)W (t;x;k):

Here !(x;k) = v(x)jkj is the local frequency and v(x) = (�(x)�(x))�1=2 is the local speed of light.

The di�erential scattering cross-section �(x;k;k0) is a tensor. In the simplest case of isotropic

random inhomogeneities, without uctuations in the magnetic permeability �, it has the form

�(x;k;k0)[W (t;x;k0)] =
�v2(x)jkj2R̂��(jk� k0j)

2
T (k;k0)W (t;x;k0)T (k0;k)

� �(v(x)jkj � v(x)jk0j): (1.7)

Here R̂""(k) is the power spectrum of the dimensionless uctuations of the relative dielectric per-

mittivity. The total scattering cross-section �(x;k) is given by

�(x;k) =
�2jkj4v(x)

2

Z 1

�1
R̂��(jkj

p
2� 2�)(1 + �2)d�: (1.8)
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The di�erential scattering cross-section � and the total scattering cross-section � are related by

the matrix analog of (1.2) Z
R3

�(k0;k)[I ]dk0 = �(k)I; (1.9)

where I is 2� 2 identity matrix.

To de�ne T and N , which occur in (1.7) and (1.6), respectively, we let (k̂; z(1)(k); z(2)(k)) be

the orthonormal propagation triple consisting of the direction of propagation k̂ and two transverse

unit vectors z(1)(k); z(2)(k). In polar coordinates they are

k̂ =

0BB@
sin � cos�

sin � sin �

cos �

1CCA ; z(1)(k) =
0BB@
cos � cos�

cos � sin �

� sin �

1CCA ; z(2)(k) =
0BB@
� sin�

cos�

0

1CCA : (1.10)

Then the 2� 2 matrix T is given by

Tij(k;k
0) = z(i)(k) � z(j)(k0) (1.11)

and in polar coordinates it has the form

T (k;k0) =

 
cos � cos �0 cos(�� �0) + sin � sin �0 cos � sin(�� �0)

cos �0 sin(�0 � �) cos(�� �0)

!
:

The coupling matrix N is given by

N(x;k) =
3X

i=1

@v(x)

@xi
jkjz(1)(k) � @z

(2)(k)

@ki

 
0 1

�1 0

!
: (1.12)

Chandrasekhar considered a homogeneous background only, in which case the speed of light v

is a constant so that rx! = 0 and N = 0. Law and Watson [6] derived (1.6) in general, from

Maxwell's equations in a random medium, as was done also in [21].

We will now explain the physical meaning of the matrices T and N , which do not appear

in the scalar transport equation (1.1). The 2 � 2 matrix T (k;k0) involves the angles between

the directions transverse to k0 before the scattering and the directions transverse to k after the

scattering. Thus Tij is the fraction of wave amplitude going in the direction k0 and polarized along

the transverse direction z(j)(k0) that scatters into a wave going in the direction k and polarized

along the transverse direction z(i)(k). Since the coherence matrix W is related to the mean square

of the wave amplitudes (see sections 3.3 and 4.4), the transformation matrix T acts on W twice

in (1.7). The coupling matrix N(x;k), de�ned by (1.12), arises from the slow variations of the

background because the rays in inhomogeneous media are curved, and this leads to rotation of the
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polarization vector around the ray as the wave propagates (Lewis [22]). This rotation corresponds

to parallel transport along the ray in the metric v�1(x)ds where v(x) is the propagation speed.

The coherence matrix W (t;x;k) captures this behavior of polarization for quantities quadratic in

the electromagnetic �eld through the matrix N . In the absence of scattering, so that the right side

of (1.6) is zero, the solution of (1.6) with geometrical optics initial conditions (see (2.4) and (3.58))

is the coherence matrix of Lewis' solution.

When the transport mean free path is small compared to the overall propagation distance,

there is a di�usion approximation for Chandrasekhar's equation (1.6). The coherence matrix W

is approximated by ��(t;x; jkj)I with I the 2� 2 identity matrix and �� the solution of a di�usion

equation (see section 5.2). In this approximation the coherence matrix is independent of the

direction of the wave vector k and is completely depolarized since it is proportional to the identity.

In section 5.2 we give an explicit formula (5.30) for the di�usion coe�cient D(jkj).

1.3 Transport Theory for Elastic Waves

Radiative transport theory was used in seismology by Wesley [23], Nakamura [24], Dainty and

Toks�oz [25], Wu [26] and others. The stationary, scalar transport equation was used to successfully

assess scattering and intrinsic attenuation (the albedo) [27], [28], [29], [30], [31], [32] and the time

dependent scalar transport equation was used by Zeng, Su and Aki [33], Zeng [34] and Hoshiba

[35]. In all these papers the vector nature of the underlying elastic wave motion was not taken

into consideration. Mode conversion for surface waves was considered in a phenomenological way

by Chen and Aki [36] and general mode conversion between longitudinal compressional or P waves

and transverse shear or S waves was considered by Sato [37] and by Zeng [38]. However, the

transport equations proposed phenomenologically in [37], [38] do not account for polarization of

the shear waves. Starting from the elastic wave equations in a random medium we derive a system

of transport equations that accounts correctly for P to S mode conversion and for polarization

e�ects.

Longitudinal or P waves propagate with local speed vP (x) =
p
(2�(x) + �(x))=�(x) and trans-

verse shear or S waves propagate with local speed vS(x) =
p
�(x)=�(x). The corresponding dis-

persion relations are !P = vP jkj and !S = vS jkj, respectively. Here � and � are the Lame

parameters. The P and S wave modes interact in an inhomogeneous medium because a P wave

with wavenumber k can scatter into an S wave with wavenumber p with the same frequency; that

is, with vP (x)jkj = vS(x)jpj, and vice versa. Therefore the transport equations for P and S wave
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energy densities must be coupled. The transport equation for the P wave should be a scalar equa-

tion similar to (1.1) with an additional term that accounts for S to P conversion. Similarly, the

transport equation for the S wave coherence matrix should be like Chandrasekhar's equation (1.6)

with an additional term that accounts for P to S conversion. We show in section 4.5 that this is

indeed the case and we determine explicitly the form of the scattering cross-sections in terms of

the power spectral densities of the material inhomogeneities.

The coupled radiative transport equations for the P wave energy density aP (t;x;k) and the

2� 2 coherence matrix WS(t;x;k) for the S waves have the forms

@aP

@t
+ rk!

P � rxa
P �rx!

P � rka
P (1.13)

=
Z
�PP (k;k0)aP (k0)dk0 � �PP (k)aP (k)

+
Z
�PS(k;k0)[WS(k0)]dk0 � �PS(k)aP (k)

and

@WS

@t
+ rk!

S � rxW
S � rx!

S � rkW
S +WN � NW (1.14)

=
Z
�SS(k;k0)[WS(k0)]dk0 � �SS(k)WS(k)

+
Z
�SP (k;k0)[aP (k0)]dk0 � �SP (k)WS(k):

The coupling matrix N is the same as (1.12) for electromagnetic waves except that the speed v is

now the shear speed vS(x) =
p
�(x)=�(x). The di�erential scattering cross-section �PP (k;k0) for

P to P scattering is similar to (1.3) for scattering of scalar waves and the di�erential scattering

tensor �SS(k;k0) is similar to Chandrasekhar's tensor (1.7). They have the forms

�PP (k;k0) = �pp(k;k
0)�(vP jkj � vP jk0j) (1.15)

and

�SS(k;k0)[W (k0)] = f �TTss T (k;k0)W (k0)T (k0;k) + ���ss �(k;k
0)W (k0)�(k0;k)

+ ��Tss [T (k;k
0)W (k0)�(k0;k) + �(k;k0)W (k0)T (k0;k)]g

� �(vS jkj � vS jk0j): (1.16)

The 2� 2 matrix �(k;k0) is similar to T and is de�ned by

�ij(k;k
0) = (k̂ � k̂0)(z(i)(k) � z(j)(k0)) + (k̂ � z(j)(k0))(k̂0 � z(i)(k)) (1.17)
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while �pp and �ss are scalar functions given in terms of power spectral densities of the inhomo-

geneities by (4.54) and (4.55). The total scattering cross-sections �PP and �SS are the integrals

of the corresponding di�erential scattering cross-sections, as in (1.2) and (1.9).

The scattering cross-sections for the S to P and P to S coupling terms, �PS and �SP , respectively,

have the forms

�PS(k;k0)[WS(k0)] = Tr[�ps(k;k
0)G(k;k0)WS(k0)]�(vP jkj � vS jk0j) (1.18)

�SP (k;k0)[aP (k0)] = �ps(k
0;k)G(k0;k)aP (k0)�(vSjkj � vP jk0j) (1.19)

with the 2� 2 matrix G given by

Gij(k;k
0) = (k̂ � z(i)(k0))(k̂ � z(j)(k0)): (1.20)

The scalar function �ps is given explicitly in terms of power spectral densities of the inhomogeneities

by (4.56). The scattering operator on the right side of (1.13) and (1.14) is symmetric in aP ; WS

and conservative. This implies in particular that

�SP (k) =
Z
�ps(k

0;k)G(k0;k)�(vSjkj � vP jk0j)dk0: (1.21)

with

�PS(k) =

Z
�ps(k;k

0)TrG(k;k0)�(vS jk0j � vP jkj)dk0: (1.22)

The geometrical meaning of the 2 � 2 matrices T; � and G that appear in the di�erential

scattering cross-sections (1.16) and (1.18) is similar to that of T in the electromagnetic case (1.7).

They arise from a single scattering event of P or S waves with wave vector k0 that scatter to P or

S waves with wave vector k, and from the fact that the transport equations deal with quadratic

�eld quantities. In the analysis given in sections 3.4 and 4.5 this is captured in the structure of the

eigenvalues and eigenvectors of the dispersion matrix L (3.84) for the elastic wave equations.

As for the scalar transport equation (1.1) and Chandrasekhar's equation (1.6), the elastic trans-

port equations (1.13) and (1.14) simplify considerably in the regime where the di�usion approxima-

tion is valid. This occurs when the scattering mean free path is small compared to the propagation

distance. In this regime the P wave energy density aP (t;x;k) and the S wave coherence matrix

WS(t;x;k) are independent of the direction of the wave vector k. Furthermore,WS is proportional

to the identity matrix

aP (t;x;k) � �(t;x; jkj); WS(t;x;k) � w(t;x; jkj)I (1.23)
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and the equipartition relation

�(t;x; jkj) = w(t;x;
vP jkj
vS

) (1.24)

holds with � satisfying the di�usion equation (1.4). The di�usion coe�cient D(jkj) is given by

(5.46).

When integrated over k, the equipartition relation (1.24) is

EP (t;x) = v3S
2v3P

ES(t;x) (1.25)

where EP and ES are the P and S wave spatial energy densities. They are related to aP and WS by

EP (t;x) =
Z
aP (t;x;k)dk

and

ES(t;x) =
Z
TrWS(t;x;k)dk;

respectively. From the point of view of seismological applications of transport theory, relation

(1.25) is important because it predicts universal behavior of the P to S wave energy ratio in the

di�usive regime. This ratio is independent of the details of the multiple scattering process and

of the source distribution. When we use the typical S to P wave speed ratio of 1 to 1:7, relation

(1.25) predicts ES=EP � 10. This is in general agreement with seismological data and it would

be interesting to identify cases where ES=EP stabilizes. This stabilization, which is derived here

from �rst principles, is reminiscent of the important empirical observation of Hansen, Ringdal and

Richards [39] regarding the stabilization of crustal waveguide mode energy ratios.

1.4 Brief Outline

In section 2, to motivate the phase space setup, we analyze the Schr�odinger wave equation, which is

relatively simple. The Wigner distribution is introduced and its usefulness for energy calculations is

shown. The analysis of scattering in random media is given in section 2.3, with some of the details

relegated to the Appendix. In section 3 we present the high frequency approximation for general

symmetric hyperbolic systems and the equations of acoustic, electromagnetic and elastic waves,

in particular. We do this in phase space using the Wigner distribution, and show the connection

with the standard high frequency approximation. In section 4 we derive the transport equations,

�rst for general symmetric hyperbolic systems, sections 4.1 and 4.2, and then for the equations

of acoustic, electromagnetic and elastic waves in sections 4.3, 4.4 and 4.5, respectively. We rely
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here on the formalism explained in detail for the Schr�odinger equation in section 2.3 and in the

Appendix. The di�usion approximation is analyzed in detail in section 5. The energy equipartition

results for elastic waves are discussed in section 5.3.

2 Radiative Transport Theory for the Schr�odinger Equation

2.1 High Frequency Asymptotics

It is convenient to introduce the derivation of radiative transport theory in a simple setting, that

of the Schr�odinger or parabolic wave equation, before considering systems of wave equations (hy-

perbolic systems). This will also allow us to introduce the Wigner distribution (section 2.2) which

plays an important role in the analysis.

The Schr�odinger equation

i
@�

@t
+
1

2
��� V (x)� = 0 (2.1)

�(0; x ) = �0(x)

arises not only in quantum mechanics but also in many other wave propagation problems. It

describes, in particular, an approximate plane wave propagating primarily in one direction and can

be derived from the Helmholtz equation as a paraxial approximation. In this case t is distance

in the direction of propagation, x stands for the two-dimensional transverse coordinates and the

potential is related to the index of refraction and will depend on t, in general. An important

property of (2.1) is that the L2-norm of the solution is conservedZ
R3

j�(t;x)j2dx =
Z
R3

j�0(x)j2dx: (2.2)

We consider high frequency asymptotics which concerns approximate solutions of (2.1) that

are good approximations to oscillatory solutions. For such solutions the propagation distance is

long compared to the wavelength, the propagation time is large compared to the period and the

potential V (x) varies slowly. To make this precise we introduce slow time and space variables

t ! t=", x ! x=" and the scaled wave function �"(t;x) = �(t=";x=") which satis�es the scaled

Schr�odinger equation

i"�"t +
"2

2
��" � V (x)�" = 0: (2.3)

In the standard high frequency approximation [40] we consider initial data of the form

�"(0;x) = eiS0(x)="A0(x) (2.4)
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with a smooth, real valued initial phase function S0(x) and a smooth compactly supported complex

valued initial amplitude A0(x). We then look for an asymptotic solution of (2.3) in the same form

as the initial data (2.4), with evolved phase and amplitude

�"(t;x) � eiS(t;x)="A(t;x): (2.5)

Inserting this form into (2.3) and equating the powers of " we get evolution equations for the phase

and amplitude

St +
1

2
jrSj2 + V (x) = 0; S(0;x) = S0(x) (2.6)

and

(jAj2)t +r � (jAj2rS) = 0; jA(0;x)j2 = jA0(x)j2: (2.7)

The phase equation (2.6) is called the eiconal and the amplitude equation (2.7) the transport

equation. The terminology for the latter is standard in the high frequency approximation but

should not be confused with the radiative transport equation that will be derived later. These

equations can be rewritten using the Hamiltonian ! of the Schr�odinger equation

!(x;k) =
1

2
k2 + V (x): (2.8)

Then the eiconal equation (2.6) is

St + !(x;rS) = 0 (2.9)

and the transport equation (2.7) is

(jAj2)t +r � (jAj2rk!(x;k)jk=rS) = 0: (2.10)

This form of the eiconal and transport equations is general and remains valid in the case of sym-

metric hyperbolic systems (section 3.2).

The eiconal equation (2.6) is nonlinear and its solution exists in general only up to some time t�

that depends on the initial phase S0(x) and V (x). This solution can be constructed by the method

of characteristics and singularities form when these characteristics (rays) cross.

2.2 The Wigner distribution

An essential step in our approach to deriving radiative transport equations from wave equations is

the introduction of the Wigner distribution [41]. For any smooth function �, rapidly decaying at
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in�nity, the Wigner distribution is de�ned by

W (x;k) =

�
1

2�

�d Z
Rd

eik�y�(x � y

2
)�(x +

y

2
)dy (2.11)

where �� is the complex conjugate of � and the dimension d = 2 or 3. The Wigner distribution

is de�ned on phase space and has many important properties. It is real and its k-integral is the

modulus square of the function �, Z
Rd

W (x;k)dk = j�(x)j2; (2.12)

so we may think of W (x;k) as wave number resolved energy density. This is not quite right though

because W (x;k) is not always positive but it does become positive in the high frequency limit. The

energy ux is expressed through W (x;k) by

F =
1

2i
(�r�� �r�) =

Z
Rd

kW (x;k)dk (2.13)

and its second moment in k isZ Z
jkj2W (x;k)dkdx =

Z
jr�(x)j2dx: (2.14)

The Wigner distribution posesses an important x-to-k duality given by the alternative de�nition

W (x;k) =

Z
eip�x�̂(�k � p

2
)�̂(�k + p

2
)dp: (2.15)

where �̂ is the Fourier transform of �

�̂(k) =
1

(2�)d

Z
eik�x�(x)dx:

These properties make the Wigner distribution a good candidate for analyzing the evolution of

wave energy in phase space.

Given a wave function of the form (2.5), that is, inhomogeneous wave with phase S(t;x)=", its

scaled Wigner distribution has the weak limit

W "(x;k) =
1

"d
W (x;

k

"
)! jA(x)j2�(k�rS(x)); (2.16)

as a generalized function as " ! 0. Here d = 2 or 3 is the dimension of the space. This suggests

that the correct scaling for the high frequency limit is

W "(t;x;k) =

�
1

2�

�d Z
eik�y�"(t;x� "y

2
)�"(t;x+

"y

2
)dy: (2.17)
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where �" satis�es (2.3). From (2.16) we conclude that as " ! 0 the scaled Wigner distribution of

the solution �"(t;x) of (2.3) with initial data (2.4) is given by

W (t;x;k) = jA(t;x)j2�(k�rS(t;x)); (2.18)

where S(t;x) and A(t;x) are solutions of the eiconal and transport equations (2.6) and (2.7),

respectively.

We will now derive the high frequency approximation of the scaled Wigner distribution directly

from the di�erential equations. Let us assume that the initial Wigner distribution W "
0 (x;k) tends

to a smooth function W0(x;k) that decays at in�nity. Note that this is not the case with the

Wigner function corresponding to �"(0;x) given by (2.4) but it is the case for random initial wave

functions. The evolution equation for W "(t;x;k) corresponding to the Schr�odinger equation (2.3)

is the Wigner equation

W "
t + k � rxW

" + L"W " = 0: (2.19)

Here the operator L" is de�ned by

L"Z(x;k) = i

Z
Rd

e�ip�xV̂ (p)
1

"

�
Z(x;k +

"p

2
)� Z(x;k� "p

2
)

�
dp (2.20)

on any smooth function Z in phase space. The Fourier transform is denoted by a hat

V̂ (p) =
1

(2�)d

Z
eip�xV (x)dx: (2.21)

From (2.20) we can �nd easily the limit of the operator L" as " ! 0. For any smooth and

decaying function Z(x;k) we have

L"Z(x;k)! �rxV � rkZ: (2.22)

Thus, the limit Wigner equation is the Liouville equation in phase space

Wt + k � rxW � rV � rkW = 0 (2.23)

with the initial condition W (0;x;k) = W0(x;k). This is a linear partial di�erential equation that

can be solved by characteristics. When the initial Wigner distribution has the high frequency form

W0(x;k) = jA0(x)j2�(k�rS0(x)) (2.24)

then it is easy to see that the solution of (2.23) is given by

W (t;x;k) = jA(t;x)j2�(k� rS(t;x)) (2.25)
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where S(t;x) and A(t;x) are solutions of the eiconal and transport equations (2.6) and (2.7),

respectively. We see, therefore, that from the Wigner distribution we can recover all the information

in the standard high frequency approximation. In addition, it provides exibility to deal with initial

data that is not of the form (2.24).

2.3 Random Potential and the Transport Equations

We now consider small random perturbations of the potential V (x). It is well known that in one

space dimension, waves in a random medium get localized even when the random perturbations

are small [16], so our analysis is restricted to three dimensions. We could treat two-dimensional

problems with time dependent perturbations but we do not consider this case here. We assume

that the correlation length of the random perturbation is of the same order as the wavelength, so

the potential has the form

V (x) = V0(x) + V1(
x

"
): (2.26)

Here V0(x) is the slowly varying background and V1(y) is a mean zero, stationary random function

with correlation length of order one. This scaling allows the random potential to interact fully with

the waves. We shall also assume that the uctuations are space- homogeneous and isotropic so that

< V1(x)V1(y) >= R(jx � yj); (2.27)

where <;> denotes statistical averaging and R(jxj) is the covariance of random the uctuations.

The power spectrum of the uctuations is de�ned by

R̂(k) =

�
1

2�

�d Z
eik�yR(x)dk: (2.28)

When (2.27) holds the uctuations are isotropic and R̂ is a function of jkj only. Moreover,

< V̂ (p)V̂ (q) >= R̂(p)�(p+ q): (2.29)

If the amplitude of these uctuations is strong then scattering will dominate and waves will be

localized [15]. This means that we cannot assume that the uctuations in the random potential

V1(y) are large. If the random uctuations are too weak they will not a�ect energy transport at

all. In order that the scattering produced by the random potential and the inuence of the slowly

varying background a�ect energy transport in comparable ways the uctuations in the random
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potential must be of order
p
". Then equation (2.3) becomes

i"
@�"

@t
+
"2

2
��" � (V0(x) +

p
"V1(

x

"
))�" = 0

�"(0;x) = �0(
x

"
;x): (2.30)

To describe the passage from (2.30) to the transport equation in its simplest form we will set

V0(x) = 0 and drop the subscript one from V1(x). A V0(x) that is not zero will not change the

scattering terms in the radiative transport equation. Now (2.19) for W " has the form

@W "

@t
+ k � rxW

" +
1p
"
Lx

"

W " = 0 (2.31)

where the operator Lx
"

, a rescaled form of (2.20), is given by

Lx
"

Z(x;k) = i

Z
e�ip�x="V̂ (p)

�
Z(x;k +

p

2
)� Z(x;k � p

2
)

�
dp: (2.32)

The behavior of this operator as "! 0 is very di�erent from (2.22) when V is slowly varying. We

can �nd the correct results by a multiscale analysis as follows.

Let � = x=" be a fast space variable (on the scale of the wavelength) and introduce an expansion

of W " of the form

W "(t;x;k) = W (0)(t;x;k) + "1=2W (1)(t;x; �;k) + "W (2)(t;x; �;k) + . . . : (2.33)

We assume that the leading term does not depend on the fast scale and that the initial Wigner

distribution W "(0;x;k) tends to a smooth function W0(x;k) which is decaying fast enough at

in�nity. Then the average of the Wigner distribution, < W " >, is close to W (0) which satis�es the

transport equation

@W

@t
+ k � rxW= LW

W (0;x;k) =W 0(x;k); (2.34)

where we have dropped the superscript zero. The operator L is given by

LW (x;k) = 4�

Z
R̂(p� k)�(k2 � p2)(W (x;p)�W (x;k))dp: (2.35)

Equation (2.34) has precisely the form (1.1). From (2.8)

! =
k2

2
;
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since the background potential V0 is zero. The di�erential scattering cross-section �(k;k0) is given

by

�(k;p) = 4�R̂(p� k)�(k2 � p2) (2.36)

and the total scattering cross-section �(k) is given by

�(k) = 4�

Z
R̂(k � p)�(k2 � p2)dp: (2.37)

Note also that the transport equation (2.34) has two important properties. First, the total energy

E(t) =
Z Z

W (t;x;k)dkdx (2.38)

is conserved and second, the positivity of the solution W (t;x;k) is preserved, that is, if the initial

Wigner distribution W0(x;k) is non-negative then W (t;x;k) � 0 for t > 0.

We explain in the Appendix how a formal multiscale expansion like (2.33) gives this transport

equation starting from (2.31).

In the rest of this paper we extend the analysis of this section to symmetric hyperbolic systems of

partial di�erential equations. The main steps are (i) developing the high frequency approximation

in phase space using the Wigner distribution and (ii) getting the scattering cross-sections from the

random inhomogeneities of the medium.

3 High Frequency Approximation for General Wave Equations

3.1 General Symmetric Hyperbolic Systems

We will use the Wigner distribution to get the high frequency approximation of symmetric hyper-

bolic systems [42] in phase space. As we will see in sections 3.2-3.4, many wave equations arising

from physical problems can be written as symmetric hyperbolic systems of the form1

A(x)
@u

@t
+Di @u

@xi
= 0; (3.1)

u(0;x) = u0(x);

where u is a complex valued N -vector and x 2 R3. We assume that the matrix A(x) is symmetric

and positive de�nite and that the matrices Dj are symmetric and independent of x and t.

1We use the summation convention as follows: repeated Latin indices are summed, while repeated Greek indices

are not summed.
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The energy density E(t;x) for solutions of (3.1) is given by the inner product

E(t;x) = 1

2
(A(x)u(t;x);u(t;x)) =

1

2

NX
i;j=1

Aij(x)ui(t;x)�uj(t;x) (3.2)

and the ux F(x) by

F i(t;x) =
1

2
(Diu(t;x);u(t;x)): (3.3)

Taking the inner product of (3.1) with u(t;x) yields the energy conservation law

@E
@t

+r �F = 0: (3.4)

Integration of (3.4) shows that the total energy is conserved:

d

dt

Z
E(t;x)dx = 0: (3.5)

It is convinient to introduce the new inner product

< u;v >A= (Au;v): (3.6)

Then the energy density is E = 1
2 < u;u >A. This inner product is the natural one for the system

(3.1).

For N -vector functions we de�ne the Wigner distribution an N �N matrix,

W (t;x;k) =

�
1

2�

�d Z
eik�yu(t;x� y=2)u�(t;x+ y=2)dy; (3.7)

where u� = �ut is the conjugate transpose of u. The matrix W (t;x;k) is Hermitian but not

necessarily positive de�nite. As in the scalar case, W (t;x;k) has the propertiesZ
W (t;x;k)dk = u(t;x)u�(t;x)

and �
1

2�

�d Z
W (t;x;k)dx = û(�k; t)cu�(�k; t):

It follows that the energy density is expressible in terms of W (t;x;k) by

E(t;x) = 1

2
< u(t;x);u(t;x) >A=

1

2
Aij(x) ui(t;x)�uj(t;x) (3.8)

=
1

2
Aij(x)

Z
Wij(t;x;k)dk =

1

2

Z
Tr(A(x)W (t;x;k))dk:
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The ux F(t;x) can be expressed via W (t;x;k) by

Fi(t;x;k) =
1

2
Di
nmun(t;x)�um(t;x) =

1

2

Z
Tr(DiW (t;x;k))dk: (3.9)

To study the high frequency approximation of solutions of (3.1), we assume that the coe�cients

of the matrix A(x) vary on a scale much longer than the scale on which the initial data vary. Let

" be the ratio of these two scales. We rescale space and time coordinates (x; t) by x! "x, t! "t

as in (2.3). In scaled coordinates (3.1) has the form

A(x)
@u"
@t

+Dj @u"
@xj

= 0 (3.10)

u"(0;x) = u0(
x

"
) or u0(

x

"
;x): (3.11)

Note that the parameter " does not appear explicitly in (3.10). It enters through the initial

conditions (3.11), which may be of the standard geometrical optics form (2.4). The scaled Wigner

distribution matrix W " is de�ned, as in the scalar case, by

W "(t;x;k) =

�
1

2�

�d Z
eik�yu"(t;x� "y=2)u�"(x + "y=2)dy: (3.12)

Although W " is not positive de�nite, it becomes so in the high frequency limit "! 0.

As in (2.19), W " satis�es the evolution equation

@W "

@t
+Q"

1W
" +

1

"
Q"
2W

" = 0 (3.13)

W "(0;x;k) = W "
0 (x;k):

Here the operators Q"
1 and Q"

2 are given by

Q"
1W

" =
1

2

Z
e�ip�xfdA�1(p)Dj @W

"(t;x;k+ "p=2)

@xj
+
@W "(t;x;k� "p=2)

@xj
Dj dA�1(p)

+idA�1(p)pjD
jW "(t;x;k+ "p=2) +W "(k� "p=2)ipjD

j dA�1(p)gdp

(3.14)

and

Q"
2W

" =
Z
e�ip�xf i dA�1(p)kjD

jW "(t;x;k+ "p=2)

� iW "(t;x;k� "p=2)kjD
j dA�1(p)gdp: (3.15)

The hat denotes the Fourier transform as in (2.21). The initial condition for (3.13) is obtained by

inserting (3.11) into (3.12).
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A new feature of (3.13), not found in the scalar case (2.19), is the appearance of the factor 1="

in front of the term Q"
2W

". There is no other term in the equation to balance it. This means that

the limiting Wigner distribution W (t;x;k) ( W " ! W as " ! 0) must belong to the null space

of the limit operator Q2, where Q"
2 ! Q2 as " ! 0. From (3.15) this operator acting on a matrix

Z(x;k) has the form

Q2Z(x;k) = iA�1kjD
jZ(x;k)� iZ(x;k)kjD

jA�1: (3.16)

The next term in the expansion of Q"
2 in ", Q"

2 = Q2 + "Q21 + . . ., is given by

Q21Z(x;k) = �1

2

@A�1

@xi
kjD

j @Z

@ki
� 1

2

@Z

@ki
kjD

j @A
�1

@xi
(3.17)

This introduces the term with the gradient with respect to k into the transport equation, as we

shall see. Similarly, the limit operator Q1, Q"
1 ! Q1 as "! 0 is given by

Q1Z(x;k) =
1

2
A�1Dj @Z

@xj
+
1

2

@Z

@xj
DjA�1 � 1

2

@A�1

@xj
DjZ � 1

2
ZDj @A

�1

@xj
: (3.18)

This operator introduces the term with the x-gradient. The undi�erentiated terms in Q1 also

contribute to the transport equation, as we explain below. With the expansions of the Q's given
by (3.16)-(3.18) equation (3.13) becomes

@W "

@t
+

1

"
Q2W

" + (Q21 +Q1)W
" + O(") = 0: (3.19)

We analyze (3.19) by expanding W "

W "(t;x;k) = W (0)(t;x;k) + "W (1)(t;x;k) + . . .

This leads to the following equations for W (0) and W (1)

Q2W
(0) = 0 (3.20)

and

Q2W
(1) = �f@W

(0)

@t
+ (Q21 +Q1)W

(0)g: (3.21)

We introduce the dispersion matrix L(x;k), de�ned by

L(x;k) = A�1(x)kiD
i: (3.22)

It is self-adjoint with respect to the inner product <;>A:

< Lu;v >A= (ALu;v) = (kjD
ju;v) = (u; kjD

jv) = (Au; A�1kjD
jv) =< u; Lv >A :
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Therefore, all its eigenvalues !� are real and the corresponding eigenvectors b� can be chosen to

be orthonormal with respect to <;>A:

L(x;k)b�(x;k) = !� (x;k)b
� (x;k) ; < b� ;b� >A= ���:

We assume throughout that the eigenvalues have constant multiplicity independent of x and k.

This hypothesis is satis�ed in the case of acoustic, electromagnetic and elastic waves. In terms of

the dispersion matrix L, (3.20) becomes

Q2W
(0)(t;x;k) = iL(x;k)W (0)(t;x;k)� iW (0)(t;x;k)L�(x;k) = 0

The structure of this null space when all the eigenvalues of L(x;k) are distinct is di�erent from

that when there are some multiple eigenvalues.

We assume �rst that all the eigenvalues !�(x;k) are simple. De�ne the matrices B� (x;k) by

B� (x;k) = b�(x;k)b��(x;k) (3.23)

They span the null space of Q2, so the limit Wigner matrix W (0)(t;x;k) has the form

W (0)(t;x;k) =
NX
�=1

a� (t;x;k)B�(x;k): (3.24)

The a� (t;x;k) are scalar functions determined by projection

a� = Tr(AW (0)�AB� ):

We now insert (3.24) into equation (3.21) for W (1), which is an inhomogeneous form of (3.20). The

operator 1
iQ2 is self-adjoint with respect to the matrix inner product << X; Y >>= Tr(AX�AY ).

Since the null space of Q2 is spanned by the matrices B� given by (3.23), the solvability condition

for (3.21) is that its right hand side be orthogonal to these matrices, relative to the <<;>> inner

product. This leads to the following equations for the functions a� :

@a�

@t
+rk!� � rxa

� � rx!� � rka
� = 0: (3.25)

These are Liouville equations in phase space.

We see, therefore, that in the absence of polarization (simple eigenvalues of the dispersion

matrix) the amplitudes a� decouple from each other and each satis�es the Liouville equation with

Hamiltonian equal to the corresponding eigenvalue !� . We see also that the Liouville equation is

not satis�ed by the limiting Wigner distribution but by its projections on the eigenspaces generated
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by the matrices B� given by (3.23). Moreover, we do not have a single Liouville equation but several

decoupled ones. When small random perturbations are present the Liouville equations are coupled

(section 4.1).

Consider now the case where the dispersion matrix L(x;k) has multiple eigenvalues. Let

!� (x;k) be an eigenvalue of multiplicity r and let the corresponding eigenvectors b�;i, i = 1; . . . ; r

be orthonormal with respect to <;>A. Given a pair of eigenvectors b�;i, b�;j we de�ne the N �N

matrix

B�;ij = b�;ib�;j�; (3.26)

with i; j = 1 . . .r. These matrices span the null space of the operatorQ2 and so the limiting Wigner

matrix W (0)(t;x;k) has the representation

W (0)(t;x;k) =
X
�;i;j

a�ij(t;x;k)B
�;ij(x;k); (3.27)

where a�ij(t;x;k) are scalar functions. De�ne the r � r coherence matrices W � (t;x;k) by

W �
ij(t;x;k) = a�ij(t;x;k) ; i; j = 1 . . .r: (3.28)

The multiplicity r of the eigenvalue !� depends on � but we do not indicate this explicitly. The

functions a�ij are given by

a�ij(t;x;k) =<< W (0)(t;x;k); B�;ij(x;k) >> :

Then, by applying the solvability condition for (3.21) as before, we �nd that each of the coherence

matrices W � (t;x;k) satis�es the transport equation

@W �

@t
+rk!� � rxW

� �rx!� � rkW
� +W �N � �N �W � = 0: (3.29)

The skew-symmetric coupling matrices N � (x;k) are given by

N �
mn(x;k) = (b�;n; Di@b

�;m

@xi
)� @!�

@xi
(A(x)b�;n;

@b�;m

@ki
)� 1

2

@2!�
@xi@ki

�nm: (3.30)

The last term in (3.30) is retained to make the coupling matrices N skew symmetric even though

it cancels in the transport equation (3.29).

The coherence matricesW � (t;x;k) are Hermitian and positive de�nite because they are projec-

tions of the limiting Wigner matrixW (0)(t;x;k) which is Hermitian and positive de�nite. Equations

(3.29) preserve both of these properties: if the initial conditions for W � are Hermitian and positive
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de�nite then the solution is Hermitian and positive de�nite for all t. The fact that the coupling

matrices N are skew-symmetric is important for these properties.

We see that in the case of polarized waves, i.e. waves for which the eigenvalues of the dispersion

matrix have multiplicity larger than one, the quantities satisfying the transport equations are not

scalars but matrices. Their sizes are equal to the degeneracies of the corresponding wave modes.

However, modes corresponding to di�erent eigenvalues still decouple from each other. Random

inhomogeneities will couple them in general (section 4.2).

The reason we call theW � (t;x;k) coherence matrices is because their o�-diagonal terms capture

cross-polarization e�ects. Their diagonal terms represent the phase space energy density in each

state of polarization. That is, since Tr(AB�;ij) = �ij , the energy density (3.8) is given by

E(t;x) = 1

2

Z
Tr(A(x)W (t;x;k))dk =

1

2

Z X
�

TrW � (t;x;k)dk (3.31)

and the ux (3.9) is given by

Fi(t;x) =
1

2
Tr

Z
DiW (t;x;k)dk

=
1

2

Z X
�

@!�
@ki

TrW �(t;x;k)dk ; i = 1; 2; 3: (3.32)

These relations hold because

TrDiW (t;x;k) =
X
�;n;m

a�nm(t;x;k)TrfDib�;n(x;k)b�;m�(x;k)g

=
X
�;n;m

a�nm(t;x;k)(D
ib�;n(x;k); b�;m(x;k))

=
X
�;n;m

a�nm(t;x;k)(
@!�
@ki

Ab�;n + !�A
@b�;n

@ki
� kjD

j @b
�;n

@ki
; b�;m)

=
X
�;n;m

a�nm(t;x;k)
@!�
@ki

(Ab�;n; b�;m) =
X
�

@!�
@ki

TrW � (t;x;k):

Here we have used the fact that Lb� = A�1kiD
ib� = !�b

� , which implies after di�erentiation with

respect to ki, that

Dib� =
@!�
@ki

Ab� + !�A
@b�

@ki
� kjD

j @b
�

@ki
:

The energy equation (3.4) follows from (3.29) when E and F are de�ned by (3.31) and (3.32),

respectively. Thus, the total energy Z
E(t;x)dx

is conserved by the transport equations (3.29).
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Expressions (3.31) and (3.32) for the energy and ux are similar to (2.12) and (2.13) because

kW , which is the ux density for the Schr�odinger equation, can be written as rk!(x;k)W (t;x;k)

where !(x;k) is the Hamiltonian (2.8).

In the case of multiple eigenvalues, there is a basis of eigenvectors b�;i(x;k) such that the

transport equations (3.29) for the coherence matrices have the form (3.25); that is, we can eliminate

the matrices N � from (3.29) by a rotation of the basis. Small random perturbations couple the

components of the coherence matrices, and to keep the coupling explicit we do not use a basis

which eliminates the N 's.

3.2 High Frequency Approximation for Acoustic Waves

We will now apply the results of the previous section to acoustic waves. We will also review the

usual form of the high frequency approximation and make explicit the relation between the phase

space form of the high frequency approximation and the usual one.

The acoustic equations for the velocity and pressure disturbances u and p are

�
@u

@t
+rp = 0

�
@p

@t
+ divu = 0: (3.33)

Here � = �(x) is the density and � = �(x) is the compressibility. Equations (3.33) can be put in

the form of a symmetric hyperbolic system

A(x)
@

@t

 
u

p

!
+

3X
i=1

Di @

@xi

 
u

p

!
= 0:

The matrix A(x) = diag(�(x); �(x); �(x); �(x)) and each of the matrices Di has all zero entries

except for Di
i4 and Di

4i which are equal to one. Then the dispersion matrix L(x;k), de�ned by

(3.22), is

L =

0BBBBBB@
0 0 0 k1=�

0 0 0 k2=�

0 0 0 k3=�

k1=� k2=� k3=� 0

1CCCCCCA : (3.34)

It has one double eigenvalue !1 = !2 = 0 and two simple eigenvalues

!+ = v(x)jkj ; !� = �v(x)jkj ; (3.35)
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where jkj =
q
k21 + k22 + k23 and v is the sound speed

v(x) =
1p

�(x)�(x)
: (3.36)

The corresponding basis of eigenvectors orthonormal with respect to the inner product <;>A is

b1 =
1p
�
(z(1)(k); 0)t;

b2 =
1p
�
(z(2)(k); 0)t;

b+ = (
k̂p
2�
;

1p
2�

)t; (3.37)

b� = (
k̂p
2�
;� 1p

2�
)t;

the vectors k̂, z(1)(k), z(2)(k), which form an orthonormal triplet, are

k̂ =

0BB@
sin � cos�

sin � sin �

cos �

1CCA ; z(1) =
0BB@
cos � cos�

cos � sin �

� sin �

1CCA ; z(2) =
0BB@
� sin�

cos�

0

1CCA : (3.38)

The physical meaning of the eigenvectors is as follows. The eigenvectors b1(x;k) and b2(x;k)

correspond to transverse advection modes, orthogonal to the direction of propagation. These modes

do not propagate because !1;2 = 0. The eigenvectors b+(x;k) and b�(x;k) represent acoustic

waves, which are longitudinal , and which propagate with the sound speed �v(x) given by (3.36).

The energy density (3.2) for acoustic waves is given by

E(t;x) = 1

2
�(x)ju(t;x)j2 + 1

2
�(x)p2(t;x) (3.39)

and the ux (3.3) by

F(t;x) = p(t;x)u(t;x): (3.40)

We now express the unscaled amplitudes aj(t;x;k), in terms of the acoustic velocity and pressure

�elds u = (u; p)t. The amplitudes a�(t;x;k) are given by

a�(t;x;k) =
1

(2�)3

Z
dyeik�yf�(t;x;x� y=2;k)f��(t;x;x+ y=2;k); (3.41)

where

f�(t;x; z;k) =< u(t; z); b�(x;k) >A=

s
�(x)

2
(u(t; z) � k̂)�

s
�(x)

2
p(t; z): (3.42)
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This shows that

a+(t;x;k) = a�(t;x;�k) (3.43)

and therefore we need only keep track of a+(t;x;k) . The advective mode amplitudes are given by

a0ij(t;x;k) =
1

(2�)3

Z
dyeik�y

�(x)

2
(u(t;x� y=2) � z(i)(k))(u(t;x+ y=2) � z(j)(k)):

(3.44)

By direct computation we verify thatZ
a+(t;x;k)dk+

1

2

Z
fa011(t;x;k) + a022(t;x;k)gdk (3.45)

=
1

2
�(x)ju(t;x)j2 + 1

2
�(x)p2(t;x) = E(t;x)

and Z
k̂v(x)a+(t;x;k)dk = p(t;x)u(t;x) = F(t;x): (3.46)

The �rst integral in (3.45) represents the part of the energy density which is propagating with

speed v. The second integral gives the energy of the non-propagating waves.

Equation (3.29) for W 0 is of the form @W 0

@t = 0 and so W 0(t;x;k) = 0 if it is zero initially.

Then from(3.45) Z
a+(t;x;k)dk =

1

2
�(x)ju(t;x)j2 + 1

2
�(x)p2(t;x): (3.47)

This shows that when W 0 = 0, the amplitude a+(t;x;k) is the phase space energy density. In the

high frequency limit it satis�es the Liouville equation (3.25)

@a+

@t
+ v(x)k̂ � rxa

+ � jkjrxv(x) � rka
+ = 0: (3.48)

with the initial condition

a+(0;x;k) = a0(x;k): (3.49)

Next we establish the connection with the usual high frequency approximation. We consider

(3.33) with initial data of the form

u(0;x) = u0(x)e
iS0(x)="; (3.50)
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where u = (u; p) and S0 is the real valued initial phase function. We look for a solution of (3.33)

in the form

u(t;x) = (A0(t;x) + "A1 + . . .)eiS(t;x)="; (3.51)

where A0 = (u0; p0). We insert (3.51) into (3.33) to get to leading order in " 
�St rS
rS� �St

! 
u0

p0

!
= 0: (3.52)

The next term in the expansion yields

� i

 
�St rS
rS� �St

! 
u1

p1

!
=

 
�@t r
r� �@t

! 
u0

p0

!
: (3.53)

Equation (3.52) gives the eiconal equation for the phase S

1

v2
S2
t � (rS)2 = 0: (3.54)

Then assuming that St = +vjrSj we have 
u0

p0

!
= A(x)b+(x;rS(t;x)); (3.55)

where b+ is given by (3.37).The amplitude A(t;x) is determined by the solvability condition for

(3.53), which gives the transport equation

@

@t
jAj2 +r � (jAj2v rSjrSj) = 0: (3.56)

The terminology `transport equation' is standard in high frequency asymptotics for this equation

and should not be confused with the radiative transport equations which are de�ned in phase space.

As expected, equation (3.56) is the same as (3.4), to principal order in " when u is of the form

(3.51) and (3.55). It is also the same as the transport equation (2.7) for the Schr�odinger equation

and both can be written in the form

@

@t
jAj2 +r � (jAj2rk!(x;rS)) = 0: (3.57)

The Hamiltonian for the acoustic waves is the eigenvalue !(x;k) = v(x)jkj and for the Schr�odinger

equation it is given by (2.8).

The eiconal and transport equations (3.54) and (3.56) can also be derived from (3.48) as follows.

In the high frequency limit, initial conditions of the form (3.50) imply that

a+(0;x;k) = jA0(x)j2�(k �rS0(x)): (3.58)
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Let the functions S(t;x) and jA(t;x)j2 be the solutions of the eiconal and transport equations (3.54)
and (3.56), respectively, with the initial conditions S(0;x) = S0(x) and jA(0;x)j2 = jA0(x)j2. Then
the solution of equation (3.48) is

a+(t;x;k) = jA(t;x)j2�(k� rS(t;x)): (3.59)

Conversely, given initial conditions of the form (3.58) for (3.48) and a+ given by (3.59), then S and

A must satisfy the eiconal and transport equations (3.54) and (3.56), respectively. This is because

the eiconal equation follows by integrating (3.48) with respect to k while the transport equation

follows by multiplying it by k and then integrating with respect to k. This shows that we can

recover from the Liouville equation (3.25) the usual high frequency approximation.

3.3 Geometrical Optics for Electromagnetic Waves

Maxwell's equations in an isotropic medium and in suitable units are

@E

@t
=

1

�
curlH (3.60)

@H

@t
= � 1

�
curlE

where the dielectric permittivity 2 is �(x) and the relative magnetic permeability is �(x). As a

symmetric hyperbolic system they are 
� 0

0 �

!
@

@t

 
E

H

!
+

 
0 �r�
r� 0

! 
E

H

!
= 0: (3.61)

These equations imply that if at some initial time we have

div(�E) = 0 (3.62)

div(�H) = 0

then these equations hold for all time. We assume (3.3.3) holds. The 6 � 6 dispersion matrix L

de�ned by (3.22) is

L = �

0BBBBBBBBBBBB@

0 0 0 0 �k3=� k2=�

0 0 0 k3=� 0 �k1=�
0 0 0 �k2=� k1=� 0

0 k3=� �k2=� 0 0 0

�k3=� 0 k1=� 0 0 0

k2=� �k1=� 0 0 0 0

1CCCCCCCCCCCCA
(3.63)

2Throughout this section and when we consider electromagnetic waves � denotes the dielectric permittivity while

the small parameter is denoted by ".
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or in block form

L =

 
0 �1

�P

1
�P 0

!
:

The matrix P (k)p = k � p or

P (k) =

0BB@
0 �k3 k2

k3 0 �k1
�k2 k1 0

1CCA : (3.64)

The dispersion matrix L has three eigenvalues, each with multiplicity two. They are !0 = 0,

!+ = vjkj, !� = �vjkj with the speed of propagation v given by

v(x) =
1p

�(x)�(x)
: (3.65)

The basis formed by the corresponding eigenvectors is

b(01) =
1p
�
(k̂; 0); b(02) =

1p
�
(0; k̂);

b(+;1) = (

r
1

2�
z(1);

s
1

2�
z(2)); b(+;2) = (

r
1

2�
z2;�

s
1

2�
z(1));

b(�;1) = (

r
1

2�
z(1);�

s
1

2�
z(2)); b(�;2) = (

r
1

2�
z(2);

s
1

2�
z(1)); (3.66)

where the vectors z(1)(k) and z(2)(k) are given by (3.38). The eigenvectors b(01) and b(02) represent

the non-propagating longitudinal modes and do not satisfy (3.62) so they will be assumed to be

absent from the solution. The other eigenvectors correspond to transverse modes propagating with

the speed v(x). As in the acoustic case, we need only consider the eigenspace corresponding to !+.

With this choice for the basis of eigenvectors, the skew symmetric coupling matrix N(x;k), given

by (3.30), is

N =
@v

@xi
jkjz(1) � @z

(2)

@ki

 
0 1

�1 0

!
: (3.67)

Note that the vector z(2)(k) does not depend on k3. From (3.67) we conclude that if the medium

is layered, so that v = v(x3), then the coupling matrix N vanishes. This means that in the case of

a layered medium there is no coupling between the two polarizations of the electromagnetic �eld,

a well known fact. We note also that there is a choice of the vectors z(1)(k), z(2)(k), di�erent from

(3.38), which eliminates the coupling terms [44]. As explained earlier, we will use (3.38) because

they are convenient for the analysis of random e�ects.
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The transport equation (3.29) for the matrix W+ is

@W+

@t
+ v(x)k̂ � rxW

+ � jkjrxv(x) � rkW
+ +W+N �NW+ = 0: (3.68)

The energy density (3.2) for the electromagnetic waves is given by

E(t;x) = 1

2
�(x)jE(t;x)j2 + 1

2
�(x)jH(t;x)j2 (3.69)

while the energy ux (3.3) is the Poynting vector

F(t;x) = E(t;x)�H(t;x): (3.70)

Let u(t;x) = (E;H). Then, as in the case of acoustic waves, we will consider the unscaled ampli-

tudes a�ij(t;x;k)

a�ij(t;x;k) =
1

(2�)3

Z
eik�yf�i (t;x;x� y=2;k)f��j (t;x;x+ y=2;k)dy; (3.71)

where

fi(t;x; z;k) = < u(t; z);b�i(x;k) >A=

s
�(x)

2
(E(t; z) � z(i)(k))

�
s
�(x)

2
(H(t; z) � (k̂ � z(i)(k))): (3.72)

The amplitudes of the longitudinal, nonpropagating modes are

a011(t;x;k)) =
1

(2�)3

Z
eik�y�(x)(E(t;x� y=2) � k̂)(E(t;x+ y=2) � k̂)dy (3.73)

a012(t;x;k) =
1

(2�)3

Z
eik�y

q
�(x)�(x)(E(t;x� y=2) � k̂)(H(t;x+ y=2) � k̂)dy

a021(t;x;k) =
1

(2�)3

Z
eik�y

q
�(x)�(x)(H(t;x� y=2) � k̂)(E(t;x+ y=2) � k̂)dy

a022(t;x;k) =
1

(2�)3

Z
eik�y�(x)(H(t;x� y=2) � k̂)(H(t;x+ y=2) � k̂)dy:

As in section 3.1, we denote the coherence matrices by W� = (a�ij) and W
0 = (a0ij). The latter is

zero since there are no longitudinal modes. Moreover, as in the acoustic case, we have the symmetry

W�(t;x;�k) =
 

W+
11(k) �W+

12(k)

�W+
21(k) W+

22(k)

!
: (3.74)

Hence, by direct computation, we get the energy relationZ
TrW+(t;x;k)dk =

1

2
�(x)jE(t;x)j2 + 1

2
�(x)jH(t;x)j2 = E(t;x): (3.75)
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Thus, TrW+(t;x;k) is the phase space energy density. By a similar calculation using (3.71) we

�nd that the Poynting vector (3.70) is

F(t;x) = E(t;x)�H(t;x) = v(x)
Z
k̂TrW+(t;x;k)dk (3.76)

The coherence matrix W+(t;x;k) is related to the four Stokes parameters [1,20], which are

commonly used for the description of polarized light because they are directly measurable. Let l

and r be two directions orthogonal to the direction of propagation and let I = Il + Ir be the the

total intensity of light, with Il and Ir denoting the intensities in the directions l and r, respectively.

Let Q = Il � Ir be the di�erence between the two intensities. Also let U = 2 < ElEr cos � >

and V = 2 < ElEr sin � > denote the intensity coherence, with �xed phase shift �, between the

amplitude of light in the directions l and r, respectively. Light is unpolarized if U = V = Q = 0.

If the directions l and r are chosen to be z(1)(k) and z(2)(k), given by (3.38), then the coherence

matrix W+(t;x;k) is related to the Stokes parameters (I; Q; U; V ) by

W+(t;x;k) =
1

2

 
I + Q U + iV

U � iV I � Q

!
: (3.77)

When the light is unpolarized, then the coherence matrix W+ is proportional to the 2� 2 identity

matrix I .

3.4 High Frequency Approximation for Elastic Waves

The equations of motion for small displacemets ui(t;x); i = 1; 2; 3 of an elastic medium are

�
d2ui
dt2

=
@�ij
@xj

; i = 1; 2; 3: (3.78)

Here �(x) is the density, �ij(t;x) is the stress tensor, which, in an isotropic medium is

�ij = �(x)
@uk
@xk

�ij + �(x)(
@ui
@xj

+
@uj
@xi

); (3.79)

and �(x) and �(x) are the Lame parameters. Equation (3.78) is then

�
d2ui
dt2

=
@

@xi
(�divu) +

@

@xj
(�
@uj
@xi

+ �
@ui
@xj

): (3.80)

We now write these equations as a symmetric hyperbolic system (3.1) and apply the high frequency

analysis to them.

We introduce new dependent variables by

p = �divu; �i = _ui; "ij = �(
@ui
@xj

+
@uj

@xi
); (3.81)

31



where dot stands for derivative with respect to time. Clearly p is similar to pressure, � is the

velocity of the medium and "ij is part of the stress tensor. Equations (3.80) are equivalent to

� _�i =
@p

@xi
+
@"ij
@xj

_"ij = �(
@�i
@xj

+
@�j
@xi

) (3.82)

_p = �div�:

Note that if the shear modulus � is zero in (3.82) then "ij = 0 and we have the acoustic equa-

tions (3.33) for the velocity � and pressure p. From these variables we form the 10-vector w =

(�1; �2; �3; "11; "22; "33; "23; "13; "12; p) and rewrite (3.82) as a system

A(x)
@w

@t
+Di @w

@xi
= 0; (3.83)

with the 10 � 10 matrix A(x) = diag(�; �; �; 1=2�; 1=2�; 1=2�; 1=�; 1=�; 1=�; 1=�). The 10 � 10

matrices Di are constant and symmetric and the dispersion matrix L(x;k) de�ned by (3.22) is

L = �

0BBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 k1=� 0 0 0 k3=� k2=� k1=�

0 0 0 0 k2=� 0 k3=� 0 k1=� k2=�

0 0 0 0 0 k3=� k2=� k1=� 0 k3=�

2�k1 0 0 0 0 0 0 0 0 0

0 2�k2 0 0 0 0 0 0 0 0

0 0 2�k3 0 0 0 0 0 0 0

0 �k3 �k2 0 0 0 0 0 0 0

�k3 0 �k1 0 0 0 0 0 0 0

�k2 �k1 0 0 0 0 0 0 0 0

�k1 �k2 �k3 0 0 0 0 0 0 0

1CCCCCCCCCCCCCCCCCCCCCCCCCCA
(3.84)

In block form

L = �

0BBBBBB@
0 K(k)=� M(k)=� 1

�k

2�K(k) 0 0 0

�M(k) 0 0 0

�kt 0 0 0

1CCCCCCA ; (3.85)

where the matrix K(k) = diag(k1; k2; k3) and

M(k) =

0BB@
0 k3 k2

k3 0 k1

k2 k1 0

1CCA : (3.86)
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The matrix M(k) is a symmetrized version of the matrix P (k) in (3.64) that appears in Maxwell's

equations.

The eigenvalues of the dispersion matrix L are

!0 = 0 with multiplicity four;

!P� = �vP jkj each with multiplicity one; (3.87)

!S� = �vS jkj each with multiplicity two;

with the corresponding compressional and shear speeds given by

vP =
q
(2�+ �)=� ; vS =

q
�=�: (3.88)

The eigenvectors of the dispersion matrix are orthonormal with respect to the inner product <;>A,

de�ned in (3.6), and are given by

bP� = (
k̂p
2�
;� 2�K(k̂)k̂p

2(2�+ �)
;� �M(k̂)k̂p

2(2�+ �)
;� �p

2(2�+ �)
)

b
Sj
� = (

z(j)p
2�
;�2

p
�K(k̂)z(j)p

2
;�

p
�M(k̂)z(j)p

2
; 0); j = 1; 2

b0j = (0;
p
2�K(z(j))z(j);

r
�

2
M(z(j))z(j); 0); j = 1; 2 (3.89)

b03 = (0; 2
p
�K(z(1))z(2);

p
�M(z(1))z(2); 0)

b04 = (0;
2
p
��K(k̂)k̂p
2(� + 2�)

;

s
��

2(�+ 2�)
M(k̂)k̂;� 2

p
��p

2(�+ 2�)
):

The orthonormal triple k̂; z(1)(k); z(2)(k) is de�ned by (3.38). The eigenvectors bP� represent longi-

tudinal or compressional modes, the P waves. They are similar to the acoustic longitudinal modes

and if � = 0 then bP� is equivalent to the vector b� for acoustics (3.37). The eigenvectors bSj� repre-

sent transverse or shear waves, the S waves. They are similar to the eigenvectors (3.66) in Maxwell's

equations, because they correspond to transverse waves admitting two states of polarization. The

eigenvectors b0j , j = 1; . . .4 correspond to non-propagating modes.

The energy density for elastic waves is given by

E(t;x) = 1

2
�(x)j _u(t;x)j2 + 1

2
�(x)(divu(x))2 +

1

2
�(x)Tr(ru(t;x) +rtu(t;x))2:

(3.90)

The �rst term is the kinetic energy and the sum of the last two terms is the strain energy. The

energy ux of the elastic waves is

F(t;x) = f�divu(x)) + �(x)(ru(t;x) +rtu(t;x))g _u(t;x); (3.91)
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which in view of (3.79) is also

F(t;x) = � (t;x) _u(t;x):

The unscaled amplitudes aP�(t;x;k) are

aP� =

�
1

2�

�3 Z
eik�yfP� (t;x;x� y=2;k) �fP� (t;x;x+ y=2;k)dy; (3.92)

where

fP� (t;x; z;k) = < u(t; z);bP�(x;k) >A=

s
�(x)

2
(k̂ � _u(t; z))�

�(x)p
2(2�(x) + �(x))

(k̂ �(ru(t; z) +rtu(t; z))k̂)� �(x)divu(t; z)p
2(2�(x) + �(x))

:

The 2� 2 coherence matrices WS
� for the S waves are

WS
�ij(t;x;k) =

�
1

2�

�3 Z
eik�yfS�i (t;x;x� y=2;k) �fS�j (t;x;x+ y=2;k)dy;

(3.93)

where

fS�i (t;x; z;k) =

s
�(x)

2
(z(i)(k) � _u(t; z))�

s
�(x)

2
(k̂ � (ru(z) +rtu(z))z(i)(k)):

The entries of the 4� 4 coherence matrix for the nonpropagating modes are

a0ij(t;x;k) =

�
1

2�

�3 Z
eik�yf0i (t;x;x� y=2;k) �f0j (t;x;x+ y=2;k)dy; (3.94)

where

f0j (t;x; z;k) =

s
�(x)

2
(z(j)(k) � (ru(t; z) +rtu(t; z))z(j)(k)); j = 1; 2

f03 (t;x; z;k) =
q
�(x)(z(1)(k) � (ru(t; z) +rtu(t; z))z(2)(k))

f04 (t;x; z;k) =

s
�(x)�(x)

2(�(x) + 2�(x))
(k̂ � (ru(t; z) +rtu(t; z))k̂)� 2

p
�(x)�(x)divu(t; z)p
2(2�(x) + �(x))

:

Note that (3.92) implies that the amplitudes aP+ and aP� are related by

aP+(t;x;k) = aP�(t;x;�k); (3.95)

which is analogous to (3.43), while the coherence matrices WS
+ and WS

� are related by the analog

of (3.74) and

TrWS
+(t;x;k) = TrWS

�(t;x;�k): (3.96)
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A direct calculation using (3.92-3.94) shows that the energy density (3.90) is

E(t;x) =
Z
(aP+ +TrWS

+)dk+
1

2

Z 4X
i=1

a0iidk: (3.97)

The �rst term is the energy density of the P and S waves while the second is the energy of the zero

velocity waves. The ux (3.91) is

F(t;x) =
Z
k̂[vPa

P
+(t;x;k) + vSTrW

S
+(t;x;k)]dk: (3.98)

Using the eigenvalues (3.87) and (3.88) in (3.25) and (3.29) we obtain the transport equations

for the scalar amplitude aP+ and the coherence matrix WS
+ :

@aP+
@t

+ vP (x)k̂ � rxa
P
+ � jkjrxvP (x) � rka

P
+ = 0 (3.99)

@WS
+

@t
+ vS(x)k̂ � rxW

S
+ � jkjrxvS(x) � rkW

S
+ +WS

+N � NWS
+ = 0: (3.100)

The coupling matrix N(x;k) is exactly the same as in the case of Maxwell's equations (3.67) with

the speed v = vS . In the high frequency limit the longitudinal P waves behave exactly like acoustic

waves. This is because in both cases the waves correspond to a simple eigenvalue of the dispersion

matrix. The S waves behave exactly like electromagnetic waves. The same results were obtained

in [44] by ray methods.

4 Waves in Random Media

4.1 Transport Equations without Polarization

We now consider wave propagation in a slowly varying background with small random perturba-

tions. The symmetric hyperbolic system (3.1) is

A(x)fI + "1=2V (
x

"
)g@u
@t

+Dj @u

@xj
= 0; (4.1)

where V (x) is a statistically homogeneous matrix-valued random process with mean zero that

models the parameter uctuations. The scale of variation of the uctuations is of order " and

therefore comparable to the wave length so that the random inhomogeneities can interact fully

with the propagating waves. The magnitude
p
" of the uctuations is chosen, as in the case of the

Schr�odinger equation (2.30), so that the e�ect of scattering by the inhomogeneites be comparable
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to the e�ect of the slowly varying background. In order that the system (4.1) remain symmetric

hyperbolic the random inhomogeneities must satisfy the condition

A(x)V (y) = V �(y)A(x): (4.2)

for all x and y, which implies conservation of energy. The matrices A and Dj are symmetric and A

is positive de�nite. In all three cases considered here { acoustic, electromagnetic and elastic waves

{ condition (4.2) is satis�ed. In this section we will assume that the dispersion matrix (3.22) for the

deterministic background has simple eigenvalues. The case of polarization (multiple eigenvalues) is

considered in the next section.

The covariance functions Rijkl(x) and the power spectral densities R̂ijkl(k) are de�ned by

Rijkl(x) = hVij(y)Vkl(x + y)i =
Z
e�ip�xR̂ijkl(p)dp; (4.3)

where <;> denotes statistical average. Spatial homogeneity implies

hcVij(p)cVkl(q)i = R̂ijkl(p)�(p+ q): (4.4)

and

R̂ijkl(p) = R̂klij(�p): (4.5)

We assume that the power spectral densities R̂ijkl(p) are real, which is equivalent to

R̂ijkl(p) = R̂ijkl(�p) (4.6)

and holds when the covariance functions Rijkl(x) are even . This is the case when the uctuations

are isotrpopic in space, that is

Rijkl(x) = Rijkl(jxj): (4.7)

The symmetry condition (4.2) implies that the matrix A and the covariance tensor Rijkl satisfy the

relations

AniAmkRijkl = AjiAmkRinkl = AjiAlkRinkm: (4.8)

When (4.1) holds, the evolution equation (3.13) for W " has the form

@W "

@t
+Q"

1W
" +

1

"
Q"
2W

" � 1p
"
P"
2W

" �p"P"
1W

" = 0; (4.9)
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where the operators Q"
1 and Q"

2 are de�ned by (3.14) and (3.15). The operators P"
1 and P"

2 come

from the random inhomogeneites and are given by

P"
1W

" =
1

2

Z Z
eiq�ydydq

(2�)d

�
V (

x

"
+ y)A�1(x+ "y)Dj @W

"(k + p=2)

@xj
(4.10)

+
@W "(k� p=2)

@xj
DjA�1(x+ "y)V �(

x

"
+ y)

�
and

P"
2W

" = i

Z Z
eiq�ydydq

(2�)d

�
(kj +

qj
2
)V (

x

"
+ y)A�1(x+ "y)W "(k+ q=2) (4.11)

�W "(k� q=2)(kj � qj
2
)DjA�1(x+ "y)V �(

x

"
+ y)

�
:

The double integrals enter in (4.10) and (4.11) because we inserted the Fourier transform V̂ into

(3.14) and (3.15). The operator P"
1 corresponds to the terms in (3.14) involving the x-gradient of

W ", while the undi�erentiated terms in (3.14) and (3.15) combine to produce the operator P"
2 .

We analyze equation (4.9) by a multiple scales expansion, following section 2.3 and Appendix.

We introduce the fast space variable � = x=" and the expansion

W "(t;x; �;k) =W (0)(t;x;k) + "1=2W (1)(t;x; �;k) + "W (2)(t;x; �;k) + . . . (4.12)

We replace @
@xi

by

@

@xi
+

1

"

@

@�i
(4.13)

and expand the Q and P operators in powers of ":

Q"
1 =

1

"
~Q1 +Q1 + ~Q11 + . . .

Q"
2 = Q2 + "Q21 + . . .

P"
1 =

1

"
P1( @

@�
) + P1( @

@x
) + . . .

P"
2 = P2 + . . .

The operator ~Q1 is

~Q1Z =
1

2
A�1Dj @Z

@�j
+

1

2

@Z

@�j
DjA�1 (4.14)

and the operators P1 and P2 are

P1Z(x; �;k) = 1

2

Z
dqe�iq��

�
V̂ (q)A�1(x)Dj @Z(k+ q=2)

@xj
(4.15)

+
@Z(k� q=2)

@xj
DjA�1(x)cV �(q)

�
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and

P2Z(x; �;k) = i

Z
dqe�iq��

�
V̂ (p)A�1(x)(kj + qj=2)D

jZ(k + q=2) (4.16)

� Z(k � q=2)(kj � pj=2)D
jA�1(x)cV �(q)

�
:

We do not give an explicit expression for ~Q11 since we shall not need it. It is the �rst order term

in the expansion in " of the part involving the �-gradient of the operator Q1(
@
@�
). With these

de�nitions, (4.9) becomes

@W "

@t
+

�
1

"
Q2 +Q21 +

1

"
~Q1 +Q1 + ~Q11 � 1p

"
P2 � 1p

"
P1( @

@�
) + O(")

�
W " = 0:

(4.17)

We assume that the average of the leading term W (0) in the expansion (4.9) depends only on

the slow space variable x. This is discussed further in Appendix. To simplify the presentation we

will assume thatW (0) itself is independent of �. We insert expansion (4.12) into (4.9) and �nd that

W (0) satis�es

Q2W
(0) = 0 (4.18)

as in (3.20). We assume in this section that all the eigenvalues of the dispersion matrix L(x;k) in

(3.22) are simple. The case of multiple eigenvalues is considered in section 4.2. Then the Wigner

matrix W (0) has the form

W (0)(t;x;k) =
NX
�=1

a� (t;x;k)B�(x;k); (4.19)

where the martrices B� (x;k) are de�ned by (3.23), as in (3.24).

The term W (1) satis�es

Q2W
(1) + ~Q1W

(1) = P2W (0): (4.20)

We insert (4.19) into (4.20) and solve this equation explicitly for F (1)(t:x;p;k), the Fourier trans-

form in � of W (1):

F (1) =
1

!j(k +
p
2 )� !i(k � p

2 )� i�

�
!i(k � p

2
)ai(k� p

2
)cjm(k +

p

2
)V̂ml(p)b

i
l(k�

p

2
)

� !j(k +
p

2
)aj(k+

p

2
)cim(k �

p

2
)V̂ml(p)b

j
l (k+

p

2
)

�
bi(k� p

2
)bj�(k+

p

2
):

(4.21)
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Here the vectors bj(x;k) are the right eigenvectors of the dispersion matrix L(x;k), orthonomal

with respect to the inner product <;>A, and the vectors ci(x;k) are the left eigenvectors of the

dispersion matrix, given by

ci(x;k) = A(x)bi(x;k): (4.22)

The second order term W (2) satis�es the equation

Q2W
(2) + ~Q1W

(2) = �@W
(0)

@t
� Q21W

(0) �Q1W
(0) + P2W (1) + P1( @

@�
)W (1); (4.23)

because ~Q11W
(0) = 0 since W (0) is independent of �. As discussed in Appendix for the analogous

situation for the Schr�odinger equation, the average

< ~Q1W
(2) >= 0

and so the average of the right side of (4.23) is orthogonal to the null space of Q2. We insert

expression (4.21) for W (1) into (4.23), average it and obtain from the orthogonality condition that

the amplitudes a� satisfy the radiative transport equations

@a�

@t
+rk!� � rxa

� �rx!� � rka
� =

Z
��i(k;k

0)ai(k0)dk0 � ��(k)a
� (k): (4.24)

The di�erential scattering cross-sections ��i(k;k0) and the total scattering cross-sections �� (k) are

given by

��i(k;k
0) = 2�!2�(k)c

�
s(k)c

�
l (k)b

i
v(k

0)biw(k
0)R̂svlw(k� k0)�(!�(k)� !i(k

0)) (4.25)

and

��(k) =
X
i

Z
��i(k;k

0)dk0 (4.26)

Equation (4.24) has the form (1.1). The scattering cross-sections ��i(k;k
0) de�ned by (4.25)

are always positive because the power spectral densities R̂ijkl(k) are positive de�nite matrices with

respect to the pairs of indices ik and jl, by Bochner's theorem [45]. Two modes generated by the

eigenvalues !i and !j are coupled only if !i and !j coincide for some values of the wave vectors k,

k0, that is if for a �xed k there exists a hypersurface of solutions k0 to the equation

!� (k) = !i(k
0): (4.27)
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If there is scattering between two modes then the symmetries (4.5), (4.6) and (4.2), and (4.25)

imply that the di�erential scattering cross-sections of the direct and reverse scattering processes

are the same, i.e.,

��i(k;k
0) = �i� (k

0;k): (4.28)

This implies that the total energy

E(t) =
Z Z NX

j=1

aj(t;x;k)dxdk (4.29)

is conserved.

4.2 Transport Equations with Polarization

When the eigenvalues of the dispersion matrix L(x;k) have multiplicities greater than one the

perturbation analysis of the previous section must be modi�ed. Equation (4.18) implies that the

Wigner matrix W (0) has the form

W (0)(t;x;k) =
X
�;i;j

a�ij(t;x;k)B
�;ij(x;k) (4.30)

where the matrices B�;ij are de�ned by (3.26), as in (3.27). We de�ne the coherence matrices

W � (t;x;k) as in (3.28) by

W �
ij = a�ij : (4.31)

We express W (1) through the coherence matrix using (4.20) and insert it into (4.23). We average

(4.23) and use the orthogonality conditions to obtain the radiative transport equations for the

coherence matrices

@W �

@t
+ rk!� � rxW

� �rx!� � rkW
� +W �N � �N �W � (4.32)

=

Z
��i(k;k0)[W i(k0)]�(!i(k

0)� !� (k))dk
0 � ��(k)W � (k)�W � (k)���(k):

The di�erential scattering cross-section matrix is�
��i(k;k0)[W i(k0)]

�
mj

= 2�!2� (k)b
i;q
v (k0)bi;rw (k0)c�;jl (k)c�;ms (k)R̂svlw(k � k0)W i

qr(k
0)

(4.33)

and the total scattering cross-section matrix �� is

�� =
1

2

X
j

Z
��j(k;k0)[I ]�(!�(k)� !i(k

0))dk0 � i

2

Z
1

!� (k)� !i(k0)
��j(k;k0)[I ]dk0:

(4.34)
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The singular integrals in (4.34) should be interpreted in the principal value sense. The imaginary

terms in (4.34) are related to the anisotropy of the random perturbations. We will see in particular

examples that they are absent when the random perturbations are isotropic.

The radiative transport equations (4.32) preserve W j as positive de�nite Hermitian matrices;

that is if all the W j(0;x;k) are Hermitian and positive de�nite then W j(t;x;k) is Hermitian and

postive de�nite for t > 0 and all j. Another important property of equations (4.32) is that they

conserve the total energy

E(t) =
X
j

Z Z
TrW j(t;x;k)dxdk = const: (4.35)

4.3 Transport Equations for Acoustic Waves

We will now apply the results of section 4.1 to the acoustic equations (3.33). The symmetric hyper-

bolic system for acoustic waves has simple structure because all the non-zero speeds of propagation

are distinct and there is no scattering between di�erent modes, even in the presence of random

inhomogeneities. This is because the frequency (3.35) !+(k) is always positive and the frequency

!�(k) is negative for all k 6= 0 and so the radiative transport equations (4.24) for the amplitudes

a+ and a� are decoupled from each other. Moreover, these amplitudes are related by (3.43) and

so we consider only a+(t;x;k), which we denote by a(t;x;k).

The perturbed matrix A of the symmetric hyperbolic system (3.33) is 
�I 0

0 �

!" 
I 0

0 1

!
+
p
"

 
~�I 0

0 ~�

!#
(4.36)

where I is the 3� 3 identity matrix and ~� and ~� are the uctuations in the density and compress-

ibility, respectively. Therefore the power spectral densities R̂svlw(p) in (4.3) have therefore the

form

R̂svlw(p) = �sv�lw�s�3�l�3R̂��(p) + �sv�s�3�lw�l;4R̂��(p) (4.37)

+ �sv�s;4�lw�l;4R̂��(p) + �sv�s;4�lw�l�3R̂��(p):

Here R̂��, R̂��, R̂�� are the power spectral densities of the uctuations of the density � and com-

pressibility �. The indices go from 1 to 4 and we use the notation �l�3 which is equal to one if

l � 3 and to zero otherwise.

We insert into (4.25) the expression (4.37) for the power spectral densities, the eigenvalues (3.35)

and the eigenvectors (3.37) and obtain for the phase space energy density a(t;x;k) the radiative
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transport equation (4.24) in the form

@a

@t
+ vk̂ � rxa� jkjrxv � rka =

�v2jkj2
2

Z
�(vjkj � vjk0j)[a(k0)� a(k)]

�
n
(k̂ � k̂0)2R̂��(k� k0) + 2(k̂ � k̂0)R̂��(k� k0) + R̂��(k � k0)

o
dk0: (4.38)

This is equation (1.1) with the scattering cross-section as in (1.3). It is also similar to the radiative

transport equation (2.34) for the Schr�odinger equation but the scattering cross-sections di�er.

4.4 Transport Equations for Electromagnetic Waves

Electromagnetic waves are polarized so propagation of wave energy is described by the coherence

matrices W+(t;x;k) and W�(t;x;k) that satisy the relation (3.74). Note that the frequency

!+(x;k) = v(x)jkj, with v given by (3.65), is always positive while the frequency !�(x;k) =

�v(x)jkj is always negative. According to (4.32) this implies that the radiative transport equations

for the coherence matrices W+ and W� are not coupled so we consider only the radiative transport

equation for W+ and drop the superscript +.

We assume that the random uctuations of the medium properties are isotropic with perturbed

A matrix in (3.61) given by  
�I 0

0 �I

!" 
I 0

0 I

!
+
p
"

 
~�I 0

0 ~�I

!#
:

Here I is the 3� 3 identity matrix and ~� and ~� are the uctuations in the dielectric permittivity

and the magnetic permeability, respectively. The power spectral densities of the uctuations (4.3),

R̂svlw(k), have the form

R̂svlw(k) =�sv�lw�s�3�w�3R̂��(jkj) + �sv�lw�s�3�w�4R̂��(jkj) + (4.39)

�sv�lw�s�4�w�3R̂��(jkj) + �sv�lw�s�4�w�4R̂��(jkj);

where R̂ij(k), i; j = �; � are the power spectral densities of the uctuations of � and �. In (4.39)

the indices run from 1 to 6 and we use the delta notation as in (4.37).

We introduce the 2� 2 matrices T (k;k0) and X(k;k0) by

Tij(k;p) = z(i)(k) � z(j)(p) (4.40)

and

Xij = ~z(i)(k) � ~z(j)(k); (4.41)
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where the vectors z(i)(k) are given by (3.38), and ~z(1)(k) = �z(2)(k) and ~z(2)(k) = z(1)(k). These

matrices are related by

T (k;p)X�(k;p) = (k̂ � p̂)I (4.42)

where I denotes 2� 2 matrix. Moreover

T �(k;p) = T (p;k) (4.43)

X�(k;p) = X(p;k):

We now calculate the scattering cross-sections in terms of the matrices T and X and the power

spectral densities by using in the general formulas (4.33) and (4.34), the eigenvalues and eigenvectors

(3.66) and the power spectral densities (4.39). The power spectral density tensor (4.39) has four

terms and each one generates a term in the di�erential scattering cross-section. The one with R̂��

is

�1(k;k
0)[W (k0)]mj = 2�v2jkj2

r
1

2�
z(q)v (k0)

r
1

2�
z(r)w (k0)

r
�

2
z(j)w (k)

r
�

2
z(m)
v (k)Wqr(k

0)

� R̂��(k� k0)

=
�v2jkj2

2
R̂��(k� k0)Tmq(k;k

0)Wqr(k
0)Trj(k

0;k) (4.44)

The other terms in the scattering cross-section are calculated in the same way and they yield

�[W ](k;k0) =
�v2jkj2

2

�
R̂��(jk� k0j)T (k;k0)W (k0)T (k0;k)

+R̂��(jk� k0j)X(k;k0)W (k0)X(k0;k) (4.45)

+R̂��(jk� k0j)[T (k;k0)W (k0)X(k0;k) +X(k;k0)W (k0)T (k0;k)]

�
:

This di�erential scattering cross-section has the correct structure so that the radiative transport

equation (4.47) below conserves the Hermitian and positive de�nite properties of the coherence

matrix W .

By direct calculation we �nd that
R
�(k;k0)[I ]d
(p̂) is proportional to the identity matrix and

the imaginary terms in (4.34) vanish. The total scattering cross-section �(k) is therefore

�(jkj) = �2jkj4
2
p
��

Z 1

�1
[(R̂��(jkj

p
2� 2�) + R̂��(jkj

p
2� 2�))(1 + �2) + 4�R̂��(jkj

p
2� 2�)]d�:

(4.46)

Thus the radiative transport equation (4.32) for the coherence matrix W is

@W

@t
+ vk̂ � rxW � jkjrxv � rkW +WN �NW
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=
�jkj4
2
p
��

Z
jk0j=jkj

[R̂��(jk� k0j)T (k;k0)W (k0)T (k0;k) (4.47)

+ R̂��(jk� k0j)(T (k;k0)W (k0)X(k0;k) +X(k;k0)W (k0)T (k0;k))

+ R̂��(jk� k0j)X(k;p)W (p)X(p;k)]d
(p̂)� �(jkj)W (k):

The coupling matrix N is given by (3.67).

When the power spectral denisties of the uctuations R̂ij are constants, the scattering cross-

sections are proportional to jkj4, which corresponds to Rayleigh scattering. If, in addition, the

magnetic permittivity has no uctuations then the radiative transport equation (4.47) in a uniform

background medium coincides, up to a normalization constant, with Chandrasekhar's equation of

radiative transfer (equation (212) in [1]).

In the transport equations corresponding to Maxwell's equations, there is scattering only be-

tween modes propagating with the same speed. This is not true in general, as we saw in section

4.2.

4.5 Transport Equations for Elastic Waves

The elastic wave equations in a random medium are given by the symmetric hyperbolic system

(3.83) with the perturbed A matrix0BBBBBB@
�I 0 0 0

0 1
2�I 0 0

0 0 1
�I 0

0 0 0 1
�

1CCCCCCA

26666664

0BBBBBB@
I 0 0 0

0 I 0 0

0 0 I 0

0 0 0 1

1CCCCCCA +
p
"

0BBBBBB@
~�I 0 0 0

0 ~�I 0 0

0 0 ~�I 0

0 0 0 ~ 

1CCCCCCA

37777775 : (4.48)

Here I is the 3� 3 identity matrix and ~� and ~ are the uctuations of 1
� and 1

� , respectively. The

power spectral densities of the uctuations R̂svlw(k) have the form

R̂svlw(k) = � sv�lwf�s�3�l�3R̂��(jkj) + �4�s�6�l�3R̂��(jkj)

+ �s�3�4�l�6R̂��(jkj) + �7�s�9�l�3R̂��(jkj) + �s�3�7�l�9R̂��(jkj)

+ �s;10�l�3R̂��(jkj) + �s�3�l;10R̂��(jkj) + �4�s�6�4�l�6R̂��(jkj)

+ �4�s�6�7�l�9R̂��(jkj) + �7�s�9�4�s�6R̂��(jkj) + �4�s�6�l;10R̂��(jkj)

+ �s;10�4�l�6R̂��(jkj) + �7�s�9�7�l�9R̂��(jkj) + �7�s�9�l;10R̂��(jkj)

+ �s;10�7�l�9R̂��(jkj) + �s;10�l;10R̂��(jkj)g: (4.49)
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The subscripts � and � refer to the uctuations of 1=� and 1=� and the subscript � corresponds to

the uctuations of the density �. The indices in (4.49) run from 1 to 10 and the delta's are as in

(4.37).

The P to S wave resonance condition (4.27) is

!S+(k) = !P+(k
0)

with the P and S wave frequencies given by (3.87). For a �xed S wave vector k there is a sphere

of resonant P wave vectors jk0j = p
�=(2�+ �)jkj, so the transport equation (4.32) for the P wave

energy density aP+(t;x;k)) and the transport equation for the S wave coherence matrix WS
+(t;x;k)

are coupled. Moreover, as in the electromagnetic case, there is no coupling to backward travelling

waves so it is enough to consider the two forward modes and to omit the subscript +. As we noted

earlier, the P wave energy transport is similar to that of acoustic waves, and the S wave energy

transport is similar to that of electromagnetic waves. Therefore the system of transport equations

for elastic waves will have the form (4.38) for the P waves coupled to a system of the form (4.47)

for the S waves. They are given by (1.13) and (1.14).

We now outline the calculation of the scattering cross-sections. We present two calculations:

the part of �SS in (1.16) that involves R̂�� and the part containing R̂��. Using the eigenvalues

(3.87) and eigenvectors (3.89) of the dispersion matrix (3.84) and the power spectral densities (4.49)

in (4.33) we have

2 �v2S jkj2
s

1

2�
z(q)s (k0)

s
1

2�
z(r)n (k0)

r
�

2
z(j)n (k)

r
�

2
z(m)
s (k)WS

qr(k
0)

� R̂��(jk� k0j) (4.50)

=
�v2S jkj2

2
R̂��(jk� k0j)fT (k;k0)WS(k0)T (k0;k)gmj : (4.51)

We show next that the di�erential scattering cross-section for the S-to-S scattering (1.16) di�ers

slightly from the di�erential scattering cross-section for electromagnetic waves (4.45). The part of

the di�erential scattering cross-section �SS involving the power spectral density R̂�� is given by

��R̂��(jk� k0j)
2�jkj2 (2K(k)K(k0)z(r)(k0) +M(k)M(k0)z(r)(k0); z(j)(k))

�(2K(k)K(k0)z(q)(k0) +M(k)M(k0)z(q)(k0); z(m)(k))WS
qr(k

0)

=
��R̂��(jk� k0j)jk0j2

2�
�mq(k;k

0)WS
qr(k

0)�rj(k
0;k)

=
�v2S jk0j2R̂��(jk� k0j)

2
f�(k;k0)WS(k0)�(k0;k)gmj : (4.52)
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The matrix � is given by (1.17) or equivalently by

�mq(k;k
0) = (2K(k̂)K(k̂0)z(q)(k0) +M(k̂)M(k̂0)z(q)(k0); z(m)(k)): (4.53)

withM de�ned by (3.86) and K = diag(k1; k2; k3). The di�erential scattering cross-section has the

form (1.16) with

�TTss =
�v2S jkj2

2
R̂��(jk� k0j)

���ss =
�v2S jkj2

2
R̂��(jk� k0j) (4.54)

��Tss =
�v2S jkj2

2
R̂��(jk� k0j):

This is the same as (4.45) in the electromagnetic case with the matrix X replaced by �. A direct

calculation shows that the imaginary terms in (4.34) vanish in this case. The rest of the calculations

are similar and we omit them.

The transport equations for the P wave amplitude aP and the S wave coherence matrix WS

have the form (1.13) and (1.14) with the di�erential scattering cross-section �SS given by (4.54)

and the functions �pp and �ps given by

�pp(k;k
0) =

�jkj2(2�+ �)

2�

8><>: �2

(2�+ �)2
R̂��(jk� k0j) + 4��

(2�+ �)2
(k̂; k̂0)2R̂��(jk� k0j)

+
4�2

(2�+ �)2
(k̂; k̂0)4R̂��(jk� k0j) + (k̂; k̂0)2R̂��(jk� k0j) (4.55)

+
2�

2�+ �
(k̂; k̂0)R̂��(jk� k0j) + 4�

2�+ �
(k̂; k̂0)3R̂��(jk� k0j)

9>=>;
and

�ps(k;k
0) =

��

2�
fjk0j2R̂��(jk� k0j) + 4jkj2(k̂; k̂0)2R̂��(jk� k0j) (4.56)

+4jkjjk0j(k̂; k̂0)R̂��(jk� k0j)g

The P-to-P part of (1.13) coincides with the transport equation for the acoustic waves when

� = 0. The S-to-S part coincides with the electromagnetic case with the replacement of � by X .

The scattering operator on the right side of the transport equations (1.13) and (1.14) is symmetric

in aP and WS . This is an important property that is used in the analysis of the transport equations

in the di�usion regime (section 5.3).
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5 The Di�usion Approximation

5.1 Di�usion Approximation for Acoustic Waves

The di�usion approximation for transport equations like (1.1) is valid at propagation distances

much longer than the transport mean free path jrk!j=� [17]. We show in sections 5.2 and 5.3

that solutions of transport equations for polarized waves also exhibit di�usive behaviour and that

the waves become approximately depolarized in this regime. For simplicity we will consider only

the case when the background is homogeneous and isotropic, in which case the eigenvalues of the

dispersion matrix (3.22) are given by !i(k) = vijkj with the speeds vi independent of x. We shall

consider only conservative transport equations so that (1.2) or (1.9) holds. The results, however,

can be generalized to variable backgrounds and to weakly dissipative scattering provided that the

background variations and the dissipation are on the scale of the propagation distance.

To derive the di�usion approximation we introduce a dimensionless small parameter ", not

related to the small parameter used in the previous sections. It is ratio of the mean free path to

the propagation distance. Then, by rescaling time and space variables by t! "2t and x! "x, we

can write (1.1) as

"2
@a

@t
+ "vk̂ � rxa =

Z
jkj=jk0j

�(jkj; k̂; k̂0)a(k0)d
(k̂0)� �(jkj)a(jkj)

a(0;x;k) = a0(x;k): (5.1)

The total scattering cross-section � is

�(jkj) =
Z
jkj=jk0j

�(jkj; k̂; k̂0)d
(k̂0) (5.2)

and d
 denotes the surface element on the unit sphere. We shall consider only rotationally invariant

scattering so that the di�erential scattering cross-section �(k;k0) is a non-negative function that

depends only on jkj and � = k̂ � k̂0.
We expand the solution of (5.1) in powers of "

a(t;x;k) = a(0)(t;x;k) + "a(1)(t;x;k) + "2a(2)(t;x;k) + . . . (5.3)

and insert this expansion into (5.1). We �nd that the leading term a(0)(t;x;k) satis�esZ
jkj=jk0j

�(jkj; k̂ � k̂0)a(0)(t;x;k0)d
(k̂0) = �(jkj)a(0)(t;x;k): (5.4)

This is an eigenfunction equation for a(0) involving the integral operator A, de�ned by the left side.

The kernel of A is the scattering cross-section and it is positive. From the general theory of such
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operators it follows that they have the following properties [43]:

(i) the eigenvalue with the largest absolute value is simple,

(ii) the eigenfunction corresponding to this eigenvalue is non-negative,

(iii) this eigenfunction is the only non-negative eigenfunction of this operator.

From (5.2) we see that if a(0) is independent of the direction k̂ it is a solution of (5.4). This

fact and properties (i-iii) show that

a(0)(t;x;k) = a(0)(t;x; jkj): (5.5)

This means that a(t;x;k) is approximately independent of the direction k̂ of the wave vector k.

The �rst order term a(1) satis�es the equation

vk̂ � rxa
(0) =

Z
jkj=jk0j

�(jkj; k̂ � k̂0)a(1)(k0)d
(k̂0)� �(jkj)a(1)(k): (5.6)

To solve (5.6) we note that the function u(x;k) = k̂ � rxa
(0)(t;x; jkj) is an eigenfunction of the

operator A corresponding to the eigenvalue

� = 2�
Z 1

�1
�(jkj; �)�d�;

where � = k̂ � k̂0. To show this we let Q be an orthogonal transformation such that Qk̂ = (0; 0; 1)t.

Then

(Au)(k̂) =
Z
jkj=jk0j

�(jkj; k̂ � k̂0)(k̂0 � rxa
(0))d
(k̂0)

=

Z
jkj=jk0j

�(jkj; k̂03)(k̂0 �Qrxa
(0))d
(k̂0) (5.7)

= 2�
Z 1

�1
�(jkj; �)�d�(Qrxa

(0))3 = 2�
Z 1

�1
�(jkj; �)�d�(k̂ � rxa

(0)) = �u(k̂):

Now we write a(1) = C(jkj)u, substitute into (5.6) and use (5.7). Then we can solve for C and u

and obtain

a(1)(t;x;k) = � v

�(jkj)� �(jkj) k̂ � rxa
(0)(t;x; jkj): (5.8)

The equation for a(2) is

@a(0)

@t
� vk̂ � rx

�
v

�(jkj)� �(jkj)k̂ � rxa
(0)
�
= Aa(2) � �(jkj)a(2): (5.9)

We integrate (5.9) with respect to direction k̂. The integral of the right side vanishes and we get

the solvability conditionZ
jkj=jk0j

 
@a(0)

@t
� vk̂ � rx

�
v

�(jkj)� �(jkj)k̂ � rxa
(0)
�!

d
(k̂) = 0: (5.10)

48



After performing the integration over k̂ in (5.10) we obtain the di�usion equation

@a(0)(t;x; jkj)
@t

= rx � [D(jkj)rxa
(0)(t;x; jkj)]: (5.11)

This equation determines the principal term a(0) in the expansion (5.3). We �nd that the

di�usion coe�cient D(jkj) in (5.11) is given by the well known formula [46].

D(jkj) = v2

3(�(jkj)� �(jkj)) : (5.12)

Note that D > 0 because �(jkj) is the largest eigenvalue of A so it is larger than �(jkj), which is

another eigenvalue. The di�usion coe�cient can also be written in the form

D(k) =
vl�(jkj)

3
; (5.13)

where the di�usion mean free path l�(jkj) is given by

l�(jkj) = v

�
2�

Z 1

�1
�(jkj; �)(1� �)d�

��1
: (5.14)

The di�usion equation (5.11) cannot accomodate the initial condition a(0;x;k) = a0(x;k)

unless the function a0(x;k) is independent of the angular direction k̂. To obtain the correct initial

conditions for the di�usion equation (5.11) we must consider the initial layer problem as in [18].

We write a in the form

a = ai + ail; (5.15)

where ai is the solution given by the asymptotic expansion (5.3) and ail is the initial layer solution

which decays exponentially in time. The initial layer solution ail depends on the fast time � = t="2

and satis�es the equation

@ail

@�
=

Z
jkj=jk0j

�(jkj; k̂ � k̂0)ail(k0)dk̂0 � �(jkj)ail(k): (5.16)

The solution ail decays exponentially in time if we take as an initial condition for (5.16)

ail(0;x;k) = a0(x;k)� 1

4�

Z
a0(x;k

0)d
(k̂0): (5.17)

This implies that the initial condition for the di�usion equation (5.11) is the average of a0,

a(0)(0;x; jkj) = 1

4�

Z
a0(x;k)d
(k̂); (5.18)

as might have been expected from physical considerations.
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5.2 Di�usion Approximation for Electromagnetic Waves

We now apply the analysis of the previous section to the transport equation (4.47) for electromag-

netic waves. We rewrite this equation in the form

@W

@t
+ vk̂ � rxW = AW � �(jkj)W: (5.19)

Here the integral operator A acts on matrix valued functions, and is de�ned by

Af(k) = �vjkj4
2

Z
jkj=jk0j

fR̂��(jk� k0j)T (k;k0)f(k0)T (k0;k)

+R̂��(jk� k0j)(T (k;k0)f(k0)X(k0;k) +X(k;k0)f(k0)T (k0;k))

+R̂��(jk� k0j)X(k;k0)f(k0)X(k0;k)gd
(k̂0); (5.20)

where v = 1=
p
��. We assume that the transport mean free path is small compared to the propa-

gation distance and we scale space and time variables (x; t) by t ! "2t, x ! "x as in section 5.1.

The scaled transport equation (5.19) is

"2
@W

@t
+ "vk̂ � rxW = AW � �(jkj)W: (5.21)

We expand the solution of (5.21) in powers of the small parameter "

W = W (0) + "W (1) + "2W (2) + . . . (5.22)

Inserting this into (5.21), we �nd that the leading term W (0) satis�es the eigenfunction equation

AW (0)(t;x;k) = �(jkj)W (0)(t;x;k); (5.23)

which is analogous to (5.4). The general theory of positive operators [43] applies to A and hence

W (0)(t;x;k) has the form

W (0)(t;x;k) = �(t;x; jkj)I; (5.24)

where �(t;x; jkj) is an unknown scalar function to be determined. Thus, the leading approximation

for the coherence matrix is a scalar multiple of the identitity and is independent of the direction k̂.

This shows that electromagnetic waves are depolarized in the di�usion approximation.

The �rst order term W (1) satis�es the equation

vk̂ � rx�I = AW (1) � �(jkj)W (1): (5.25)
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The matrix function u(k̂) = k̂ � rx�I is an eigenfunction of A, de�ned by (5.20), corresponding to

the eigenvalue

�(jkj) = �vjkj4
2

Z 1

�1
f�(R̂��(jkj

p
2� 2�) + R̂��(jkj

p
2� 2�))(� + �3)

+4�R̂��(jkj
p
2� 2�)�2gd�: (5.26)

Hence

W (1) =
v

�(jkj)� �(jkj)(k̂ � rx�)I: (5.27)

The second order term W (2) satis�es the equation

@W (0)

@t
+ vk̂ � rxW

(1) = AW (2) � �(jkj)W (2) (5.28)

which is solvable only if the left side of (5.28) is orthogonal to functions of the form (5.24). Inte-

grating (5.28) with respect to k̂ and taking the trace we �nd that � satis�es the di�usion equation

@�

@t
= rx � [Dem(jkj)rx�]: (5.29)

The di�usion coe�cient is

Dem =
vl�em
3

;

where the di�usion mean free path l�em is de�ned by

l�em =
2

�2jkj4

0B@Z 1

�1
[(R̂��(jkj

p
2� 2�) + R̂��(jkj

p
2� 2�))(1 + �2 � � � �3)

+4R̂��(jkj
p
2� 2�)(� � �2)]d�

1CA
�1

: (5.30)

The initial condition for the di�usion equation (5.29) is determined as in the scalar case. The

initial condition for the initial layer solution must be

W il(0;x;k) = W0(x;k)� 1

8�
f
Z
TrW0(x;k)d
(k̂)gI; (5.31)

so as to make it decay exponentially in time. Then the initial condition for (5.29) is

�(0;x; jkj) = 1

8�

Z
TrW0(x;k)d
(k̂): (5.32)
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5.3 Di�usion Approximation for Elastic waves

We shall now determine the di�usion approximation for the elastic transport equations (1.13) and

(1.14). We shall show that in the di�usion regime the S waves are depolarized and energy is

\equipartitioned" between S and P waves (equation (1.24) or (5.37)).

We rescale space and time variables (t;x) by t! "2t;x! "x and rewrite the transport equations

(1.13) and (1.14) for elastic waves in the scaled form

"2
@aP

@t
+ "vP k̂ � rxa

P = APP [a
P ] + APS [W

S ]� (�PP + �PS)aP

"2
@WS

@t
+ "vS k̂ � rxW

S = ASS [W
S ] + ASP [a

P ]� (�SS + �SP )WS : (5.33)

The integral operators Aij are de�ned by comparing (5.33) to (1.13) and (1.14). We expand the

solution of (5.33) as

aP = a(0) + "a(1) + "2a(2) + . . .

WS = W (0) + "W (1) + "2W (2) + . . . : (5.34)

By using (5.34) in (5.33) we �nd that the principal terms a(0) and W (0) must satisfy the equations

APP [a
(0)] + APS [W

(0)] = (�PP +�PS)a(0)

ASS [W
(0)] + ASP [a

(0)] = (�SS + �SP )W (0): (5.35)

This is a pair of coupled equations of the form (5.4) and (5.23). The general theory of positive

operators is applicable again and implies that the solutions of (5.35) are of the form

a(0)(t;x;k) = �(t;x; jkj) (5.36)

W (0)(t;x;k) = �(t;x;
vS
vP
jkj)I;

where �(t;x; jkj) is a scalar function to be determined. It follows that

a(0)(t;x;k)I = W (0)(t;x;
vP
vS
k): (5.37)

Equation (5.36) implies that in the di�usion regime the S wave is completely depolarized. Equation

(5.37) shows that the energy in the wave number shell of interaction in phase space is partitioned

between the P waves and each polarization of the S waves.

In physical space the local energy densities

EP (t;x) =
Z
R3

aP (t;x;k)dk (5.38)
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and

ES(t;x) =
Z
R3

TrWS(t;x;k)dk (5.39)

are related by

EP (t;x) = v3S
2v3P

ES(t;x): (5.40)

This provides an e�ective cirterion for determining the range of validity of the di�usion regime

in the analysis of seismic data. Unless the energy densities of the P and S waves, which can be

obtained from measurements, satisfy relation (5.40) the di�usion approximation is not valid. This

formula shows that in the di�usion regime most of the energy is in the S waves, no matter how it

was distributed initially.

The �rst order terms satisfy the system of equations

vP k̂ � rxa
(0) = APP [a

(1)] +APS [W
(1)]� (�PP +�PS)a(1) (5.41)

vS k̂ � rxW
(0) = ASS [W

(1)] +ASP [a
(1)]� (�SS +�SP )W (1):

As in sections 5.1 and 5.2, the function u = k̂ � rx� is an eigenfunction of all the operators APP ,

APS , ASP and ASS . Let the corresponding eigenvalues be �pp, �ps, �sp and �ss, respectively. This

implies that if W (1) = �lsk̂ � rx�I and a(1) = �lpk̂ � rx�, then (5.41) is satis�ed provided the

constants lp and ls solve the system of two linear equations

� vP = �pplp + �psls � (�pp + �ps)lp (5.42)

�vS = �ssls + �splp � (�ss + �sp)ls:

Both constants ls and lp have the dimension of length and can be considered as di�usion mean free

paths for S and P waves, respectively.

The second-order terms in " satisfy the system of equations

@a(0)

@t
+ vP k̂ � rxa

(1) = APP [a
(2)] +APS [W

(2)]� (�PP +�PS)a(2) (5.43)

@W (0)

@t
+ vS k̂ � rxW

(1) = ASS [W
(2)] + ASP [a

(2)]� (�SS +�SP )W (2): (5.44)

This system has a solution when the sum of the integrals with respect to k̂ of the left side of (5.43)

multiplied by v3S=v
3
P and of the trace of the left side of (5.44) vanishes. This implies that the

function � must satisfy the di�usion equation

@�

@t
= rx � [Del(jkj)rx�] (5.45)
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with the di�usion coe�cient

Del =
1

2
v3
S

+ 1
v3
P

 
l�pvP

3v3P
+

2l�svS
3v3S

!
: (5.46)

Thus Del is the weighted mean of \partial di�usion coe�cients" for P waves and for each polariza-

tion of S waves, where ls and lp satisfy (5.42).

In the special case when the power spectral densities are at (constant) over the wave numbers

of interest and there are no density uctuations, the mean free paths lp and ls that satisfy (5.42)

are

lp(jkj) = (2�+ �)2

�2jkj4
1

2�2R̂�� +
8
3��R̂�� +

8
5�

2R̂�� +
4v5

P

15v5
S

�2R̂��

(5.47)

and

ls(jkj) = 15�vS

�2jkj4�2R̂��

1

8
vP (2�+�)

+
26v2

P

v3
S
�

; (5.48)

with all spectral densities R̂ij constant.

The initial condition for the di�usion equation (5.45) is obtained as in the acoustic and electro-

magnetic cases, and is

�0(x; jkj) = 1

12�

Z
TrWS

0 (x;k)d
(k̂) +
1

12�

Z
aP0 (x;k)d
(k̂): (5.49)

Here WS
0 and aP0 are the initial values for WS and aP .

6 Conclusions

We have shown that transport equations for the propagation of energy in phase space can be

derived for general waves and for acoustic, electromagnetic and elastic waves, in particular. The

transport equations have a universal character that depends on the structure of the dispersion

relation (matrix) and not on the details of the wave motion. The e�ect of random inhomogeneities

is to introduce scattering of the energy and mode coupling.

Transport equations are a good way to describe the propagation of wave energy when (i) typical

wavelengths are short compared to macroscopic features of the medium (high frequency approxi-

mation), (ii) correlation lengths of the inhomogeneities are comparable to wavelengths and (iii) the

uctuations of the inhomogeneities are weak. As mentioned in the introduction, condition (ii) is

important because it allows for strong interaction between the waves and the inhomogeneities. As
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a result the inuence of the slow background variations is comparable to that of the scattering by

the random inhomogeneities. Transport theory is not valid when the inhomogeneities are either

very anisotropic or very strong. The role of anisotropy is not appparent in the present formal-

ism. One has to look closely at the details of the analysis to see the breakdown of the transport

approximation and the onset of wave localization.

Polarization alters the transport equations substantially and this is important both for electro-

magnetic and for elastic wave propagation. The transport equations still have a universal character

that depends on the structure of the dispersion matrix, and not on details of the wave motion.

Thus the transport equations for electromagnetic and elastic shear or S waves have the same form.

We have also shown how to get di�usion approximations for the transport equations, especially

for elastic waves. The di�usion regime is important because multiple scattering e�ects have a

simple and universal form there, independent of the details of the scattering and of the excitation.

Many applications of transport theory and, in fact, most of the applications in seismology, have

been carried out in the di�usion regime. As mentioned in the Introduction (section 1.3), the energy

equipartition law (1.24), or (1.25), implies that in the di�usion regime the P to S energy ratio

stabilizes independently of the details of the multiple scattering and of the nature of the source.

This is similar to the empirical observation of Hansel, Ringdal and Richards [39] regarding the

stabilization of the P to Lg energy ratio.

We have not discussed the inuence of boundaries and interfaces on the form of the transport

equations and the associated boundary or interface conditions that must be satis�ed. This is

important in many applications, especially in seismology, and needs to be analyzed in detail.

After this work was completed we became aware of the papers of R. Weaver [49,50] in which

transport equations for elastic waves are derived by a di�erent method and the equipartition law

(5.40) is obtained.

7 Appendix: Multiscale expansion for the Transport Approxi-

mation

A multiscale analysis of (2.31) provides a quick formal way to get the transport equations. Detailed

analysis is given in [48]. We expand the solution W "(t;x;k) of (2.31) in powers of "

W "(t;x;k) = W (0)(t;x; �;k) +
p
"W (1)(t;x; �;k) + "W (2)(t;x; �;k) + . . . (7.1)
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and assume that the leading term W (0) does not depend on the fast scale � = x=" and is determin-

istic. We replace

rx ! 1

"
r� +rx

in (2.31) and insert expansion (7.1) into (2.31). The term W (1) satis�es the equation

k � r�W
(1) + �W (1) = i

Z
e�ip�� V̂ (p)fW (0)(k� p

2
)�W (0)(k +

p

2
)gdp; (7.2)

where � is a regularization parameter which will be set to zero later. This equation can be solved

explicitly and the Fourier transform in � of W (1) is given by

V̂ (p)[W (0)(k+ p
2 )�W (0)(k� p

2 )]

k � p+ i�
: (7.3)

The next term W (2) satis�es the equation

@W (0)

@t
+ k � rxW

(0) + k � r�W
(2) + i

Z
e�ip�� V̂ (p)[W (1)(k+

p

2
)�W (1)(k� p

2
)]dp = 0:

(7.4)

Note that

<
@W (2)

@�
>= 0 (7.5)

and so after averaging (7.4) has the form

@W (0)

@t
+ k � rxW

(0)+ < i

Z
e�ip��V̂ (p)[W (1)(k +

p

2
)�W (1)(k� k

2
)]dp >= 0: (7.6)

We insert the Fourier transforn (7.3) in (7.6) and use (2.29) to obtain as � ! 0

< i

Z
e�ip�� V̂ (p)[W (1)(k+

p

2
)�W (1)(k � p

2
)]dp > (7.7)

=

Z
R̂(p� k)[W (0)(k)�W (0)(p)]

2�
1
4(k

2 � p2)2 + �2
dp

! 4�
Z
R̂(p� k)[W (0)(k)�W (0)(p)]�(k2 � p2)dp:

This holds because

�

x2 + �2
! ��(x)

as � ! 0. We insert (7.7) in (7.6) and �nd that W (0) satis�es the transport equation (2.34).
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