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ABSTRACT

Interactions between near-inertial waves and rough bathymetry are studied theoretically and numerically.
Rough bathymetric features cause scattering, even when their length scales are much smaller than the wavelengths
of the incident waves. The scattering efficiency depends on the relative slopes of the incident wave propagation
and bottom features. Scattered wavelengths are comparable to wavelengths of the bathymetry. In a steady-state
situation over an isolated bump, most of the kinetic energy is associated with upward propagating waves, in
agreement with observations. A spectral model shows that first-mode incident waves with wavelengths > 150
km, and second-mode waves with wavelengths > 50 km are completely scattered into smaller wavelengths,
primarily into wavelengths smaller than the bathymetry spectrum roll-off, 40 km. This model is applied to a
spectrum of incident internal waves. The principal interactions involve the scattering of low-frequency, low-
wavenumber incident waves into higher wavenumbers. Because of its higher wavenumbers, the scattered wave
field has elevated shear levels and a Richardson number that is reduced by a factor of about 3.6 with respect to
the incident wave field. A time-dependent numerical model simulates the evolution of wind-induced waves
over rough bathymetry. All of the first vertical mode, containing about 35% of the initial energy, is scattered
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into higher modes after 40 inertial periods.

1. Introduction

Bathymetric profiles in the deep ocean show bumpy
features over a wide range of length scales. It is possible
that internal waves may suffer significant scattering
through interactions with these features. The nature of
these interactions depends on the relative scales of the
internal waves and the bathymetric features.

When the scale of a bathymetric feature is much
greater than that of an incoming internal wave, then
the bottom acts as a uniformly sloping surface. Phillips
(1963) and Eriksen (1982) developed theories of re-
flections by a uniform slope of infinite extent. We call
this type of reflection “specular,” because a mono-
chromatic plane wave is reflected into a single direction
with a single wavenumber—generally different from
the incident wavenumber. Energy density, wavenum-
ber, and azimuth angle are changed when an internal
wave reflects off a sloping bottom. Eriksen (1985)
showed that an isotropic model spectrum of internal
waves is significantly altered by bottom reflection. Also,
reflection drives shears to high values, and Richardson
numbers to very low values. Therefore, reflection may
be a potent mechanism for mixing near the bottom.

When the scale of a bathymetric feature is compa-
rable to, or smaller than, an incoming wave, then the
nature of the reflection is qualitatively different. Baines
(1971a,b) found that in addition to a specularly re-
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flected wave, forward and backward scattered waves
are produced. The scattered wave components have
wavenumbers that are different from that of the inci-
dent wave. The scattered wavenumbers are algebraic
combinations of the incident wave and bathymetric
wavenumbers. In the absence of mean flow, the fre-
quencies and characteristic slopes of the incident,
specularly reflected, and scattered waves are all equal
in magnitude.

Mied and Dugan (1976) applied a high-order ex-
pansion solution to the scattering problem. Their re-
sults compared very well with Baines’ solution, which
involved only a first-order perturbation expansion.
While Mied and Dugan’s theory and method of solu-
tion are applicable to internal waves over a broad range
of frequencies, they computed results only for high-
frequency waves. This paper, on the other hand, is pri-
marily concerned with the interactions of low-fre-
quency, near-inertial waves with the ocean bottom. We
will see that near-inertial waves interact much more
strongly than do high-frequency waves, because the
characteristic slopes of near-inertial waves are more
nearly comparable to bathymetric slopes than are those
of high-frequency waves. The objective of this paper is
to quantify the strength of this interaction, and the
time scale over which it operates on surface-forced
waves.

Section 2 reviews results from Baines (1971a) for a
single, isolated bump on the ocean floor. Because
Baines chose not to present plots of his results, it is
useful to look at a graphic of the energy modulation
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generated by a wave-bottom interaction. Section 3 be-
gins with Baines’ solution for a sinusoidal bottom and
then extends the solution to a more general bathymetry
profile using a Fourier series superposition approach.
Section 4 applies the model developed in section 3 to
an incident spectrum of internal waves. Section 5 ex-
amines the time-dependent evolution of a wind-in-
duced inertial wave field, as it interacts with a sinusoidal
bottom and more realistic bathymetry. Results are
summarized and discussed in section 6.

2. Single, isolated bump

When an internal wave reflects off an isolated bump,
it is scattered into wavelengths comparable to the scale
of the bump. Baines (197 1a) derived an expression for
an incident plane wave, scattered by a bump with a
particular profile. The spatial structure and the strength
of modulation of the scattered wave aré not readily
apparent from Baines’ expression. Therefore, it is of
interest to evaluate the expression for a set of realistic,
representative cases. '

Following Baines (1971a), we consider an inviscid .

ocean, described by the equations of motion

du 1 pgr
—+fXu=———Vp———,
ot po(2) po(2)
V.eu=0,
dp dpo
—+w—1=0 2.1
o Vdz ’ @)

where x, y and z are Cartesian coordinates, with z di-
rected upward, with corresponding velocity compo-
nents u, v, and w; z is the unit vector in the direction
of z, t is time, po(2) is equilibrium density, p is pertur-
bation pressure, g is perturbation density, g is the ac-
celeration of gravity, and f = fz, where fis the Coriolis
parameter. We assume that the wave motion and the
bottom topography are independent of the y coordi-
nate. Then the motion can be described in terms of a
streamfunction Y(x, z, ), by the equations
W o

3 w=5)-c-. (2.2)

If we define a constant buoyancy frequency N by

_ 89
po dz’

Uu=

N?= (2.3)

then (2.1), (2.2) yield
VA + N + [z, = 0. (2.4)
We assume periodic time dependence of the form

¥ = (x, 2)e™, (2.5)

to obtain

2 2
2=,w —f
N2 _ w2 ’

12’xx - SZJJZZ =0, s (2.6)
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where s is the characteristic slope. The general solution

isof the form )
¥ =) + yoln), 2.7

where ¥, and ¥, are complex-valued functions of the
characteristic variables

E=z+sx, n=2z—sx (2.8)
The fluid is effectively infinite in depth with bathymetry
z = D(x), 2.9)

where D(x) is a smooth (differentiable) function, subject
to the condition
|D'(x)| < s. (2.10)

The magnitude of the bottom slope is everywhere .
smaller than the slope of the wave characteristics. The
wave is not shadowed by the bathymetry.

This condition implies that there exists a one-to-one
correspondence between the £ and » characteristics, so
that (2.9) can be written as either

§£=—Km), or n=—H(), (2.11)

where K and H are monotonically increasing functions.
Baines imposes the asymptotic condition

D'(x) = a. (2.12)

where «. are constants, but we shall impose a more
restrictive condition, that e, = 0.

The boundary condition at the bottom surface is ¢
= (). Baines showed that a solution of the form ¢ = {;
+ ¢, consisting of an incident plus a transmitted wave
is not sufficient to satisfy radiation boundary conditions
at infinity. Instead, a solution is assumed to have the

form
Vi = e expli(kE — wi)],
¥ = —€Fi(n)e ™,

¥r = eFy(B)e”™, (2.13)

where ¢ = ; + ¢, + ¢, is the sum of the incident,
transmitted, and reflected waves, € is an amplitude,
and k is a total wavenumber. For a complete derivation
of the results, the reader is referred to Baines (1971a).
Here, we only present the result,

Fi(n) = exp[—ikK(n)] + Fan),

Fy(§) = FoAA-H(©)] = Fon). (2.14)

Thus, the problem becomes one of determining the
function F,(n).
We consider a particular bump profile given by

2da?
Kn) =7+ 7tar

as x-» *co,

(2.15)

where d is an amplitude and a is a length scale. We
will only be considering bump profiles (not valleys).
Therefore, the plus sign in (2.15) requires that d < 0.
The slope condition (2.10) leads to the restriction
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’ * INCIDENT
3 V§ 10+ 1.4
Then an approximate solution for F,(5) is given by {N
N

c(nfa — i)+ cnfa + i)

Tl =T 1

nla—i
* C3[(n/a)2 1

2
], (2.17)

where
o= —kde“"“[l — ikd(1 + ka)

~ (d)z 1 — ikd(3/2 + ka)]

a 16 + (d/a)?

ikde™  (d .
= m (2)[1 - lkd(3/2 + ka)],
cy = _(kd)2e—ka. (218)

This solution is accurate to second order in d/a
and kd.

Figure 1 shows the normalized fields of kinetic en-
ergy density E/E, and phase & — &, where

1
E= > puu*,

® = arctan[Im(u)/Re(u)], (2.19)

u is defined by (2.2), the asterisk denotes a complex
conjugate, p is mass density, and Ey and &, are the
energy density and phase in the absence of a bump
(flat topography). The normalization by E, and & re-
moves the modulation due to phase differentials across
the width and height of the plots. The bump profile
parameters in (2.15) are d = —4 m, a = 10 m. The
wavenumber is k = 7/200 m~!, and the characteristic
slope is s = 1/100. Therefore, the approximate vertical
and horizontal wavelengths are A; = 400 m and A,
= 40 km, respectively.

Because of the way that E and ® are presented in
Fig. 1, there are only two independent parameters, kd
and d/a. For the case shown, |kd| = #/50 and |d/al
= 0.4. The coordinate axes are made nondimensional
by A, and \,. Characteristic rays that intersect the origin
also intersect the upper left and upper right corners of
the plot frames. The full-width at half-height of the
bump is equal to 2a/s = \,/20, and the bump ampli-
tude is |d| = A,/100. The amplitude-to-width ratio of
the bump is s|d|/2a = 2 X 1073,

Intuition from electromagnetic and acoustic waves
tells us that when a scattering object is very much
smaller than a wavelength, there should be no appre-
ciable scattering effect. However, Fig. 1 shows that for
internal gravity waves, this is not the case. The kinetic
energy and phase fields show strong modulations along
the two characteristic rays emanating from the center

08

=]

. z/A,

.08 0

(i
X/ Ay
FiG. 1. Contours of normalized kinetic energy E/E, (upper) and
relative phase & — &, (lower). Contour increment for phase is 4°.
The horizontal and vertical coordinate axes are scaled by the hori-
zontal and vertical wavelengths, Parameter values are d/a = —0.4
and kd = #/50. The bump profile is shown at the bottom. Plane
internal waves are incident on the bump, coming from the upper left
corner. Back-scattered and forward-scattered waves propagate toward
the upper left and right corners, respectively.

of the bump. Additional computations (not presented
here) using much lower wavenumbers give results that
are qualitatively very similar to Fig. 1. Therefore, phase
interference effects due to the finite—but very small—
size of the bump do not contribute appreciably to the
scattering pattern. Instead, scattering is primarily a re-
sult of the fact that the slope of the bump is significant
in comparison with the wave characteristic slope, s.

One way to see this is to analyze the exp[—ikK(n)]
component term of ¥ in (2.14). With K(z) given by
(2.15), this term becomes

. [ 2da?®
exp(—ikn) exp[—zk(n2 n az)] .

The term in parentheses in the second exponential has
a maximum value 2d for n = 0. Therefore, the maxi-
mum phase modulation due to the second exponential
is exp(—2ikd), which is small because |kd| < 1. How-
ever, the derivative is

d .
& exp[—ikK(n)]

4da*y

= —ik(l - (7]2—+£12_)2) exp[—ikK(n)]. (2.20)
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The maximum magnitude of 4da’n(n* + a?)~?is equal
to (3V3/4)|d/al, for ¢ = ia/\/g. When d/a is of order
one, the term in parentheses in (2.20) is strongly mod-
ulated in the vicinity of —a < # < 4. From the above
discussion, we conclude that the streamfunction y is
not significantly altered by the presence of the bump.
However, the velocity component u = —dy/dz = —dy/
dn is strongly modulated, because the slope of particle
motions is comparable to—but smaller than—the slope
of the bottom topography.

The phase contours in Fig. 1 can be used to infer
the direction of the propagating energy. Regions where
the phase increases (decreases) with depth indicate that
the inertial velocity vector rotates anticlockwise
(clockwise) with depth, hence upgoing (downgoing)
energy dominates. Careful comparison of the upper
and lower frames in Fig. 1 shows that regions where
E/Ey> 1 (E/Ey < 1) coincide with net upgoing (down-
going) energy, and where E/E, = 1 there is equality.
Therefore, in the vicinity of a bump, most of the kinetic
energy is associated with upward propagating waves.
These results, discussed in greater detail in section 6,
are in agreement with observations of near-inertial
waves over a seamount by Kunze and Sanford (1986).

3. Statistical model of bottom scattering: Monochro-
matic incident wave

In this section we consider a statistical representation
of bottom topography. We first deal with the scattering
of a monochromatic internal wave by a small ampli-
tude sinusoidal bottom. Then we assume that the ocean
bottom can be represented as a random-phase Fourier
superposition, with amplitudes determined by an em-
pirical spectrum. We derive a spectrum of scattered
internal waves. By integrating this spectrum we arrive
at the total fraction of energy flux that is scattered from
the incident wavelength into all other wavelengths.

a. Single wavenumber incident on sinusoidal bathym-
etry

We consider a sinusoidal bottom topography that is
invariant in the y direction,
D(x) = d coslx, 3.1)

where d is amplitude and / is wavenumber. An incident
monochromatic wave propagating in the x-direction
is defined by the streamfunction

¥i = e expli(k§ — wi)], (3.2)

where k is total wavenumber and £ is defined by (2.8).
The amplitude d is subject to the restrictions

kd<l, ld<1. 3.3)

To first-order accuracy in kd and /d, the reflected
and transmitted streamfunctions (2.13) may be written
in terms of F;(n) and Fx(§) as
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Fi(n) = (1 — k*d®e™™ + ikd{expl—in(l/s + k)]

+ expl—in(k — /s)]},
Fy§) =0, ‘
for [ < sk, and
Fi(n) = (1 — kd®l/s)e™*" + ikd exp[—in(I/s + k)],
Fy(£) = —ikd exp[—it(l/s — k)], (3.4b)

for [ > sk. This result is essentially the same as that
derived by Baines (1971a). This solution contains a
specular reflection component which has a wavenum-
ber k unchanged from that of the incident wave. A
sum wavenumber k + I/s is forward-scattered and a
difference wavenumber |k — I/s] is forward-scattered
for / < sk, and back-scattered for / > sk.

Equation (3.4) is accurate to first order in kd and /d.
A perturbation expansion to higher order yields an in-
finite set of discrete, scattered wavenumbers,

kK=lkxnlsl;, n=1,2,3,---, (3.5)

and the amplitudes of these components are propor-
tional to (kd)”. In this section, we will consider only
the first-order » = 1 contributions.

The vertical energy flux of the incident wave (3.2)

(3.42)

is given by

2 _ £2yAr2 _ 23172
F,~=%p62k[(w f)(::’ ) ()

and the vertical energy fluxes of the sum (+) and dif-
ference (—) scattered components are given by

[® — SN~
w

F. =3 pelk + I/slsk*d?
(3.7)
The ratio of (3.7) to (3.6) is simply

F./F; = |k + l/s|kd>. (3.8)

b. Single wavenumber incident on general bathymetry

Now let us consider a general bathymetric profile
D(x) of finite length X. The Fourier transform of D(x)
is

-~ X .
D) = fo D(x)e~ 2 xgx, (3.9)

and the associated power spectrum S(/) is given by

= i L A2
SU) = 2 lim < (IBOP), (3.10)

where angled brackets denote expected value. Because
the spectrum of a sinusoid (3.1) is

2
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we make the identification
(F+/F;y = |k £ I/slk(d*y = 2]k £ ls|kS(I)dl. (3.12)

Then the probability per unit wavenumber that energy
flux will be scattered from wavenumber & to some other
wavenumber k', is given by

pkkYy=2>2 J:o [k + I/sikS(d(k' — lk + I/s)dl

= 2K'Kk{S[slk’ — k|1 + S[s(k’ + K]} (3.13)
There is no reason in principle why
P= f Pk, k"dk' (3.14)
0

should always be less than one. Therefore, we define a
total probability density function p(k, k') in such a
way that flux conservation is ensured,

ok, k') = Ap(k, k') + Bo(k' — k),

1—-P . (=l
B=[ 0 if P{>1.

=

3.15)
where

1
A={5

The second term in (3.15) denotes the contribution
due to specular reflection (wavenumber is unchanged).
According to (3.16), the specular reflection contribution
is simply the remainder after all the scattered flux has
been removed from the original monochromatic in-
cident wave.

We take for S(/) an empirical model spectrum in-
troduced by Bell (1975a), modified in a minor way
with an abrupt high wavenumber cutoff,

So(2+ 1D, 1<,
0, I1>1,

where Sy = 250 m? cpkm, /, = 0.025 cpkm, and /.
= 2.5 cpkm.

Foliowing Munk (1981), we use an approximate
expression for vertical wavenumber,
j NZ —- 0)2 1/2
= | ——— km), 3.1
3 b( ) (cpkm) (3.18)

N02 - w2

where j is a mode index, » = 1.3 km is the e-folding
scale of N(z), and N, = 3 cph is the surface extrapolated
buoyancy frequency. We choose N = 0.5 cph as the
local buoyancy frequency, near the ocean bottom.

Table 1 shows the fraction of vertical energy flux
scattered out of the incident wavenumber, defined by
1 — B, as a function of horizontal wavelength and ver-
tical mode index. This quantity is equal to one for all
but the smallest horizontal wavelengths and vertical
modes. This result is important. All of the energy flux
incident with horizontal wavelengths = 150 km is im-
mediately scattered into other wavelengths.

This analysis is based on the solution (3.4), which is

(3.16)

S() = [ (3.17)

k.
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TaBLE 1. Fraction of vertical energy flux scattered
out of incident wavenumber.
Incident horizontal wavelength (km)
Vertical
mode index 25 50 100 200
1 0.05 0.13 0.49 1
2 0.31 1 1 (1)
3 1 1 1 (1

valid subject to the condition of no wave shadowing
(2.10). For the sinusoid bottom profile (3.1), this con-
dition becomes

s> ld. (3.19)

With the ensemble of Fourier transforms (3.9), (3.10),
this condition cannot be met with absolute certainty
for any specific incident wave. Instead, we can only
conform with (3.18) in a probabilistic sense. We might
stipulate, for example, that

§> 20y, (3.20)

where g, is the rms bottom slope. For the model spec-
trum given by (3.17), o, = 0.025. Therefore, the ele-
ments in Table 1 that disobey (3.20) are enclosed in
parentheses. One would intuitively conjecture, though,
that shadowing can only act to increase the modulating
effect on the reflecting waves.

Figures 2 and 3 show the distributions of scattered
energy flux for modes 1 and 2, respectively. The upper
frames of the figures display plots of p(k, k') given by
(3.15). Spikes associated with specular reflection are
not shown. The peaks in these functions lie within the
wavelength range from 10 to 40 km. The upper limit
of this range corresponds to the spectral roll-off wave-
number /, = 0.025 cpkm, in (3.17).

The lower frames of Figs. 2 and 3 display the cu-
mulative probability distributions [; p(k, 8)d8. Dis-
continuous jumps in these curves are associated with
the fraction of specular reflection, i.e., the parameter
B in (3.15). Because the 200 km, first mode wave is
not subject to specular reflection, it shows no discon-
tinuous jump in Fig. 2. The probability distributions
for longer wavelength and higher mode waves are vir-
tually identical. For these distributions, about 7% of
the energy flux is scattered into the wavelength range
40 to 100 km, and about 31% is scattered into each of
the wavelength ranges 10-40 km, 2-10 km, and 0.4~
2 km.

4. Statistical model of bottom scattering: Spectrum of
incident internal waves

So far, we have considered the scattering of a single
internal wave incident on a rough bottom. Qualita-
tively, we found that there is a transfer of energy flux
in different, predominantly higher wavenumbers. The
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vertical energy flux can be equally partitioned into up-
going and downgoing waves. We take the downgoing
waves to be incident on a rough bottom with a model
spectrum given by (3.17). The spectrum of scattered
(upgoing) energy flux will be different from that of the
incident (downgoing) flux. We assume that unspecified
adjustment processes (such as nonlinear mixing) act to
redistribute the upgoing flux spectrum back into the
canonical GM model form.

Following Munk (1981), we model the spectrum of
internal waves as summarized by

0.0

AT B

TRAMBAMTS A

Wavenumber {cycle/km)

FIG. 2. Probability density and probability distribution of scattered
energy flux, of first vertical mode, for 25, 50, 100 and 200 km incident
waves. Spikes associated with specular reflection are not shown in
the probability density, but do show up as discontinuous steps in the
probability distribution. These steps represent fraction of energy that
is specularly reflected.

resulting effect on a spectrum of incident waves is not

immediately apparent. In this section we will see how -

a model spectrum of energy flux density of internal
waves is altered by the scattering mechanism.

The method of approach is similar to that of Eriksen
(1985). We assume that the Garrett-Munk (GM)
model of the internal wave spectrum is applicable in
the deep ocean, at some distance from the bottom. The

Wavelength (km)
1000 100 10 1
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FI1G. 3. As in Fig. 2 except for second vertical mode, for 25 and 50
km incident waves.

Hj) =G+ ZGP+iD7 @3)

J=1

4.9

j=

2 H() =1,
i

where

. 2, 2\1/2
k,=’—"—(N ‘“’) (4.5)

b Noz - wz

is the local vertical wavenumber corresponding to
mode j, j, = 3 is a cutoff mode number, B(w) and
H(j) are separable frequency and wavenumber shapes,

and E = 6.3 X 107 is a constant spectral level. The

energy spectral density per unit mass, frequency, and
wavenumber is given by

Se(w, j) = b*NoNE(w, ), (4.6)

where b = 1.3 km is a stratification scale height, N,
= 3 cph is the surface-extrapolated buoyancy fre-
quency, and N = 0.5 cph is the local buoyancy fre-
quency. The spectral density of the vertical component
of flux incident on the bottom is given by

Fi(w, J) = ~(po/2)E(w, j)cz(w, k), 4.7

where py is density and ¢, is the vertical component of
group velocity. Ultimately what we desire is an expres-
sion for the scattered vertical flux F;,

Fs(w’ k’) = f F,‘(O), k)p(k: k,)dk’ (4'8)

0

in terms of the incident flux F; and the probability
density p defined in (3.13)-(3.15). But because the
spectral model is in terms of discrete modes, we must

transform (3.13)-(3.15) from a continuous wavenum-
ber form into modal form:

B, J') = 2a'{S[slj" — jll + SIs(J" + N}

=p-(j,J) + B+, J') 4.9)
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25, i .

2 i , lixjl<L

By = | 8% GV + (o/sa) SIS Fe

0, lj+ 1> L,
(4.10)
P=a T 5, ), (4.11)

j'=0

P ) = Ap(j,J') + BS(j — ),  (4.12)
LL‘ = C/Sa, (4.13)

where A and B are defined by (3.16), j and j' are the
mode indices for incident and scattered wave com-
ponents, respectively, and we have made use of the
definition of the modal (total) wavenumber
F2\12
ki=aoj= b(Nz—w) Jj. (4.14)

Adjusting summation limits, the expression for P given
by (4.11) becomes

2

—aZLU)+aZmUH,Mﬁ)
I"Jl ]=13
where
Jio=max{l,j— L}, j,=min{j+ L, Jma}»
j3 = 1’ j4 = mln{Lc _j, Jmax}:
(4.16)

where Jp,, is the maximum mode of the spectral model.
Then our expression for the spectral density of scattered
vertical energy flux in (4.8) becomes

J2
F(w,J) = ad 2, Fi(w, )B-(, ')
J=i

Ja
+ ad Z Fi(w, ))P+(J, J') + BF(w; J'),
J=js
4.17)

where the summation limits are given by (4.16), with
the primed and unprimed values of j interchanged.

The results shown in Fig. 4 were computed for an
array of Juax = 32 discrete modes and 32 frequencies
scaled logarithmically between the local inertial fre-
quency f= 107 s™! and the local buoyancy frequency
N=0.5cph. As the bottom-scattering mechanism does
not alter the frequency from that of the incident wave,
the chosen number of frequencies is not materially sig-
nificant to the present calculations: a large number
simply serves to make the plotted results appear con-
tinuous. In contrast, the chosen number of discrete
modes affects the spectrum of incident vertical flux
through the summation limit in the expression for the
shape function H(j) given in (4.3).

Figure 4a shows the GM model spectrum of incident
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flux F;(w, j). The spectrum of scattered flux F(w, j) is
shown in Fig. 4b. It is difficult to compare Figs. 4a and
4b directly, so the reader’s attention is directed to Fig.
4d, which shows the ratio of scattered-to-incident flux
spectra. In the low-frequency range, near the inertial
frequency, energy is strongly scattered from low wave-
numbers (low vertical mode) into higher wavenumbers.
This result is indicated by the sharp dip in the right
corner of the plot (low frequencies and low modes),
and by the general rise in the upper corner (low fre-
quencies and high modes). In the high-frequency range,
near the buoyancy frequency, the ratio is nearly unity.
Weak scattering at high frequencies causes very little
redistribution of energy flux.

Figure 4c shows the fraction 1 — B of flux that is
scattered into some other wavenumber. The value of
this fraction is unity throughout most of the area in
frequency-wavenumber space, except for a small tri-
angular area at low wavenumbers and high frequencies.
This result indicates that 100% of the flux incident on
arough bottom gets scattered to some other wavenum-
bers, except for incident wave packets with a combi-
nation of high frequency and low wavenumber, which
are not strongly affected by rough bottom scattering.
The ratio of scattered-to-incident flux in Fig. 4d is
nearly level in this region.

Figure 5 shows the energy spectra projected into
wavenumber and frequency space, partitioned into in-
cident (half the GM spectrum) and scattered compo-
nents. From the wavenumber spectrum, it is clear that
energy is scattered from low wavenumbers into high
wavenumbers. The crossover mode index is j = 10
(~1500 m local vertical wavelength). Defining the ef-
fective modal bandwidth j, by

=[2Z SO Z SGY, (4.18)

we then get j, = 9, 28, and 14 for the incident, scattered,
and incident plus scattered energy spectra, respectively.
Using Fu’s (1981) definition of coherence scale,

4.19)

we get Az, = 555, 180 and 360 m, respectively.

The frequency spectrum in Fig. 5 shows that the
scattered component is slightly weaker than the inci-
dent component in the near-inertial range. The scat-
tered and incident components are nearly equal in
magnitude at higher frequencies.

Munk (1981) introduced a reciprocal Richardson
number, which Pinkel (1985) generalized to an inverse
Richardson function, defined by

RiYw, k) = N7? f f (&, k)dadk, (4.20)
where &(&, k) is shear spectral density. We can write -

this expression in terms of the discrete mode GM model
spectrum,
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FIG. 4. (a) Spectrum of incident energy flux, shown as a function of vertical mode number

ranging from 1 to 32, and of frequency, ranging from the local inertial frequency f =
V> cph = 8.7 X 107* 57", (b) Spectrum of scattered flux as

the local buoyancy frequency N =

0*s7'to

predicted by spectral model. (c) Fraction of flux which, when incident at a given frequency and
wavenumber, is scattered into some other wavenumber. (d) Ratio of scattered-to-incident flux

spectra.
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This function is a description of the cumulative shear
spectrum, normalized by the stratification. It has the
advantage of having an intuitive interpretation in terms
of the tendency toward shear instability. This function
was evaluated at three frequencies, w = 1.08f, 1.33f,
8.72f =~ N, as shown in Fig. 6. The maximum mode
index, Jnax = 100, was chosen to be comparable with
measurements described here. The solid and dashed
curves correspond to the incident and scattered spectra,
respectively. The value of Ri™!(w, j) of the scattered
wave field is smaller than that of the incident wave
field for low modes, and is greater for high modes. The
crossover for w =~ N occurs at mode index j ~ 15
(~1000 m local vertical wavelength). This behavior
simply reflects the ratio of scattered-to-incident flux

spectra, shown in Fig. 4d. Most of the contribution to
Ri~!(, j) comes from near-inertial frequencies, which
are most strongly scattered. High frequency waves are
only weakly scattered, and also do not contribute much
to Ri“!(¥V, j). The values of Ri™{(¥, Jpax = 100) are
0.03 and 0.11 for the incident and scattered wave fields,
respectively.

The shape of the Ri™!(w, j) function depends in a
nontrivial way on the value chosen for Jy,,,. The reason
for this is that the wavenumber shape function H(j),
defined by (4.3) and (4.4), depends on J,,,,. However,
Munk (1981) showed that the integrated value Ri™!(¥,
Jmax) 1S approximately proportional to Ji.x, at least up
to a spectral break observed in the upper ocean at 0.1
cpm (Gargett et al., 1981). For upper-ocean near-in-
ertial waves, this wavenumber corresponds to j = 260.
For this maximum mode index, we calculate that
Ri™!(WV, Jmax = 260) is equal to 0.08 and 0.29 for the
incident and scattered wave fields, respectively.
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FIG. 5. Energy spectra projected into wavenumber (left) and frequency (right)
. space. Solid curves denote incident wave field, and dashed curves denote scattered

wave field.

As a point of reference, we can compare these results
with Pinkel’s (1985) measurements of the inverse
Richardson function, computed from Doppler sonar
velocity profiles in the upper ocean. His upper wave-
number cutoff of 1/28 cpm corresponds to a maximum
mode index Jyax =~ 100. His offshore and alongshore
components of reciprocal Richardson number exceed
our incident Ri™!(¥V, Jnax = 100)—which includes just
the incident wave field—Dby factors of ~10 and ~14,

1/Ri
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FIG. 6. Inverse Richardson function, for incident (solid) and scat-
tered (dashed) wave fields. The function was evaluated at three fre-
quencies, w = 1.08f, 1.33fand 8.72f ~ N, corresponding to the thin,
medium, and thick curves.
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respectively. We should account for the fact that (4.20)
is proportional to N/Np, and that the local buoyancy
frequency is greater by a factor of ~7 in the upper
ocean. Therefore, the normalized shear level in the up-
per ocean was actually greater than the GM spectral
level by a factor of 1.5-2, and smaller than the scattered
wave level by a factor 2-2.5. Pinkel mentions that much
of the high frequency shear might not be due to internal
waves; however, the high frequency contribution to
the reciprocal Richardson number is relatively small.

5. Response to surface forcing
a. Model formulation

In this section we study the problem of bottom in-
teractions in the time domain. We formulate an initial
value problem, in which a wind stress has initially de-
posited momentum into a surface mixed layer. The
mixed layer is dynamically coupled with a stratified,
inviscid interior. Near-inertial internal waves propagate
into the interior, and scatter off the rough bottom.

The model formulation is similar to the internal
wave model of Rubenstein and Roberts (1986) and is
not repeated here. There are two significant differences
between the application of the model reported here
and in Rubenstein and Roberts, Instead of a uniform,
level bottom, we implement variable bathymetry D(x),
and the top and bottom boundary conditions are

w=0 at z=0,
w=uD(x) at z=-D(x), 5.1)

where u and w are the velocity components in the x
and z (positive upward) coordinate directions. A second
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difference is that instead of radiation-absorbing lateral
boundary conditions, we implement reflecting lateral
boundaries. The interior velocities # and v and mixed
layer velocities # and v are antisymmetric, and buoy-
ancy b is symmetric with respect to the lateral bound-
aries at x = +xk, ! = £100 km. Therefore, the solution
is periodic in x, with wavelength 2xk,~! = 200 km.

b. Model parameters
The initial condition is of the form

D = U sink,.x, (5.2)

where 7 is the mixed layer velocity in the y-coordinate
direction, and T, = 1 m s~!. We will call k, the “pri-
mary” wavenumber. The initial mixed layer depth is
200 m. Because of its convenient properties, we choose
a mean buoyancy frequency profile similar to that of
Gill (1984):

0, -h<z<0
Mz) = {'y(zo -2y, —-D<z<—h, ©-3)
where ¥ = 2.8 m s™! and zp = 150 m.
¢. Case I: Sinusoidal bottom profile
Case 1 involves a sinusoidal profile given by
D(x) = Dy + d coslx, (5.4)

where Dy = 5 km is mean depth, d = 100 m is ampli-
tude, and / is wavenumber. To achieve simple peri-
odicity, we require that the profile wavenumber / be
an integer multiple of the initial condition wavenum-
ber,

I = jky. (5.5)

We will take the particular case of j = 4; 27/~! = 50
km.

Figure 7 displays the solution fields w(x, z) at time
t = 4 inertial periods, with and without bathymetry.
The solution for w emphasizes the horizontal variability

of the internal wave motions. There is strong ~50 km

wavelength modulation of the w field, especially in the
deeper half of the model basin.

In order to quantify the scattering effect, horizontal
wavenumber spectra of the horizontal currents were
computed. The periodic nature of the solution allows
us to use standard fast Fourier transform procedures
to compute spectral density functions. This approach
is facilitated by the fact that the horizontal grid di-
mension (64 internal grid points) is a power of two.

The spectral density function of the initial velocity
distribution (5.2) is given by "

Stk,) = 70e*/k, = 100 m? s~2 cpkm™'.  (5.6)

If there is no bathymetry (flat bottom) then as the sys-
tem evolves in time, all of the energy remains at the
k, wavenumber. With the sinusoidal bathymetry (4.14),
energy is scattered into the wavenumbers
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FI1G. 7. Contours of vertical velocity w, after four inertial periods
model simulation, for flat bathymetry (top) and sinusoidal bathymetry
(bottom). Thick curves denote zero, solid/dashed curves denote pos-
itive/negative contours. The contour increment is 0.08 cm s~'. The
wavelength of the initial condition is 200 km.

kK.=lk.xnl, n=1,2,3 +--. 5.7

Note the similarity to (3.5). Due to computational -
noise, energy is also scattered into other wavenumbers.
These energy levels are orders of magnitude smaller
than the levels at the scattered wavenumbers given by
(5.7) and will not be considered further.

Figure 8 displays the evolution of spectral density
profiles for the primary wavenumber k% = k, and for
the first-order scattered wavenumbers k', = k. + [. Pro-
files are shown at times ¢ = 4, 8, 12, and 16¢;, where ¢;
= 2x/f is an inertial period (17.45 h). The scattered
wavenumber profiles of.energy density are generally
about two orders of magnitude below that of the pri-
mary wavenumber. From the number of “dips” in the
profiles, we note that higher order vertical modes are
more visible in the scattered profiles than in the pri-
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FIG. 8. Evolution of spectral density profiles at times 4, 8, 12 and 16 inertial periods. Dotted curves denote primary
k' = k. wavenumber, dashed curves denote k’, = k, — /, solid curves denote k%, = k, + I

mary profile. This is expected, because the bottom
scatters energy into higher wavenumbers.

How does the bumpy bottom affect the energy den-
sity at the primary wavenumber? Figure 9 shows a
comparison of time histories of the spectral energy
density at three depths at wavenumber k' = k,, for
simulations with a flat, level bottom (d = 0), and the
case 1 bumpy bottom. In order to suppress the rapid
modulations due to inertial oscillations, a low-pass filter
has been applied. The rapid oscillations that remain,
with a period of about 4¢;, result from the beating of
the first vertical mode with purely inertial oscillations
(Gill, 1984; Kundu and Thomson, 1985). The slower
envelope oscillations result from the beating of low-
order modes with inertial oscillations. For the first 8¢;
or so, the comparison shows virtually identical results.
As time elapses beyond 30¢;, about %3 to Y2 of the energy
is depleted from the primary wavenumber, through
bottom interactions. The first vertical mode separates
from the initial profile sooner than do the higher modes.
Therefore, the first mode—which initially contains
about 35% of the energy—interacts with the rough
bottom most rapidly. As a result the rapid oscillations
decay and the slower oscillations associated with the
higher modes dominate after about 40z;.

d. Case 2: Realistic bottom profile
For case 2 we use a realistic bottom profile, simulated
using a truncated Fourier series

N
D(x) = Do + 2 d; cos(jkxx + ¢)),

Jj=1

(5.8)

where the amplitudes are given by

s0.0r= MIXED LAYER

225 — Flat
——— Bumpy

15.0—

7.5F

=
D
T

SPECTRAL DENSITY (m? 82 cpkm™)
B

INERTIAL PERIODS

FI1G. 9. Evolution of spectral density in the mixed layer, at 500 m
and at 4500 m depth, for the flat bathymetry case (solid) and for the
sinusoidal bathymetry case (dashed). A low-pass filter has been applied
to remove inertial oscitlations. The 4¢; oscillations which remain are
due to beating between pure inertial oscillations and the first vertical
mode. These oscillations dissipate with time, as the first mode is
scattered into higher modes.
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(+1/2)ky
d? = f( Sy,

J=1/2)k

(5.9)

the bathymetry spectrum S(/) is given by (3.17), and
the phase terms ¢; are chosen randomly. Thus (5.8)
represents a randomly chosen realization of the ba-
thymetry, shown in Fig. 10.

Figure 11 is the w field at time ¢ = 4¢;. Comparing
with Fig. 7, the fluctuations in w associated with the
bathymetry are of similar magnitude. Of course the
fluctuations in Fig. 6 are periodic, while those in Fig.
11 are random in the x-direction.

Figure 12 shows a contour map of spectral energy
density, as a function of horizontal wavenumber and
time, at a depth of 4500 m. The peak energy density
at the primary wavenumber 1/200 cpkm dominates
the spectrum. There are also two smaller peaks, at the
wavenumbers 0.02 and 0.03-0.035 cpkm. These cor-
respond roughly to the sum and difference wavenum-
bers lp = k,, where [y = 0.025 cpkm, k, = 0.005 cpkm.
The implication is that energy is scattered primarily
into a wavenumber band centered about the roll-off

DEPTH (km)

FIG. 11. Vertical velocity field for case 2, at time 4¢;. Thick curves
denote zero, solid/dashed curves denote positive/negative velocities.
Contour increment is 0.04 cm s~!. Bathymetry is shown as hatched
area.

wavenumber /. This result is similar to our conclusions
in section 3. The upper frames in Figs. 2 and 3 show
that the scattering probability density function has a
smooth, single peak near /y. The double peak at / + k,
in Fig. 12 results from the discrete, truncated Fourier
series (5.8).

6. Summary and discussion

We analyzed the scattering of a large-scale internal
wave by an isolated, exceedingly small-scale bump on
the ocean floor. Despite an apparent mismatch of
scales, kinetic energy density is modulated by the in-
teraction. The energy modulation factor ranged from
0.6 to 1.6. The reason for this strong modulation lies
in the comparability of the slope of the bump and the
slope of the wave characteristic. A scattered wave,
though, has a slower group velocity. It is slower by the
ratio of incident to scattered wavenumbers.

We analyzed bottom scattering in the wavenumber
domain. The ocean bottom was represented by an em-
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F1G. 12. Contours of kinetic energy spectral density for case 2 at
4500 m depth. Contours have units of m s~ cpkm™! and have log-
arithmic increments. Contours less than 0.001 are not shown, for
clarity.
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pirical spectrum. An incident wave with wavelength
greater than 150 km is entirely scattered into other,
mostly shorter, length scales. None of the incident en-
ergy is specularly reflected. Most of the energy flux is
scattered into wavelengths comparable to and smaller
than the bottom spectrum roll-off wavelength, 40 km.

A Garrett-Munk spectrum of energy flux was ap-
plied to the spectral model of rough bottom scattering.
Strong bottom interactions cause low-frequency, low-
wavenumber waves to be scattered into higher wave-
numbers. Incident waves with low wavenumber and
high frequency are only weakly scattered. As a result,
the vertical wavenumber energy spectrum and the in-
verse Richardson function corresponding to the scat-
tered wave field were smaller than those of the incident
wave field at low wavenumbers, and greater at high
wavenumbers. The frequency spectrum is not signifi-
cantly altered by scattering.

The response to surface forcing was studied using a
time dependent numerical model. In the first case
treated, a sinusoidal bottom profile, with amplitude
100 m and wavelength 50 km was used. This amplitude
is a reasonable value, compared to mesoscale rms ele-
vations. The first vertical mode separates most rapidly
from the initial velocity profile. The structure of scat-
tered waves contains higher vertical modes. After 40
inertial periods have elapsed, roughly !5 to 2 of the
initial energy scatters out of the wavelength of the initial
velocity field (200 km) into shorter wavelengths (~50
km). This fraction corresponds to the fraction (35%)
of the energy in the initial velocity profile associated
with the first vertical mode.

A second case incorporated a truncated Fourier se-
ries, which simulated a realistic bathymetric profile.
Energy is scattered primarily into the wavenumber
band centered at the bathymetry spectrum roll-off
wavenumber, corresponding to 40 km wavelength.

The general conclusion is that after a near-inertial
wave field has had sufficient time to reflect from the
ocean bottom, most of the energy is scattered into
wavelengths comparable to those of the bathymetric
features. The 40 km spectral roll-off is important, be-
cause it roughly determines the range of scattered
wavelengths.

The wavelength of a wind-induced inertial wave is
approximately equal to the product of the propagation
speed of an atmospheric front and the inertial period
(Kundu and Thomson, 1985). Typical observed wave-
lengths, shortly after the passage of a front, range from
300 to 1500 km (Thomson and Huggett, 1981; Pollard,
1980). More generally though, horizontal coherence
scales associated with near-inertial waves are on the
order of tens of kilometers, and 50-60 km seems to be
an upper limit (Schott, 1971; Fu, 1981). Several mech-
anisms may contribute to the degradation of coherence
from hundreds to tens of kilometers. For example,
Rubenstein and Roberts (1986) showed how inertial
waves can be scattered by the mesoscale shear structure
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associated with an ocean front. The scattered waves
can have length scales on the order of tens of kilometers,
considerably smaller than the horizontal cross-front
scale of the shear.

Interactions with bumpy bathymetry can also de-
grade the coherence scale of inertial waves, Fu (1981)
analyzed Polymode observations of inertial waves. He
found a tendency for waves observed over smooth to-
pography to be more coherent horizontally, and a ten-
dency for horizontal coherence to decrease with depth.
We must be cautious, though, because inertial waves
propagate at a shallow angle. They can travel great dis-
tances between interactions with the ocean bottom,
and locally measured waves may actually have been
generated remotely.

The frequency spectrum of internal waves is not sig-
nificantly altered by rough-bottom scattering. There-
fore, records from isolated current meters are not par-
ticularly useful for studying the scattering phenome-
non. On the other hand, the shape of a vertical
wavenumber spectrum of a scattered wave field is sig-
nificantly less steep than that of an incident field (see
Fig. 5). Thus, vertical velocity profilers—with their
ability to separate downward and upward propagating
wave components—are more useful for studying
rough-bottom scattering,

Using velocity profilers, Kunze and Sanford (1986)
found a preponderance of upward-propagating near-
inertial energy just above and to the sides of the summit
of Caryn Seamount. They ruled out bottom generation
by a mean flow, because this mechanism would have
zero Eulerian frequencies. While not ruling out gen-
eration by barotropic tides, they found bottom reflec-
tion to be the most likely mechanism. The reason was
that the enhancement of upgoing waves over down-
going waves was confined to short vertical wavelengths
(<500 m). This result, they point out, is consistent with
Eriksen’s (1982) ratio of reflected to incident energies

E
E: = (kz,r/ kz,i)zs
over a flat, sloping bottom. This result is also consistent
with rough-bottom scattering. Figure 5 shows that the
spectral level of the scattered wave field is elevated with
respect to that of the incident wave field at high wave-
numbers.

If we consider 500 m as the vertical wavelength of
the reflected wave, then the frequency range 1.01-1.24
fconsidered by Kunze and Sanford over the seamount
summit yields a horizontal wavelength ranging from
42 to 8 km. This range is consistent with the 25 km
width of the seamount. This result is evidence of the
bumpy bathymetry scattering mechanism, in which
reflected energy is modulated over length scales com-
parable to those of the bottom features. Moreover, the
scattering mechanism seems to be relevant here because
the seamount is smaller than the wavelength of a typical
wind-forced inertial wave. Further evidence of the

6.1)
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scattering mechanism may be found in our theoretical
results shown in Fig. 1. Over the isolated bump, up-
ward-propagating energy dominates, in agreement with
the measurements by Kunze and Sanford.

Eriksen (1985) points out, with regard to a uniformly
sloping bottom, that virtually all of the internal wave
field flux may be involved in the reflection process and
its subsequent redistribution of energy. This result also
applies to the rough-bottom results reported here. Fig-
ure 4¢ shows that a large fraction of the internal wave
field is redistributed by rough-bottom interactions. One
major difference is that there is no single dominant
bottom slope in the present calculations, and therefore
no single critical frequency dominates the scattered
spectrum. A second difference is that the scattering of
waves from high to low wavenumbers is almost neg-
ligible, in contrast to Eriksen’s calculations showing a
reflected flux spectrum that is elevated at low wave-
numbers and frequencies higher than the critical fre-
quency. The reason is that the scattered energy flux is
proportional to the absolute value of the scattered
wavenumber, k' = |k * //s| [see Eq. (3.7)], where //s is
a wavenumber component of the bathymetry, pro-
jected onto the incident wave vector which has mag-
nitude k and characteristic slope s. Sum terms are nat-
urally emphasized relative to difference terms.

Eriksen (1985) also shows that reflection from a
uniformly sloping bottom is a strong sink for internal
wave energy, and may be an important mixing mech-
anism. This conclusion should be equally true—if not
more so—for rough-bottom scattering. Rough-bottom
scattering affects the more energetic low-frequency
waves more strongly than the less-energetic high-fre-
quency waves, as seen in Fig. 4d. In addition, Fig. 6
shows that the preferred scattering from low to high
wavenumbers helps to increase scattered shear—and
thus reduce Richardson number and enhance mix-
ing—to a greater degree than would scattering from
high to low wavenumbers.

This study has important implications for modeling
the evolution of surface-forced inertial waves. Figure
9 shows that the effect of bumpy bathymetry becomes
important after 20 inertial periods, and that the first
vertical mode is completely scattered into higher modes
after 40 inertial periods. Long-term simulations of in-
ertial wave propagation over rough bathymetry should
incorporate this effect. The bathymetry might be mod-
eled explicitly in the bottom boundary conditions. An-
other approach might be to include a dissipation layer,
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as was done by Rubenstein (1983), to prevent specular
reflections off the bottom. A more sophisticated ap-
proach would be to parameterize the transfer of energy
from the incident wavenumber into higher, bathym-
etry-related wavenumbers.
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