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Water waves over a strongly undulating bottom

V. P. Ruban∗

Landau Institute for Theoretical Physics, 2 Kosygin Street, 119334 Moscow, Russia
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Two-dimensional free-surface potential flows of an ideal fluid over a strongly inhomogeneous bot-
tom are investigated with the help of conformal mappings. Weakly-nonlinear and exact nonlinear
equations of motion are derived by the variational method for arbitrary seabed shape parameter-
ized by an analytical function. As applications of this theory, band structure of linear waves over
periodic bottoms is calculated and evolution of a strong solitary wave running from a deep region
to a shallow region is numerically simulated.

PACS numbers: 47.15.Hg, 47.35.+i, 47.10.+g

I. INTRODUCTION

The classical problem of water waves over a variable
seabed has attracted much attention (see [1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30] and references therein).
There are some significant differences in this interesting
and practically important problem, as compared to the
theory of waves on a deep water or in canals with a flat
horizontal bottom. In situations where the fluid depth
is less or of the same order as a typical length of sur-
face wave, inhomogeneity of the bottom is a reason for
linear and nonlinear wave scattering and transformation,
and it strongly affects wave propagation. These phenom-
ena occur so widely that one can meet them almost ev-
erywhere, although with different scales. Examples of
strongly nonlinear dynamics are ocean waves running on
a beach, or motion of disturbed water in a puddle after
a car. Among linear effects due to bottom topography
is existence of special edge-localized waves discovered by
Stokes [17, 18, 19, 20], that propagate along the shore
line of a beach. Over an axially symmetric underwater
hill, quasi-localized wave modes with non-zero angular
momentum can exist, similar to long-life-time states of a
quantum particle confined by a potential barrier of a fi-
nite width [6, 31]. It is necessary to say that underwater
obstacles of definite shapes and sizes can serve as waveg-
uides (a narrow and long underwater crest) or as lenses
(an oblong underwater hill oriented crosswise to the wave
propagation). A qualitative explanation for all the lin-
ear effects is simple. Indeed, let r⊥ be the coordinate in
the horizontal plane, H(r⊥) the depth corresponding to
quiet surface. Then, looking at the well known dispersion
relation for small-amplitude gravitational surface waves,

ω(K,H) =
√

gK tanh(KH) (1)

(where ω is the frequency, K is the absolute value of
the wave vector, g is the gravitational acceleration), one
can see that the local refraction index n(ω, r⊥) increases

∗Electronic address: ruban@itp.ac.ru

as the depth H(r⊥) decreases, in accordance with the
formulas

n(ω,H(r⊥)) ≡ K(ω,H(r⊥))

K(ω,H = ∞)
=
gK(ω,H(r⊥))

ω2
> 1,

(2)

∂K(ω,H)

∂H
< 0,

where the function K(ω,H) is determined by Eq. (1).
Therefore, as in the conventional light optics, here an
oblique wave changes its direction of propagation when
meets gradient of n. Also, the total internal reflection
is possible in propagation from smaller depth to larger
depth.

Besides observing such natural phenomena, a set of
laboratory experiments has been carried out to investi-
gate various aspects of the given problem in more ideal-
ized and controlled conditions than are achieved in na-
ture [9, 12, 13, 14, 19, 20, 27]. In particular, waves
over locally periodic bottoms were studied experimen-
tally [9, 12, 13, 14, 27], and such a general for periodic
media effect was observed as the Bragg resonances and
the corresponding band structure with gaps in wave spec-
trum. It is worth to say that in natural conditions quasi-
periodic sand bars occur quite often.

In general, a qualitative picture of the mentioned phe-
nomena is clear. As concerning the quantitative side of
the mathematical theory of waves over a variable bot-
tom, here not everything that necessary has been done,
because practically all developed up to now analytical
models and methods are related to the limit cases where
the fluid is considered as ideal, and the slope of the bot-
tom is small (or amplitude of the bottom undulations is
small). For the general three-dimensional (3D) Hamilto-
nian theory of water waves, such restriction seems to be
unavoidable even in considering the most simple, irrota-
tional flows when the state of the system is described by a
minimal set of functions, namely by a pair of canonically
conjugated quantities as the deviation η(r⊥, t) of the free
surface from the horizontal plane and the boundary value
ψ(r⊥, t) of the velocity potential [32, 33]. A technical dif-
ficulty exists here that, when working in 3D space, it is
impossible to represent in convenient and compact form
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the kinetic energy functional K{η, ψ} which is part of
the Hamiltonian of the system. Small values of the bot-
tom slope and of the free surface slope make possible
expansion of the Hamiltonian to asymptotic series and
subsequent application of various variants of the pertur-
bation theory. In such traditional approach, an inhomo-
geneous bottom does not allow to write in exact form
even linearized equations, not speaking about nonlinear
corrections.

There are more favorable conditions for progress in
theory of 2D potential ideal flows with a free bound-
ary, and the reason for this is the possibility to em-
ploy such powerful mathematical tools as analytical
functions and the corresponding conformal mappings.
Time-dependent conformal mappings were successfully
used for studying strongly nonlinear 2D wave dynam-
ics on deep water and over straight horizontal bottom
[34, 35, 36, 37, 38, 39, 40, 41]. In the cited works the
region occupied by resting fluid (the lower half-plane or
a horizontal stripe) was mapped onto the region with dis-
turbed free boundary, and the real axis was transformed
into moving boundary. Such a conformal “straightening”
of free surface has provided a compact representation for
the Hamiltonian, derivation of exact equations of mo-
tion, and possibility for precise numerical simulations of
the system evolution.

The purpose of this work is to study the effect of a
strongly undulating bottom on 2D ideal potential flows
with a free surface. Here conformal mappings are used
as well, and this is done in two variants. In the first,
“moderate” variant (Sec. 2), a fixed conformal map-
ping “straightens” the bottom, but not the free bound-
ary. More exactly: instead of the Cartesian coordinates
x and y (with y-axis up-directed), curvilinear coordinates
u and v are introduced, and the change of coordinates is
performed with the help of an analytical function z(w)
which maps the stripe −1 < Imw < 0 onto the region
between the horizontal line y = 0 and the inhomogeneous
bottom y = −H(x). In this case x + iy = z(u+ iv), the
horizontal line y = 0 corresponds to v = 0, and on the
bottom v = −1. The bottom may have arbitrary large
slope and even impending pieces where the dependence
H(x) is multi-valued, as shown in Fig.1. The shape of free
surface will be described by a function v = V (u, t). The
Lagrangian for weakly-nonlinear waves is represented as
an integral series in powers of the dynamical variables
V (u, t) and ψ(u, t), with coefficients explicitly depend-
ing on the spatial coordinate u. In the small-amplitude
limit, the wave dynamics is governed by linear integral-
differential equations. It is using the conformal variables
u and v, that allows us to obtain these equations in
exact form, contrary to the traditional approach where
even linearized equations can be obtained only approx-
imately by expansion in the small parameter, the slope
of the bottom. The definition “moderate” for this vari-
ant emphasizes that straightening of the bottom without
straightening the free boundary is able to provide not
more than a weakly-nonlinear theory. Nevertheless, such
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FIG. 1: Left: periodic shape of the bottom (lower thick line),
levels of constant v = −0.9,−0.8, ..., +0.6 (thin lines), and
(schematically) free boundary (thick line near y = 0). Right:
the corresponding band structure of the spectrum of linear
waves. In this example z(w)/h = w + (2ǫ/α) sin(αw)/(1 +
b cos(αw)), with the parameters α = 2π/3, ǫ = −0.17, b =
0.16.

a theory seems to be helpful and applicable in many prac-
tical cases when wave amplitude is small. The results of
this part of the work are the derivation of the Hamil-
tonian functional for weakly-nonlinear potential surface
waves in canals having arbitrary bottom shape, as well as
calculations for band structure of spectrum for a number
of periodic bottom profiles. As an example how to treat
the linearized equations, also the problem is considered of
wave reflection on a smooth “step” – changing the depth
from h1 to h2.

The other variant of using the conformal mappings
may be called “radical” in the sense it is valid for ar-
bitrary shape of the bottom and for arbitrary shape of
the free surface. It is an exact combined theory where a
time-dependent conformal mapping straightens both the
bottom and the free boundary (Sec. 3). Such a mapping
can be represented as the result of two mappings: x+iy =
z(ζ(w, t)), where the first function ζ(w, t) maps the hor-
izontal stripe −1 < v < 0 onto the region Dζ(t) with
the straight lower boundary (Im ζ = −1) and with a per-
turbed upper boundary, after that the time-independent
function z(ζ) maps the half-plane Im ζ > −1 onto the re-
gion y > −H(x) in the physical plane bounded from be-



3

low by the bottom. The shape of the free surface will be
described by the formula X + iY = Z(u, t) = z(ζ(u, t)).
However, it appears that exact nonlinear equations for
Z(u, t) in the inhomogeneous case have the same form as
the known equations for waves over a horizontal bottom
[38], but with different analyticity requirements imposed
on the solutions. Numerical solutions obtained by the
spectral method are presented that describe a running
and breaking wave (Sec. 4).

II. WEAKLY-NONLINEAR THEORY

So, suppose we know the analytical function z(w) =
x(u, v) + iy(u, v) which maps the horizontal stripe −1 <
Imw < 0 onto the region occupied by the fluid at rest,
and this function takes real values on the real axis:
z(u) = x(u, 0). The velocity field is irrotational, and the
velocity potential ϕ(u, v) satisfies the Laplace equation
ϕuu + ϕvv = 0 in the flow region −1 < v < V (u, t), with
the boundary conditions ϕv|v=−1 = 0, ϕ|v=V (u) = ψ(u).
Due to conformal invariance of the Laplace equation in
2D-space, hence equation ϕxx + ϕyy = 0 is satisfied as
well, with no-penetration boundary condition on the bot-
tom: ∂ϕ/∂n|y=−H(x) = 0. Let us now take into account
the fact that the Lagrangian functional for potential sur-
face waves has the following structure [32, 33, 38]:

L =

∫

ψη̇dx−H =

∫

ψ(YtXu − YuXt)du −H, (3)

where Y (u, t) = y(u, V (u, t)), X(u, t) = x(u, V (u, t)),
and the Hamiltonian functional H is the total energy of
the system – sum of the kinetic energy and the poten-
tial energy in gravitational field (in this paper we neglect
surface tension effects, though they can be easily incorpo-
rated by adding to the Hamiltonian the surface energy).
In our variables

H =
1

2

∫

du

V (u)
∫

−1

(ϕ2
u + ϕ2

v)dv

+
g

2

∫

y2(u, V (u))
d

du
x(u, V (u))du. (4)

This system has the obvious stable equilibrium ψ = 0,
V = 0, hence one may consider weak oscillations near this
equilibrium state. In a standard way (see, for instance
[33]), let us expand the Lagrangian (3) in powers of the
dynamical variables ψ and V . It is clear that due to
the symmetry principle the expansion for y(u, v) contains
only the odd powers of v, while the expansion for x(u, v)
contains only the even powers of v. Therefore up to the
third order in powers of ψ and V the Lagrangian (3) is
equal to

L̃ =

∫

ψVtx
′2(u)du −K(2){ψ} − K(3){ψ, V } − P(2){V },

(5)

where x′(u) = z′(u+0i) = xu(u, 0), and the equality yv =
xu has been taken into account in the first integral in
r.h.s. The expansion for the kinetic energy (calculation of
the functionals K(2) and K(3)) is performed in a standard
manner [33, 38] and gives

K(2){ψ} =
1

2

∫

ψ[k̂ tanh k̂]ψdu, (6)

K(3){ψ, V } =
1

2

∫

[ψ2
u − ([k̂ tanh k̂]ψ)2]V du. (7)

Here the linear Hermitian operator [k̂ tanh k̂] has been
introduced, acting as

[k̂ tanh k̂]ψ(u) = −P.V.

+∞
∫

−∞

ψũ(ũ)dũ

2 sinh[(π/2)(ũ − u)]
. (8)

In Fourier-representation this operator simply multi-
plies the Fourier-harmonics ψk =

∫

ψ(u) exp(−iku)du by
k tanh k. Quadratic on V part of the potential energy is

P(2){V } =
g

2

∫

V 2x′3(u)du. (9)

It is convenient to deal with the function ξ(u, t) =
V (u, t)x′2(u) canonically conjugated to ψ(u, t), and
write the corresponding up-to-third-order Hamiltonian in
terms of ξ and ψ:

H̃{ξ, ψ} =
1

2

∫

ψ[k̂ tanh k̂]ψdu +
g

2

∫

ξ2

x′(u)
du

+
1

2

∫

[ψ2
u − ([k̂ tanh k̂]ψ)2]ξ

x′2(u)
du. (10)

Physically, this asymptotic expansion of the Hamiltonian
is on a small parameter – the slope of the free surface (see
[33] for more comments and references). The weakly-
nonlinear equations of motion have the standard Hamil-
tonian structure

ξt =
δH̃
δψ

= [k̂ tanh k̂]ψ − ∂

∂u

(

ξψu

x′2(u)

)

−[k̂ tanh k̂]

(

ξ[k̂ tanh k̂]ψ

x′2(u)

)

, (11)

− ψt =
δH̃
δξ

= g
ξ

x′(u)
+

[ψ2
u − ([k̂ tanh k̂]ψ)2]

2x′2(u)
. (12)

If |x′′(u)/x′(u)| ≪ 1, then x′(u) is approximately equal
to the equilibrium depth H(u). For long waves over a
such slowly varying bottom, only Fourier-harmonics ψk

and ξk with small k are excited, so in this case the Hamil-
tonian (10) can be simplified to the local form

H̃l =

∫ [

ψ2
u

2
− ψ2

uu

6
+

2ψ2
uuu

15
+

gξ2

2x′(u)
+
ξ[ψ2

u − ψ2
uu]

2x′2(u)

]

du,

(13)
which is suitable for consideration of such phenomena as
interaction of solitons with the bottom topography.
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A. Linearized equations

Now let us consider the linearized system

ξt = [k̂ tanh k̂]ψ, −ψt = g
ξ

x′(u)
. (14)

For a monochromatic wave (ξ, ψ ∝ exp(−iωt)) Eqs. (14)
are reduced to the single integral equation

(

ω2

g
x′(u) − k̂ tanh k̂

)

ψω(u) = 0. (15)

In the low-frequency limit this equation can be consider-
ably simplified. A variant of simplification is to introduce

a new function f by the equality k̂ tanh k̂ψω(u) = −fuu.
Then we obtain the equation

(

ω2

g
x′(u)k̂ coth k̂ + (d/du)2

)

f = 0. (16)

The low-frequency limit corresponds to long wave-

lengths, when k̂ coth k̂ ≈ 1 + k̂2/3 = 1− (1/3)(d/du)2, so
we have to deal with the second-order differential equa-
tion

fuu(u) +

ω2

g x
′(u)

1 − ω2x′(u)
3g

f(u) = 0. (17)

where ω2x′(u)/g should be small (only in this case the
wave length is indeed effectively long; remember that
x′(u) is of the same order as the depth).

Higher-order approximations to equation (15) can be
derived in a similar manner, for instance by change

ψω(u) = [cosh k̂]f(u) and subsequent expanding [cosh k̂]

and [k̂ sinh k̂] in powers of k̂2 = −(d/du)2.
As an explicit example of using Eq.(17), we consider

reflection of a long wave from a step-shaped bottom in-
homogeneity described by the function

z(w) = h1w +
(h2 − h1)

α
ln(1 + eαw), (18)

where h1 > h2 > 0, 0 < α ≪ π. If frequency of the
wave is small, ω ≪

√

g/h1, then equation (17) may be
applied. Calculating the derivative

z′(w) = h1 + (h2 − h1)
1

1 + e−αw
=
h1e

−αw + h2

e−αw + 1
, (19)

we have for f(u) the equation

fuu(u) +
ω2

g

[h̃1Ce
−αu + h̃2]

[Ce−αu + 1]
f(u) = 0, (20)

where

h̃1 =
h1

1 − ω2h1

3g

, h̃2 =
h2

1 − ω2h2

3g

, C =
1 − ω2h1

3g

1 − ω2h2

3g

.

(21)

A general solution for equation (20) is known [31]. In
particular, the reflection coefficient is given by the ex-
pression

R(ω) =





sinh[ πω
α
√

g (
√

h̃1 −
√

h̃2)]

sinh[ πω
α
√

g (
√

h̃1 +
√

h̃2)]





2

. (22)

B. Periodic bottom: The band structure of the
spectrum

Interesting phenomena occur if shape of the bottom is
periodic:

z′(w) = h
∑

n

an exp(inαw), a−n = ān. (23)

Here h is a dimensional parameter, an are some complex
Fourier-coefficients. Obviously, x′(u) = z′(u) > 0 and
|an| decay rapidly at large |n|, since z′(w) does not have
any singularities at −1 < Imw < 1. The equation (15)
for eigen-functions ψλ(u) (where λ = ω2h/g) now has the
form

λ

(

∑

n

an exp(inαu)

)

ψ(u) − [k̂ tanh k̂]ψ(u) = 0, (24)

or in Fourier-representation

λ
∑

n

anψk−nα = k tanhk ψk. (25)

For convenience let us denote

Fν = αν tanh(αν), Ψν = ψαν . (26)

Now we have the infinite chain of linear equations

λ
∑

n

anΨν−n = FνΨν , (27)

where Ψν1
and Ψν2

interact if the difference between ν1
and ν2 is an integer number. Let us fix some ν. Non-
trivial solutions of the system (27) exist only at defi-
nite values λ = λm(ν), where m = 1, 2, 3, . . .. It is
necessary to note that the functions λm(ν) are periodic:
λm(ν + 1) = λm(ν), and even: λm(−ν) = λm(ν). This
determines the band structure of the spectrum with fre-
quency gaps (see Figs.1-2). For numerical computing
λm(ν) it is necessary to cut the infinite chain (27) at some
large but finite length, thus considering only ν between
−N and N . Practically N should be several times larger
than the index m of λm . Numerical results for

√
λm

shown in the figures 1-2 were obtained with the help of
the mathematical package Maple 8 taking N = 10.

Fig.2 shows that in some cases even for strongly undu-
lating bottom the coefficients an with n ≥ 1 can be still
small (a1 = ǫ = 0.2 ≪ 1). In these cases it is easy to cal-
culate analytically in the main approximation positions
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FIG. 2: Shape of the bottom, levels of constant v, and the
band structure for z(w)/h = w + (2ǫ/α) sin(αw), with α =
π/3, ǫ = 0.2.

of the gaps. For example, let us consider the bottom pro-
file as in Fig.2, where x′(u) = h(1+2ǫ cos(αu)). The gaps
in spectrum correspond to integer or half-integer ν’s. It
is important that at these values of ν, solutions of the
linear chain (27) possess definite parity, in the sense that
Ψ−ν = ±Ψν. This allows us in gap calculation consider
only positive ν. Let us first consider half-integer ν’s and
the corresponding half-infinite chain

(λ− F1/2)Ψ1/2 + λǫ(±Ψ1/2 + Ψ3/2) = 0, (28)

(λ− F3/2)Ψ3/2 + λǫ(Ψ1/2 + Ψ5/2) = 0, (29)

(λ− F5/2)Ψ5/2 + λǫ(Ψ3/2 + Ψ7/2) = 0, (30)

. . .

Obviously, the even and odd cases result in different λ’s,
and it is this difference that determines the gaps in spec-
trum. For main-order calculation of the first and third
gaps, we cut this chain: Ψ7/2 = 0, Ψ9/2 = 0, and so
on. Now we have to solve the equation for zeros of the
determinant 3 × 3

[{λ(1 ± ǫ) − F1/2}(λ− F3/2) − λ2ǫ2](λ − F5/2)

−λ2ǫ2[λ(1 ± ǫ) − F1/2] = 0. (31)

First we take λ = F1/2+∆1, where ∆1 is a small quantity
of the order ǫ. In the main order ∆1 ± ǫF1/2 = 0, and
this gives us the first gap: F1/2(1− ǫ) < λ < F1/2(1 + ǫ).

For the third gap we write λ = F3/2 + ∆3, where ∆3

is of order ǫ2. The equation for ∆3 with the third order
accuracy is

[(F3/2(1 ± ǫ) − F1/2)∆3 − ǫ2F 2
3/2](F3/2 − F5/2)

−ǫ2F 2
3/2(F3/2(1 ± ǫ) − F1/2) = 0. (32)

From here we find

∆3 = ǫ2F 2
3/2

[

1

(F3/2 − F5/2)
+

1

(F3/2(1 ± ǫ) − F1/2)

]

,

where we may keep only the second- and third-order
terms. This gives us the position of the third gap

λ
(3)
− < λ < λ

(3)
+ :

λ
(3)
± = F3/2 + ǫ2F 2

3/2

[

1

(F3/2 − F5/2)
+

1

(F3/2 − F1/2)

]

±
ǫ3F 3

3/2

(F3/2 − F1/2)2
. (33)

Analogously, the gaps at integer ν’s can be considered.
These are determined by the system

(λ− F0)Ψ0 + λǫ(±Ψ1 + Ψ1) = 0, (34)

(λ− F1)Ψ1 + λǫ(Ψ0 + Ψ2) = 0, (35)

(λ− F2)Ψ2 + λǫ(Ψ1 + Ψ3) = 0, (36)

. . .

For instance, position of the second gap in second order
is given by the formulas

λ
(2)
− = F1 −

ǫ2F 2
1

F2 − F1
, λ

(2)
+ = F1(1 + 2ǫ2) − ǫ2F 2

1

F2 − F1
.

(37)

III. EXACT THEORY

In exact nonlinear theory, the shape of free bound-
ary is given in parametric form by a compound func-
tion z(ζ(u, t)), where z(ζ) is a known function com-
pletely determined by the bottom shape [for example,

z(ζ) = h(
√

(ζ + i)2 − (b/h)2−i) corresponds to a narrow
vertical barrier of the height b at x = 0 on the straight
horizontal bottom with the depth y = −h]. The un-
known function ζ(w, t) should be analytical in the stripe
−1 < Imw < 0 and the combination [ζ(u−i, t)+i] should
take real values. These conditions relate the real and the
imaginary parts of ζ(u, t) at the real axis [38]:

ζ(u, t) = u+ (1 + iR̂)ρ(u, t), (38)

where ρ(u, t) is a real function, and the linear

anti-Hermitian operator R̂ is i tanh k in Fourier-
representation. In u-representation

R̂ρ(u, t) = P.V.

+∞
∫

−∞

ρ(ũ, t)dũ

2 sinh[(π/2)(ũ− u)]
. (39)
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The inverse operator R̂−1 = T̂ = −i coth k̂ acts as

T̂ ρ(u, t) = P.V.

+∞
∫

−∞

ρ(ũ, t)dũ

1 − exp[π(ũ − u)]
. (40)

Note that the previously considered operator [k̂ tanh k̂]

is −R̂∂u. The kinetic energy functional is now exactly
equal to the expression at the r. h. s. of Eq.(6). The
Lagrangian for ψ(u, t) and ζ(u, t) is given by the formula

Lexact =

∫

|z′(ζ)|2
(

ζ̄uζt − ζuζ̄t
2i

)

ψdu

+
1

2

∫

ψR̂ψudu− g

2

∫

{Im z(ζ)}2Re (z′(ζ)ζu)du

+

∫

Λ

[

ζ − ζ̄

2i
− R̂

(

ζ + ζ̄

2
− u

)]

du, (41)

where the (real) Lagrangian indefinite multiplier Λ(u, t)
has been introduced in order to take into account the
analytical properties of the function ζ given by Eq.(38).
From the above Lagrangian one can obtain the equations
of motion. Variation of the action

∫

Lexactdt by δψ(u, t)
gives the equation

|z′(ζ)|2(ζ̄uζt − ζuζ̄t)/(2i) = −R̂ψu, (42)

which can be easily transformed to the form (compare
with [38])

ζt = −ζu(T̂ + i)

[

R̂ψu

|z′(ζ)|2|ζu|2

]

. (43)

The variation of the action by δζ(u, t) results after sim-
plifying in the equation

|z′(ζ)|2
{

ψtζ̄u − ψuζ̄t + gζ̄uIm z(ζ)
}

− (1 + iR̂)Λ = 0.
(44)

Since the product ζu(1 + iR̂)Λ has the same analytical

properties as both ζu and (1 + iR̂)Λ, we can multiply
Eq.(44) by ζu and write

|z′(ζ)|2
{

[ψt + gIm z(ζ)]|ζu|2 − ψuζ̄tζu
}

− (1 + iR̂)Λ̃ = 0,
(45)

where Λ̃ is another real function. The imaginary part of
the above equation together with Eq.(42) result in

Λ̃ = −T̂ [ψuR̂ψu]. (46)

Using this equality, we can reduce the real part of Eq.(45)
to the form

ψt + gIm z(ζ) = −ψuT̂

[

R̂ψu

|z′(ζ)|2|ζu|2

]

− T̂ [ψuR̂ψu]

|z′(ζ)|2|ζu|2
,

(47)
which is the Bernoulli equation in the conformal vari-
ables. Exact equations (43) and (47) [with given analyti-
cal function z(ζ) and with the condition (38)] completely

determine the evolution of gravitational surface waves
over the undulating bottom parameterized by a real pa-
rameter r as Xb(r) + iYb(r) = z(ζ)|ζ=r−i.

Equations (43) and (47) can be represented in another

form by using the identity 2T̂ [ψuR̂ψu] = ψ2
u − (R̂ψu)2

[38] and introducing the complex potential

Φ(u, t) = (1 + iR̂)ψ(u, t) (48)

(which is analytically continued to the stripe −1 <
Imw < 0):

ζt = −ζu(T̂ + i)

[

ImΦu

|z′(ζ)|2|ζu|2
]

, (49)

Φt = −Φu(T̂ + i)

[

ImΦu

|z′(ζ)|2|ζu|2
]

−(1 + iR̂)

[ |Φu|2
2|z′(ζ)|2|ζu|2

+ gIm z(ζ)

]

. (50)

A very interesting point is that one can re-write equations
(43) and (47) without the intermediate function ζ(u, t),
but directly for z(u, t). Indeed, after multiplying Eq.(43)
by z′(ζ) we obtain the equations

zt = −zu(T̂ + i)

[

R̂ψu

|zu|2

]

, (51)

ψt + gIm z = −ψuT̂

[

R̂ψu

|zu|2

]

− T̂ [ψuR̂ψu]

|zu|2
, (52)

that is exactly the same system as was derived in [38]
for a straight horizontal bottom. However, in our case
analytical properties of the function z(w, t) are different:

Im z(u) 6= R̂[Re (z(u) − u)]. (53)

The only requirements for z(w, t) now are that it should
be analytical in the stripe −1 < Imw < 0 and the cor-
responding mapping should have a physical sense (no
self-intersections are allowed). The question may arise:
Where is the bottom shape in Eqs. (51)-(52)? The an-
swer is simple: The shape of the bottom is an integral of
motion for this system. Roughly speaking, each particu-
lar solution of Eqs.(51)-(52) corresponds to a flow over a
definite topography determined by the initial condition
z(r − i, 0).

Analogously, Eqs.(49)-(50) can be represented as

zt = −zu(T̂ + i)

[

ImΦu

|zu|2
]

, (54)

Φt = −Φu(T̂ + i)

[

ImΦu

|zu|2
]

− (1 + iR̂)

[ |Φu|2
2|zu|2

+ gIm z

]

.

(55)
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IV. NUMERICAL EXPERIMENTS

A. Different forms of equations

For numerical simulations, still other equivalent forms
of exact equations may be useful, since numerical sta-
bility depends dramatically on the choice of dynamical
variables [39, 40, 41, 42]. Two alternative sets of equa-
tions were used in computations presented below. First,
as it was pointed in [39] for the case of deep water, a good
practical choice for the dynamical variables is A = 1/zu

and B = Φu/zu. It is easy to derive the equations of mo-
tion for A(u, t) and B(u, t) from Eqs.(54)-(55), and they
are very elegant (compare with [39]):

At = −Au(T̂ + i)Im (BĀ) +A(T̂ + i)∂uIm (BĀ), (56)

Bt = −Bu(T̂+i)Im (BĀ)−A(1+iR̂)

[

∂u
|B|2
2

+ gIm
1

A

]

.

(57)
The variables A and B do allow stable numerical simula-
tions for waves over varying seabed. However, analytical
properties of A and B are not restricted by conditions
similar to Eq.(38), and therefore the shape of the bot-
tom is preserved in this case only approximately.

The second set of variables, that were used in numeri-
cal experiment, consists of two complex functions: ζ(u, t)
and

β(u, t) = Φu(u, t)/ζu(u, t), (58)

both having effectively controlled analytical properties.
With this choice, the bottom shape is preserved exactly,
but the corresponding equations of motion are slightly
less compact:

ζt = −ζu(T̂ + i)Im

(

β

|z′(ζ)|2 ζ̄u

)

, (59)

βt = −βu(T̂ + i)Im

(

β

|z′(ζ)|2ζ̄u

)

−ζ−1
u (1 + iR̂)∂u

[ |β|2
2|z′(ζ)|2 + g Im z(ζ)

]

. (60)

It is necessary to explain here some important details
about space-periodic solutions of the system (59)-(60),
since spectral numerical methods deal with periodic func-
tions. Such solutions exist if the function z′(ζ) is periodic
with a fixed real period L, so that z(ζ + L) = L + z(ζ).
However, this does not imply that the functions ζu(u, t)
and β(u, t) have a fixed u-period. It would be so, but the

linear operator T̂ is singular at small k, and its action
on a constant function is not periodic in u: T̂C = Cu.
Thus in the right-hand-sides of the Eqs.(59)-(60) we have
non-periodic terms. Therefore ζt(u, t) and βt(u, t) can-
not retain a constant u-period. However, ζt(u, t) and
βt(u, t) can be space-periodic with a time-dependent

u-period. So, at arbitrary moment of time we will have
the equality ζ(u, t) + i = (L/2π)ζ∗ (2πα(t)u/L, t), where

ζ∗(ϑ, t) = ϑ+ iα(t) +

+∞
∑

m=−∞

2ρm(t) exp(imϑ)

1 + exp(2mα(t))

= ϑ+ iα(t) + (1 + iR̂α)ρ(ϑ, t), (61)

with an unknown real function α(t). The unknown com-
plex Fourier coefficients ρm(t) correspond to a real (2π-
periodic on the variable ϑ) function ρ(ϑ, t):

ρ(ϑ, t) =

+∞
∑

m=−∞
ρm(t) exp(imϑ), ρ−m(t) = ρ̄m(t).

The linear operator R̂α is diagonal in the discrete Fourier
representation: Rα(m) = i tanh(αm).

Analogously, β(u, t) can be represented as β =
(gL/(2π))1/2β∗(ϑ, t), where

β∗(ϑ, t) =

+∞
∑

m=−∞

2χm(t) exp(imϑ)

1 + exp(2mα(t))
= (1 + iR̂α)χ(ϑ, t).

(62)
Equations of motion for the real functions α(t), ρ(ϑ, t),
and χ(ϑ, t) follow from Eqs.(59)-(60):

α̇(t) =
1

2π

∫ 2π

0

Im

( −β∗(ϑ)

|z′∗(ζ∗)|2ζ̄′∗(ϑ)

)

dϑ, (63)

ρ̇(ϑ, t) = Re

(

ζ′∗(T̂α + i)Im

( −β∗(ϑ)

|z′∗(ζ∗)|2ζ̄′∗(ϑ)

))

, (64)

χ̇(ϑ, t) = Re
(

β′
∗(T̂α + i)Im

( −β∗(ϑ)

|z′∗(ζ∗)|2ζ̄′∗(ϑ)

)

− 1

ζ′∗
(1 + iR̂α)∂ϑ

[ |β∗|2
2|z′∗(ζ∗)|2

+ Imz∗(ζ∗)

]

)

,(65)

where z∗(ζ∗) = (2π/L)z(−i+ Lζ∗/(2π)), ζ′∗ = ∂ϑζ∗ and

so on. The linear operator T̂α is regular. In the discrete
Fourier representation it is defined as follows:

Tα(m) = −i coth(αm), m 6= 0;

= 0, m = 0. (66)

Two numerical experiments are briefly reported below,
first of them employing Eqs.(56)-(57), and the second one
employing Eqs.(59)-(60). Both the systems (56)-(57) and
(59)-(60) are equally convenient for numerical solution by
spectral methods, inasmuch as the multiplications can be
performed in u-representation while the linear operators
R̂ and T̂ (also the u-differentiation) are simple in the
Fourier representation. Efficient subroutine libraries for
the fast Fourier transform are now available. The inte-
gration schemes in both cases were based on the Runge-
Kutta 4-th order method, similarly to work [40]. For
computing the discrete Fourier transform, the FFTW li-
brary was used [43]. The length scale was normalized by
a factor h = L/(2π) and the velocity scale by (gh)1/2.
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FIG. 3: (i) Free surface and bottom for t = 0. Only part of
the entire periodic domain is shown.
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FIG. 4: (i) t = 50: propagation stage.

B. Numerical results for Eqs.(56)-(57)

The above remark about time-dependent u-period
equally concerns the system (56)-(57) as (59)-(60). How-
ever, for localized disturbances the relative change of α(t)
remains small. Therefore solitary waves are possible to
simulate with a constant α and with the regularized T̂ .
It was done so the first numerical experiment [referred
as (i)], where periodic boundary conditions were applied
with the fixed u-period L = 200. The initial conditions
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FIG. 5: (i) t = 69: breaking of the wave.
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FIG. 6: (i) Crest of the wave for t = 69.

were taken B(u, 0) = 0 and

1

A(u, 0)
= zu(u, 0) =

2.5E(u) + 0.25

E(u) + 1
+

1.4

C(u)
,

where

E(u) = exp[8.0(cos(2πu/L) − 0.1)],

C(u) = cosh[(L/π) sin{π(u+ i)/L}].

This initial configuration is symmetric (even). It results
after some time in two oppositely propagating, nearly
solitary waves. The waves are created in the region where
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FIG. 7: (ii) The bottom profile and shape of the free surface
at t = 0. The velocity field is everywhere zero.

the depth is maximal. In the course of motion each wave
approaches a shallow region where the surface profile y =
η(x, t) becomes steeper and finally multi-valued.

Some of the results of this numerical experiment are
presented in Figs.3-6, where the velocity distribution on
the surface is shown, as well as shapes of free surface and
of the bottom for several moments of time. In general,
the computed wave profiles look quite realistic, though
the present theory does not take into account viscous
effects. Steeping of the wave profile is clearly seen. It
should be noted, however, in these simulations the bot-
tom shape is preserved only approximately due to dis-
cretization errors, and the same concerns the total en-
ergy. The computation was stopped well before the mo-
ment of formation of a singularity on the crests of the
waves, when the numerical scheme becomes invalid. In
real world this moment corresponds to development of a
three-dimensional instability resulting in vortices, splash
and foam.

C. Numerical results for Eqs.(59)-(60)

In the second numerical experiment [referred as (ii)],
the shape of the bottom was fixed by analytical function

z(ζ) = ζ + i
Ld

2π
exp(2πi(ζ + i)/L),

with the dimensionless parameters L = 100, d = 0.16.
The initial velocity field was taken zero: β(u, 0) = 0,
while ζ(u, 0) had the form

ζ(u, 0) = u+Θ(0.63, 0.0, u+ i)+0.06 Θ(0.9, 0.04, u+ i),

where

Θ(r, p, w) ≡ −i L
2π

ln

(

1 + r exp(−2πi(w − pL)/L)

1 + r exp(+2πi(w − pL)/L)

)

.

Qualitatively, these initial conditions are similar to those
in the first experiment, however now two oppositely prop-
agating waves are created over inclined region of the bot-
tom, so there is no left-right symmetry in the evolution.
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FIG. 8: (ii) Velocity distribution on free surface and shape of
the surface at t = 6.
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FIG. 9: (ii) The same as in Fig.8, at t = 12.
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FIG. 10: (ii) The same as in Fig.8, at t = 17.

The full system (63)-(65) was solved with a high accu-
racy for m in the limits −7000 < m < 7000 (the energy
conservation was up to 12 digits for a long “smooth” ini-
tial stage of the evolution, and it was up to 5 digits for
the final stage just before the breaking). This more accu-
rate numerical solution was compared to a less accurate
solution obtained with fixed α = α(0). The difference
was found very small.

The corresponding numerical results are presented in

Figs.7-10. Here we again observe steeping of the wave
profile with the tendency towards finite time singular-
ity formation on the crest. Such behavior indeed takes
place in natural conditions when the flows are almost
two-dimensional.

V. SUMMARY

In this paper we have derived approximate weakly-
nonlinear, as well as exact nonlinear equations of motion
for potential water waves over a strongly inhomogeneous
bottom. The consideration was based on using the con-
formal mappings. For linear waves over periodic seabed,
the band structure of the spectrum has been calculated.

Though the obtained exact equations can be written
in formally the same form as those derived in [38] for a
straight horizontal bottom, but admissible solutions have
different analytical properties if the bottom is inhomoge-
neous. When the equations are written in this form, the
bottom shape is preserved as an integral of motion.

Numerical experiments have been carried out that con-
firm advantage of the theory by giving quite realistic pic-
tures for wave profiles before wave breaking.

Of course, the above “inviscid theory” works only on
large enough spatial scales and only until the singularity
moment, as it was clear from the very beginning. Prac-
tically, this theory is good for description sea and ocean
waves before their breaking.
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